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Abstract
One of the applications of the Satellite Laser Ranging (SLR) technique is the derivation of

gravity field models; these models have various geophysical and geodynamical applications.
Gravity field modelling has reached a new era where the latest satellite missions (CHAMP,
GRACE and GOCE) are thought to provide significant improvement of global gravity field
information in terms of quality and spatial resolution. In particular, the recent satellite missions
carry on-board Global Navigation Satellite System (GNSS) receivers, accelerometers, K/Ka-
band microwave system (e.g. in GRACE) and gradiometers (e.g. in GOCE) allowing
measurements of gravity field with unprecedented accuracy in contrast to the unsteady and
fragmented orbit tracking by unevenly distributed SLR ground stations.

Numerous gravity field models have been derived based on the newly available data sets
by various research groups globally. Due to the availability of high quality SLR and satellite
data, some of the older gravity field models are being updated as new models with higher degree
and order are developed. Notwithstanding the significant progress in gravity field modelling,
research focusing on assessing the accuracy and precision of the existing gravity field models
has largely remained insufficient. The difference between the observed and computed satellite
orbit (which is often expressed as the O-C range residuals) is used as a parameter for Precise
Orbit Determination (POD) of satellites. Furthermore, O-C range residuals computed during

SLR analysis are used as proxy parameters for evaluating the accuracy of gravity field models.
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The work presented in this thesis firstly reviewed and evaluated the accuracy of gravity field
models released between 1990 and 2008. The accuracy of the gravity field models was
examined by analysing the O-C residuals computed from LAGEOS 1 and 2 data analysis based
on a set of twelve gravity field models. The results demonstrated that in general, there has been
an improvement in the accuracy of gravity field models released between 1990 and 2008 by a
factor of 2 based on improvements in the O-C residuals. Additionally, the influence of SLR tide
parameterization (the IERS 2010 solid Earth and pole tide models) on the O-C residuals across
five gravity field models has been assessed and results illustrate that the solid Earth and pole
tides parameterization influence on the O-C residuals is dependent on the type of gravity field
model. In order to ascertain the significance of mean differences in the Standard Deviations
(SD) of O-C residuals based on the tide parameterization options, the student’s z-test was used.
Results suggest that in general the O-C residuals derived from SLR LAGEOS 1 data have
insignificant mean SD differences across the tide parameterizations. On the other hand analysis
of SLR observations of LAGEOS 2 resulted in statistically significant mean SD differences in
the O-C based on EIGEN-CGO03C, EGM2008 and AIUB-GRACEOQ1S gravity field models. The

J, coefficient forms part of the SLR Data Analysis Software (SDAS) package output products
and was investigated in this thesis due to its role in understanding mass-redistribution within the
Earth system (i.e. the equatorial bulge due to centrifugal force and rotation). In particular, the
J, coefficient computed from SLR analysis of LAGEOS 1 and 2 data sets and based on the four
selected gravity field models were compared with a priori J, coefficients from the four models
and those published in the literature. The results indicated that the J, coefficients computed
from the SDAS package were in agreement with the published coefficients. For geophysical

applications, the relationship between the J, parameter and LOD and AAM was investigated by

use of data adaptive analysis methodology (the empirical mode decomposition). The results

demonstrated that some degree of synchronization exists between the signal components of J,
and LOD and J, and AAM.
Keywords: Satellite Laser Ranging tracking, Earth’s gravitational field, gravity field models,

orbit sensitivity analysis, orbit parameter estimation, J, spherical harmonic coefficient.
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