Assessing the suitability of holonic control to the commodity petrochemical industry

by

Marinus Niemand

Submitted in fulfilment of part of the requirements for the degree Master of Engineering (Control Engineering) in the Faculty of Engineering, the Built Environment and Information Technology, University of Pretoria

Study leader: Prof. P.L. De Vaal

December 2003
Title: Assessing the suitability of holonic control to the commodity petrochemical industry

Author: Marinus Niemand

Study Leader: Prof. P.L. De Vaal

Department of Chemical Engineering
Master of Engineering (Control Engineering)

Abstract

Holonic systems enable unprecedented levels of agility, flexibility and responsiveness. To the discrete manufacturer this presents a clear opportunity to pursue the holy grail of mass customisation.

The focal point of this dissertation is to establish the suitability of holonic systems to the basic chemicals sector. Its business drivers are fundamentally different from those of the mass-customised discrete manufacturer and it is therefore an area in which no research has previously been carried out.

After researching the concept of holonic systems (including modularity and intelligent agency), its application in the discrete manufacturing environment, as well as the basic make-up of the chemical processing industry, a technology strategy assessment framework is constructed.

A commodity petrochemical producer is analysed. A number of benefits presented by holonic control systems over traditional control systems is identified and include more optimal bottleneck management and structuring of overall process variability, more pervasive load balancing and constraint control, improved management of product, process and operator health, more effective utilisation of the available manufacturing flexibility, as well as more effective production accounting and understanding of the manufacturing process.

It is also shown that the holonic control system supports the potential future strategic posture of make-to-order and therefore presents a sustainable solution to the manufacturer.

Future research should focus on establishing an holonic architecture as well as performing functional-detailed studies into the application of holonic systems in the chemical processing industry.

Keywords: holonic control, modular, intelligent agent, commodity chemical processing industry, decentralised, agile
Table of Contents

1 INTRODUCTION .. 5

2 LITERATURE .. 10

2.1 THE CONCEPT OF THE HOLON AND THE HOLONIC SYSTEM 10

2.1.1 Winning trait in the new era: mastering complexity and change with decreasing costs ... 10

2.1.2 Background to holons and holonic systems 12

2.1.3 Exploring holonic systems through the concept of modularity 16

2.1.4 Exploring the holonic system through the concept of intelligent agents ... 21

2.2 HOLONIC MANUFACTURING .. 28

2.2.1 Focus areas ... 28

2.2.2 Holonic systems in manufacturing .. 35

2.3 THE CHEMICAL PROCESSING INDUSTRY 42

2.3.1 Trends and drivers in the chemical processing industry 46

2.3.2 Technological shifts .. 47

2.4 HOLONIC SYSTEMS IN THE CHEMICAL PROCESSING INDUSTRY 57

2.5 PROCESS CONTROL REQUIREMENTS 59

2.6 STRATEGY .. 60

2.6.1 The competitive forces paradigm – opportunities and threats in the external environment ... 60

2.6.2 The resource based view – internal resources and skills ... 63

2.7 TECHNOLOGY AND STRATEGY ... 66

2.8 DU Pont ANALYSIS ... 69

2.9 TECHNOLOGY ROADMAPPING ... 71

3 APPLICATION .. 76

3.1 HOLONIC SYSTEMS IN A STREAM OF CONSISTENT EVOLUTION 76

3.1.1 Theory of inventive problem solving ... 77

3.1.2 Solving contradictions and satisfying ideality 78

3.2 ASSESSING THE SUITABILITY OF HOLONIC SYSTEMS TO A COMMODITY CHEMICAL PRODUCER ... 86

3.2.1 Research rationale .. 86

-3-
3.2.2 Assessment methodology ... 87

3.3 Suitability assessment .. 89

3.3.1 Strategic drivers, profit levers and manufacturing requirements ... 89

3.3.2 Mapping business drivers to holonic systems attributes ... 93

4 DISCUSSION ...100

4.1 Holonic systems as a milepost within a stream of consistent evolution .. 100

4.2 The current conceptual viability of holonic systems to a commodity petrochemical producer 101

4.2.1 Dynamic control strategies .. 101

4.2.2 Optimisation of load distribution and constraint control.. 103

4.2.3 Fundamental production accounting 104

4.2.4 Enable dynamic stability ... 105

4.2.5 Manage process, product, equipment and operator health 106

4.2.6 Improves understanding of the manufacturing process ... 107

4.3 The conceptual viability of holonic systems to the commodity chemical producer of the future 108

4.3.1 Manage transients ... 108

4.3.2 Manage constraints ... 109

4.3.3 Fundamental manufacturing accounting 109

4.3.4 Improve understanding of the manufacturing business ... 109

5 SUMMARY AND CONCLUSIONS .. 110

6 LITERATURE REFERENCES ..119

7 APPENDIX A APPROACHES TO TECHNOLOGY ROADMAPPING.127

7.1 The Garcia and Bray (1997) process 127

7.2 The EIRMA Working Group process 131

7.3 Fast-start technology roadmapping process 138

7.4 The Motorola roadmapping process 141