An Altered Physiological State of *Pseudomonas aeruginosa* in the Biofilm Environment: Effect on the *algD* Promoter and a New Attachment-Inducible Regulatory Element

Christopher James Cooper
For Courtney: On the 23rd of April 1999 the birth of a baby girl, whom we aptly named Courtney, had a mind numbing effect on my life and my outlook thereon. The inspiration provided by this life-altering experience is reflected in this work. May you one day achieve what your heart desires.
An Altered Physiological State of *Pseudomonas aeruginosa* in the Biofilm Environment: Effect on the *algD* Promoter and a New Attachment-Inducible Regulatory Element

by

Christopher James Cooper

Submitted in partial fulfilment of the requirements for the degree

Master of Science

in

the Faculty of Natural and Agricultural Sciences
Department of Microbiology and Plant Pathology,
University of Pretoria
Pretoria
South Africa

December 2002
I, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree.

Signature:

Date:
An Altered Physiological State of *Pseudomonas aeruginosa* in the Biofilm Environment: Effect on the *algD* Promoter and a New Attachment-Inducible Regulatory Element

by

Christopher James Cooper

Promoter: Prof. V. S. Brözel
Co-Promoter: Dr. J. Theron
Department: Microbiology and Plant Pathology
Degree: MSc (Microbiology)

SUMMARY

Biofilm-associated bacterial cells are known to display a unique phenotype distinct from that of free-living or planktonic cells. Suspended cells of *P. aeruginosa* PAO (DSM 1707) growing in the presence of a biofilm (surface-influenced planktonic or SIP cells) were compared to planktonic cells. The biofilm and SIP phenotypes were different to each other, and both differed from the planktonic population. The SIP population was not a mixture of planktonic and detached biofilm cells but rather a distinct physiological state. Furthermore, indirect evidence is presented for the presence of diffusible signals produced by the biofilm that give rise to the SIP phenotype. The physiological effects of a *lacZ*-based reporter vector pALacZsd on the planktonic, SIP and biofilm populations of *P. aeruginosa* were investigated. The data obtained indicate that *P. aeruginosa* cells containing the pALacZsd vector are phenotypically different to untransformed *P. aeruginosa* cells. *P. aeruginosa* cells transformed with pALacZsd were found to have more protein biomass per cellular volume than untransformed cells and plasmid DNA concentrations were found to be lower in total attached cultures when compared to planktonic cultures.
The attachment of *P. aeruginosa* to a surface with the subsequent formation of a biofilm as well as environmental stimuli causes expression or up-regulation of genes involved in the production of alginate, a bacterial exopolysaccharide produced in large quantities. The physicochemical conditions affecting up-regulation of the *P. aeruginosa* PAO (DSM1707) *algD* promoter were investigated using an *algD-lacZ* transcriptional fusion. The data presented indicate that at least five separate factors, *i.e.* osmolarity, water availability, glucose, growth as a biofilm and growth in the presence of a biofilm, influence the regulation of *algD*, either individually or in combination. In a previous study, putative attachment-inducible regulatory elements of *Pseudomonas aeruginosa* PAO were identified. One of these regulatory elements was further characterised in this study. The effect of the different physicochemical conditions found to up-regulate *algD* promoter activity were also investigated for this regulatory element. The data presented indicate that the regulatory element may contain a promoter sequence, or part thereof, that is influenced by detachment of *P. aeruginosa* from a surface.
The following aspects of this work have been submitted for publication:

1. Submitted for publication in *FEMS Microbiology Letters*:

 Pseudomonas aeruginosa displays two biofilm-related phenotypes distinct from the planktonic state.

The following aspects of this work have been presented as talks or posters, at international and national conferences:

Conference: Biofilms 2000, Big Sky, Montana, USA, July 2000
Posters:
1. Characterisation of a novel biofilm regulatory element of *Pseudomonas aeruginosa* (PA01)
2. Expression of the *Pseudomonas aeruginosa* (PA01) *algD* promoter is affected when grown as a biofilm
Presenter: C. J. Cooper

Conference: 101st General Meeting of the ASM, 2001, Orlando, Florida, USA, May 2001
Poster: Comparison of a novel putative promoter (clone 65) to *algD*, a biofilm attachment-inducible promoter of *Pseudomonas aeruginosa* PA01
Presenter: V. S. Brözel

Conference: Eleventh Biennial Conference of the SASM, Grahamstown, South Africa, January 2000
Presentation: Characterisation of the *Pseudomonas aeruginosa* (PA01) *algD* promoter
Presenter: C. J. Cooper

Conference: The Seventeenth Congress of the South African Genetics Society (SAGS), Pretoria, South Africa, June 2000
Presentation: Characterisation of the *algD* promoter in *Pseudomonas aeruginosa* (PA01) growing as a biofilm
Poster: Comparison of a novel putative promoter to *algD*, a biofilm attachment-inducible promoter of *Pseudomonas aeruginosa* PA01
Presenters: C. J. Cooper and J. Smith
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to the following people:

Leigh-Ann, my wife, for carrying the financial burden of running the household and her constant motivation throughout my studies. Without you this thesis would not have been possible.

My parents for always encouraging me to follow my intuition and providing the grounding and upbringing necessary to succeed as an individual.

Prof. V. S. Brözel, Department of Microbiology and Plant Pathology, UP, for his constant encouragement and support. Your belief in my ability to succeed, and the constant encouragement is what ultimately led to the completion of this thesis.

Dr. J. Theron, Department of Microbiology and Plant Pathology, UP, for his constant intellectual input and genuine interest in what I was doing throughout the duration of this work.

My colleagues at UP: Marietjie, Sonya, Marleen, Boet, Julian, Marinda, Bridgitta, Francois and Joseph for their friendship, support and advice as well as making everyday life in the lab enjoyable.

Raynard MacDonald, Department of Microbiology and Plant Pathology, UP, for his friendship and his help with the FISH.

Jacques Smith for his help throughout the course of his honours year with the pALacZsd65 clone, as well as construction of the pALacJK vector.

The FRD for their initial financial support.

To everyone who directly or indirectly contributed to my achievements.
CONTENTS

SUMMARY .. v

PREFACE .. vii

ACKNOWLEDGEMENTS ... viii

CONTENTS .. ix

LIST OF FIGURES ... xiii

LIST OF TABLES ... xvii

LIST OF ABBREVIATIONS .. xviii

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 .. 3

LITERATURE REVIEW ... 3

2.1 THE BIOFILM MODE OF GROWTH .. 3

2.1.1 Biofilm development ... 3

2.1.1.1 The planktonic cell ... 4

2.1.1.2 The attachment of microorganisms to a surface .. 4

2.1.1.3 Growth of the biofilm ... 8

2.1.2 Physiology of bacteria in biofilms .. 12

2.1.2.1 Gradients ... 13

2.1.2.2 Gene regulation and metabolism of biofilm-associated bacteria 14

2.1.2.3 Cell-cell interactions in biofilms ... 17

2.1.2.4 *Pseudomonas aeruginosa* as a biofilm organism ... 18

2.2 METHODOLOGIES FOR THE STUDY OF BACTERIAL BIOFILMS 19

2.2.1 Culturing systems ... 19

2.2.1.1 Microtitre plates ... 19

2.2.1.2 Agar embedded populations ... 19

2.2.1.3 Chemostats ... 20

2.2.1.4 Flow cells ... 20

2.2.1.5 Glass wool ... 20

2.2.2 Methodologies for the characterisation and identification of biofilm genes 20

2.2.2.1 Quantification of biofilm bacteria and biofilm-components 20

2.2.2.2 Gene regulation ... 21

2.2.2.2.1 Reporter gene-based methods ... 21

2.2.2.2.2 Transcriptomic approaches ... 22

2.2.2.2.3 Use of mutants ... 22

2.2.2.2.4 Proteomics .. 23

2.2.3 Microscopy ... 23

2.3 Alginate Synthesis in *P. aeruginosa* .. 24

2.3.1 Biosynthesis of exopolysaccharides .. 25

2.3.2 Regulation of *P. aeruginosa* alginate biosynthetic genes 27

2.3.2.1 The algC gene .. 28

2.3.2.2 The algR and algB genes .. 29

2.3.2.3 The algU gene and muc loci .. 29

2.3.2.4 The algD gene ... 31

2.3.2.4 RpoN (σ^54^) .. 31

2.3.3 Physicochemical factors regulating algD expression .. 31

2.3.3.1 Ethanol .. 32

2.3.3.2 Oxygen tension .. 32

2.3.3.3 Growth phase ... 33

2.3.3.4 Growth temperature .. 33
2.3.3.5 Heat shock .. 34
2.3.3.6 High osmolarity .. 34
2.3.3.7 Glucose ... 35

CHAPTER 3 .. 37

Pseudomonas aeruginosa DISPLAYS TWO BIOFILM-RELATED PHENOTYPES DISTINCT FROM
THE PLANKTONIC STATE .. 37

3.1 SUMMARY .. 37
3.2 INTRODUCTION .. 38
3.3 MATERIALS AND METHODS 39
 3.3.1 Bacterial strains, media and growth conditions 39
 3.3.2 Analytical Methods ... 40
 3.3.2.1 Spectrophotometric determination of biomass yield 40
 3.3.2.2 The culturable count 40
 3.3.2.3 Determination of total protein concentrations 40
 3.3.2.4 Determination of cellular volumes 40
 3.3.3 Growth rate .. 41
 3.3.4 Alginate assay .. 41
 3.3.4.1 Sample preparation 41
 3.3.4.2 Determination of uronic acid concentrations 42
 3.3.5 Investigation of the presence of a diffusible signal molecule 42
3.4 RESULTS .. 44
 3.4.1 Biofilm formation by P. aeruginosa after culturing in LB-S, LB + NaCl and LB + EtOH .. 44
 3.4.2 Variation in biomass .. 47
 3.4.3 Culturable counts and total biomass (A_{560}) 47
 3.4.4 Total cellular protein ... 48
 3.4.5 Cellular volume as a function of total cellular protein .. 49
 3.4.6 Growth Rate .. 54
 3.4.7 Uronic acid concentrations 54
 3.4.8 Investigation of the presence of a diffusible signal molecule 55

CHAPTER 4 .. 60

THE EFFECT OF A REPORTER VECTOR CONSTRUCT ON THE BIOFILM PHYSIOLOGY OF
Pseudomonas aeruginosa ... 60

4.1 SUMMARY .. 60
4.2 INTRODUCTION .. 61
4.3 METHODS .. 63
 4.3.1 Bacterial strains, media and growth conditions 63
 4.3.1.1 General growth conditions 63
 4.3.1.2 Growth conditions used when assaying for β-galactosidase activity 63
 4.3.2 Analytical Methods ... 63
 4.3.3 Molecular Techniques ... 64
 4.3.3.1 Preparation and transformation of competent cells ... 64
 4.3.3.2 Determination of plasmid DNA concentrations from P. aeruginosa 64
 4.3.3.3 Construction of the pALacJK vector 65
 4.3.4 β-galactosidase activity assay 65
4.4 RESULTS .. 66
 4.4.1 Variation in biomass .. 66
 4.4.2 Culturable counts and total biomass (A_{560}) 66
 4.4.3 Total cellular protein ... 71
 4.4.4 Cellular volume .. 71
 4.4.5 The effect of tetracycline concentration on basal β-galactosidase levels in the pALacZsd vector system under different growth conditions 72
4.4.6 Hydrolysis of ONPG (A414) and plasmid DNA concentrations in planktonic and total attached cultures of P. aeruginosa pALacZsd ... 74
4.4.7 β-galactosidase activity in the pALacJK vector ... 77
4.5 DISCUSSION .. 79

CHAPTER 5 .. 81
EXPRESSION OF THE Pseudomonas aeruginosa PAO (DSM 1707) algD PROMOTER IS AFFECTED BY ENVIRONMENTAL STIMULI AND WHEN GROWN AS A BIOFILM .. 81
5.1 SUMMARY .. 81
5.2 INTRODUCTION .. 82
5.3 MATERIALS AND METHODS ... 84
5.3.1 Bacterial strains, media and growth conditions ... 84
5.3.2 Assay for β-galactosidase activity ... 84
5.3.3 Analytical Methods ... 85
5.3.4 DNA Manipulations .. 85
5.3.4.1 Construction of the algD reporter vector pALacZsdAg ... 85
5.4 RESULTS .. 86
5.4.1 Construction of the pALacZsdAg vector .. 86
5.4.2 Determination of optimal NaCl and EtOH concentrations for algD promoter activity in planktonic cultures .. 87
5.4.3 algD promoter activity ... 89
5.4.3.1 algD promoter activity in low salt broth ... 89
5.4.3.2 algD promoter activity in high salt broth ... 89
5.4.3.3 algD promoter activity in broth containing 2.9% (v/v) ethanol .. 91
5.5 DISCUSSION .. 91

CHAPTER 6 .. 95
CHARACTERISATION OF A NOVEL Pseudomonas aeruginosa PAO (DSM1707) REGULATORY ELEMENT ... 95
6.1 SUMMARY .. 95
6.2 INTRODUCTION .. 96
6.3 MATERIALS AND METHODS ... 97
6.3.1 Bacterial strains, media and growth conditions ... 97
6.3.2 Assay for β-galactosidase activity ... 98
6.3.3 Analytical Methods ... 98
6.3.4 DNA Manipulations .. 98
6.3.4.1 Construction of the pALacZsd65 clone ... 98
6.3.4.2 Nucleic acid sequence analysis of the regulatory element contained in pALacZsd65 99
6.4 RESULTS .. 99
6.4.1 Nucleic acid sequence analysis of the regulatory element contained in pALacZsd65 99
6.4.2 Determination of the optimal NaCl and EtOH concentrations for maximal pALacZsd65 promoter activity in planktonic populations ... 101
6.4.3 pALacZsd65 promoter activity ... 101
6.4.3.1 Promoter activity of pALacZsd65 in low salt broth ... 101
6.4.3.2 Promoter activity of pALacZsd65 in high salt broth ... 102
6.4.3.3 Promoter activity of pALacZsd65 in broth containing 2.4% (v/v) ethanol 102
6.5 DISCUSSION .. 105

CHAPTER 7 ... 108
CONCLUDING REMARKS: PLASTICITY OF THE Pseudomonas aeruginosa PAO (DSM1707) BIOFILM ... 108

APPENDIX I ... 116
CELLULAR WIDTH, LENGTH AND VOLUME MEASUREMENTS FOR Pseudomonas aeruginosa PAO (DSM 1707) AND Pseudomonas aeruginosa TRANSFORMED WITH THE pALacZsd REPORTER VECTOR ... 116

APPENDIX 2 ... 138

FLUORESCENCE MICROSCOPY OF Pseudomonas aeruginosa PAO (DSM 1707) AFTER STAINING OF CELLS WITH 23S rRNA GAMMA PROTEOBACTERIAL OR Pseudomonas GROUP I-SPECIFIC PROBES ... 138

REFERENCES .. 142
LIST OF FIGURES

Fig. 2.1: Outline of the current model of biofilm development in *P. aeruginosa* showing the involvement of some of the known processes and genes. (1.) Sensing of the surfaced by the planktonic cell, (2.) reversible attachment, (3.) irreversible attachment, (4.) microcolony development (development of the polymer matrix), (5.) development of classic biofilm architecture and maintenance of the mature biofilm, and (6.) detachment.

Figure 2.2: The alginate biosynthetic pathway. The genes indicated are those of *P. aeruginosa*. *algA* encodes the bifunctional enzyme phosphomannose isomerase / GDP-mannose pyrophosphorylase. Taken from Gacesa (1998).

Fig. 3.1: Photographs of (a) the dialysis chamber, (b) negative control without glass wool, (c) planktonic cells, and (d) artificial SIP cells used to determine the possible involvement of a diffusible signal molecule in the physiological differentiation of SIP populations in LB-S.

Fig. 3.2: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) biofilm on glass wool after 16 h of incubation in LB-S.

Fig. 3.3 (a - d): Photomicrographs showing *P. aeruginosa* biofilm on glass wool after 16 h of incubation in LB + NaCl.

Fig. 3.4 (a-h): Photomicrographs showing *P. aeruginosa* biofilm on glass wool after 16 h of incubation in LB + EtOH.

Fig. 3.5: Culturable count of *P. aeruginosa* cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.5% (v/v) ethanol (LB + EtOH).

Fig. 3.6: Optical density (A540) of *P. aeruginosa* cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.5% (v/v) ethanol (LB + EtOH).

Fig. 3.7: Total cellular protein of *P. aeruginosa* cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.5% (v/v) ethanol (LB + EtOH).

Fig. 3.8: Cell volumes of planktonic, surface-influenced planktonic (SIP) and biofilm cells of *P. aeruginosa* grown for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.5% (v/v) ethanol (LB + EtOH).

Figure 4.1: Schematic representation of the pALacZsd vector and the insert used to create the pALacZsdIP vector.

Fig. 4.2: Culturable count of *P. aeruginosa* transformed with pALacZsd cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.9% (v/v) ethanol (LB + EtOH).
Fig. 4.3: Optical density (A_{540}) of *P. aeruginosa* transformed with pALacZsd cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.9% (v/v) ethanol (LB + EtOH).

Fig. 4.4: Total cellular protein of *P. aeruginosa* transformed with pALacZsd cultured for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.9% (v/v) ethanol (LB + EtOH).

Fig. 4.5: Cell volumes of planktonic, surface influenced planktonic (SIP) and biofilm cells of *P. aeruginosa* transformed with pALacZsd grown for 16 h in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.9% (v/v) ethanol (LB + EtOH).

Fig. 4.6: The effect of tetracycline concentration (in µg.ml^{-1}) and growth conditions on basal β-galactosidase levels in planktonic cells.

Fig. 4.7: The effect of tetracycline concentration (in µg.ml^{-1}) and growth conditions on basal β-galactosidase levels in total attached (attached + SIP) cultures.

Fig. 4.8: ONPG hydrolysis per µg protein for *P. aeruginosa* pALacJK cultured for 16 h in LB broth without salt (LB-S).

Fig. 5.1: A purified *algD* promoter was ligated into the pALacZsd reporter vector and recombinant clones were identified following PCR amplification of a 478-bp *algD* amplicon.

Fig. 5.2: *algD* promoter activity as measured by β-galactosidase activity assays on 16 h planktonic cultures of *P. aeruginosa* (pALacZsdAg) grown at various NaCl concentrations in LB, using ONPG as substrate.

Fig. 5.3: *algD* promoter activity as measured by β-galactosidase activity assays on 16 h planktonic cultures of *P. aeruginosa* (pALacZsdAg) grown at various ethanol concentrations in LB, using ONPG as substrate.

Fig. 5.4: *algD* promoter activity after 16 h of growth as influenced by LB-S and MMG media with and without 0.7 M NaCl or 2.9% (v/v) ethanol.

Fig. 6.1: Schematic representation of the two chimeras cloned into the multiple cloning site of the pALacZsd vector.

Fig. 6.2: Schematic representation of the putative operon structure in the *pepA* (*phpA*) gene region as well as the location, on the *P. aeruginosa* genome, of the second chimera present in the pALacZsd65 vector.
Fig. 6.3: pALacZsd65 promoter activity as measured by β-galactosidase activity assays on 16 h planktonic cultures of *P. aeruginosa* (pALacZsd65) grown at various NaCl concentrations in LB, using ONPG as substrate.

Fig. 6.4: pALacZsd65 promoter activity as measured by β-galactosidase activity assays on 16 h planktonic cultures of *P. aeruginosa* (pALacZsd65) grown at various ethanol concentrations in LB, using ONPG as substrate.

Fig. 6.5: pALacZsd65 promoter activity after 16 h of growth as influenced by LB-S and MMG media with and without 0.2 M NaCl or 2.4% (v/v) ethanol.

Fig. 7.1: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) planktonic cells after 16 h of incubation in LB-S.

Fig. 7.2: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) SIP cells after 16 h of incubation in LB-S.

Fig. 7.3: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) biofilm cells after 16 h of incubation in LB-S.

Fig. 7.4: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) planktonic cells after 16 h of incubation in LB + NaCl.

Fig. 7.5: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) SIP cells after 16 h of incubation in LB + NaCl.

Fig. 7.6: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) biofilm cells after 16 h of incubation in LB + NaCl.

Fig. 7.7: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) planktonic cells after 16 h of incubation in LB + EtOH.

Fig. 7.8: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) SIP cells after 16 h of incubation in LB + EtOH.

Fig. 7.9: Photomicrographs showing *P. aeruginosa* PAO (DSM 1707) biofilm cells after 16 h of incubation in LB + EtOH.

Fig. 7.10: Photomicrographs showing *P. aeruginosa* pALacZsd planktonic cells after 16 h of incubation in LB-S.

Fig. 7.11: Photomicrographs showing *P. aeruginosa* pALacZsd SIP cells after 16 h of incubation in LB-S.

Fig. 7.12: Photomicrographs showing *P. aeruginosa* pALacZsd biofilm cells after 16 h of incubation in LB-S.
Fig. 7.13: Photomicrographs showing *P. aeruginosa* pALacZsd planktonic cells after 16 h of incubation in LB + NaCl.

Fig. 7.14: Photomicrographs showing *P. aeruginosa* pALacZsd SIP cells after 16 h of incubation in LB + NaCl.

Fig. 7.15: Photomicrographs showing *P. aeruginosa* pALacZsd biofilm cells after 16 h of incubation in LB + NaCl.

Fig. 7.16: Photomicrographs showing *P. aeruginosa* pALacZsd planktonic cells after 16 h of incubation in LB + EtOH.

Fig. 7.17: Photomicrographs showing *P. aeruginosa* pALacZsd SIP cells after 16 h of incubation in LB + EtOH.

Fig. 7.18: Photomicrographs (a – c) showing *P. aeruginosa* pALacZsd biofilm cells after 16 h of incubation in LB + EtOH.

Fig. 8.1: Photomicrographs showing *P. aeruginosa* (1) planktonic cells grown in LB-S, (2) total attached cells grown in LB + NaCl and (3) total attached cells grown in LB + EtOH after 16 h incubation. Cells have been probed with a Gamma Proteobacterial (green) or a *Pseudomonas* group I-specific (red) probe.

Fig. 8.2: Photomicrographs showing *P. aeruginosa* pALacZsd (1) planktonic cells grown in LB-S, (2) total attached cells grown in LB + NaCl and (3) total attached cells grown in LB + EtOH after 16 h incubation. Cells have been probed with a Gamma Proteobacterial (green) or a *Pseudomonas* group I-specific (red) probe.

Fig. 8.3: Photomicrographs showing *P. aeruginosa* pALacZsdAg (1) planktonic cells grown in LB-S, (2) total attached cells grown in LB + NaCl and (3) total attached cells grown in LB + EtOH after 16 h incubation. Cells have been probed with a Gamma Proteobacterial (green) or a *Pseudomonas* group I-specific (red) probe.
Table 3.1: Protein concentrations per cell and per cell volume, and alginate per unit of cell protein and cell volume for P. aeruginosa grown for 16 h in the presence of glass wool in LB broth without salt (LB-S), with 0.7 M NaCl (LB + NaCl) and 2.5% (v/v) ethanol (LB + EtOH).......................... 53

Table 4.1: Bacterial strains and plasmids used in this study.......................... 64
Table 4.3: Hydrolysis of ONPG (A414), total protein biomass and plasmid DNA concentrations in planktonic and total attached cultures of P. aeruginosa pALacZsd77

Table 5.1: Bacterial strains and plasmids used in this study.......................... 85
Table 6.1: Bacterial strains and plasmids used in this study.......................... 99
Table 7.1: Protein concentrations per cell and per cell volume for P. aeruginosa (untransformed) and P. aeruginosa containing the pALacZsd vector construct (plasmid-bearing) grown for 16 h in the presence of glass wool in LB broth without salt (LB-S) and with 0.7 M NaCl (LB + NaCl) and 2.9% ethanol (LB + EtOH).... 112
Table 7.1: Cell length, cell width and cell volume for P. aeruginosa planktonic, SIP and biofilm cells grown for 16 h in the presence of glass wool in LB broth............. 117
Table 7.2: Cell length, cell width and cell volume for P. aeruginosa planktonic, SIP and biofilm cells grown for 16 h in the presence of glass wool in LB broth with 0.7 M NaCl (LB + NaCl).. 118
Table 7.3: Cell length, cell width and cell volume for P. aeruginosa planktonic, SIP and biofilm cells grown for 16 h in the presence of glass wool in LB broth with 2.5% (v/v) ethanol (LB + EtOH).. 119
LIST OF ABBREVIATIONS

A absorbance
AHL acylated homoserine lactone
AMP adenosine mono-phosphate
ATP adenosine tri-phosphate
α alpha
ca. approximately
bp base pair
β beta
BSA bovine serum albumin
cm centimetre
μm³ cellular volume in cubic micrometers
cfu colony forming units
CSLM confocal scanning laser microscopy
cAMP cyclic-AMP
CF cystic fibrosis
Da Dalton
d day
°C degrees Celsius
DNA deoxyribonucleic acid
dNTP deoxyribonucleic-5′-triphosphate
DLVO Derjaguin, Landau, Verwey, and Overbeek
DSM Deutsche Sammlung von Mikroorganismen
DMSO dimethyl sulphoxide
DOT dissolved oxygen tension
ddH₂O double distilled water
etc. etcetera
EtOH ethanol
EPS extracellular polymeric substance
Fig. figure
FISH fluorescent in situ hybridisation
g gram
GFP green fluorescent protein
V₀ cellular volume at zero growth rate
G guanine
h hour
kDa kiloDalton
LPS lipopolysaccharide
l litre
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>LB-S</td>
<td>Luria Bertani broth without NaCl</td>
</tr>
<tr>
<td>LB + EtOH</td>
<td>LB-S containing 2.5 or 2.9% (v/v) ethanol</td>
</tr>
<tr>
<td>LB + NaCl</td>
<td>LB-S containing 0.7 M added NaCl</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>μl</td>
<td>microlitre</td>
</tr>
<tr>
<td>μm</td>
<td>micrometre</td>
</tr>
<tr>
<td>mg.l⁻¹</td>
<td>milligrams per litre</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>mm</td>
<td>millimetre</td>
</tr>
<tr>
<td>MMG</td>
<td>minimal M63 salts containing glucose</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>MWCO</td>
<td>molecular weight cut off</td>
</tr>
<tr>
<td>ONPG</td>
<td>2-nitrophenyl-β-D-galactopyranoside</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>P</td>
<td>probability</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription followed by polymerase chain reaction</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>s</td>
<td>second</td>
</tr>
<tr>
<td>σ</td>
<td>sigma</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>±</td>
<td>plus and minus one standard deviation from the mean</td>
</tr>
<tr>
<td>cm²</td>
<td>surface area in square centimetres</td>
</tr>
<tr>
<td>SIP</td>
<td>surface-influenced planktonic</td>
</tr>
<tr>
<td>X</td>
<td>times</td>
</tr>
<tr>
<td>× g</td>
<td>times gravity</td>
</tr>
<tr>
<td>TCA</td>
<td>tri-carboxylic acid</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>v/v</td>
<td>volume per volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight per volume</td>
</tr>
</tbody>
</table>