Molecular detection and characterization of tick-borne pathogens of dogs

By

Paul Tshepo Matjila

Submitted in fulfillment of the requirements for the degree Doctor of Philosophy in the Faculty of Veterinary Science, University of Pretoria

June 2008
Acknowledgements

My sincerest gratitude goes to Prof Banie Penzhorn, for taking me under his wing, from day one, helping, mentoring, guiding and nurturing my development in the art of science.

My supervisor, Prof Banie Penzhorn and co-supervisors, Profs Frans Jongejan and Andrew Leisewitz, for their hands-on approach, scientific inputs and building of this thesis to completion.

My HOD, Prof Koos Coetzer, for his unwavering support, patience and valuable advice throughout the years.

My colleagues and friends in the department of Veterinary Tropical Diseases for their immeasurable contributions: Raksha Bhoora, for her friendship, assistance and advice in the laboratory; Ard Nijhof, for his friendship, making my stay in the Netherlands as pleasantly possible and for all the scientific inputs; Prof “Oom” Horak, Marinda Oosthuizen, Darshana Morar, Kgomotso Sibeko, Milana Troskie, Nicola Collins and AnnaMarie Bosman for their expert advice during research difficulties. I thank Prof Peter Thompson for the statistical analysis and Rhulani Nkuna for running the Trypanosoma PCR/RFLP.

Special thanks to all the clinicians, Dr M Böhm, Dr E Scheepers and Dr A Goddard, who generously made their clinical reports available for our use. Thanks to Sr Riani de Kock
for uploading the clinical reports. The staff at the SPCAs, OVAH and private clinics, who helped with the collection of blood samples.

My beautiful soul mate and partner Mmabatho Moeketsi, for your love, encouragement, patience, and being my pillar of strength.

My sisters and brothers: ausi Poppy, June, Thabo and Beni, for their unfaltering friendship and support.

My mother, for your sacrifices, love and pride in knowing that education is the key.

Dedicated to the memory of my grandmother, Morongwa Ellen Mdluli.

This work was financially supported by the Utrecht/Delta scholarship, Thuthuka NRF fund and the institutional collaboration agreement (95401) between the Institute of Tropical Medicine, Antwerp, Belgium, and the Department of Veterinary Tropical Diseases, University of Pretoria.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Thesis summary</td>
<td>xv</td>
</tr>
<tr>
<td>Chapter 1: General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Tick-borne pathogens</td>
<td>1</td>
</tr>
<tr>
<td>1.2.1. Zoonotic tick-borne infections</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2. Co-infection</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3. Babesia vectors</td>
<td>5</td>
</tr>
<tr>
<td>1.3. Canine babesiosis</td>
<td>7</td>
</tr>
<tr>
<td>1.3.1. Canine babesiosis in South Africa</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2. Pathogenesis of babesiosis and malaria</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3. Sequestration</td>
<td>12</td>
</tr>
<tr>
<td>1.4. Ehrlichiosis and Anaplasmosis</td>
<td>13</td>
</tr>
<tr>
<td>1.4.1. Pathogenesis of Ehrlichiosis and Anaplasmosis</td>
<td>15</td>
</tr>
<tr>
<td>1.5. Hepatozoonosis</td>
<td>16</td>
</tr>
<tr>
<td>1.6. Theileriosis</td>
<td>17</td>
</tr>
<tr>
<td>1.7. Molecular detection and analysis</td>
<td>18</td>
</tr>
<tr>
<td>1.8. Objectives of the study</td>
<td>20</td>
</tr>
</tbody>
</table>
Chapter 2: Confirmation of occurrence of *Babesia vogeli* in domestic dogs in South Africa

2.1. Abstract

2.2. Introduction

2.3. Materials and Methods

2.3.1 Collection of samples

2.3.2. DNA extraction

2.3.3. PCR

2.3.4. Reverse line blot hybridisation

2.3.5. Sequence analysis

2.4. Results

2.5. Discussion

2.6. Conclusion

2.7. Tables

2.8. References

Chapter 3: Molecular detection of tick-borne protozoal and ehrlichial infections in domestic dogs in South Africa

3.1. Abstract

3.2. Introduction

3.3. Materials and Methods

3.3.1. Collection of samples
Chapter 4: Preliminary evaluation of the BrEMA1 gene as a tool for correlating Babesia rossi genotypes and clinical manifestation of canine babesiosis

4.1. Abstract

4.2. Introduction

4.3. Materials and Methods

 4.3.1. Sample origin and grouping

 4.3.2. DNA extraction and PCR

 4.3.3. Sequencing, phylogenetic and statistical analysis

 4.3.4. Nucleotide sequence accession numbers

4.4. Results

 4.4.1. Genetic analysis of B. rossi isolates

 4.4.1.1. Diversity of BrEMA1 genotypes

 4.4.1.2. Phylogenetic relationship of BrEMA1 sequences

 4.4.1.3. Occurrence of BrEMA1 genotypes among all samples
4.4.2. Occurrence of *BrEMA*1 genotypes among OVAH samples 85
4.4.2.1. Analysis of *BrEMA*1 genotype and clinical parameters 85
4.4.2.2. Occurrence of *BrEMA*1 genotypes in complicated cases 85
4.4.2.3. Occurrence of *BrEMA*1 genotypes in SOC cases 86
4.4.2.4. Occurrence of *BrEMA*1 genotypes in fatal cases 86
4.4.2.5. Correlation between *BrEMA*1 genotypes and clinical signs 86

4.5. Discussion 87
4.6. Conclusion 89
4.7. Figures and Tables 90
4.8. References 100

Chapter 5: Autochthonous canine babesiosis in the Netherlands 103
5.1. Abstract 103
5.2. Introduction 104
5.3. Materials and Methods 105
5.3.1. Collection of samples 105
5.3.2. DNA extraction 106
5.3.3. PCR 106
5.3.4. Reverse line blot hybridisation 107
5.4. Results 107
5.5. Discussion 108
5.6. Conclusion 112
5.7. Figures and Tables 114
Chapter 6: Detection of *Theileria* sp. infections in dogs in South Africa

6.1. Abstract
6.2. Introduction
6.3. Materials and Methods
 6.3.1. Collection of samples
 6.3.2. DNA extraction
 6.3.3. PCR
 6.3.4. Reverse line blot hybridisation
 6.3.5. Sequencing
 6.3.6. Phylogenetic analysis
6.4. Results
6.5. Discussion
6.6. Conclusion
6.7. Figures and Tables
6.8. References

Chapter 7: Molecular characterization of *Babesia gibsoni* infection from a pit-bull terrier pup recently imported into South Africa

7.1. Abstract
7.2. Introduction
 7.2.1. Case history
7.3. Materials and Methods
 7.3.1. Collection of samples
7.3.2. DNA extraction 149
7.3.3. PCR 149
7.3.4. Reverse line blot hybridisation 150
7.3.5. Sequencing 150
7.3.6. Phylogenetic analysis 150

7.4. Results 151
7.5. Discussion 151
7.6. Conclusion 154
7.7. Figures and Tables 156
7.8. References 159

Chapter 8: General discussion 165

8.1. General discussion 165
8.1.1. Babesia rossi 165
8.1.2. Babesia vogeli 166
8.1.3. Babesia gibsoni 166
8.1.4. Babesia canis 167
8.1.5. Theileria sp. 169
8.1.6. Ehrlichia / Anaplasma species 169
8.1.7. Multiple infections 171

8.2. Conclusion 172
8.2.1. Control measures 173
8.2.2. Scope for future research 175

8.3. References 178
List of Figures

Figure 3.1: Map of South Africa, indicating provinces where blood samples were collected... 66

Figure 4.1: Field polymorphism of *B. rossi* strains in South Africa evidenced by the PCR amplification of *BrEMA*1 repeats region with primers Frep*BrEMA*1/Rrep*BrEMA*1. PCR products were loaded on a 1.5% agarose gel. PCR profiles of the most encountered genotypes are indicated on the picture…………………………………………………………………. 90

Figure 4.2: Cluster algorithm tree, showing the phylogenetic relationship between various genotypes based on the *BrEMA*1 gene sequences…………………………………………………………… 91

Figure 4.3: Occurrence of *B. rossi* *BrEMA*1 genotypes among all samples (141 dogs)…………………………………………………………………………………… 92

Figure 4.4: Occurrence of *B. rossi* *BrEMA*1 genotypes among (a) total (b) complicated (c) S.O.C. and (d) fatal cases…………………………………………………………………………... 93

Figure 4.5: Relationship between occurrence of fatalities and occurrence of SOC-cases………………………………………………………………………….. 94

Figure 5.1: Map of the Netherlands indicating the two locations where cases of canine babesiosis were detected…………………………………………………………………………. 114

Figure 5.2: RLB results displaying 11 species-specific oligonucleotides of the 18S rRNA gene in the horizontal lanes and PCR products in the vertical lanes. From left to right are shown: 18 canine blood samples from clinical cases, *Babesia* plasmid positive control, 4 tick specimens, 11 positive *Babesia* sp. DNA controls and a second *Babesia* plasmid positive control……………………………………………………………………… 115
Figure 6.1: Neighbor-joining tree, with the Kimura two-parameter distance (Kimura, 1980) calculation showing the phylogenetic relationship of BC281, 295 & VT12 to related species based on the 18S rRNA gene sequences. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains. The scale bar represents the % nucleotide difference. The GenBank accession numbers are indicated in parentheses.

Figure 7.1: Giemsa-stained blood smears showing infected erythrocytes.

Figure 7.2: Neighbor-joining tree, based on the Kimura two-parameter distance calculation, showing the phylogenetic relationship of *B. gibsoni* (pit-bull terrier) to other *Babesia* sp. Relationships are presented as an unrooted tree with branch lengths being proportional to the estimated genetic distance between the strains. The scale bar represents the % nucleotide difference. *Hepatozoon canis* was used as an outgroup.
List of Tables

Table 2.1: Dogs positive for *Babesia vogeli* and *Babesia rossi* in South Africa by reverse line blot... 50

Table 2.2: Species-specific oligonucleotides from large canine *Babesia* species......... 51

Table 3.1: The number of samples collected from dogs, by province and locality, in South Africa... 67

Table 3.2: List of organisms and their corresponding probe sequences used to detect pathogen DNA... 68

Table 3.3: Pathogen species detected from domestic dogs using the RLB............... 70

Table 4.1: Consensus amino acid sequence of the 13 *BrEMA1* genotypes. Sequencing of the repetitive region of the gene was performed on 141 dogs diagnosed with *B. rossi* infections.. 95

Table 4.2: Frequency of *B. rossi* *BrEMA1* genotype identified from blood samples and clinical outcomes of dogs presented at OVAH................................. 97

Table 4.3: Clinical signs from complicated cases with solid organ complications and their associated *BrEMA1* genotypes.. 98

Table 5.1: Twenty-three confirmed cases of autochthonous babesiosis caused by *Babesia canis* in the Netherlands in 2004................................. 116

Table 5.2: Composition of the *Babesia* plasmid control with three fragments (A, B and C) each containing four RLB-probe sequences flanked by the restriction enzyme recognition sequence for sticky-end cloning............... 117

Table 5.3: RLB-probes incorporated in the *Babesia* plasmid control.......................... 118
Table 6.1: Reverse line blot hybridization results of dogs positive for only *Theileria* sp. and for mixed infections of *Theileria* sp. and *E. canis*................................. 138

Table 7.1: Haematological report indicating full blood counts 2 weeks prior to treatment of the dog with a combination of atovaquone and azithromycin................. 158
Thesis summary

This thesis focuses on the molecular characterization of tick-borne parasites of dogs in South Africa. Emphasis is placed on *Babesia*, *Ehrlichia*, incidental and novel parasite infections that may cause morbidity or mortality in infected dogs. An outbreak of canine babesiosis in the Netherlands is also reported in this thesis. Molecular techniques were employed to isolate, amplify and characterize genomic DNA of these parasites to species level. During preliminary screening of blood samples collected from various sites in the country, that included the Onderstepoort Veterinary Academic Hospital, SPCAs and private clinics throughout seven provinces in South Africa, it was discovered that domestic dogs harboured a wide variety of tick-borne pathogens.

The most frequently encountered parasites in South Africa were *Babesia rossi*, a novel *Theileria* species of dogs, *B. vogeli* and *Ehrlichia canis* respectively. The parasites occurred as single or mixed infections. Incidental infections that included *B. gibsoni* and *Trypanosoma congolense* were also detected using PCR. Although it was anticipated that zoonotic Ehrlichial infections of dogs would be detected, none were found. *Babesia vogeli* was reported for the first time in South Africa although, without any clinical significance. An outbreak of autochthonous canine babesiosis in the Netherlands was confirmed to have been caused by *Babesia canis*. *Dermacentor reticulatus* was implicated in the transmission of the parasite to naïve dogs. Clinical significance of *B. rossi* and the novel *Theileria* sp. of dogs was evaluated. *Babesia rossi* was found to be of significant clinical importance. Genotyping of *B. rossi* isolates revealed that parasite
genotypes could be correlated to disease phenotype. Additionally, specific genotypes could also be associated with fatalities. Although the characterization of the *Theileria* sp. in dogs was a first report in South Africa, the clinical significance of this infection in dogs appeared to be poorly resolved. The dangers of having non-endemic species becoming established in South Africa was highlighted with the incidental finding of a *B. gibsoni* infection in an imported dog.

The results of this thesis have shown therefore that populations of dogs that live in tick-endemic areas are exposed to single or multiple tick-borne pathogens. These pathogens continue to cause morbidity and mortality in susceptible dogs. Correct diagnosis (supported by molecular diagnostic tools) followed by appropriate treatment offers a better understanding and management of these tick-borne pathogens. Preventative measures should be fully evaluated and applied to prevent these tick-borne pathogens from adversely affecting the canine population in South Africa and elsewhere.