The effect of skin phototype on laser propagation through skin

by

Aletta Elizabeth Karsten

Submitted in partial fulfilment of the requirements for the degree

PhD (Physics)

in the Faculty of Natural & Agricultural Sciences
University of Pretoria
Pretoria

December 2012
Supervisor: Prof MWH Braun

© University of Pretoria
DECLARATION OF ORIGINALITY

I, Aletta Elizabeth Karsten declare that the thesis, which I hereby submit for the degree PhD in Physics at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE:

DATE:
DEDICATION

I dedicate this work to my parents

Jacobus (Kobus) Marthinus Malherbe
and
Magdalena (Dalene) Catharina Malherbe (née Visser)
The effect of skin phototype on laser propagation through skin

by

Aletta Elizabeth Karsten

Submitted in partial fulfilment of the requirements for the degree

PhD (Physics)
in the Faculty of Natural & Agricultural Sciences

University of Pretoria

Pretoria

Supervisor: Prof MWH Braun

ABSTRACT

The use of lasers for diagnosis and treatment in medical and cosmetic applications is increasing worldwide. Not all of these modalities are superficial and many require laser light to penetrate some distance into the tissue or skin to reach the treatment site. Human skin is highly scattering for light in the visible and near infrared wavelength regions, with a consequent reduction of the fluence rate. Melanin, which occurs in the epidermis of the skin, acts as an absorber in these wavelength regions and further reduces the fluence rate of light that penetrates through the epidermis to a treatment site. In vivo fluence rate measurements are not viable, but validated and calibrated computer models may play a role in predicting the fluence rate reaching the treatment site.

A layered planar computer model to predict laser fluence rate at some depth into skin was developed in a commercial raytracing environment (ASAP). The model describes the properties of various skin layers and accounts for both the absorption and scattering taking place in the skin. The model was validated with optical measurements on skin-simulating phantoms in both reflectance and transmission configurations. It was shown that a planar epidermal/dermal interface is adequate for simulation purposes.

In the near infrared wavelength region (676 nm), melanin (consisting of eumelanin and pheomelanin) is the major absorber of light in the epidermis. The epidermal absorption coefficient is one of the required input parameters for the computer model. The range of
absorption coefficients expected for typical South African skin phototypes (ranging from photo-sensitive light skin, phototype I on the Fitzpatrick scale, to the photo-insensitive darker skin phototype V) was not available. Non-invasive diffuse reflectance spectroscopy measurements were done on 30 volunteers to establish the expected range of absorption coefficients. In the analysis it became apparent that the contributions of the eumelanin and pheomelanin must be accounted for separately, specifically for the Asian volunteers. This is a new concept that was introduced in the diffuse reflectance probe analysis. These absorption coefficient measurements were the first to be done on the expected range of skin phototypes for the South African population. Other authors dealing with diffuse reflectance probe analysis only account for the dominant eumelanin.

Both the epidermal absorption coefficient and thickness are important in the prediction of the fluence rate loss. The computer model was used to evaluate the effect of the epidermal absorption coefficient (a parameter dictated by an individual’s skin phototype) and the epidermal thickness on the fluence rate loss through the skin. The epidermal absorption is strongly wavelength dependent with the higher absorption at the shorter wavelengths. In the computer model a longer wavelength of 676 nm (typical for a photodynamic treatment (PDT) of cancer) was used. For the darker skin phototypes (V) only about 30% of the initial laser fluence rate reached a depth of 200 μm into the skin (just into the dermis). For the PDT application, results from the computer model indicated that treatment times need to be increased by as much as 50% for very dark skin phototypes when compared to that of very light phototypes.

Key words: calibrated computer model, laser fluence rate, ray-tracing, skin modelling, optical properties of skin, diffuse reflectance spectroscopy, ASAP, skin phototype.
ACKNOWLEDGEMENTS

Doing a PhD is a long term project. If you have to juggle it between your normal work duties and family responsibilities it becomes even more of a challenge. I therefore sincerely thank:

- Prof Max Braun from the University of Pretoria. Biophysics is a multi-disciplinary research field that as yet has not been established at any university in South Africa. This made supervision a challenge. Prof Braun took over as my supervisor from Prof Johan Brink when he retired.
- Prof Danie Auret for his assistance during the final stages of the submission of this thesis.
- Ann Singh from the Biophotonics group at the NLC, CSIR: She has been my colleague for the past number of years and has really been my soundboard at work and my co-worker in the lab. Thank you.
- Dr Kit Cheong from Breault Research: Thank you for the help and support with ASAP when I got stuck.
- Kassie Karsten, my husband: I know it is a custom to thank your spouse for the support during a PhD, but in my case the support went much further than just taking care of the family when I was away or working late. Being a physicist himself, he often was my academic soundboard and his vast knowledge of software and programming was great help to me when I got stuck, which happened quite often.
- My daughters Madelein, Mariska and Carike: They never complained when I was away or busy till late. They just continued with what needed to be done and prepared numerous meals. Thank you very much.
- The NLC: Thank you for affording me the time to do my PhD while I was employed there.
- To God be the glory!
TABLE OF CONTENTS

DECLARATION OF ORIGINALITY iii
DEDICATION v
ABSTRACT vii
ACKNOWLEDGEMENTS ix
TABLE OF CONTENTS xi
LIST OF FIGURES xiv
LIST OF TABLES xvi
LIST OF ABBREVIATIONS AND SYMBOLS xvii
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: LITERATURE REVIEW 5
 2.1 Interaction between lasers and human tissue 5
 2.2 Human skin 6
 2.2.1 Epidermis 7
 2.2.1.1 Stratum corneum 7
 2.2.1.2 Living epidermis 7
 2.2.1.2.1 Melanin 8
 2.2.1.2.2 Fitzpatrick skin tone classification 9
 2.2.2 Dermis 10
 2.3 Optical properties 10
 2.3.1 Descriptions and definitions 11
 2.3.1.1 Refractive index 12
 2.3.1.2 Reflection and refraction at an interface 12
 2.3.1.3 Absorption 13
 2.3.1.4 Scattering 14
 2.3.1.5 Anisotropy 15
 2.3.1.6 Reduced scattering coefficient 16
 2.3.2 Values for the optical properties of skin 17
 2.4 Measurement techniques 19
 2.4.1 Integrating sphere 19
2.4.2 Diffuse reflectance probe

2.5 Skin simulating phantoms
- 2.5.1 Liquid phantoms
- 2.5.2 Solid phantoms

2.6 Light propagation models
- 2.6.1 Radiative Transport equation
 - 2.6.1.1 Diffusion approximation
 - 2.6.1.2 Monte Carlo simulations
- 2.6.2 Raytracing models

2.7 Cancer and photodynamic therapy
- 2.7.1 Photodynamic therapy (PDT)
 - 2.7.1.1 Photodynamic interaction mechanism

2.8 Synthesis

CHAPTER 3: DEVELOPMENT OF A LASER FLUENCE RATE PREDICTION MODEL

3.1 ASAP raytracing software

3.2 Layered skin model
- 3.2.1 Geometrical layout
- 3.2.2 Light source
- 3.2.3 Ray tracing - Monte Carlo approach
- 3.2.4 Henyey-Greenstein approximation
- 3.2.5 Evaluations

3.3 Non-planar epidermal/dermal interface

3.4 Experimental verification and validation of the computer model

3.5 Paper on the experimental validation of the computer model

3.6 Contribution of the computer model to the work

CHAPTER 4: THE ROLE OF EPIDERMAL ABSORPTION COEFFICIENTS APPLICABLE TO THE SOUTH AFRICAN POPULATION

4.1 Diffuse reflectance theory and model development

4.2 Probe calibration
- 4.2.1 Paper on Reflectance probe calibration

4.3 Contribution of the diffuse reflectance probe calibration to the work

4.4 In vivo tests
- 4.4.1 Paper on in vivo tests
4.5 Value of the diffuse reflectance probe measurements

CHAPTER 5: EFFECT OF THE OPTICAL PROPERTIES OF THE EPIDERMIS ON LASER TREATMENT PARAMETERS

5.1 Paper on the Effect of the epidermis on laser treatment parameters

5.2 Value of the epidermal absorption work

CHAPTER 6: CONCLUSIONS AND WAY FORWARD

6.1 Brief summary of the major findings and contributions of the work in the thesis

6.2 Objectives set out and their achievement
 6.2.1 Objective 1: To develop a computer model that can predict the laser fluence rate some distance into skin.
 6.2.2 Objective 2: To develop a non-invasive optical measurement technique to determine the epidermal absorption coefficient of an individual.
 6.2.3 Objective 3: To determine the effect of skin phototype on the absorption of laser light in the epidermis.

6.3 Limitations of the work

6.4 Further investigations identified

6.5 Contributions of the work to the scientific community and the wider public
 6.5.1 Contribution to the scientific community
 6.5.2 Contribution to the wider public

6.6 Conclusions

REFERENCES

APPENDIX 1: ETHICS CLEARANCE - CSIR

APPENDIX II: ETHICS CLEARANCE - UNIVERSITY OF PRETORIA

APPENDIX III: SOURCE CODE FOR THE ASAP COMPUTER MODEL
Figure 2.1: Relation between total exposure and exposure time for different modes of laser-tissue interaction (with permission from Peng Q, 2008). ... 6
Figure 2.2: Relation between fluence rate and exposure time for different modes of laser-tissue interaction (with permission from Peng Q, 2008)) ... 6
Figure 2.3: Structure of the human skin. .. 7
Figure 2.4: Extinction coefficient as a function of wavelength for both of eumelanin and pheomelanin (data from (Jacques S, 2001)). .. 9
Figure 2.5: Fitzpatrick skin tone colour card... 10
Figure 2.6: Absorption coefficient as a function of wavelength for oxyhaemoglobin and deoxyhaemoglobin (data from (Prah S, 1999)). ... 11
Figure 2.7: Snell's law. ... 12
Figure 2.8: Wavelength dependence of the major biological absorbers (from tabulated data (Jacques SL, 1998(a)), (Prah S, 1999)). ... 14
Figure 2.9: Scattering from typical cellular structures (as adapted from (Jacques SL, 1998(a))). 15
Figure 2.10: Similarity principle where photons taking different paths arrive at the same end point. 17
Figure 2.11: Integrating sphere system for reflection (R) and transmission (T) measurements. 19
Figure 2.12: Absorption and scattering in skin. ... 21
Figure 2.13: Schematics of an experimental setup for the diffuse reflectance probe measurements 21
Figure 2.14: Random walk of 15 photons. .. 25
Figure 2.15: Random walk of 3.1 million photons. ... 25
Figure 2.16: Energy level diagram for a Type 2 photosensitiser. .. 28
Figure 3.1: Layered structure of the computer model with the laser beam entering the outer layer. 35
Figure 3.2: Schematic of the computer model with the detectors and the different layers. 37
Figure 3.3: Typical OCT image of skin recorded at the NLC with a Thorlabs OCT system. 38
Figure 3.4: Wavy epidermis/dermis interface 0.12 mm into the skin with a wave amplitude of 0.05 mm and length of 0.6 mm ... 38
Figure 3.5: Transmission through the resin without the addition of absorbers and scatterers. 40
Figure 3.6: Absorption spectrum of the black ink used in the experiments. ... 40
Figure 3.7: Schematic of the cuvettes for the Intralapid phantoms. ... 44
Figure 3.8: Integrating sphere system for reflection and transmission measurements. 45
Figure 3.9: Side view of the computer model of a two-layered solid phantom. The semi-sphere back reflector detector as well as the circular detector plate is visible. ... 46
Figure 3.10: Experimental setup: S (Sample), L (Lens f= 150mm, D=50.8mm), CCD (Camera), PC (Computer), u (Object distance = 450 mm), v (Image distance = 225 mm), F= filters, M (v/u)= 0.5, HeNe Laser power = 9 mW. ... 48
Figure 3.11(a): Fluence rate contour plots from the CCD images of the back surface of the liquid phantoms. ... 49
Figure 3.11(b): Fluence rate contour plots from the calculated fluence rate through the last layer in the IL phantom model.. 49
Figure 4.1: Diffuse reflected light. .. 54
Figure 4.2: Comparing the two different melanin models for three volunteers each representing a different skin phototype. Model A2 only uses a single melanin parameter and model D2 uses both eumelanin and pheomelanin. Solid lines (—) represent the experimental data and the dashed lines (---) the fitted curve ... 57
Figure 4.3: Comparison of input values to the fitted values for two different test cases. Solid lines (—_) represent the input data and the dashed lines (---) the fitted curve ... 57
LIST OF TABLES

Table 2.1: Fundamental optical properties of tissue. ... 11
Table 2.2: Transport properties. .. 11
Table 2.3: Comparison of optical properties measured in various laboratories. Note: most authors publish the data in units of cm\(^{-1}\) and therefore this table uses cm\(^{-1}\) but in the rest of this work units of mm\(^{-1}\) are used (Table adapted from (Tuchin V, 2007)). ... 18
Table 3.1: Optical parameters used in the sawtooth model. .. 38
Table 3.2: Percentage of reflected light collected on the back reflection detector for the different sawtooth parameters described in Table 3.1 and the planar skin model with an epidermal thickness of 0.09 mm. .. 39
Table 3.3: Geometric parameters for the IL phantoms. .. 46
Table 3.4: Optical parameters for the IL phantoms used in the model. .. 46
Table 3.5: Optical parameters for the solid phantoms. Parameters for the A and B samples are given. Sample C used the \(\mu_a\) and \(\mu_s\) values from A and B respectively for the 2 layers in the phantom. .. 47
Table 3.6: Optimisation results showing the total absorption though the phantom, absorption in the last layer, the transmitted power and the standard deviation (Stdev) of the data. .. 47
Table 3.7: Comparisons between the model and measured values for the solid phantoms. 48
Table 3.8: Comparisons between the model and measured values for the liquid phantoms. 48
Table 4.1: Fitted parameters as compared to the input parameters into the algorithm. 57
Table 4.2: IL concentrations and corresponding \(\mu_s\) values at \(\lambda = 632\) and 676 nm. 65
Table 4.3: Ink sample and the \(\mu_s\) values calculated with the Beer-Lambert law using the transmission measurements. .. 65
Table 4.4: Comparison between the different methods to calculate \(\mu_a\) for the neutral density absorbing filters at a wavelength of 676 nm. ... 66
Table 4.5: Geometrical parameters \((k_1\) and \(k_2)\), calculated from the reflectance measurements of the IL+ ink phantoms in Figures 4.8(a) and 4.8(b). .. 68
Table 4.6: Absorption coefficients calculated using the mean \(k_1\) and \(k_2\) values for the different skin types at wavelengths of 633 nm and 676 nm. .. 68
Table 4.7: Minimum and maximum \(\mu_a\) and \(\mu_s\) values at wavelengths, 561, 633 and 676 nm. 81
Table 4.8: Absorption coefficients from literature using similar diffuse reflectance techniques (Reflectance) as well as an integrating sphere (IS). ... 82
Table 5.1: Geometrical dimensions for the planar surfaces and optical properties of the different layers in the skin model.. 93
Table 5.2: % Light reflected from the model for the different wave interface parameters described above. ... 94
Table 5.3: Fraction of power reaching 100 \(\mu m\) into the skin, just entering the dermis for the SCC tumour. .. 95
Table 5.4: Fraction of power reaching the SCC tumour at a depth of 200 \(\mu m\) into the skin and the resulting treatment time to deliver a light dose of 4.5 J/cm\(^2\) onto the tumour. The laser beam diameter is 1.3 cm at the tumour depth... 96
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAP</td>
<td>Advanced Systems Analysis Program</td>
</tr>
<tr>
<td>BCC</td>
<td>Basal Cell Carcinoma</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light in vacuum</td>
</tr>
<tr>
<td>c_d</td>
<td>Scatter size parameter</td>
</tr>
<tr>
<td>c_{Hb}</td>
<td>Deoxyhaemoglobin concentration</td>
</tr>
<tr>
<td>c_{HbO_2}</td>
<td>Oxyhaemoglobin concentration</td>
</tr>
<tr>
<td>c_{mel}</td>
<td>Melanin concentration</td>
</tr>
<tr>
<td>c_{Pheo}</td>
<td>Pheomelanin concentration</td>
</tr>
<tr>
<td>c_{Eu}</td>
<td>Eumelanin concentration</td>
</tr>
<tr>
<td>CANSA</td>
<td>Cancer Association of South Africa</td>
</tr>
<tr>
<td>CW</td>
<td>Continuous Wave</td>
</tr>
<tr>
<td>d, l</td>
<td>Optical path length through the medium</td>
</tr>
<tr>
<td>d_s</td>
<td>Effective scatter size</td>
</tr>
<tr>
<td>DRP</td>
<td>Diffuse Reflectance Probe</td>
</tr>
<tr>
<td>g</td>
<td>Anisotropy</td>
</tr>
<tr>
<td>I</td>
<td>Laser intensity</td>
</tr>
<tr>
<td>I_0</td>
<td>Laser intensity before sample (initial laser intensity)</td>
</tr>
<tr>
<td>IL</td>
<td>Intralipid</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IS</td>
<td>Integrating Sphere</td>
</tr>
<tr>
<td>MC</td>
<td>Monte Carlo</td>
</tr>
<tr>
<td>n</td>
<td>Refractive index</td>
</tr>
<tr>
<td>OCT</td>
<td>Optical Coherence Tomography</td>
</tr>
<tr>
<td>p</td>
<td>Henyey-Greenstein scattering phase function</td>
</tr>
<tr>
<td>PCG</td>
<td>Preconditioned Conjugate Gradients</td>
</tr>
<tr>
<td>PDT</td>
<td>Photodynamic therapy</td>
</tr>
<tr>
<td>PS</td>
<td>Photosensitiser</td>
</tr>
<tr>
<td>R_p</td>
<td>Reflectance probe measurement</td>
</tr>
<tr>
<td>RSM</td>
<td>Realistic Skin Model</td>
</tr>
<tr>
<td>RTE</td>
<td>Radiative Transport Equation</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous Cell Carcinoma</td>
</tr>
</tbody>
</table>
Total diffuse reflection

Probability of ‘survival’ of a photon after a path length \(l \)

Ultraviolet

\(\alpha \)
Oxygen saturation

\(\varepsilon_{HbO_2} \)
Extinction coefficient for oxyhaemoglobin

\(\varepsilon_{Eu} \)
Extinction coefficient for eumelanin

\(\varepsilon_{mel} \)
Extinction coefficient for melanin

\(\varepsilon_{pheo} \)
Extinction coefficient for pheomelanin

\(\lambda \)
Wavelength

\(\mu_a \)
Absorption coefficient

\(\mu_s \)
Scattering coefficient

\(\mu_s' \text{ with } \mu_s' = (1 - g) \mu_s \)
Reduced scattering coefficient

\(\mu_t \text{ with } \mu_t = \mu_s + \mu_a \)
Total attenuation

\(\nu \)
Speed of light in medium

\(\xi \)
Random number between 0 and 1

\(\rho_a \)
Volume density of absorbers

\(\rho_s \)
Volume density of scatterers

\(\sigma_a \)
Effective absorption cross-sectional area

\(\sigma_s \)
Effective scattering cross-sectional area

\(\phi \)
Fluence rate