

#### Finite Element Developments and Applications in Structural Topology Optimization

by

Craig Stephen Long

Submitted in partial fulfilment of the requirements for the degree

#### Philosophiae Doctor (Mechanical Engineering)

in the Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Pretoria

July 2007



#### Summary

| Title:         | Finite element developments and applications in structural topology optimization                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author:        | Craig Stephen Long                                                                                                                                                            |
| Supervisor:    | Prof. A.A. Groenwold                                                                                                                                                          |
| Co-supervisor: | Dr. P.W. Loveday                                                                                                                                                              |
| Department:    | Department of Mechanical Engineering                                                                                                                                          |
| Degree:        | Philosophiae Doctor (Mechanical Engineering)                                                                                                                                  |
| Keywords:      | Finite element; piezoelectric; drilling degrees of freedom; reduced nu-<br>merical integration; topology optimization; one-node hinge; checker-<br>board: compliant mechanism |

In this two-part study, developments in finite element technology and the application thereof to topology optimization are investigated. Ultimately, the developed finite elements and corresponding topology optimization procedures are aimed at, but not restricted to, aiding the design of piezoelectrically driven compliant mechanisms for micropositioning applications. The objective is to identify and exploit existing, or to develop new, finite element technologies to alleviate the numerical instabilities encountered in topology optimization. Checkerboarding and one-node connected hinges are two commonly encountered examples which can directly be attributed to inadequacies or deficiencies in the finite element solution of structural problems using 4-node bilinear isoparametric finite elements (denoted Q4). The numerical behaviour leading to checkerboard layouts stems from an over-stiff estimation of a checkerboard patch of Q4 elements. The numerical model of a one-node connected hinge using Q4 elements, on the other hand, possesses no (or very little) stiffness in rotation about the common node.

In the *first* part of the study, planar finite elements with in-plane rotational (drilling) degrees of freedom are investigated. It is shown that the skew-symmetric part of the stress tensor can directly be used to quantitatively assess the validity of the penalty parameter  $\gamma$ , which relates the in-plane translations to the rotations. Thereafter, the variational formulations used to develop these planar finite elements with drilling degrees of freedom are extended to account for the piezoelectric effect. Several new piezoelectric elements that include in-plane rotational degrees of freedom (with and without assumed stress and electric flux density) are implemented, evaluated and shown to be accurate and stable.



Furthermore, the application of alternative reduced order integration schemes to quadratic serendipity (Q8) and Lagrangian (Q9) elements is investigated. Reduced or selective reduced integration schemes are often used to enhance element accuracy by 'softening' higher order deformation modes. However, application of reduced integration schemes to Q8 and Q9 elements is usually accompanied by element rank deficiencies. It is shown how the application of five and eight point modified integration schemes preserve the accuracy benefits of reduced integration, while preventing element rank deficiencies.

In the *second* part of the investigation, the salient features of elements with drilling degrees are utilized in two schemes to prevent, or improve the modelling of, one-node connected hinges. In principle, the first scheme uses the rotations computed at interior nodes to detect excessive rotations at suspect nodes. The second scheme essentially replaces planar elements forming a one-node hinge, where appropriate, with a more realistic beam model of the material layout while other elements in the mesh are modelled using planar elements as usual.

Next, the dependence of optimal topologies on element formulation is demonstrated. Attention is especially paid to plate and shell applications. It is shown that Mindlin-Reissner based elements, which employ selective reduced integration on shear terms, are not reliable in topology optimization problems. Conversely, elements based on an assumed natural strain formulation are shown to be stable and capable of reproducing thin plate topology results computed using shear-rigid elements. Furthermore, it is shown that an *ad hoc* treatment of rotational degrees of freedom in shell problems is sensitive to the related adjustable parameter, whereas optimal topologies, using a proper treatment of drilling degrees of freedom are not.

Finally, the use of reduced order integration schemes as a strategy to reduce the stiffness of a checkerboard patch of elements is considered. It is demonstrated that employing the five and eight point integration schemes, used to enhance the accuracy of Q8 and Q9 elements, also significantly reduce the stiffness of a checkerboard patch of elements, thereby reducing the probability of observing checkerboard layouts in optimal topologies.



#### Acknowledgements

It is my great pleasure and a tremendous honour to be able to acknowledge all the wonderful people who have contributed to the completion of this thesis. Looking back over the years I have spent at university, I can only now fully appreciate how privileged I have been to have received so much support and encouragement in perusing my interests.

Firstly to my Ph.D. supervisor, Prof. Albert Groenwold, I wish to extend my immeasurable thanks and appreciation for the enthusiasm, patients, encouragement, advice and wisdom, which you have so generously shared during the years we have worked together. It has been a real education, not only in structural optimisation, but in life. Thank you for being my guide on this adventure. I sincerely hope that our paths will cross frequently!

I would also like to thank my co-supervisor, Dr. Philip Loveday for the faith you have shown in me, and for the patience you exercised in the time while I was completing my write-up. Thanks also for the dedication and vigour with which you have approached each undertaking I have consulted you on. I am grateful to be working with you now, and hope to do so for many years to come.

I would also like to express my gratitude to the faculty of the Department of Mechanical Engineering at the University of Pretoria who have helped shape my life. I would especially like to acknowledge Prof. Jan Snyman, not only for the technical guidance you have provided during my Masters and Ph.D. studies, but for brightening up life with the many colourful tales of your travels and other exploits. It has been an honour to have known you. Also, to Prof. Schalk Kok who was always willing to share his seemingly boundless knowledge. Thank you. Also, to my friends and colleagues at CSIR, thank you for your support and encouragement over the past year and a half.

To the Structural Optimization Research Group (SORG), and some honorary members, especially Albert, Schalk, Nico, Carl, Cheng, Derren, Lize, Antoinette, Michael, Sannelie, Christiaan, Gerhard, Jaco and Neo. Also, to all my friends especially Justin and Jonathan. The heated debates over a cup of steaming coffee, the cheap beer from various establishments in Hatfield, working together on assignments until late, stories of weekend adventures, chess and go tournaments, etc. are what made my varsity days the best of my life. Thank you for sharing in my life and for letting me share in yours.



Financial support provided by

- the South African National Research Foundation (NRF), who provided funding via the THRIP initiative (project number 2769), as well as general studentship funding,
- the Council for Scientific and Industrial Research (CSIR), and
- the University of Pretoria,

is most gratefully acknowledged.

Thanks go also to Prof. Krister Svanberg, for supplying me with his MMA implementation.

I would also like to acknowledge my family-in-law. Mr. and Mrs. Bredenkamp, thank you for letting me stay with you for so long and for treating me like a son. Also to Louis and Janine, thank you for making me part of your family. Lastly, but certainly not least, I would like to thank my family. Thank you Mom and Dad for all the sacrifices you've made to give your children every opportunity to succeed. Thanks also to my brothers, Mark, Gavin and Anthony and to my sister Sharon, and family, for always being there during the tough times and for supporting all my ventures. I love you all!



To Michele, my wife, my love and my best friend.

Let me not to the marriage of true minds Admit impediments. Love is not love Which alters when it alteration finds, Or bends with the remover to remove. O no, it is an ever fixed mark That looks on tempests and is never shaken; It is the star to every wand'ring barque, Whose worth's unknown although his height be taken. Love's not time's fool, though rosy lips and cheeks Within his bending sickle's compass come; Love alters not with his brief hours and weeks, But bears it out even to the edge of doom. If this be error and upon me proved, I never writ, nor no man ever loved. – William Shakespeare

Shell, these words are as true now as they were the day I first recited them to you, over 13 years ago. I truly love you and I dedicate this thesis to you.



## Contents

| Su            | Summary |                                                                  |     |
|---------------|---------|------------------------------------------------------------------|-----|
| A             | cknov   | vledgements                                                      | v   |
| Li            | st of   | Figures                                                          | xiv |
| $\mathbf{Li}$ | st of   | Tables                                                           | xxi |
| 1             | Intr    | oduction                                                         | 1   |
|               | 1.1     | Structural topology optimization                                 | 2   |
|               | 1.2     | Background to the study                                          | 6   |
|               |         | 1.2.1 Topology optimization                                      | 7   |
|               |         | 1.2.2 The finite element method                                  | 8   |
|               | 1.3     | Objectives of the study                                          | 9   |
|               | 1.4     | Thesis overview and list of contributions                        | 11  |
| PA            | RT 1    | : Finite Element Development and Technology                      | 17  |
| <b>2</b>      | Stał    | oility of elastostatic elements with drilling degrees of freedom | 19  |
|               | 2.1     | Summary                                                          | 19  |
|               |         | 2.1.1 A word on notation                                         | 19  |
|               | 2.2     | Introduction                                                     | 20  |
|               | 2.3     | Historical development of elements with drilling DOFs            | 22  |
|               | 2.4     | Variational formulation of elements with drilling DOFs           | 24  |
|               | 2.5     | Finite element interpolation                                     | 28  |
|               | 2.6     | Stability analysis                                               | 32  |
|               | 2.7     | Consistency and stability                                        | 33  |
|               | 2.8     | Numerical experiments                                            | 33  |
|               |         | 2.8.1 Cook's membrane                                            | 34  |



|   |      | 2.8.2   | Cantilever beam subjected to end shear                                                            | 35 |
|---|------|---------|---------------------------------------------------------------------------------------------------|----|
|   |      | 2.8.3   | Orthotropic membrane cantilever                                                                   | 35 |
|   | 2.9  | Conclu  | usions                                                                                            | 36 |
| 3 | Piez | zoelect | ric elements with drilling degrees of freedom                                                     | 41 |
|   | 3.1  | Summ    | ary                                                                                               | 41 |
|   |      | 3.1.1   | Another brief word on notation                                                                    | 41 |
|   | 3.2  | Introd  | luction                                                                                           | 41 |
|   | 3.3  | Gover   | ning equations                                                                                    | 43 |
|   |      | 3.3.1   | Constitutive equations                                                                            | 43 |
|   |      | 3.3.2   | Compatibility conditions                                                                          | 45 |
|   |      | 3.3.3   | Equilibrium conditions                                                                            | 45 |
|   |      | 3.3.4   | Rotational momentum balance conditions and definition of infinitesi-<br>mal rotation              | 45 |
|   | 3.4  | Variat  | ional formulation                                                                                 | 45 |
|   |      | 3.4.1   | Hu-Washizu-like variational formulations                                                          | 46 |
|   |      | 3.4.2   | Irreducible formulations                                                                          | 49 |
|   |      | 3.4.3   | Fully mixed Hellinger-Reissner-like formulations                                                  | 50 |
|   |      | 3.4.4   | Degenerate Hellinger-Reissner-like formulations                                                   | 52 |
|   |      | 3.4.5   | Relationships between the functionals                                                             | 57 |
|   | 3.5  | Finite  | element interpolations                                                                            | 59 |
|   | 3.6  | Finite  | element implementation                                                                            | 62 |
|   |      | 3.6.1   | Irreducible piezoelectric elements with drilling DOFs $\ldots$                                    | 62 |
|   |      | 3.6.2   | Fully mixed piezoelectric element with drilling DOFs $\ldots$ .                                   | 64 |
|   |      | 3.6.3   | Degenerate assumed flux density piezoelectric element with drilling DOFs                          | 66 |
|   |      | 3.6.4   | Degenerate assumed stress piezoelectric elements with drilling DOFs .                             | 68 |
|   | 3.7  | Partit  | ioned stiffness matrices                                                                          | 70 |
|   | 3.8  | Nume    | rical evaluation                                                                                  | 71 |
|   |      | 3.8.1   | Effect of $\gamma$                                                                                | 73 |
|   |      | 3.8.2   | Eigenvalue analysis                                                                               | 75 |
|   |      | 3.8.3   | Patch test                                                                                        | 75 |
|   |      | 3.8.4   | Two element beam                                                                                  | 76 |
|   |      | 3.8.5   | Ten element beam $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ | 77 |
|   |      | 3.8.6   | Cook's membrane                                                                                   | 83 |
|   |      | 3.8.7   | Piezoelectric bimorph beam                                                                        | 87 |



|   | 3.9 | Conclu   | isions                                                                                        | 89  |
|---|-----|----------|-----------------------------------------------------------------------------------------------|-----|
| 4 | Mo  | dified 1 | reduced order quadratures for quadratic membrane elements                                     | 91  |
|   | 4.1 | Summ     | ary                                                                                           | 91  |
|   | 4.2 | Introd   | uction                                                                                        | 91  |
|   | 4.3 | Deriva   | tion of numerical integration schemes                                                         | 94  |
|   |     | 4.3.1    | A five point rule                                                                             | 96  |
|   |     | 4.3.2    | An eight point rule                                                                           | 97  |
|   | 4.4 | Nume     | rical evaluation                                                                              | 98  |
|   |     | 4.4.1    | Eigenvalue analysis                                                                           | 98  |
|   |     | 4.4.2    | Effect of element aspect ratio                                                                | 99  |
|   |     | 4.4.3    | Cantilever beam in pure bending                                                               | 101 |
|   |     | 4.4.4    | A near mechanism                                                                              | 103 |
|   |     | 4.4.5    | Highly constrained square plate                                                               | 104 |
|   |     | 4.4.6    | Cook's membrane                                                                               | 104 |
|   | 4.5 | Conclu   | usion                                                                                         | 107 |
| 5 | Nev | v scher  | nes to deal with problematic material layouts                                                 | 117 |
|   | 5.1 | Summ     | ary                                                                                           | 117 |
|   | 5.2 | Introd   | uction                                                                                        | 118 |
|   | 5.3 | Eleme    | nts with drilling degrees of freedom                                                          | 120 |
|   | 5.4 | Proble   | em formulations                                                                               | 120 |
|   |     | 5.4.1    | The minimum compliance topology optimization problem using SIMP                               | 121 |
|   |     | 5.4.2    | Comments on checkerboarding                                                                   | 123 |
|   |     | 5.4.3    | Compliant mechanism design using topology optimization and SIMP                               | 124 |
|   |     | 5.4.4    | Mirror scanning design using topology optimization and SIMP                                   | 125 |
|   | 5.5 | Schem    | es to prevent checkerboarding and one-node hinges                                             | 132 |
|   |     | 5.5.1    | Scheme I: A modified scheme based on NoHinge                                                  | 132 |
|   |     | 5.5.2    | Scheme II: A new scheme to improve checkerboard, one-node hinge and diagonal member modelling | 133 |
|   | 5.6 | Nume     | rical examples and applications                                                               | 137 |
|   |     | 5.6.1    | Application of Scheme I                                                                       | 138 |
|   |     | 5.6.2    | Application of Scheme II                                                                      | 139 |
|   |     | 5.6.3    | Discussion of results                                                                         | 143 |



|   | 5.7          | Conclu           | usions                                                                                      | 143       |
|---|--------------|------------------|---------------------------------------------------------------------------------------------|-----------|
| 6 | Effe         | ect of e         | element formulation on membrane, plate and shell topology of<br>problems                    | p-        |
|   | 6 1          | Summ             |                                                                                             | 145       |
|   | 0.1<br>6 9   | Jutrod           |                                                                                             | 140       |
|   | 0.2          | Thurod           |                                                                                             | 140       |
|   | 0.3          |                  | M to islamma to istic                                                                       | 149       |
|   |              | 0.3.1            | Material parameterization                                                                   | 149       |
|   |              | 0.3.2            |                                                                                             | 152       |
|   |              | 0.3.3            | Problem formulation and sensitivities                                                       | 153       |
|   | <b>a</b> 4   | 6.3.4            | Design update and filtering strategies                                                      | 153       |
|   | 6.4          | Finite           | element formulations                                                                        | 154       |
|   |              | 6.4.1            | Membrane elements                                                                           | 155       |
|   |              | 6.4.2            | Plate elements                                                                              | 158       |
|   |              | 6.4.3            | Membrane-bending components                                                                 | 160       |
|   |              | 6.4.4            | Warp correction and local-global transformation                                             | 161       |
|   |              | 6.4.5            | Shell element denotation                                                                    | 161       |
|   | 6.5          | Nume             | rical Examples                                                                              | 162       |
|   |              | 6.5.1            | Membrane example                                                                            | 163       |
|   |              | 6.5.2            | Analysis of membrane results                                                                | 164       |
|   |              | 6.5.3            | Plate examples                                                                              | 165       |
|   |              | 6.5.4            | Analysis of plate results                                                                   | 169       |
|   |              | 6.5.5            | Shell examples                                                                              | 170       |
|   |              | 6.5.6            | Analysis of shell results                                                                   | 171       |
|   | 6.6          | Concl            | usions                                                                                      | 171       |
| 7 | Effe<br>patt | ect of reterns i | educed order integration schemes on the stiffness of checkerboar<br>n topology optimization | rd<br>177 |
|   | 7.1          | Summ             | nary                                                                                        | 177       |
|   | 7.2          | Introd           | luction                                                                                     | 177       |
|   | 7.3          | Modif            | ied reduced order quadrature integration rules                                              | 179       |
|   |              | 7.3.1            | Numerical integration schemes                                                               | 179       |
|   |              | 7.3.2            | A five-point rule                                                                           | 180       |
|   |              | 7.3.3            | An eight-point rule                                                                         | 181       |
|   | 7.4          | Eleme            | ents with drilling degrees of freedom                                                       | 182       |
|   | 7.5          | On th            | e stiffness of a checkerboard patch of elements                                             | 183       |



|    |       | 7.5.1    | Topology optimization using homogenization                                                        | 183 |
|----|-------|----------|---------------------------------------------------------------------------------------------------|-----|
|    |       | 7.5.2    | Effective properties of a checkerboard                                                            | 185 |
|    | 7.6   | Numer    | rical results                                                                                     | 187 |
|    |       | 7.6.1    | Effect of element formulation on local $\chi$ field                                               | 188 |
|    |       | 7.6.2    | Effect of element selection and integration scheme on effective proper-<br>ties of a checkerboard | 189 |
|    |       | 7.6.3    | Effect of integration scheme on strain energy density of quadratic ele-<br>ments                  | 191 |
|    |       | 7.6.4    | Effect of integration scheme on penalty bounds $p_1^*$ and $p_2^*$                                | 196 |
|    | 7.7   | Conclu   | sions                                                                                             | 197 |
| 8  | Con   | clusio   | n                                                                                                 | 203 |
| 0  | 8.1   | PART     | I: Development of finite element technology                                                       | 204 |
|    | 8.2   | PART     | II: Application of F.E. to topology optimization                                                  | 205 |
|    | 8.3   | Sugges   | sted future work                                                                                  | 207 |
|    |       |          |                                                                                                   |     |
| Bi | bliog | graphy   |                                                                                                   | 209 |
| A  | A b   | rief int | troduction to topology optimization                                                               | 223 |
|    | A.1   | Impler   | nentional issues                                                                                  | 225 |
|    |       | A.1.1    | Mesh dependency                                                                                   | 225 |
|    |       | A.1.2    | Checkerboarding, one-node connected hinges                                                        | 228 |
|    |       | A.1.3    | Other complications                                                                               | 230 |
|    | A.2   | Compl    | liant mechanism design                                                                            | 230 |
| в  | Add   | litiona  | l plate and shell results                                                                         | 233 |
|    | B.1   | Additi   | onal membrane results                                                                             | 233 |
|    |       | B.1.1    | MBB beam                                                                                          | 233 |
|    | B.2   | Additi   | onal plate results                                                                                | 235 |
|    |       | B.2.1    | Simply supported square plate with centre point load $\ldots \ldots \ldots$                       | 235 |
|    |       | B.2.2    | Clamped square plate with centre point load                                                       | 242 |
|    |       | B.2.3    | Corner supported square plate with centre point load $\ . \ . \ . \ .$                            | 248 |
|    |       | B.2.4    | Corner supported square plate with distributed load                                               | 254 |
|    | B.3   | Additi   | onal shell results                                                                                | 258 |
|    |       | B.3.1    | Cylindrical shell                                                                                 | 258 |
|    |       | B.3.2    | Pretwisted beam                                                                                   | 262 |



# List of Figures

| 1.1  | Three categories of structural optimization                                                                 | 2  |
|------|-------------------------------------------------------------------------------------------------------------|----|
| 1.2  | Schematic of the process of structural topology optimization                                                | 4  |
| 1.3  | Schematic of thesis layout.                                                                                 | 12 |
| 2.1  | Flat element subject to in-plane membrane and bending actions                                               | 20 |
| 2.2  | Displacement of an element side $1-2$                                                                       | 23 |
| 2.3  | Relationship among functionals                                                                              | 26 |
| 2.4  | Applications of functionals proposed by Hughes and Brezzi in discrete form.                                 | 29 |
| 2.5  | Four node element with drilling degrees of freedom                                                          | 30 |
| 2.6  | Modified shear patch test                                                                                   | 34 |
| 2.7  | Cook's membrane                                                                                             | 34 |
| 2.8  | Cook's membrane: Effect of $\gamma$ on displacement, rotation and skew $\sigma$ for the $4 \times 4$ mesh   | 35 |
| 2.9  | Cook's membrane: Effect of $\gamma$ on displacement, rotation and skew $\sigma$ for the $32 \times 32$ mesh | 36 |
| 2.10 | Cantilever beam under shear load                                                                            | 37 |
| 2.11 | Cantilever beam: Effect of $\gamma$ on tip displacement and skew $\boldsymbol{\sigma}$                      | 38 |
| 2.12 | Orthotropic membrane cantilever                                                                             | 38 |
| 2.13 | Orthotropic membrane cantilever: Effect of $\gamma$ for a 0 degree ply arrangement (regular mesh)           | 39 |
| 2.14 | Orthotropic membrane cantilever: Effect of $\gamma$ for a 30 degree ply arrangement (regular mesh)          | 39 |
| 2.15 | Orthotropic membrane cantilever: Effect of $\gamma$ for a 30 degree ply arrangement (distorted mesh)        | 40 |
| 3.1  | Relationships between the functionals.                                                                      | 56 |
| 3.2  | Relationships between the functionals in terms of their finite element imple-<br>mentation                  | 58 |
| 3.3  | A planar 4-node piezoelectric element with drilling rotations                                               | 60 |
| 3.4  | Effect of $\gamma$ on eigenvalues (normalised with respect to their values at $\gamma/c_{33} = 1$ ).        | 73 |



| 3.5  | Effect of $\gamma$ on skew part of stress and other accuracy measures                                                                                               | 74  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.6  | Ten element piezoelectric cantilever beam subjected to pure bending                                                                                                 | 74  |
| 3.7  | Mesh for piezoelectric patch test.                                                                                                                                  | 75  |
| 3.8  | Two element piezoelectric cantilever beam subjected to pure bending                                                                                                 | 76  |
| 3.9  | Two element piezoelectric beam subjected to pure bending: Effect of distortion on $v_A$                                                                             | 78  |
| 3.10 | Two element piezoelectric beam subjected to pure bending: Effect of distortion on $\phi_A$ .                                                                        | 79  |
| 3.11 | Four element piezoelectric beam subjected to pure bending: Effect of distortion on $v_A$                                                                            | 80  |
| 3.12 | Four element piezoelectric beam subjected to pure bending: Effect of distortion on $\phi_A$ .                                                                       | 81  |
| 3.13 | Piezoelectric Cook's membrane.                                                                                                                                      | 83  |
| 3.14 | Cook's membrane: y-displacement at $C(u_{yC})$                                                                                                                      | 85  |
| 3.15 | Cook's membrane: Electric potential at $C(\phi_{yC})$                                                                                                               | 86  |
| 3.16 | Bimorph based on MacNeal's elongated beam                                                                                                                           | 87  |
| 4.1  | Typical spurious mode of Q8 employing a 4 point Gauss-Legendre scheme                                                                                               | 93  |
| 4.2  | 5 Point integration scheme                                                                                                                                          | 96  |
| 4.3  | 8 Point integration scheme                                                                                                                                          | 97  |
| 4.4  | $\lambda_{13}$ of Q8 with different integration schemes (plane stress, $ \mathbf{J}  = 1, E = 1, \nu = 1/3$ )                                                       | 101 |
| 4.5  | $\lambda_{15}$ of Q9 element for different integration schemes (plane stress, $ \mathbf{J}  = 1$ , $E = 1, \nu = 1/3$ )                                             | 103 |
| 4.6  | Effect of aspect ratio on $\lambda_{13}$ of Q8 for different integration schemes                                                                                    | 104 |
| 4.7  | Effect of aspect ratio on $\lambda_{13}$ of Q9 for different integration schemes                                                                                    | 106 |
| 4.8  | Distorted cantilever beam.                                                                                                                                          | 106 |
| 4.9  | Distorted cantilever beam: Effect of distortion $d$ on $v_B$ for various integration<br>schemes with Q8 elements                                                    | 107 |
| 4.10 | Near mechanism with point load                                                                                                                                      | 108 |
| 4.11 | Incremental displacement $\hat{v}$ at $A$                                                                                                                           | 109 |
| 4.12 | Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements<br>and 4 point integration scheme (mesh size $6 \times 6$ , $E = 2.4$ , $\nu = 0.2$ ) | 109 |
| 4.13 | Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements<br>and 9 point integration scheme (mesh size $6 \times 6$ , $E = 2.4$ , $\nu = 0.2$ ) | 110 |
| 4.14 | Lowest six eigenvalues and eigenvectors for constrained mesh with Q9 elements<br>and 8 point integration scheme (mesh size $6 \times 6$ , $E = 2.4$ , $\nu = 0.2$ ) | 110 |
| 4.15 | Cook's membrane                                                                                                                                                     | 111 |



| 4.16 | Effect of weight on $v_C$ for Cook's membrane (Q8, 1×1 mesh)                                        | 111 |
|------|-----------------------------------------------------------------------------------------------------|-----|
| 4.17 | Effect of weight on $v_C$ for Cook's membrane (Q9, 1×1 mesh)                                        | 112 |
| 5.1  | Checkerboard, diagonal member and one node hinge material layouts                                   | 119 |
| 5.2  | The minimum compliance problem for the MMB beam                                                     | 121 |
| 5.3  | A reference optimal topology for the MBB beam discretized using $180 \times 30$ elements            | 122 |
| 5.4  | MBB beam optimal designs for a $30 \times 90$ mesh employing different elements.                    | 123 |
| 5.5  | Compliant mechanism design of a force inverter.                                                     | 125 |
| 5.6  | A reference optimal topology for the force inverter problem using $48 \times 48$ elements.          | 126 |
| 5.7  | Design domain and problem definition for mirror scanning device.                                    | 127 |
| 5.8  | Optimal topologies for different problem formulations                                               | 131 |
| 5.9  | Four paths around node to check for quasi-monotonicity.                                             | 133 |
| 5.10 | Post-processed interpretation of a $2 \times 2$ hinge                                               | 134 |
| 5.11 | Two different beam models of a hinge.                                                               | 134 |
| 5.12 | Beam replacement scheme                                                                             | 135 |
| 5.13 | Orthogonal basis vectors                                                                            | 136 |
| 5.14 | Patch of nine elements around element $i, j$                                                        | 137 |
| 5.15 | Illustration of the effect of the proposed scheme to overcome one-node hinges.                      | 138 |
| 5.16 | Application of different filters to the force inverter.                                             | 139 |
| 5.17 | Modelling accuracy benchmark problems                                                               | 140 |
| 5.18 | MBB beam with various elements                                                                      | 142 |
| 5.19 | Mirror mechanism design using new scheme, $\hat{\mathcal{H}}$ , Beam2, $V=2V^0$                     | 142 |
| 6.1  | Schematic representation of a general material layup                                                | 150 |
| 6.2  | Various multilayer models with solid and design layers                                              | 152 |
| 6.3  | Quadrilateral element with drilling degrees of freedom. $\ldots$ $\ldots$ $\ldots$ $\ldots$         | 155 |
| 6.4  | Quadrilateral Mindlin-Reissner plate element.                                                       | 155 |
| 6.5  | Warped and projected shell element.                                                                 | 161 |
| 6.6  | MBB beam geometry and constraints.                                                                  | 163 |
| 6.7  | Compliance and constraint function values for the MBB beam problem                                  | 164 |
| 6.8  | Optimal topologies of MBB beam for various values of $\alpha$                                       | 165 |
| 6.9  | Example plate problems, geometry and constraints                                                    | 166 |
| 6.10 | Optimal topology compliance as a function of plate thickness for the simply supported plate problem | 167 |
| 6.11 | Optimal topologies of a simply supported plate.                                                     | 173 |



| 6.12 | Optimal topologies of a corner supported square plate subjected to center point load, ribbed model, $t = 0.01$ .                                                | 174 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6.13 | Displaced shape of optimal topology computed using DKQ analyzed using SRI elements.                                                                             | 174 |
| 6.14 | Optimal topologies of a corner supported square plate subjected to uniform distributed load, ribbed model, $t = 0.01$ .                                         | 174 |
| 6.15 | Corner supported cylinder geometry and constraints                                                                                                              | 175 |
| 6.16 | Optimal topologies of a corner supported cylinder with single layer material model                                                                              | 175 |
| 6.17 | Pretwisted beam geometry and constraints                                                                                                                        | 176 |
| 6.18 | Optimal topologies of a pretwisted beam with single layer material model. $% \mathcal{A}_{\mathrm{rel}}$ .                                                      | 176 |
| 7.1  | Modified reduced order integration schemes                                                                                                                      | 180 |
| 7.2  | Example base cells often used in topology optimization                                                                                                          | 183 |
| 7.3  | Checkerboard patch with average density $\rho = 1/2$                                                                                                            | 185 |
| 7.4  | Local $\chi$ fields for various elements resulting from mean strain field $\bar{\epsilon}_{11} = \bar{\epsilon}_{22} = 1$ and $\bar{\epsilon}_{12} = 0$ .       | 188 |
| 7.5  | Optimal topologies of the MBB beam using symmetry and employing Q4 and Q4X elements                                                                             | 189 |
| 7.6  | Strain energy density of fully integrated Q8 elements                                                                                                           | 193 |
| 7.7  | Variation of $p^*$ for fully integrated Q8 elements                                                                                                             | 194 |
| 7.8  | Strain energy density of Q8 elements with 5-point integration scheme                                                                                            | 195 |
| 7.9  | Zoom of strain energy density of Q8 elements with 5-point integration scheme.                                                                                   | 196 |
| 7.10 | Strain energy density of Q8 elements with 8-point integration scheme                                                                                            | 197 |
| 7.11 | Zoom of strain energy density of Q8 elements with 8-point integration scheme.                                                                                   | 198 |
| 7.12 | Effect of integration scheme setting on $p_1^*$ : 5-point scheme                                                                                                | 199 |
| 7.13 | Effect of integration scheme setting on $p_1^*$ : 8-point scheme                                                                                                | 200 |
| 7.14 | Effect of integration scheme setting on $p_2^*$ : 5-point scheme                                                                                                | 200 |
| 7.15 | Effect of integration scheme setting on $p_2^*$ : 8-point scheme                                                                                                | 201 |
| B.1  | Convergence histories for MBB beam for various values of $\alpha$                                                                                               | 234 |
| B.2  | Optimal topologies of a simply supported square plate subjected to center point load, single layer model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots$ | 236 |
| B.3  | Optimal topologies of a simply supported square plate subjected to center point load, single layer model, $t = 0.1$ .                                           | 237 |
| B.4  | Optimal topologies of a simply supported square plate subjected to center point load, ribbed model, $t = 0.01$ .                                                | 238 |



| B.5  | Optimal topologies of a simply supported square plate subjected to center point load, ribbed model, $t = 0.1$ .                                                            | 239 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| B.6  | Optimal topologies of a simply supported square plate subjected to center point load, honeycomb model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$        | 240 |
| B.7  | Optimal topologies of a simply supported square plate subjected to center point load, honeycomb model, $t = 0.1$ .                                                         | 241 |
| B.8  | Optimal topologies of a clamped square plate subjected to center point load, single layer model, $t = 0.01$ .                                                              | 243 |
| B.9  | Optimal topologies of a clamped square plate subjected to center point load, single layer model, $t = 0.1$ .                                                               | 243 |
| B.10 | Optimal topologies of a clamped square plate subjected to center point load, ribbed model, $t = 0.01.$                                                                     | 244 |
| B.11 | Optimal topologies of a clamped square plate subjected to center point load, ribbed model, $t = 0.1$ .                                                                     | 245 |
| B.12 | Optimal topologies of a clamped square plate subjected to center point load, honeycomb model, $t = 0.01.$                                                                  | 246 |
| B.13 | Optimal topologies of a clamped square plate subjected to center point load, honeycomb model, $t = 0.1$                                                                    | 247 |
| B.14 | Optimal topologies of a corner supported square plate subjected to center point load, single layer model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$     | 248 |
| B.15 | Optimal topologies of a corner supported square plate subjected to center point load, single layer model, $t = 0.1$ .                                                      | 249 |
| B.16 | Optimal topologies of a corner supported square plate subjected to center point load, single layer model, $t = 0.1$ . Solved using MMA not OC                              | 250 |
| B.17 | Optimal topologies of a corner supported square plate subjected to center point load, ribbed model, $t = 0.1.$                                                             | 251 |
| B.18 | Optimal topologies of a corner supported square plate subjected to center point load, honeycomb model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 252 |
| B.19 | Optimal topologies of a corner supported square plate subjected to center point load, honeycomb model, $t = 0.1$ .                                                         | 253 |
| B.20 | Optimal topologies of a corner supported square plate subjected to uniform distributed load, ribbed model, $t = 0.1.$                                                      | 254 |
| B.21 | Optimal topologies of a corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.01$                                                   | 255 |
| B.22 | Optimal topologies of a corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.1.$                                                   | 256 |
| B.23 | Displaced shape of optimal topology, computed using DKQ analyzed using SRI elements.                                                                                       | 257 |



| B.24 | Displaced shape of optimal topology, computed using ANS analyzed using SRI elements                                   | 257 |
|------|-----------------------------------------------------------------------------------------------------------------------|-----|
| B.25 | Optimal topologies of corner supported cylinder with single layer material model for various values of $\alpha$ .     | 259 |
| B.26 | Convergence histories for corner supported cylinder with single layer material model for various values of $\alpha$ . | 259 |
| B.27 | Optimal topologies of a corner supported cylinder with ribbed material model.                                         | 260 |
| B.28 | Optimal topologies of corner supported cylinder with ribbed material model for various values of $\alpha$             | 261 |
| B.29 | Convergence histories for corner supported cylinder with ribbed material model for various values of $\alpha$ .       | 261 |
| B.30 | Optimal topologies of a corner supported cylinder with honeycomb material model                                       | 262 |
| B.31 | Optimal topologies of corner supported cylinder with honeycomb material model for various values of $\alpha$ .        | 264 |
| B.32 | Convergence histories for corner supported cylinder with honeycomb material model for various values of $\alpha$ .    | 264 |
| B.33 | Optimal topologies of pretwisted beam with single layer material model for various values of $\alpha$ .               | 265 |
| B.34 | Convergence histories for pretwisted beam with single layer material model for various values of $\alpha$ .           | 266 |



## List of Tables

| 3.1 | Ten element piezoelectric cantilever subject to pure bending                                                                                                          | 82  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.2 | Relative percentage error on stress and electric displacement for Cook's mem-<br>brane.                                                                               | 84  |
| 3.3 | Relative percentage error on vertical tip displacement of piezoelectric bimorph.                                                                                      | 88  |
| 4.1 | Eigenvalues of a square Q8 serendipity element for different integration schemes (plane stress, $ \mathbf{J}  = 1, E = 1, \nu = 1/3$ ).                               | 99  |
| 4.2 | Eigenvalues of a square Q9 Lagrange element for different integration schemes (plane stress, $ \mathbf{J}  = 1, E = 1, \nu = 1/3$ )                                   | 100 |
| 4.3 | Displacement results for distorted cantilever beam.                                                                                                                   | 102 |
| 4.4 | Cook's membrane: Center displacement $v_C$ .                                                                                                                          | 105 |
| 4.5 | Cook's membrane: Stress analysis.                                                                                                                                     | 105 |
| 5.1 | Normalised tip displacement of a diagonal member.                                                                                                                     | 140 |
| 5.2 | Normalised displacement of a one-node hinge                                                                                                                           | 140 |
| 5.3 | Output displacement of optimal mirror mechanisms                                                                                                                      | 141 |
| 6.1 | Percentage difference: Corner supported square plate subjected to center point load, ribbed model, $t = 0.01$ .                                                       | 168 |
| 6.2 | Percentage difference: Corner supported square plate subjected to uniform distributed load, ribbed model, $t = 0.01$ .                                                | 169 |
| 7.1 | Effective constitutive terms for different elements employing various integra-<br>tion schemes.                                                                       | 192 |
| B.1 | Percentage difference: Simply supported square plate subjected to center point load, single layer model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 236 |
| B.2 | Percentage difference: Simply supported square plate subjected to center point load, single layer model, $t = 0.1$ .                                                  | 236 |
| B.3 | Percentage difference: Simply supported square plate subjected to center point load, ribbed model, $t = 0.01$ .                                                       | 238 |
|     |                                                                                                                                                                       |     |



| B.4  | Percentage difference: Simply supported square plate subjected to center point load, ribbed model, $t = 0.1.$                                                         | 238 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| B.5  | Percentage difference: Simply supported square plate subjected to center point load, honeycomb model, $t = 0.01$                                                      | 240 |
| B.6  | Percentage difference: Simply supported square plate subjected to center point load, honeycomb model, $t = 0.1$ .                                                     | 241 |
| B.7  | Percentage difference: Clamped square plate subjected to center point load, single layer model, $t = 0.01$ .                                                          | 242 |
| B.8  | Percentage difference: Clamped square plate subjected to center point load, single layer model, $t = 0.1$                                                             | 243 |
| B.9  | Percentage difference: Clamped square plate subjected to center point load, ribbed model, $t = 0.01.$                                                                 | 244 |
| B.10 | Percentage difference: Clamped square plate subjected to center point load, ribbed model, $t = 0.1$ .                                                                 | 244 |
| B.11 | Percentage difference: Clamped square plate subjected to center point load, honeycomb model, $t = 0.01.$                                                              | 246 |
| B.12 | Percentage difference: Clamped square plate subjected to center point load, honeycomb model, $t = 0.1.$                                                               | 246 |
| B.13 | Percentage difference: Corner supported square plate subjected to center point load, single layer model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ | 248 |
| B.14 | Percentage difference: Corner supported square plate subjected to center point load, single layer model, $t = 0.1$ .                                                  | 249 |
| B.15 | Percentage difference                                                                                                                                                 | 250 |
| B.16 | Percentage difference: Corner supported square plate subjected to center point load, ribbed model, $t = 0.1.$                                                         | 251 |
| B.17 | Percentage difference: Corner supported square plate subjected to center point load, honeycomb model, $t = 0.01. \ldots \ldots \ldots \ldots \ldots \ldots \ldots$    | 252 |
| B.18 | Percentage difference: Corner supported square plate subjected to center point load, honeycomb model, $t = 0.1$ .                                                     | 253 |
| B.19 | Percentage difference: Corner supported square plate subjected to uniform distributed load, ribbed model, $t = 0.1.$                                                  | 254 |
| B.20 | Percentage difference: Corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.01$                                               | 255 |
| B.21 | Percentage difference: Corner supported square plate subjected to uniform distributed load, honeycomb model, $t = 0.1$ .                                              | 256 |