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1. Introduction 

1.1.  Background 
The gravity field of Earth is a conservative field of force which is constantly changing. In 

essence, the gravitational potential at an external point is the sum of the gravitational potential, 

the potential of centrifugal forces and a varying component resulting from tidal effects from the 

Moon and Sun as well as from the motion of the Earth’s poles.  The strength and direction of the 

gravity field exhibits spatial-temporal variations. For example, due to the rotation of Earth, the 

Earth’s gravity field at the poles is not the same as the gravity at the equator. Density, mass re-

distribution and dynamics of the Earth’s surface are often inferred from the gravity field and its 

spatial-temporal variability (Chen et al., 2005a). The gravity field of Earth plays a significant 

role in various fields of research such as geophysics, oceanography, hydrology, glaciology, 

geodesy and solid Earth science. In particular, the gravity field of Earth may be applied in 

geodynamics for example to observe time varying physical processes such as the post glacial 

uplift or sea level changes (Rummel et al., 2002). In geodesy, the gravity field of Earth may be 

used for precise satellite orbit determination (Rummel et al., 2002; Svehla and Rothacher, 

2004). 

The gravity field of Earth is often measured by use of geodetic satellite data collected 

from Satellite Laser Ranging (SLR) observations. These orbiting satellites are affected by both 

gravitational and non-gravitational accelerations (e.g. atmospheric drag, radiation pressure, etc.). 

During analysis of SLR observations, spatial-temporal variability and dynamics of the gravity 

field of Earth are inferred from analysing satellite orbit perturbations induced by the gravity 

field. A number of gravity field models (expressed as a set of coefficients consisting of a series 

expansion of spherical harmonics) have been derived since the mid 1960s by use of SLR 

tracking data and sometimes combined with terrestrial and altimeter data (e.g., Schwintzer et al., 

1991, Lemoine et al., 1998, Foerste et al., 2006 and others). Accuracy of these models in terms 

of precise orbit determination (POD) depends on data availability, quality, type and 

geographical coverage. 

The inherent biases in most of the existing gravity field models have not been 

extensively studied. These biases could be as a result of utilizing data from satellite missions 

that were not designed for gravity measurements. This is particularly true in cases where the 
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orbital parameters of the satellite in question are not suited for accurate gravity field recovery. In 

addition, SLR measurements often used for gravity field computation (i.e., time of flight 

measurements) are weather dependent. In most areas, approximately 50% of the time weather 

conditions such as cloud cover and rain do not allow for laser ranging. Furthermore, terrestrial 

gravity data and satellite altimeter data may also bias some of the gravity field models (e.g., the 

combined and tailored category of the gravity field models) since the geometry of the 

observations is not uniform (the data are not globally distributed). Difficulties in modelling the 

non-gravitational forces of most of the geodetic satellites (in particular the low Earth orbits) also 

limit the plausibility of achieving significant improvement in gravitational field modelling.  

Nowadays the use of the on-board GPS/gradiometer receiver from the latest satellite 

missions (CHAMP, GRACE and GOCE) allows POD with unprecedented accuracy and almost 

complete spatial and temporal coverage. The data collected from these missions have resulted in 

the determination of a variety of new global gravity field models (e.g., EIGEN1, AIUB-

CHAMP01S, EIGEN-CG04S, AIUB-GRACE01S, EIGEN-5C and many others) as well as 

updating the old gravity field models (e.g., EGM96 to EGM2008 and EIGEN-CG01C to 

EIGEN-CG03C, EIGEN-1S to EIGEN-6S, GGM02C to GGM03C, AIUB-GRACE01S to 

AIUB-GRACE013S). Today there are more than 100 global geopotential models (GGMs) 

derived by different research groups around the world. The ongoing development of 

geopotential models could be attributed to the availability of new data sets (with high quality 

and quick turn-around time) particularly from the recent advanced satellite missions as well as 

the SLR tracking data of multiple satellites.  

Furthermore, development and improvement in gravity field modelling is anticipated as 

quantitative data become available in the future due to improvement of SLR technology. In 

particular, the employment of longer data spans from CHAMP, GRACE and GOCE with 

advanced processing software algorithms and empirical models are expected to increase the 

resolution and further improve the accuracy in gravity field models. Furthermore, the existence 

of numerous satellite missions not necessarily dedicated to gravity field research (e.g., COSMIC 

and SWARM missions) but equipped with space-borne GPS receivers are expected to contribute 

to the development of more accurate gravity field models (Prange et al., 2008). These 

expectations however require that the accuracy and precision of existing gravity field models be 

assessed and validated. The research reported in this thesis focuses on investigating the accuracy 
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of different gravity field models using a new SLR analysis software package developed at 

Hartebeesthoek Radio Astronomy Observatory (HartRAO); it was named SLR Data Analysis 

Software (SDAS) by Combrinck (2010). The SDAS package was developed based on a 

modified spacecraft dynamics library provided by Montenbruck and Gill (2001). Some of its 

technical details are reported in Combrinck and Suberlyak, (2007).  The software was designed 

by Combrinck (coding started in August 2004) and has been significantly updated and modified 

by him since the initial application report of 2007, and has been specifically modified to allow 

testing of different gravitational models. 

 

1.2.  Significance of the research 
The International Laser Ranging Service (ILRS) has continued to make SLR observation data 

sets available to the scientific community (about four decades of data) since its formation in 

1998. This service coordinates its operations, data dissemination and analysis through working 

groups, data and analysis centres. Unfortunately, none of the SLR analysis, lunar and associate 

analysis centres are in Africa. This research effort is a demonstration of preparedness towards 

the development of the first SLR analysis centre on the African continent. To analyse SLR data 

particularly for POD and geodetic parameter estimation only a few known software packages 

such as NASA/GSFC GEODYN II (Pavlis et al., 1999; Pavlis et al., 2006), NASA/GSFC 

SOLVE software, SATellite ANalysis (SATAN) software (Sinclair and Appleby, 1986), GFZ 

analysis software package EPOSOC and the University of Texas Orbit Processor (UTOPIA) are 

currently widely used by the analysis centres. However, the SDAS package (which is 

continuously updated and improved) will have to be augmented with several algorithms before it 

can be used to participate as an ILRS analysis centre, in order to produce standard analysis 

centre products, such as Earth Orientation Parameters (EOPs). These upgrades are in progress 

and new features are regularly added. 

 A number of gravity field models have been developed based on a combination of SLR, 

terrestrial and satellite altimeter data since the mid 1960s.  The progressive development of 

gravity field modelling is often characterized by an improvement in spatial and temporal 

resolution and by the increased degree and order (of the spherical harmonics) of a geopotential 

field. Some of the new gravity field model developments (i.e. those models derived from 

CHAMP and GRACE satellite data) are followed by a validation phase that is often limited 
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spatially. Despite the continuous gravity field model development, research on the over-all 

accuracy of these models has not been reported. The present research contributes towards 

investigating the accuracy of some of the selected gravity field models and model categories 

(e.g. satellite-only, combined and tailored gravity field models). In general, the scientific 

contribution of the research reported in this thesis is particularly relevant to the SLR community, 

space geodesy and in general to Earth system science. 

 

1.3.  Aim and objectives 
The overall aim of the present research is to study the accuracy of various gravity field models 

based on the SLR analysis software developed at HartRAO. In particular the LAser 

GEOdynamics Satellite (LAGEOS) 1 and 2 SLR data sets were considered in calculating the 

SLR range residuals i.e. the Observed-Computed (O-C) residuals. The specific objectives of this 

project were to: 

• Analyse the historical development of gravity field models 

• Calculate the range residuals using the SLR analysis software developed at HartRAO 

based on different geopotential models 

• Investigate the accuracy of selected gravity field models using LAGEOS 1 and 2 data 

• Investigate the contributions of Earth and pole tides on the O-C range residuals across 

selected gravity field models by use of different tide parameterization in the SDAS 

package. 

• Compare the SDAS estimated 2J  with those published in the literature as well as 

investigating possible association of the 2J  coefficient with other geophysical 

parameters such as atmospheric and ocean angular momentum and the length of day. 

 

1.4.  Outline of the thesis 
This thesis consists of seven chapters. In Chapter 2 an overview of space geodetic techniques is 

provided focussing on the SLR observational technique and its scientific applications.  The data 

and methods used (analysis strategy) for data processing are described in Chapter 3. Chapter 4 

contains the results of studies on the general improvement in gravity field modelling. In 

addition, results on the accuracy of gravity field models based on POD are presented. A 
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sensitivity analysis study is presented in Chapter 5. In Chapter 6 the 2J  coefficient estimated by 

the SDAS package from EGM96, GRIM5C1, GGM03C and AIUB-GRACE01S gravity field 

models is compared with the a priori 2J  for the four models. Furthermore, a linkage between 2J  

and geophysical parameters, the length-of-day and atmospheric angular momentum was 

assessed. Lastly, Chapter 7 summarizes the research carried out, highlights research findings and 

provides recommendations for further research. 
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2.   Space geodetic techniques and their data applications 
 

          To know the history of science is to recognize the mortality of any claim to universal truth, Evelyn Fox 
Keller, 1995. 

 
2.1.  Introduction 
The launch of artificial satellites as early as 1957 has presented an unprecedented prospect of  

using the long period of available satellite data to study the size, shape and rotation of Earth as 

well as the variations in the Earth’s gravity field. This is known as the three pillars of geodesy1 

(geokinematics, rotation and gravity field) in modern geodesy. In particular, the use of satellites 

for geodetic applications led to the development of satellite geodesy2. Satellite geodesy 

observations are achieved through space based techniques, particularly SLR and satellite 

positioning (e.g., Global Navigation Satellite Systems (GNSS)). The SLR technique measures 

the travel time (converted to range and corrected for a number of range delay parameters) of a 

transmitted laser pulse from the ground tracking station to the orbiting satellite in space and 

back to the ground station with an accuracy of approximately a centimetre. Applications of SLR 

measurements include the determination of the Earth’s gravity field, monitoring of motion of the 

tracking station network with respect to the geocentre as well as calibration of geodetic 

microwave techniques (e.g. calibration of satellite orbits where the satellites are equipped with 

radar altimeters). On the other hand satellite based positioning and navigation systems, in 

particular the Global Positioning System (GPS), have opened unlimited possibilities for its use 

e.g. in geodetic control surveying and navigations (Seeber, 2003). For example, GPS data have 

been used for precise land navigation and have contributed to the establishment of precise 

geodetic control and the determination of GPS elevations above sea level.   

Very Long Baseline Interferometry (VLBI), a technique which was developed in the late 

1960’s, has been broadly used in various fields of geodynamics such as global plate tectonic 

measurements and studies of variations in the Earth’s rotation (Ryan et al., 1993; Eubanks et al., 

1993). This technique has also resulted in the establishment and maintenance of an accurate and 

�������������������������������������������������������������
1 Geodesy can be defined as the science that determines the size and shape of the earth, the precise positions and 
elevations of points, and lengths and directions of lines on the Earth’s surface, and the variations of terrestrial 
gravity (definition adopted from the International Association of Geodesy (IAG)).�
2 Satellite geodesy is a branch of geodesy which is concerned with satellite orbits, motion, perturbations and 
satellite based positioning (Seeber, 2003). 
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stable inertial (celestial) reference system which replaced the fundamental star catalogues. Here, 

a catalogue of Quasars (stable and distant radio sources) is used for defining the International 

Celestial Reference Frame (ICRF). The three techniques (SLR, GNSS and VLBI) together with 

Doppler Orbitography and Radio positioning by Satellites (DORIS) and even the Lunar Laser 

Ranging (LLR) technique, are the precise geodetic measurement methods and are often referred 

to as space geodetic methods or techniques (Koyama et al., 1998). Space geodetic techniques 

are the fundamental tools for modern geodesy whose scope encompasses the provision of 

services to both society and the scientific community. Since these techniques have different 

characteristics in many aspects, it is preferred to collocate them (locate them on the same site) in 

order to compare the different and independently obtained results with each other thus 

improving their individual reliability. In this chapter the key space geodetic milestones are 

described and then a brief discussion of the principle and the main observables of the three 

space geodetic techniques (i.e., SLR, VLBI and GNSS) follow. A detailed focus is given to the 

SLR technique since it is used in this study. Here the discussion includes the properties of SLR, 

modelling factors that affect the accuracy of SLR measurements and some applications. 

 

2.2. Milestones in space geodesy 
Going back in history, geodesy together with its counterparts e.g. surveying, positioning and 

navigation merely meant measuring of angles as shown in Figure 1. To achieve such 

measurements the scale was roughly introduced by known distances between two sides of 

interest. Measurements using cross-staffs were often used to perform relative, local and absolute 

positioning (Beutler, 2004). A cross-staff is a mechanical device used to measure the angle 

between two objects (e.g., stars), see for example Figure 2. Historically the cross-staff was used 

in navigation to help sailors orient themselves, astronomers to study the sky, and by surveyors 

interested in taking accurate measurements. The cross-staff consists of a long pole with a series 

of markings and a sliding bar mounted at a perpendicular angle called a transom. To use a cross-

staff, the navigator would position the end of the pole on the cheek just below the eye, and pick 

two objects to sight to, such as the horizon and the Sun. The navigator would then slide the 

transom along the cross-staff until one end lines up with one object and the opposite end lines 

up with the other object. Once the transom is in position, the marking covered by the transom 
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indicates the angle between the two objects, which can be used to calculate latitude and to 

collect other information.  

 

�
Figure 1. Historical technique of geodesy, surveying, positioning and navigation. 
Source: http://www.reformation.org. 

 

�
Figure 2. Cross-staff. Source: http://www.granger.com.  
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The geographical latitude of a site could be established by determining the elevation of the Sun 

or the polar star Polaris3 and then looking up the latitude from a pre-calculated table. On the 

other hand, the longitude was determined by calculating the time difference between the 

unknown site and Greenwich ( 0�  longitude). The time difference parameter was normally 

derived either by observing the Sun and measuring the local solar time or by observing certain 

stars and measuring their sidereal time. Problems related to the realisation of Greenwich time at 

the unknown observing time were solved by measuring lunar angular distances, lunar distances 

and angles between bright stars and the Moon. Increased accuracy in lunar orbit prediction 

allowed angular distances between the Moon and stars to be precisely predicted and tabulated in 

astronomical and nautical almanacs as a function of Greenwich local time (Beutler, 2004).    

The development of new instruments such as marine chronometers (these are highly 

accurate clocks kept aboard ships and used to determine longitude through celestial navigation) 

resulted in dramatic improvement in navigation accuracy (Beutler, 2004). For instance, the 

cross-staff method was quickly replaced by more sophisticated optical devices which included 

telescopes. This innovative development allowed the determination of more accurate star 

fundamental catalogues and improvement in predicting motion of planets. Disciplines of 

fundamental astronomy emerged from the interaction between positioning, navigation, geodesy 

and surveying. Under such disciplines the terrestrial reference system was realized based on the 

geographical coordinates of a network of astronomical observatories with an accuracy of about 

100 m (Beutler 2004). On the other hand the celestial reference frame was realized by using the 

derived-fundamental catalogues of stars. The transformation between the terrestrial reference 

and celestial reference frames enabled the monitoring of Earth rotation in inertial space and on 

the Earth’s surface. Such monitoring revealed that the motion of the Earth’s rotation exhibited 

short periodic variations. For example the Length-Of-Day (LOD) was noticed to slowly increase 

by about 2 ms per century. In addition, discoveries of the Earth’s rotation axis moving on the 

Earth’s surface (these are polar motion effects) were also reported in the literature.  Historically, 

surveying and navigational equipment were too inaccurate to measure observables such as 

changes in LOD or polar motion, but as equipment and techniques improved, it was quickly 

�������������������������������������������������������������
3 Polaris is a bright star situated close to the North Celestial Pole (http://solar.physics.montana.edu).  This type of 
star never rises or sets as the night progresses, but instead seems to be glued to the sky and is always in the North. 
So if one is lost in the Northern Hemisphere, one can always figure out direction by finding Polaris. 
�
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determined that the dynamics of the rotation of the Earth was not simply a case of undisturbed 

slow and predictable rotation.  

The determination of the Earth’s gravitational field also plays an essential role in 

geodesy and surveying. In the pre-space geodesy era, the gravity field of Earth was determined 

solely by in situ measurements on or near the surface of the Earth. Terrestrial instruments, which 

included gravimeters4 and zenith cameras, were developed for gravity field measurements. 

These instruments however were suited for modelling the local as well as regional properties of 

the Earth’s gravitational field. The desire to model the global properties of the gravity field of 

the Earth resulted in the development of satellite gravity missions. The use of artificial satellite 

missions led to the development of satellite geodesy (Kaula, 1966). Today there are four 

primary techniques, namely SLR, VLBI, GNSS and DORIS that are used in space geodetic 

observations for the purpose of studying the size, figure and deformation of the Earth and 

determination of its gravity field and the field’s spatial and temporal variations. Apart from 

scientific interest, contributions from space geodetic techniques may also be applied in most 

societal areas ranging from disaster prevention and mitigation, to the provision of resources such 

as energy, water and food and also gaining an understanding of climate change. 

 

2.3. Modern space geodetic techniques 
Space geodetic techniques which include SLR, GNSS and VLBI and DORIS are fundamental 

tools of geodesy. Principles and properties of GNSS, VLBI and SLR methods are briefly 

reviewed in the following sections. For more information on DORIS the reader is referred to the 

following published literatures, Gambis (2004), Willis et al. (2006) and Coulot et al. (2007).   

 

  2.3.1.  GNSS observable 
Global Navigation Satellite System is a term used to describe a group of satellite based 

navigation systems that allow for the determination of positions anywhere on Earth. Currently 

the most commonly used GNSS consist of three main satellite technologies: the American 

controlled GPS, the Russian controlled Global Orbiting Navigation Satellite System 

(GLONASS) and the European GALILEO system. Each of these satellite systems consists 

�������������������������������������������������������������
4 A gravimeter is a specialized type of accelerometer designed for measuring the local gravitational field of the 
Earth (Zolfaghari and Gharebaghi, A., 2008). 
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mainly of three segments: (a) space segment, (b) control segment and (c) user segment 

(Aerospace Corporation, 2003). The GPS is the most utilized system for positioning, navigation 

and timing purposes and GPS satellites act as reference points from which receivers on the 

ground determine their positions. The navigation principle is based on the measurement of 

pseudo ranges between the user and at least three satellites. Ground stations precisely monitor 

the orbit of every satellite by measuring the travel time of the signals transmitted from the 

satellite distances between receiver and satellites. Resulting measurements include position, 

direction and speed.  

In GNSS observations, measurements are often carried out using pseudo-range (or code 

range) and carrier phase. The primary observable is the phase measurement, which has 

applications in high precision positioning. Code or pseudo-range measurements are derived 

from the time difference between signal reception at receiver r  and signal transmission at 

satellite, s . The time of signal transmission is equal to the time of reception less the signal 

travel time. Generally, the basic code observation equation is reported in Verhagen (2005) and is 

given by Equation (1) 

 , , ,( ) ( ) ( ) ( ),s s s s
r j r r j r jP t c t t t t e tτ� �= − − +� �  (1) 

where ,
s
r jP  is the code observation at receiver r  from satellite s  on frequency [ ]j m , t  is the 

time observation in GPS time [ ],s c  is the speed of light in vacuum [ ]/ ,m s  rt  is the reception 

time at receiver [ ],r s st  is transmission time from satellite [ ],s s τ  is the signal travel time  

and e  the code measurement error. Since the receiver clock time and satellite clock time are not 

exactly equal to GPS time, the respective clock errors rdt  and sdt  ought to be accounted for as 

described in Equation (2) 

  (2) 

 

 

Substituting this Equation (1) yields 

 , , ,( ) [ ( ) ( )] ( ).s s s s s
r j r j r r r jP t c c dt t dt t e tτ τ= + − − +  (3) 

Correcting ,τ s
r j  for instrumental delays at the satellite and the receiver as well as for 

atmospheric effects and multipath effects yield 

[ ]s

( )

,

( )

( ) ( ).

r r t

s s s s s
r r j r

t t t dt

t t t dt tτ τ τ

= +

− = − + −
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,

s s s
r j r j r j r j

s s s s
r j r r j r j

d d

da dm
c

τ δτ

δτ ρ

= + +

� �= + +� �

 (4) 

where δτ  is the signal travel time from satellite antenna to receiver antenna [ ]s , rd  is the 

instrumental code delay in receiver [ ],s  sd  the instrumental code delay in satellite [ ],s ρ  the 

geometric distance between satellite and receiver [ ],m  [ ]da  the atmospheric code error and dm  

is the code multipath error [ ]m . With these corrections, the generalized code observation 

equation (see Verhagen, 2005) becomes�

 , , ,

, , ,

( ) ( , ) ( ) ( )
[ ( ) ( ) ( ) ( ] ( ).

s s s s s
r j r r r j r j

s s s s s
r r r j j r r j

P t t t da t dm t
c dt t dt t d t d t e t

ρ τ
τ τ

= − + + +
− − + + − +

 (5) 

Phase observation is a very precise but ambiguous measure of the geometric distance between a 

satellite and the receiver. Phase measurement equals the difference between the phase of the 

receiver-generated carrier signal at reception time, and the phase of the carrier signal generated 

in the satellite transmission time. The basic carrier phase observation equation is given by 

Equation (6) 

 , , , , ,( ) ( ) ( ) ( ).s s s s s
r j r j r j r r j r jt t t N tϕ ϕ ϕ τ ε= − − + +  (6) 

Here ϕ  is the carrier phase observation [cycles], N  is an integer carrier phase ambiguity and ε  

is the phase measurement error. The phases on the right hand site simplify as expressed in 

Equation (7)�

 
, , 0 , 0

, , 0 , , 0)

( ) ( ) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( )) ( .

r j j r r j j r r j

s s s s s s s s
j j r j j r j r j

t f t t t f t dt t t

t f t t t f t dt t t

ϕ ϕ ϕ

ϕ τ ϕ τ τ τ

= + = + +

= − + = − + − +
 (7) 

Here, f  is the nominal carrier frequency 1 ,s−� �� �  0( )ϕr t  is the initial phase in the receiver at 

zero time [cycles] and 0( )ϕ s t  is the initial phase in the satellite at zero time [cycles]. Inserting 

these expressions the carrier phase observation equation becomes 

 , , , 0 , 0 , ,( ) ( ) ( ( ) ( ) ( ).s s s s s s s
r j j r j r r r j j r j r jt f dt t dt t t t N tϕ τ τ ϕ ϕ ε� � � �= + − − + − + +� � � �  (8) 

Multiplying this equation with the nominal wavelength of the carrier signal 
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         with   = ,j j j j
j

c
f

φ λ ϕ λ=  (9) 

yields the carrier phase observation equation in meters as  

 
, , , ,

, 0 , 0 , ,

( ) ( , ) ( ) ( ) ( ) ( ) (

( ) ( ) ( ).

s s s s s s s s
r j r r r j r r r j j r

s s s
r j j j r j r j

t t t a t c dt t dt t t t

t t N t

φ ρ τ δ τ δ δ τ

φ φ λ ε

� �= − + + − − + + −� �

� �+ + + +� �

 (10) 

 

2.3.2.  The VLBI observable 
Very Long Baseline Interferometry (VLBI) as a technique measures the delay in the arrival 

times of radio signals produced by a distant source being monitored simultaneously at two 

terrestrial antennas; see for example schematic representation in Figure 3. The time difference 

between the arrivals of the signal at each radio telescope is derived by correlation (at the 

correlator). These time delays and/or its derivative are used to calculate precisely the distance 

and direction of the baselines between the telescopes. Extragalactic objects that generate radio 

signals are often considered as point sources due to their great distance. In practice, for the 

purpose of geodetic VLBI, these sources (quasars) are carefully selected to ensure that they 

exhibit low proper motion and minimal source structure, so as to appear fixed and point-like. 

When this happens the time dependence of the time delay is generated via the Earth’s motion, 

although it is dependent on the source location and the baseline vector between the two 

antennas. 

 In VLBI measurements the main observed quantities include the geometric delay, phase 

delay, group delay, the delay rate, and correlated amplitude. The geometric delay is directly 

related to the fringe phase as a function of frequency. It is as a result of the combination of the 

geometry of baseline and the direction to the radio source. Mathematically this delay observable 

can be described as in Tanir et al. (2006) and is expressed in Equation (11) 

 
1

,g B k
c

τ = − ⋅
��

 (11) 

where c  is the speed of light, B
�

 is the baseline vector between two stations and k
�

 is the unit 

vector towards the observed source. The baseline vector B
�

 can be transformed between the 

terrestrial geocentric system and celestial geocentric system. Such a transformation may be 

formulated as in Tanir et al. (2006) and is described as per Equation (12) 
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 ( ) ( ).c TB t PNUXYB t=
� �

 (12) 

In Equation (12) ( )cB t
�

 is the baseline vector in the celestial system and TB
�

 is the baseline 

vector in the terrestrial system. In addition, ( ), , , ,P N U X Y  represents a transformation term 

with respect to the Earth orientation parameters, e.g. precession and nutation model, a priori 

information for Earth rotation ( )1UT  and polar motion ( ),p px y . The baseline vector in the 

terrestrial reference frame takes into account corrections for: solid Earth tides, plate tectonics, 

ocean tide loading, atmospheric loading, hydrological loading, ionospheric correction, 

tropospheric correction and clock correction. Taking into consideration these corrections for 

geometric delay and transformation between the celestial and terrestrial system the geometric 

delay equation may be rewritten as 

 . . . ....T
obs c tides p tect o load h load ion trop clock

B
YXUNPk

c
τ τ τ τ τ τ τ τ= − + + + + + + +

�
�

. (13) 

 Here, τobs  is the observed geometrical delay, TB  corresponds to the baseline vector in the 

terrestrial system and ck  is the source vector in the celestial system. 

 The phase delay is given by the ratio of the observed fringe phase and the reference 

angular frequency,  

 .
2

T n
φ

φτ
πν ν

= +  (14) 

where n  is an unknown integer. The group delay is the derivative of the fringe phase with 

respect to angular frequency and is described by Equation (15) 

 
1

.
2

T
G

φτ
π ν

∂� �� �= ×� � � �∂	 
 	 

 (15) 

The phase delay rate is defined as time rate of change of the phase delay and is given by 

Equation (16) 

 
1

.
2

T

t t
φτ φτ

πν
∂ ∂� �� �= = ×� � � �∂ ∂	 
 	 


�  (16) 

The correlated or visibility amplitude of the radio source signal is given by Equation (17) 

 .c

t

S
V

S
� �

= � �
	 


 (17) 
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Here, Sc is the correlated amplitude and St is the total amplitude or total flux. 

 

 
Figure 3. Schematic representation of VLBI concept. 

 

2.3.3.  SLR observable 
Satellite Laser Ranging (SLR) is a technique that measures the two-way travel time of a short 

laser pulse which is reflected by an orbiting satellite. This method of measurement is applied to 

orbiting satellites equipped with special mirrors known as retro-reflectors (which are made from 

glass prisms). A schematic diagram illustrating the operation of a typical SLR system is 

presented in Figure 4. In a typical SLR system, a transmitting telescope emits short laser pulses 

with energy between 10 and 100 mJ at a pulse repetition frequency ranging between 5 and 20 

Hz.  Some modern systems have lower power levels and higher firing rates up to 2 kHz. The 

emitted laser pulse has a typical duration of two hundred or less picoseconds, most often 

specified by the Full Width Half Maximum (FWHM) of the pulse.  
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Figure 4.  Schematic representation of a typical SLR system (adopted from Degnan, 1985). 

 

Laser pulses propagate through the atmosphere to the orbiting satellite. Pulses which illuminate 

any of the retro-reflectors are reflected back through the atmosphere to the ground station were 

they are collected via the receiving telescope. The receiving telescope collects and focuses the 

reflected pulse energy onto a transmission photocathode (radiation sensor located inside a 

vacuum envelope of a photomultiplier) device of a photomultiplier (or a Single-Photon 

Avalanche Diode (SPAD)). A photomultiplier is a versatile and sensitive detector of radiant 

energy in the ultraviolet, visible, and near infrared regions of the electromagnetic spectrum. 

When photons enter the glass vacuum tube, they impinge on the photocathode. The 

electron yield of this effect depends on the material of the cathode and is quantified as the ratio 

of emitted electrons to the number of incident photons. This is called the quantum efficiency, ε , 

and for SLR systems the efficiency is typically on the order of 10-15 percent (Degnan, 1985), a 

recently developed PMT with GaAsP photocathode and gating option (Hamamatsu R5916U-64) 

has a quantum efficiency of ~ 40% .  Photoelectrons are emitted and directed by an appropriate 

electric field to an adjacent electrode or dynode within the envelope. As a result of the 

acceleration between the dynodes, the number of emitted electrons multiplies from step to step 

(this is similar to a cascading process). A number of secondary electrons are emitted at the 

dynode for each impinging primary photoelectron. These secondary electrons in turn are 

directed to a second dynode and so on until a final gain of perhaps 106 is achieved. The electrons 

 
 
 



17 
 

from the last dynode are collected by an anode which provides the signal current that is read out. 

This signal current which represents the round-trip Time-Of-Flight (TOF) of the pulse is stored 

by the system computer along with other information such as station positions and its velocities. 

A basic equation representing an approximate TOF is given by Equation (18) 

 ,
2

c t
d

×=  (18) 

where c  is the speed of light and t  is the TOF. The speed of light is the signal propagation 

speed and a factor of two is included to reduce the round trip distance to the one way range. In 

order to obtain the best possible range precision5 from the ground station to the satellite 

numerous corrections corresponding to internal delays in the transmission and detection systems 

are to be taken into account. Considering such parameter corrections Equation (18) can be 

expanded into Equation (19) 

 0

1
.

2 s b rd c t d d d d η= ∆ + ∆ + ∆ + ∆ + ∆ +  (19) 

In Equation (19), t∆  is the measured TOF and is mostly affected by uncertainties in the signal 

identification. The preferred resolution for the measured TOF is often a few picoseconds. In 

addition, the measured TOF needs to be tied to universal time (because of the satellite’s motion 

relative to the Earth). The 0d∆  term corresponds to the eccentric correction on the ground, 

which is the intersection of the vertical axis and horizontal axis and is used as a reference point 

in the laser system. Similarly, sd∆  corresponds to the eccentric correction at the satellite and 

gives a geometrical relationship between the centre of each corner cube and the centre of mass 

(COM) of the satellite. The ILRS has COM corrections for different satellites and different laser 

frequencies (e.g. 1.01 m for AJISAI (Sasaki and Hashimoto, 1987) and 0.251 m for LAGEOS 2 

(Minott et al., 1993)). The bd∆  term in Equation (19) corresponds to the signal delay in the 

ground system. The geometric reference point and the electrical reference point is often not 

exactly at the same physical point; this correctional parameter is often determined through 

calibration with older systems that were calibrated with respect to a defined terrestrial target. 

The electrical delay and optical delay must be measured and constantly checked afterwards, to 

ensure that system dependent changes do not adversely affect measurement accuracies. 

�������������������������������������������������������������
5 Range precision refers to the degree of agreement of repeated measurements of the same property expressed 
quantitatively as the standard deviation computed from the results of a series of measurements. 
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Furthermore, rd∆  is the refraction correction as a result of atmospheric conditions which affect 

the propagation velocity of laser pulses. Laser pulses experience a delay in the lower part of the 

atmosphere, which makes measurements of these parameters along the total path difficult. 

Therefore atmospheric models are used that incorporate variables such as SLR site pressure and 

temperature and are supported by measured data at the laser site. Lastly, η  are random 

systematic and observation errors related to un-modelled residual effects.  

 

��������������	
���
�����
	�� ����	������

The first SLR experiment campaign began in the 1960s with the development of the first (Ruby 

based) SLR station tracking satellites such Beacon Explorer-B (BE-B) (Osorio, 1992). Since 

then numerous satellite missions have been launched for different applications such as geodetic, 

Earth sensing and radio navigation and a global network of SLR stations has been established, 

replacing the old Baker-Nunn optical camera (Combrinck, 2010). A historical overview of such 

missions is summarised in Table 1.�

 

Table 1. Timeline of artificial satellites which were tracked by global SLR stations. 

Name Launch date Height (km) Mission application 
Starlette 1975 960 Gravity, tides, orbit determination 
Lageos 1 1976 5900 Earth rotation, gravity, orbit, crustal deformation 
Ajisai 1986 1500 Crustal deformation, gravity, orbit determination 
Etalon 1/2 1989 19100 Crustal determination, Earth rotation 
ERS-1 1991 780 Altimetry, orbit determination 
Lageos 2 1992 5900 Crustal deformation, gravity, orbit determination 
Stella 1993 810 Gravity, tides, orbit determination 
ERS-2 1995 785 Altimetry, orbit determination 
GFO-1 1998 800 Oceanography 
CHAMP 2000 454 Gravity field, orbit determination 
GRACE 2002 485 Gravity field, orbit determination 
Larets 2003 691 Orbit determination 
GOCE 2009 295 Gravity field, geoid 

 

3.3.3.2.  Global network of SLR stations 

The current global network of SLR stations involved in artificial satellite tracking consists of 

over 40 stations and their global distribution is depicted in Figure 5. Most of the SLR tracking 

stations are located in the Northern Hemisphere leaving the Southern Hemisphere with weak 
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coverage. In Africa there are two stations, Helwan in Egypt and MOBLAS-6 (see Figure 6) 

located at HartRAO in South Africa. The space geodetic fundamental station HartRAO is 

involved with the International Laser Ranging Service (ILRS) activities as well as the other 

services of the International Association of Geodesy (IAG). This SLR tracking station is 

relatively isolated in Africa and more active than Helwan, hence plays a very important role as 

far as data coverage is concerned.  

 

�

Figure 5. ILRS tracking network. Source: http://www.nasa.gov.  
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�
Figure 6. MOBLAS-6 at HartRAO. Source: http://www.hartrao.ac.za.  

 

2.4. Modelling strategies in SLR 
 

2.4.1.  Forces acting on an orbiting satellite 

2.4.1.1. Two-body problem 

The two-body problem addresses the relative dynamics of two point masses attracted to each 

other by gravity. Its concept in SLR is primarily equivalent to modelling the forces of the 

motion between two gravitating masses, M  and m  (e.g., satellites around the Earth).  In 

particular, the two-Body problem is founded on the assumptions that:   

• the motion of the spacecraft is governed by attraction to a single central body,  

• the central body and satellite are both homogeneous spheres or points of equivalent mass 

and  

• only gravitational forces act on the bodies.  
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From Newton’s law of gravitation, the force F  on mass m  orbiting about a spherically 

symmetrical body of mass M  at distance r  from the centre of mass  is defined by Equation (20) 

as reported in Seeber (2003), 

 
2 .

GMm
F

r
= −  (20) 

Here G is the gravitational constant.�

Under the basic assumptions of the two-body problem the corresponding vector 

acceleration following Newton’s second law of motion is given by Equation (21), 

 
( )

3 ,
G M m

r r
r

+
= − �

��  (21) 

where the vector from the centre of mass of the central body to the satellite is given by ,r
�

M  is 

the mass of the central body and m  is the mass of the satellite. In addition, assuming that M  is 

the main attracting mass and the mass of the satellite, m  is extremely small such that compared 

to the central body M  (e.g., m M≤ ) the acceleration vector may be written as in Equation (22), 

 
3 .

GM
r r

r
= − �

��  (22) 

Equation (22) can be solved through an analytical integration method to yield the position and 

velocity of mass m  at future epochs. This is possible only if the initial conditions of position 

and velocity are known. In a case where perturbing forces act on an orbiting satellite then the 

satellite will experience additional accelerations due to the perturbing forces. In such case, the 

equation of motion may be written as in Equation (23), 

 
3 ,s

GM
r r k

r
= − +�

�
��  (23) 

where r
�  is the position vector of the centre of mass of the satellite and sk  is a perturbing vector 

(which is in general the summation of all the perturbing forces acting on an orbiting satellite) 

and can be expressed as in Equation (24) 

 s g ng empk a a a= + + . (24) 

Here ga is the sum of the gravitational forces acting on the satellite, nga  is the sum of the non-

gravitational forces acting on the surface of the satellite and empa  represent the unmodelled 

forces which act on the satellite due to either a functionally incorrect or incomplete description 
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of the various forces acting on the satellite (Seeber, 2003). The gravitational forces, ga  acting 

on an orbiting satellite consist of a series of perturbations that are often expressed by Equation 

(25),  

 ,g geo set ot rd smp rela P P P P P P= + + + + +  (25) 

where geoP  is the geo-potential force due to the gravitational attraction of the Earth, setP  and otP

define perturbations due to solid Earth tides and ocean tides respectively, rdP  is due to rotational 

deformation of the Earth,  smpP  are perturbations due to the Sun, Moon and planets and relP  

describes perturbations due to general relativity (Seeber, 2003). The non-gravitational forces 

acting on an orbiting satellite are given by Equation (26) as 

 .ng drag solar earth thermala P P P P= + + +  (26) 

 Here dragP  is the atmospheric drag acting on a satellite, solarP  is due to solar radiation pressure, 

earthP  describes perturbation due to Earth radiation pressure (related to the albedo of Earth, 

typically 10% of the acceleration due to direct solar radiation pressure), thermalP  is the 

perturbation due to thermal radiation imbalance resulting from non-uniform temperature 

distribution on different satellite surfaces.  

 

2.4.1.2. Gravitational field of the Earth 

The Earth’s gravity field is one of the most dominant forces that causes perturbations on an 

orbiting satellite. This force is often described in terms of spherical harmonic functions (Rapp, 

1998). Harmonic functions may be defined as functions that satisfy Laplace’s equation of the 

form given by Equation (27), 

 2 0.U∇ =  (27) 

In Equation (27), U  represents a model of the Earth’s gravity potential energy and 2∇  is the 

Laplace operator expressed as in Equation (28), 

 
2 2 2

2
2 2 2 .

x y z
∂ ∂ ∂∇ = + +
∂ ∂ ∂

 (28) 
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Expressing the Laplace’s equation in terms of spherical polar coordinates (where 

sin cos ,x r θ ϕ=  sin siny r θ ϕ=  and cosz r θ=  with [ ]0, ,r ∈ ∞  [ ]0,θ π∈  and [ ]0,2ϕ π∈  ) 

yields Equation (29) (Heiskanen & Moritz, 1967), 

 
2

2 2
2 2 2 2 2

1 1 1
sin 0.

sin sin
U U U

U r
r rr r r

θ
θ θθ θ λ

∂ ∂ ∂ ∂ ∂� � � �∇ = + + =� � � �∂ ∂ ∂ ∂ ∂	 
 	 

 (29) 

Here r  is the Earth’s geocentric radius, θ  is the geocentric co-latitude and λ  is the geocentric 

longitude. Equation (29) can be solved to obtain the gravity potential of the Earth in terms of 

spherical harmonics. For further details on how the gravity potential is derived from Equation 

(29), see Tapley et al. (2004a). In particular, the gravity potential can be expressed in the form 

described by Equation (30), 

 [ ]
max

2 0

( , , ) (sin ) cos sin .
lN l

nm nm nm
n m

GM GM a
U r P C m S m

r r r
ϕ λ ϕ λ λ

= =

� �= + +� �
	 


��  (30) 

Here, U  is the gravity potential, GM  is the Earth’s gravity constant, (r, ,�)ϕ  represent the 

magnitude of the radius vector, the latitude and the longitude respectively, ,n m  are the degree 

and order of spherical harmonics, nmP  are the Legendre functions and { },nm nmC S  are the 

spherical harmonic (Stokes’) coefficients (Tapley et al., 2004a). The associated Legendre 

function for a given order m  and degree n  is defined by Equation (31),  

 ( ) /22 ( )
1 ,

m
m n

nm m

d P x
P x

dx
= −  (31) 

where Pn(x) is the Legendre function which is expressed as a function of the independent 

variable x as depicted in Equation (32), 

 ( )21
( ) 1 .

2 !

n
n

x n n

d
P x x

n dx
= −  (32) 

In most cases the spherical harmonic coefficients,  are preferably given in normalized 

form, in which the order of magnitude remains approximately constant.  This is due to the fact 

that these coefficients decrease numerically with large orders of magnitude with increase of 

degree and order of spherical harmonics. Computationally, these large differences could lead to 

round-off errors, although with modern computers and compilers, it is less a problem currently 

than say thirty years ago. In the SDAS software, any format is read (normalized or 

unnormalized) and converted to an internal (unnormalized) format for numerical processing.  

{ },nm nmC S
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The standard normalization factor is defined as in Equation (33) see Montenbruck and Gill 

(2001),  

 
( ) ( )( )

( )
0! 2 1 2

,
!

m
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n m n
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n m

δ− + −
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+
 (33) 

and  

 
( ) ( ) ( )
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+
 (34) 

where nmC  and nmS  are the standard coefficients used in Equation (30), nmC  and nmS  are the 

normalized coefficients and 0mδ  is the Kronecker delta between 0 and m . For normalization 

purpose Equation (32) can multiplied by, 
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   Assuming that, 

 ( ) ( )
( ) .

m
m n

n m

d P x
P x

dx
=  (36) 

In terms of the fully normalized coefficients, Equation (30) can be rewritten as in Equation (37),  
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��  (37) 

where, r  is the geocentric radius of the computation point, { },nm nmC S  are fully normalised 

spherical harmonic coefficients of degree n  and order ,m  ( )cosnmP θ  are fully normalized 

associated Legendre functions of degree n  and order m . The spherical harmonics, { },nm nmC S  

may be classified as zonal (here, 0m =  and the zeros of  depict that the sphere is 

divided into latitudinal zones), sectorial (here m n= ) and tesseral (in this case m n≠ ). A typical 

example of zonal spherical harmonic functions is the 2J  coefficient which is equivalent to, 

0 0 .n n nJ J C= − = −  The 2J  (oblateness) coefficient is the main contributor of mass distribution 

near the Earth’s polar axis causing the shape of Earth’s rotation to deviate from a perfect sphere 

{ },nm nmC S
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(Montenbruck and Gill, 2001). Figure 7 illustrates some examples of spherical harmonic 

functions. A typical geopotential model is often described by these spherical harmonic 

coefficients.  

 
Figure 7. Examples of spherical harmonic functions of degree n and order m. (a) zonal (b) 
tesseral (c) sectoral (Laxon, 2003). 
 

2.4.1.3. Third body effects  

Satellites undergo acceleration originating from gravitational forces from the Sun, Moon and 

planets. These third body effects can dominate atmospheric drag effects in the case of high 

altitude satellites when the atmospheric drag effect begins to diminish. Generally, the effects 

from the three body perturbing forces are commonly described as per Equation (38) as reported 

in Tapley et al. (2004a), 

 
3 3
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=
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= −� �
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j j j

r
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r
 (38) 

Here it is assumed that the gravity fields of the celestial bodies are perfect spheres. In Equation 

(38) j  represents a specific body, jGM  denotes the gravitational parameter of each ,j  the 

position of the body j  relative to the satellite is given by ,j∆
�

 and jr
�

 is the position vector of 

the body j  relative to Earth.  

 

 2.4.1.4. Solid Earth tides 

The solid Earth tides often manifest as an indirect effect from the attraction of Moon and Sun. 

They cause a deformation of the Earth’s figure and therefore of the Earth’s gravity field, which 

can be expressed as a deviation of the harmonic coefficients. The deviations of the Earth’s 
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harmonic coefficients of the second and third order of spherical harmonics due to solid tides can 

be expressed by Equation (39) (McCarthy and Petit, 2003),  

 ( ) ( )
1

3
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2
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imjnm e
nm nm nm j n

j E j
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�  (39) 

Here nmk  is the nominal degree Love number for degree n  and order ,m  eR  is the equatorial 

radius of the Earth, EGM  is the gravitational parameter for the Earth, jGM  represents the 

gravitational parameters for the Moon ( )2j =   and Sun ( )3 ,j =  jr  corresponds to the distance 

from geocentre to Moon or Sun, jΦ  is the body fixed geocentric latitude of Moon or Sun, jλ  

corresponds to the Earth fixed east longitude (from Greenwich) of Moon or Sun and lastly, nmP  

is the normalized associated Legendre function. The force acting on a satellite due to solid Earth 

tides is described by Equation (40), 
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In Equation (40),  r
�

 is the radius vector of satellite (sat), Sun (S) and Moon (M), θ  is the angle 

between radius vectors satr
�

 and , ,S Mr
�

 Ea  is the equatorial radius of Earth, GM  is the 

gravitational constant of the Sun and Moon. 

 

2.4.1.5. Ocean Tides 

The deformation of the Earth’s gravity field caused by ocean loading tides can also be 

manifested in the deviations of the harmonic coefficients. A full description of equations 

describing the ocean tides model can be found in McCarthy and Petit (2003) and Petit and 

Luzum (2010). The equation describing ocean loading has been reported in McCarthy and Petit 

(2003) and Petit and Luzum (2010) and is given in Equation (41), 
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where,  
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Here g is mean equatorial gravity, '
nk  is the load deformation coefficients, ,snmC  snmS  are ocean 

tide coefficients for the tide constituent ,s and θ  is the argument of tide constituent s . 

 

2.4.1.6. Pole tides 

The pole tides given by Equation (43) are generated by the centrifugal effect of polar motion  
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 (43) 

where ( )1, 2 m m  are wobble variables. The deformation which constitutes the pole tide produces 

a perturbation given by, 

 ( )
2 2

i
e 2 1 2

r
sin 2 R k m im e ,

2
λΩ θ � �− −� �  (44) 

in the external potential. For the purpose of satellite orbit determination this perturbation is 

related to changes in the geopotential coefficients 21C  and 21S .  

 

2.4.1.7. Relativistic effects 

The relativistic correction to the acceleration of an orbiting satellite is commonly accounted as 

per Equation (45) recommended by the IERS 2003, published by McCarthy and Petit (2003) and 

Petit and Luzum (2010),    
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 (45) 

In Equation (45) the correction includes: 

• first term, the non-linear Schwarzschild field of the Earth ( )9 -210 m s ,−≈  

• second term, Lense-Thirring precession (frame dragging) ( )11 -210 m s ,−≈  

• third term, de Sitter (geodetic) precession ( )11 -210 m s .−≈  
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The approximate magnitude of acceleration presented here refers to LAGEOS as calculated by 

the SDAS package. In addition, c  in Equation (45) is the speed of light, ,  β γ  are the 

Parameterized Post Newtonian (PPN) parameters (these are parameters used to describe the 

classical tests of general relativity; in general relativity the two parameters are given by 

( ) ( ), 1,1β γ = ), r
�

 is the position of the satellite relative to the Earth, R
�

 is the position of the 

Earth relative to the Sun, J
�

 is the Earth’s angular momentum per unit mass, GM ⊕  is the 

gravitational coefficient of Earth and sGM  the gravitational coefficient of the Sun. Although the 

effects of these parameters are very small for the purpose of POD they need to taken into 

account as there are some long-term periodic and secular effects in the orbit (Huang and Liu 

1992).  

 

2.4.1.8. Solar radiation pressure 

Solar radiation pressure describes an exchange of momentum between photons absorbed and 

reflected by the surfaces of an orbiting satellite (Ziebart, 2001). This conveyed force causes 

acceleration which is dependent on the solar flux, the satellite’s mass m  and cross-section A . 

According to Montenbruck and Gill (2001), the solar radiation pressure contributions to the total 

perturbative acceleration is described as per Equation (46), 

 2
3 .e

solar e R
e

rA
P P C AU

m r
ν= −

�

 (46) 

where eP  is the radiation flux from the Sun, er
�

 is the geocentric position of the Sun, RC  is the 

reflection coefficient ( )1.13RC =  and ν  is the eclipse factor and it determines the amount of 

solar radiation acting on the satellite as it passes through umbra and penumbra regions. The 

conditions for the eclipse factor functions are 0ν =  if the satellite is in the shadow region 

(umbra phase), 1ν =  if the satellite is in full sunlight and 0 1ν< <  if the satellite is in partial 

shadow (penumbra phase).  
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2.4.1.9. Atmospheric drag 

Satellites orbiting the Earth at low Earth altitude are also affected by drag force (the component 

of the resultant dynamic fluid force that acts in opposition to the relative motion of the object 

with respect to the fluid) (Montenbruck and Gill, 2001). Although the air density is extremely 

low at altitudes higher than 1000 km, the high velocity of a satellite often leads to significant 

(de-)acceleration. The acceleration due to air drag can be obtained by Equation (47) according to 

Montenbruck and Gill (2001), 

 21
.

2drag D r v

A
P C v e

m
ρ= − �

 (47) 

Here, DC  is a dimensionless quantity describing the satellite’s interaction with the atmosphere 

(also referred to as the satellite’s drag coefficient);  m  is the total mass of the satellite; 

/v r re v v=� �
 is a unit vector describing the direction of the acceleration due to drag and is anti-

parallel to the satellite velocity vector; rv  is the magnitude of the satellite’s velocity relative to 

the atmosphere; A  is the projected area in the direction of the velocity vector relative to the 

atmosphere and lastly, ρ  the atmosphere’s mass density.  

 

2.4.2.  Tropospheric delay modelling 
SLR observations are highly affected by the residual errors arising from inaccurate modelling 

the effect of delay of the signal propagation through the neutral atmosphere (i.e., the troposphere 

and stratosphere). Early atmospheric correction models used during SLR analysis include one 

developed by Marini and Murray (1973). Later, the shortcomings of Marini and Murray’s 

atmospheric model (e.g., inaccurate mapping function component of the model) were pointed 

out by Mendes et al. (2002). Today, mapping functions derived by Mendes et al. (2002) are 

widely used in combination with any zenith delay (ZD) model to predict atmospheric delay in 

the line-of-sight direction.  

In general, the atmospheric delay contribution is described by McCarthy and Petit (2003) 

and is expressed here by Equation (48), 

 ( )610 1 .
a a

s s

r r
z
atm

r r

d Ndz n dz−= = −� �  (48) 

 
 
 



30 
 

Splitting the ZD into hydrostatic ( )z
hd  and non-hydrostatic ( )z

nhd  components, Equation (48) 

can be rewritten as described by Equation (49), 

 6 610 10 .
a a

s s

r r
z z z
atm h nh h nh

r r

d d d N dz N dz− −= + = +� �  (49) 

In Equation (49), ( ) 61 10= − ×N n  is the total group refractivity of moist air, n  is the total 

refractivity index of moist air, hN and nhN  are the hydrostatic and non-hydrostatic components 

of the refractivity, sr  is the geocentric radius of the laser station, ar  is the geocentric radius of 

the top of neutral atmosphere, and z
atmd  and dz  have length units.  

 According to Mendes and Pavlis (2004) the hydrostatic ZD can be expressed as in 

Equation (50),  
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where z
hd  is the zenith hydrostatic delay in meters, and sP  is the surface barometric pressure in 

hPa. The function ( ),φsf H  in Equation (50) can be expressed as in Equation (51).  

 ( ), 1 0.00266cos 2 0.00000028 .sf H Hφ φ= − −  (51) 

Here φ  is the geodetic latitude of the station and H  is the geodetic height of the station in 

meters. The dispersion equation for the hydrostatic component is described by Equation (52) 
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In Equation (52), -2
0 238.0185 �m=k , -2

2 57.362 �m=k , * -2
1 19990.975 �mk = , and 

* -2
3k 579.55174 �m= , σ  is the wave number, with 1σ λ −= , where λ  is the wavelength in µm , 

( )
2

61 0.534 10 450−= + × −CO cC x , where cx  is the carbon dioxide ( )2CO  content in parts-per-

million (ppm). The expression for non-hydrostatic ZD expressed as in Equation (53), 
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where z
nhd  is the zenith non-hydrostatic delay in meters, and se  is the surface water vapour 

pressure in nPa. The dispersion expression for the non-hydrostatic component is given by 

Equation (54),  

 ( )2 4
0 1 2 3( ) 0.003101 3 5 7 6 ,nhf w w w wλ σ σ σ= + + +  (54) 

where 0 295.235,w = 2
1 2.6422 ,w m= µ  4

2 0.032380 ,w m= − µ  and 6
3 0.004028 .w m= µ  Marini 

and Murray (1973) have demonstrated that if the atmosphere is assumed to be azimuthally 

symmetric then the mapping functions for the atmospheric delay are asymptotic in ( )sin ε  near 

zenith and inverse in ( )sin ε  near the horizontal. The azimuthally symmetric mapping function 

and the hydrostatic gradient can be calculated from the geopotential heights. In the case where 

the wet mapping function is not in hydrostatic equilibrium, the vertical distribution of 

refractivity due to water vapour is utilized. Here the adopted parameters need to reflect both the 

vertical distribution as well as the changing geometry with height above the surface due to the 

curvature of the Earth. The adopted parameter for both the hydrostatic and wet mapping 

functions is a single input along with the site geographic location. The mapping function of a 

truncated continued fraction in ( )1 / sin ε  can be described as per Equation (55) as reported in 

McCarthy and Petit (2003),  
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In Equation (55), ( )εm  is the mapping function, ε  is the vacuum elevation of the incoming ray 

and ,  and a b c  are the coefficients of the mapping function which depend on integrals 

refractivity through the atmosphere. 
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2.5. Applications of SLR measurements 

2.5.1.  International Terrestrial Reference Frame (ITRF) 

The SLR observations, in particular from LAGEOS 1 and 2 have played a significant role in 

providing data that have been used for the establishment of the ITRF6 (McCarthy and Petit, 

2003). The ITRFs are realized through computing global Cartesian coordinates and geophysical 

parameters such as station coordinates (positions and linear velocities) and Earth Orientation 

parameters (EOP) (McCarthy and Petit, 2003 and Petit and Luzum, 2010). These coordinates 

form a single solution which is sent to the International Earth Rotation and Reference System 

(IERS) where it is used to determine a unique solution of the ITRF. Single solutions from other 

space geodetic techniques such as GPS, VLBI and DORIS may be combined with the solution 

from SLR observations to form a four-in-one solution which can then be used to determine, 

maintain and improve the ITRF precisely. In addition, the four-in-one solution provides a unique 

solution for the measurements of the EOP which are used to describe the irregularities of the 

Earth rotation with respect to a non-rotating reference frame as well as for satellite positioning 

(Gambis, 2004).  

Generally, the EOP are formed by five components: the X and Y polar motion with 

respect to the crust, Universal Time (UT1), a nutation correction in ecliptic longitude ( )ϕd , and 

a nutation correction in obliquity ( )εd . Today, the two nutation corrections can be precisely 

modelled to an accuracy of about 3 cm for about a one year period (Oliveau and Freedman, 

1997). The UT1 parameter may be defined as a measure of the angular rotation of the Earth 

about its spin axis and is usually specified with respect to a reference time defined by atomic 

clocks (e.g., UT1–UTC) (Freedman et al., 1994). This parameter together with X and Y polar 

motion are known to exhibit rapid variations and are also unpredictable in time. The random 

variations are due to the interaction of the atmosphere and the crust (Freedman et al. 1994) 

while the UT1 often varies more rapidly than polar motion. 

The difference between the astronomically determined duration of the day and 86 400s of 

International Atomic Time (TAI) is known as the Length-Of_Day (LOD) and is often derived 

�������������������������������������������������������������
6 The ITRF is a set of physical points with precisely determined coordinates in a specific coordinate system 
attached to the International Terrestrial Reference System (ITRS) (McCarthy and Petit, 2003). 
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from the UT1 series as a temporal rate of change of the difference (UT1-TAI). The excess LOD, 

denoted by A  is related to the UT1 rate of change given by Equation (56),  

 0 ,
du

A A
dt

= −  (56) 

where A  is the excess LOD and 0A  is the nominal LOD (86 400 seconds). When modelling the 

stochastic behaviour of UT1 and LOD the effects of physical processes (e.g., solid Earth and 

ocean tides) which influence the rotation rate ought to be taken into account. Such effects can be 

removed from the two EOP components by applying corrections obtained from conventional 

tidal models (Yoder et al., 1981). The Earth orientation changes often represented by polar 

motion, X, Y, the equatorial components in a geographical reference frame, and variations in the 

LOD (see Figure 8 for variations in LOD and excitations in X and Y polar motion) are often 

explained by studying variations of atmospheric and/or oceanic angular momentum. Such 

variations are caused by the exchange of angular momentum between the solid Earth and its 

geophysical fluid envelope. Eubanks et al. (1993) found that variations in the Earth’s rate of 

rotation which corresponds to changes in LOD amount to a few parts in 108. Studies by Ponsar 

et al. (2003) suggested that the variations in LOD are caused by interaction between the Earth’s 

core and mantle. Similar studies by Gross et al. (2003) related the LOD variations with tidal 

variations exhibiting periods between 12 hours and 18.6 years. Such variations were believed to 

be due to the deformation of solid Earth and changes in the strength and direction of the 

atmospheric winds.    
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�
Figure 8. Time series (in Modified Julian Date (MJD)) of Earth rotation extracted from SLR 
data. (a) LOD variations, (b) X and Y polar motion excitation, data obtained from 
http://www.iers.org/IERS archive. 
 

2.5.2.  Gravity field 
Satellite Laser Ranging tracking data have been used to determine the Earth’s gravity field both 

at global and regional scales. Since the orbital motion of artificial satellites is influenced by 

gravitational forces, precise satellite tracking measurements provide orbit solutions which can 

be inverted to derive the gravity field. For instance, the long wavelength gravity information can 

be derived through SLR range measurements by high altitude satellites such as LAGEOS. 

(a) 
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However, gravity field determination to higher degree of coefficients using SLR experiences 

certain drawbacks due to unsteady and fragmentary orbit tracking by ground stations. The recent 

satellite missions, e.g. CHAMP, GRACE and GOCE are designed to overcome the existing SLR 

disadvantages. Nowadays the gravity field determination is achieved based on three techniques 

in the context of CHAMP, GRACE and GOCE satellite missions (Tapley et al. 2004b). These 

techniques include a continued GNSS tracking using on-board GPS receivers and 

accelerometers for measuring non-gravitational forces such as atmospheric drag and solar 

radiation pressure. The GRACE satellite is additionally equipped with a K-band microwave 

system (known as K-band range-rate technique), which measures their separation range-rate 

with significant accuracy (Tapley et al. 2007). This technique is believed to be the most 

important in terms of gravity field determination for the on-board GRACE mission. Satellite 

gradiometry equipped on the GOCE mission is the most recent technique used for gravity field 

determination and non-gravitational accelerations acting on the satellite (Pail et al. 2011). The 

on-board GOCE gradiometer determines the position and velocity of the satellite and is used for 

estimation of the long wavelength signal of the gravity field. Low-altitude satellites, however, 

are subjected to non-gravitational forces, particularly from the atmosphere, and these can affect 

the gravity inversions at all wavelengths.  

 According to Newton’s law, changes in the gravity field are a manifestation of mass 

redistribution in the Earth system. Any movement of masses in, on or above the Earth will 

therefore introduce variations in the gravity field of the Earth (Dickey et al., 2002; Cox et al., 

2003). Temporal variations of Earth’s gravity field may range between 10 and 100 ppm 

(variation from the mean) and often occur on a variety of time scales (ranging from hours to 

thousands of years) (Tapley et al., 2004b). Such variations are caused by a variety of 

phenomena that redistribute mass, including tides raised by the Sun and Moon, and post-glacial 

rebound. Surface mass change in the atmosphere, oceans, hydrosphere and cryosphere are 

dominated by seasonal and inter-annual variations while processes such as isostatic glacial 

recovery and sea-level change give rise to long-term secular or quasi-secular signatures.  

Several studies have investigated the long term and the seasonal variations of the Earth’s 

gravity field using data collected from different satellite missions. In particular, the lower order 

harmonic component of the gravity field with 2n =  and 0m =  (hereafter 2J ) which 

characterizes the oblateness of the Earth has attracted a lot of interest from the scientific 
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community. Early studies of 2J  by for example Yoder et al. (1983) showed a secular decrease 

in  that was consistent with a steady migration of mass from low latitudes towards high 

latitudes resulting in a linearly decreasing trend. Such a trend was thought to be related to post-

glacial rebound (PGR), the Earth’s ongoing response to the removal of the ice loads at the end 

of the last ice age. Long term studies by Cox and Chao (2002) however discovered that 2J  

started to increase around 1997, but later exhibited a negative trend (from 2002) as illustrated in 

Figure 9. This trend is believed to have inverted again with 2J  once more decreasing. Several 

mechanisms have been suggested to be the causes for this sudden change of the 2J  coefficient. 

For example, Dickey et al. (2002) attributed this change to the surge in sub-polar glacial melting 

and to mass shifts in the Southern, Pacific, and Indian oceans. In addition to the increasing trend 

of the 2J  coefficient, Nerem et al. (2000) found that the 2J  coefficient might be exhibiting 

seasonal variability due to a combination of atmospheric pressure variations and variations in 

the distribution of water in the oceans and on land. Furthermore, Dickey et al. (2002) detected 

inter-annual variability in 2J  which they attributed to climatically driven oscillations in the 

ocean, storage of water, snow, and ice on land and partly as a result of the effects of anelasticity 

on the 18.6-year solid Earth tide as suggested by Benjamin, et al. (2006).  

 

2J
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Figure 9. The variability of 2J  coefficient as derived from SLR and DORIS data spanning the 
period from 1976 to 2006 (Cox and Chao, 2002). 
 

2.5.3.  Determination of the geoid 
Data from SLR observations have been used for computation of spherical harmonic models. 

These models can be used to derive the geoid (this is the equipotential surface of the Earth’s 

gravity field that corresponds closely with Mean Sea Level (MSL) in the open oceans, ignoring 

oceanographic effects) as well as the geoidal height (the separation between the geoid and the 

ellipsoid) (Eckman, 1998). The geoidal height is often computed from a set of normalized 

spherical coefficients using Equation (57), 

 { } ( )
max

nN n
*

GM nm nm nm
n 2 m 0

GM a
N C cos m S sin m P cos .

r r= =

� �= λ + λ θ� �γ 	 

� �  (57) 

 Here maxn  is the maximum degree at which the coefficients are known, *
nmC  are the nmC  less 

the zonal coefficients of the normal potential of the selected reference ellipsoid, γ  is the normal 

gravity on the surface of the reference ellipsoid and the rest of the parameters are as given in 

Equation (37). Determination of the geoid has been one of the main research areas in Geodesy 

for decades. To this end, geoid heights at any points on the Earth’s surface can be determined 

with accuracy ranging from 30 cm to a few meters (Rapp, 1998). A number of researchers have 
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addressed the precise determination of geoid height on a local and regional scale for 

oceanographic and geophysical applications. At a local scale, the geoid can be determined by a 

combination of GPS derived heights and levelled heights, through gravimetric and geometric 

approaches. From the GPS derived heights and levelled heights at some points, the geoid heights 

at these points can be calculated. At a local scale the geoid height measurements are often 

converted to gravity anomalies or deflections of the vertical (e.g., geoid slope).  Several global 

geoid height and gravity anomaly models have been developed from tracking and modelling the 

orbits of numerous artificial satellites (Dawod, 2008; Featherstone and Olliver, 2001; Kiamehr 

and Sjoeberg, 2005).  

Global gravity change has also attracted particular attention in the scientific community 

as it is often related to global sea-level changes. The sources of global sea-level rise often 

involve the redistribution of mass from the continents to the ocean. The usage of gravity field 

measurements allows for discrimination between several sources through the continuous 

monitoring of geoid changes on both global and regional scales as well as on basin scales. 

Gravity field solutions can be used to numerically estimate components such as thermal 

expansion (eustatic) and fresh water influx which influence global sea level changes (Cazenave 

and Nerem, 2004; Jevrejeva et al., 2006). Measurements of temporal gravity variations can be 

also used to determine water storage change in the hydrological system. In particular, since the 

launch of the GRACE mission in 2002, numerical articles assessing the potential of GRACE 

recovering hydrological signals have been published. For example, Andersen and Hinderer 

(2005a) have investigated the potential of inferring inter-annual gravity field changes caused by 

continental water storage change, as determined from GRACE observations between 2002 and 

2003. Contributions from continental water storage change were compared to the output from 

global hydrological models. Andersen et al. (2005b) and Neumeyer et al. (2006) correlated large 

scale hydrological events with the estimated change in the gravity field for certain areas of the 

world to an accuracy of 0.4 �Gal,  corresponding to 9 mm of water. On a regional scale, 

Winsemius et al. (2006) compared hydrological model outputs for the Zambezi river basin with 

estimates derived from GRACE. Monthly storage depths produced by the hydrological model 

displayed larger amplitudes and were partly out of phase compared to the estimates based on 

GRACE data. 
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2.5.4.  Precise satellite orbit determination 

Precise satellite orbit determination is one of the most essential applications of SLR 

observations. It involves the estimation of position and velocity of an orbiting satellite at a 

specific time epoch (Yunck, 1997). Satellite orbit determination is used for geo-location of the 

satellite sensors and to measure the gravity field and its variations in time. There are currently 

three ways in which satellite orbit can be calculated, namely: dynamic, kinematic and reduced-

dynamic.  

 

2.5.4.1.  Dynamic orbit determination 

The dynamic orbit determination (Yunck, 1997) utilizes a set of tracking observations and 

mathematical models that describe the forces acting on an orbiting satellite. Here the force and 

satellite models are used to compute a model of satellite acceleration over a given time. The 

acceleration model describes the satellite’s instantaneous acceleration as a function of time, 

position, and velocity. In the dynamic method a nominal trajectory (satellite position as a 

function of time) is generated by analytically or numerically integrating the acceleration model. 

The orbit solution is compared with the one predicted by the observations. Selected parameters 

of the force models acting on the satellite may be adjusted along with an initial satellite position 

and velocity in the batch least-squares estimation7 technique in order to minimize the difference 

between the actual observations and the predicted ranges (O-C residuals). Accuracy of the 

dynamic orbit determination approach is highly dependent on the satellite force models. Thus 

the accuracy of orbit determination may be reduced if the satellite forces are mis-modelled. 

Figure 10 illustrates a schematic representation of the dynamic orbit determination technique. 

 

�������������������������������������������������������������
7 Least squares estimation is a mathematical algorithm that uses definitive deterministic force 
models to minimize the RMS of measured O-C residuals. It consist of a sequence of linear LS 
corrections. A weighting factor is applied to each residual, and it is the square of the weighted 
residuals, which is minimized. 
�

 
 
 



Figure 10. The orbit estimation problem
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Double integration of Equation (58) using initial values of the orbit results yields a solution of 

the predicted orbit trajectory depicted in Equation (61), 

 ( ) ( ) 0 0r t r t dt r t r= + +��
� �
�� � . (61) 

The accuracy of the predicted orbit often depends on the epoch state ( 0 0,r r
�
� ) and the acceleration 

model ( )r t
�
��  together with its physical parameters (Yunck, 1997). This can be achieved by using 

the least-squares method. Suppose that Z represents a vector of tracking data ( ),... T
nZ Z  made 

over an interval time (often known as the tracking arc). The task is to correct the initial values 

such that the nominal orbit given by Equation (61) shows a best fit to the pre-processed tracking 

data (e.g. the actual observations given by iZ ) with respect to the theoretical observations, iZ  

derived from the solution trajectory. In other words, the aim is to obtain a trajectory ( )r t  that 

minimizes a cost function expressed as in Equation (62), 

 ( )( )2

1

.
n

i i
i

J Z Z r t
=

= − � �� ��  (62) 

Theoretical observations iZ  can be obtained through linearization of Equation (62). This allows 

the differences 1 i iZ Z Zδ = −  to be formed. The differences in residuals are the observations to 

be used in a linear adjustment of the nominal trajectory. Let Zδ  represent the observable vector 

then the observation equation can be written as in Equation (63), 

 Z Ax nδ = +� . (63) 

In Equation (63),  x
�

 is the vector of parameters to be estimated which include the six orbital 

elements ( ), , , , ,a e i EωΩ  as well as adjustments to various dynamic and geometric model 

parameters, n  is the random errors of the observable vector and A  is a matrix of partial 

derivatives of the observations with respect to the elements of x
�

. Equation  (63) is also known 

as the regression equation and its solution at the estimated epoch can be obtained by an iterative 

procedure. For further details on the regression equation, refer to Yunck (1997). 
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2.5.4.2.  Kinematic orbit determination 

The kinematic orbit determination is purely a geometric technique that depends only on GNSS 

(e.g. GPS) measurements and cannot be used by SLR.  It does not take into account dynamic 

properties (e.g., gravity field, air drag, etc) of an orbiting satellite. Here the errors emanating 

from the satellite force models do not affect the accuracy of the kinematic orbit determination. 

Thus the accuracy is dependent on the availability and accuracy of GNSS data. In kinematic 

orbit determination the GNSS data are used to estimate the differences of the geometric 

coordinates, ,   and dx dy dz between the instantaneous a priori and the actual coordinates of the 

satellite (Colombo and Luthcke, 2004). The process is achieved by forming observation 

equations linearized about the a priori positions of the satellite. These equations are then solved 

to establish ,   and dx dy dz through a least-squares adjustment fit to the data and finally using the 

results to correct for the a priori positions. The kinematic orbit determination is mostly used 

during satellite manoeuvres when it is difficult to precisely describe the satellite dynamic forces 

using mathematical models (Colombo and Luthcke, 2004). 

 

2.5.4.3.  Reduced-dynamic orbit determination 

In dynamic and kinematic methods the accuracy of a solution may be reduced due to 

mismodelling errors and GNSS measurement noise respectively. The reduced-dynamic 

technique (Yunck et al., 1994) may be defined as a method that exhibits half dynamic and half 

kinematic components and down-weights the errors caused by each method. In reduced-

dynamic orbit determination the kinematic components of the dynamic force models are 

introduced in the form of the process noise model containing two parameters, the correlation 

time constant T  which defines the correlation in the dynamic model error over one update 

interval and the dynamic model steady state variance V . The weighting of the kinematic and 

dynamic data is performed via the Kalman filter process noise at each step. When T  is set to 

zero, and V  is made large, the orbit determination method becomes kinematic, because 

deterministic components are not considered in the Kalman filter, and if T  is large and V  is 

zero the orbit determination method becomes dynamic, since the stochastic components are not 

estimated. Thus the reduced-dynamic orbit determination method is achieved by adjusting T  

and V  to balance dynamic, geometric and measurement errors.  
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2.6. Global geopotential models 
A number of spherical harmonic models have been developed over the years by different 

analysis centres. The development of such models could be attributed to the availability of 

terrestrial data as well as to the SLR tracking data of multiple satellites. Global Gravity field 

Models can be classified into three groups, namely, satellite-only, combined and tailored gravity 

field models (Amos and Featherstone, 2003). In the following a description of the various 

classes of geopotential gravity field models is provided.  

 

2.6.1.  Satellite-only GGMs 
The satellite-only GGMs are primarily derived from the analysis of the orbits of tracked 

artificial Earth satellites.  Numerous factors have been attributed to the degradation of the 

accuracy of the satellite-only models. These include: 

a) Power-decay of the gravitational field with altitude, 

b) The lack of continuous tracking data from the existing stations, 

c) Precession of the Earth-based range measurements to the satellites (as a result of 

atmospheric refraction), 

d)  Difficulties in modelling non-gravitational and third body perturbations and, 

e) Incomplete sampling of the global gravity field due to the limited number of satellite 

orbital inclinations available. 

Due to these limitations gravity field models with high degree coefficients are often 

contaminated by noise.  

 

2.6.2.  Combined GGMs 

The satellite-only models are often combined with terrestrial gravity data, and marine gravity 

anomalies computed by using satellite radar altimeter and airborne gravity data to yield high-

degree (typically 360) combined GGMs. The combined GGMs are subject to the same 

deficiencies as in satellite-only GGMs. In addition, the combined gravity models are limited in 

precision due to the poor spatial coverage and the quality of the additional data used as well as 

other errors emanating from terrestrial gravity anomalies (Heck, 1990). A typical example is the 

long-wavelength errors in terrestrial gravity anomalies caused by distortions in and offsets 

among different vertical geodetic datums reported in e.g., Heck (1990).  
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2.6.3.  Tailored GGMs 
In tailored gravity field models the spherical harmonic coefficients of the satellite-only models 

or the combined models are often adjusted and extended to higher degrees by using higher 

resolution gravity data that may have not necessarily been used previously (Wenzel 1998). This 

is normally achieved using integral formulas to derive corrections to the existing geopotential 

coefficients, as opposed to the combination at the normal equation level that is used to construct 

combined GGMs. Tailored GGMs are only applied over the area in which the tailoring was 

applied, because spurious effects can occur in areas where no data are available (Kearsley and 

Forsberg, 1990). 

 

2.6.4.  Some remarks on the classification of gravity field models 
A number of GGMs have been derived by different groups around the world. These models 

include the Ohio State University (OSU) series, GeoForschungs Zentrum (GFZ) Potsdam series, 

Goddard Earth Models (GEM) series, Joint Gravity Models (JGM) series, Texas Earth Gravity 

(TEG) models, GRIM (GRGS and German Geodetic Research Institute Munich) models and 

European Improved Gravity model of the Earth by New techniques (EIGEN) models. All the 

published models have been made available to the scientific community and are freely available 

to the public for example at the International Centre for Global Earth Models on 

http://icgem.gfz-potsdam.de/ICGEM. A review of gravity field models derived between 1970 

and 1997 can be found in Rapp (1998). Here only developments undergone in the gravity field 

modelling for the last two decades (e.g., 1990 – 2010) are discussed. Characteristics of these 

models are summarized in Table 2. 
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Table 2. Summary of some of the GGMs released between 1990 and 2008. Data: S=satellite 
tracking data, G = gravity data, A = altimetry data. Geophysical applications of these models 
include gravity field, satellite orbit determination, station coordinates, reduction of altimeter 
data, Earth rotation and computation of geoid undulations. 

Model Year Deg. Data Reference 
GRIM4C1 1990 50 S, G, A Schwintzer et al. (1991) 
OSU91A 1991 360 GEMT2, G, A Rapp et al. (1991) 
JGM3 1994 70 S, G, A Tapley et al. (1996) 
GRIM4-S4 1995 70 S Schwintzer et al. (1997) 
GRIM4-C4 1995 72 S, G, A Schwintzer et al. (1997) 
GFZ96 1996 359 PGM055, G, A Gruber et al. (1997) 
EGM96 1996 360 EGM96S, G, A Lemoine et al. (1998) 
GRIM5C1 1999 120 S, G, A Gruber et al. (2000) 
EIGEN-1 2002 119 S (CHAMP) Reigber et al. (2002) 
EIGEN-2 2003 140 S (CHAMP) Reigber et al. (2003) 
GGM02S 2004 160 S (GRACE) Tapley et al. (2005) 
GGM02C 2004 200 S (GRACE), G, A Tapley et al. (2005) 
EIGEN-GL04S1 2006 150 S (GRACE, LAGEOS) Foerste et al. (2006) 
EIGEN-GL04C 2006 360 S (CHAMP, GRACE), G, A Foerste et al. (2006) 
EIGEN-5S 2008 150 S (GRACE, LAGEOS) Foerste et al. (2008) 
EIGEN-5C 2008 360 S (CHAMP, GRACE), G, A Foerste et al. (2008) 
EGM2008 2008 2190 S (GRACE), G, A Pavlis et al. (2008) 

 

The first considered model is a combined gravity field model, GRIM4C1 reported by 

Schwintzer et al. (1991). This model was computed as a joint collaboration between DGFI and 

GRGS. The GRIM4C1 model was derived up to degree and order 50 in terms of spherical 

harmonics. It incorporated GRIM4S1 satellite-solution, mean gravity anomalies and Seasat 

altimeter derived mean geoid undulations. The OSU91A geopotential model was reported by 

Rapp et al. (1991). This model was an upgraded version of OSU89a and OUS89b. It was 

computed complete to degree and order 360 in terms of spherical harmonics in a blended form. 

In the computation of the OSU91A, coefficients to degree 50 were based on a combined 

solution from GEM-T2 model, surface gravity data and GEOSAT altimeter data. The remaining 

coefficients (51-360) were derived from a combined solution computed from terrestrial data, 

altimeter derived anomalies and the topographic anomalies.   

The Joint Gravity Model 3 (JGM3) model released in 1994 was reported by Tapley et al. 

(1996). This model was developed by NASA/GSFC and the University of Texas at Austin as 

part of the Topex Poseidon (T/P) project. This combined model was derived by adding the 
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geopotential coefficients from the pre-launch model, JGM1 and their associated error covariance 

with GPS, SLR, DORIS tracking of T/P, laser ranging tracking of LAGEOS 2 and Stella and 

DORIS tracking of SPOT 2. The model was derived complete to degree and order 70. The 

GRIM4-S4 and GRIM4-C4 reported by Schwintzer et al. (1997) were developed as a joint 

collaboration between GFZ Potsdam and GRGS Toulouse/Grasse for requirements of geodetic 

and altimeter satellite missions. The GRIM4-S4 model was derived solely from satellite tracking 

data complete to degree and order 70. On the other hand, the GRIM4-C4 model was derived 

based on a least squares adjustment involving a combined solution from the GRIM4-S4 model 

and surface gravity data from gravimetric and altimeter measurements. This model was 

computed complete to degree and order 72, corresponding to a spatial resolution of 555 km at 

the surface of the Earth (Schwintzer et al., 1997). The GRIM4-S4 and GRIM4-C4 models were 

thought to be efficient for satellite orbit computations especially with orbit altitudes exceeding 

about 800 km (Schwintzer et al., 1997). The GFZ96 geopotential model, which was an upgrade 

of the GFZ93 and GFZ95 models, was reported to provide high resolution of GFZ derived 

models (Gruber et al., 1997). This combined model was computed from the then improved 

terrestrial data derived from a 3-year ERS-1 mean sea surface and PMG055 solution. The 

solution was also combined with altimeter derived gravity anomalies and normal equations and 

potential coefficients of the GRIM4-S4 model as the a priori model. The GFZ96 model was 

derived to degree and order 359.   

Lemoine et al. (1998) described the combined spherical harmonic model, EGM96, 

which is complete to degree and order 360 and corresponds to a global resolution of about 55 

km. The EGM96 model was developed based on a joint collaboration between NASA Goddard 

Space Flight Centre (GSFC), the National Imagery and Mapping Agency (NIMA) and the Ohio 

State University (OSU). This is a blend model were three computational procedures were used. 

The spherical harmonic coefficients from 2-70 were derived based on a least squares adjustment 

involving satellite tracking data, terrestrial data and altimeter data of the ocean surface from the 

T/P, ERS-1, and GEOSAT missions and fill-in gravity anomalies in areas lacking data (Amos 

and Featherstone, 2003). From degree 71-359 the coefficients were computed from a combined 

solution based on normal equations derived from the satellite tracking data which were used as a 

priori values. The remaining coefficients at degree 360 were taken from a quadrature combined 

solution derived from the a priori satellite model and ERS-1/GEOSAT altimeter-derived 
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anomalies. The EGM96 geopotential model was believed to provide a more accurate reference 

surface for the topography as well as improve orbit determination for low orbiting satellites 

(Lemoine et al., 1998). The GRIM5C1 gravity field model reported by Gruber et al. (2000) was 

derived in a German-French joint collaboration between GFZ Potsdam and GRGS Toulouse. 

The model was computed up to degree and order 120. It incorporated terrestrial and airborne 

mean gravity anomalies, altimetric gravity anomalies from NIMA and mean gravity anomalies 

derived from the GRIM5S1 model. 

Most of the geopotential models released from 2000 onwards are derived solely from 

CHAMP, GRACE and GOCE missions plus other satellites, terrestrial and altimeter data. 

Geopotential models generated from the inclusion of the three satellite missions data are 

believed to be more accurate when compared with the prior models (e.g., they allow, with an 

unprecedented accuracy and resolution, the recovery of the mean sea surface topography from 

the difference between an altimetry-based mean sea surface height model and the gravity 

model’s derived geoid) (Dobslaw et al. 2004). The first CHAMP geopotential model, EIGEN-1 

reported by Reigber et al. (2002) was derived in a German-French joint collaboration complete 

to degree and order 119. This model was derived by use of GPS tracking and three months on-

board accelerometer data from CHAMP. The EIGEN-1 geopotential model was reported to 

resolve the geoid and gravity with an accuracy of about 20 cm and 1 mGal respectively at a half-

wavelength resolution of 550 km (Reigber et al., 2002). The EIGEN-2 model reported by 

Reigber et al. (2003) was also derived in a collaboration between Germany and France. This 

satellite-only model was derived complete to degree and order 140. The model incorporated 

gravity orbit perturbations, exploiting GPS CHAMP satellite-to-satellite tracking and six months 

on-board accelerometer data. The accuracy in terms of geoid and gravity for the EIGEN-2 

model was reported to be about 10 cm and 0.5 mGal respectively.  

 Similar to the CHAMP mission, the GRACE mission data set has enabled a 

homogeneous determination of the geopotential gravity field modelling. The first is the satellite-

only model, GGM01S reported by Tapley et al. (2004b). The model derived to complete degree 

and order 120 incorporated GRACE tracking data spanning April to November 2002 adding to a 

total of 111 selected days and using least squares adjustment. The authors reported an error 

estimate accuracy of about 2 cm over the land and ocean regions.  An improved geopotential 

model to GGM01 called GGM02 was released in 2005. This model exists both in the GRACE 

 
 
 



48 
 

based satellite-only, GGM02S and the combined model, GGM02C (Tapley et al. 2005). The 

combined geopotential model incorporated the GRACE-only model GGM02S with EGM96 plus 

14 months of GRACE data spanning April 2002 to December 2003. It was computed to 

maximum degree and order of 200 in terms of spherical harmonics. Improvements by a factor of 

two were reported with error estimates of less than 1 cm geoid height to spherical harmonic at 

degree 70. 

  The satellite-only model, EIGEN-GL04S1 described by Foerste et al. (2006) has a 

maximum degree and order of 150. It incorporated GRACE-only (EIGEN-GRACE04S) and 

GRACE/LAGEOS (EIGEN-GL04S) solutions. EIGEN-GL04S1 was later combined with 

surface gravity data from altimetry over the oceans and gravimetry over the continents to derive 

a high resolution gravity model EIGEN-GL04C released in 2006 (Foerste et al., 2006). This 

combined gravity field model is an outcome of the joint gravity field processing between GRGS 

Toulouse and GFZ Potsdam. The satellite-part of EIGEN-GL04C is based on GRACE and 

LAGEOS data and the maximum degree and order of this model is 360 in terms of spherical 

harmonics. The EIGEN-5C model reported by Foerste et al. (2008) was also a joint 

collaboration between GFZ Potsdam and GRGS Toulouse. It is an upgrade of EIGEN-GL04C 

and has a maximum degree and order of 360. The model is again a combination of GRACE and 

LAGEOS tracking data combined with addition of gravimetry and altimeter surface data. 

Combination of the satellite and surface data have been done by combining normal equations 

obtained from observation equations for the spherical harmonic coefficients. The National 

Geospatial-Intelligence Agency (NGA) released the first ever global model capable of resolving 

the Earth’s gravity field beyond spherical harmonic degree 2000, a model called EGM2008. A 

description of this model can be found in Pavlis et al. (2008). The EGM2008 gravity field model 

has a maximum degree and order of 2159. It incorporates improved gravity anomaly data, 

altimetry-derived gravity anomalies and GRACE based satellite solutions. It allows proper 

computation of quasigeoid heights, gravity anomalies and vertical deflections and has a spatial 

resolution of ~5 arc minutes or ~9 km in the latitudinal direction (Pavlis et al., 2008). 

 

2.7. Concluding remarks 
The continuous design and deployment of satellite missions dedicated to gravity field 

measurements and the availability of high-precision data have led to the availability of gravity 
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information with unprecedented spatial-temporal resolution and accuracy. In particular, the 

advent of satellite data has made it possible to determine the gravity field of the Earth via 

modelling. To this end, these data sets are the basis for robust gravity field modelling with more 

than 100 gravity field models released in the scientific community since the early 1960s. 

Different gravity field models could be characterized by various degrees of spatial-temporal 

resolution. Despite the many scientific milestones in gravity field modelling, a study evaluating 

many of the developed gravity field models in the context of POD by use of SLR data have 

remained inconclusive. In particular, there has not been new SLR analysis software with the 

capability of POD with sensitivity analysis of gravity field model options. The research work 

reported in this thesis demonstrates the capability of the SDAS package to investigate the 

contribution of the different gravity field models applied in POD. 

 
 
 


	Front
	CHAPTER 1
	1.1. Background
	1.2. Significance of the research
	1.3. Aim and objectives
	1.4. Outline of the thesis

	CHAPTER 2
	2.1. Introduction
	2.2. Milestones in space geodesy
	2.3. Modern space geodetic techniques
	2.4. Modelling strategies in SLR
	2.5. Applications of SLR measurements
	2.6. Global geopotential models
	2.7. Concluding remarks

	Chapters 3-4
	Chapters 5-7
	Back



