PAEDIATRIC REGIONAL ANAESTHESIA:
A CLINICAL ANATOMICAL STUDY

Albert-Neels van Schoor

Submitted in fulfilment of the requirements for the degree

Doctor of Philosophy
PhD (Anatomy)

in the Faculty of Health Science
Department of Anatomy
University of Pretoria
Pretoria

2010

Supervisors: Prof MC Bosman
Prof AT Bosenberg

© University of Pretoria
I, Albert-Neels van Schoor, hereby declare that this thesis entitled,

“Paediatric Regional Anaesthesia – A Clinical Anatomical Study”

Which I herewith submit to the University of Pretoria for the Degree of Doctor of Philosophy in Anatomy, is my own original work and has never been submitted for any academic award to any other tertiary institution for any degree.

_____________________________ _________________________
A van Schoor Date
Foreword and acknowledgments

This study could not have been possible if not for the help and support of so many people in my life. I thank God for giving me the ability to undertake such a project, but also for the family, friends and dear colleagues that played such a vital role in my life.

Firstly I would like to thank the University of Pretoria for the firm structure upon which the research was possible. And in the same breath I to have give my heartfelt thanks to Prof. JH Meiring and the Department of Anatomy for their support and motivation. This undertaking would have been impossible if not for the stable environment in which I found myself the past six years.

To Prof. Marius Bosman, words cannot begin to express my gratitude for your advise, support and guidance during this time. You accepted the role as my supervisor under very difficult circumstances and I greatly appreciate the role that you have played in my career as an anatomist. Without the support you give the clinical anatomy staff, none of this would have been possible.

I would also like to thank Prof. Adrian Bosenberg. Although we resided in different provinces, and now in different countries, you have always contributed your time and considerable expertise in the field of paediatric regional anaesthesia. Your passion for the field of anaesthesiology has been an inspiration to me and has also been one of the driving forces behind this study.

To the remainder of the Departmental staff, I cannot begin to express the gratitude for the support that I have received from you. To those who are at the beginning of their PhD studies: Linda, Nanette & Natalie, I would like to encourage them to not lose heart and I hope that I can assist them, as they have assisted me, to lighten their load in any way, shape or form. This extends to all the postgraduate students busy with Honours or Masters degrees in the Department, including the B.Sc. Medical Sciences students who assisted me during ANA 328.
To the technical staff, especially Mr. Gert Lewis, I would like to express unending gratitude for the support that I have received, not only for this study, but for all the other times that they went above and beyond the call of duty to help me. It is safe to say that Mr Lewis has been an inspiration to me since the very beginning of my career. I would also like to thank Samuel, Solomon, Abraham and Eric for all of their assistance throughout this time.

I would like to mention two people who have inspired me from very start of my career as an anatomist. To Prof. Hanno Boon, who tragically passed away shortly after supervising my M.Sc. project. He was an inspiration without measure in both teaching and research. He had the ability to inspire everyone who had the privilege of working with him or be taught by him. He made a profound impact on my life and for that I am eternally grateful.

To Prof. Peter Abrahams, I would also like to acknowledge for his continued interest in and support of my anatomy endeavours. His passion for the field of clinical anatomy inspires everyone he meets and he has inspired me to be the best teacher that I can possibly be.

I would also like to acknowledge Dr. Spangenberg at Burger Radiologists in Unitas Hospital, South Africa for the MR images used in this thesis. I would also like to thank Ms. Janeane Potgieter for all of her help in this regard. I would also like to thank Prof. Z Lockhat and Dr. K Dlomo of the Department of Radiology in Steve Biko Academic Hospital, South Africa, for their assistance in obtaining MR images used in this study.

On a more personal note I would have to thank my parents Neels and Theunise van Schoor for the years of unconditional love and support. I could not have wished for two better or more loving parents and without them this thesis would have been inconceivable.

I would also like to mention Jaco van Schoor. I could not have asked for a better brother, nor a better friend. He has always been able to make the worst of life be forgotten as we would watch horror movies, play computer
games, cricket or basket ball together. This would not have been possible if not for his influence in my life.

This also goes for two of my best friends (married to one another of course) and probably one of the single most influential relationships I’ve had the privilege of having in my life. I have known Peter and Leanne for a long time and the person I am today is in no small measure due to the times and experiences we’ve had together.

As a conclusion I would like to mention my wife, Robyn. Words cannot begin to explain the profound impact that she has had in my life. Neither can it express the deep love and gratitude I feel for her. The care and support that she gave me during this undertaking has been immeasurable and this thesis would not have been possible if not for her.
Summary
Paediatric Regional Anaesthesia: A Clinical Anatomical Study
A van Schoor
Supervisors: Prof MC Bosman, Prof AT Bosenberg
1 Department of Anatomy: Section of Clinical Anatomy, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
2 Director of Medical Education, Anaesthesiology, Seattle Children’s Hospital, Seattle, USA

Degree: PhD (Anatomy)

In 1973, Winnie and co-workers stated that no technique could truly be called simple, safe and consistent until the anatomy has been closely examined. This is evident when looking at the literature where many anatomically based studies regarding regional techniques in adults have resulted in the improvement of known techniques, as well as the creation of safer and more efficient methods. Anaesthesiologists performing these procedures should have a clear understanding of the anatomy, the influence of age and size, and the potential complications and hazards of each procedure to achieve good results and avoid morbidity. A thorough knowledge of the anatomy of paediatric patients is also essential for successful nerve blocks, which cannot be substituted by probing the patient with a needle attached to a nerve stimulator. The anatomy described in adults is also not always applicable to children, as anatomical landmarks in children vary with growth. Bony landmarks are poorly developed in infants prior to weight bearing, and muscular and tendinous landmarks, commonly used in adults, tend to lack definition in young children. The aim of this research was therefore to study a sample of neonatal cadavers, as well as magnetic resonance images in order to describe the relevant anatomy associated with essential regional nerve blocks, commonly performed by anaesthesiologists in South African hospitals. This research has brought to light the differences between neonatal and adult anatomy, which is relevant since the majority of paediatric regional anaesthetic techniques were developed from studies originally conducted on adult patients. Current techniques were also analysed and where necessary new improvements, using easily identifiable and constant bony landmarks, are described for the safe and successful performance of these regional nerve blocks in paediatric patients. In conclusion a sound knowledge and understanding of anatomy is important for the success of any nerve blocks. This study showed that extrapolation of anatomical findings from adult studies and simply downscaling these findings in order to apply them to infants and children is inappropriate and could lead to failed blocks or severe complications. It would therefore be more beneficial to use the data obtained from dissection of neonatal cadavers.
Opsomming

Pediatriese Regionale Narkose: ‘n Kliniese Anatomiese Studie
A van Schoor

Studieleiers: Prof MC Bosman, Prof AT Bosenberg

1 Department Anatomie: Kliniese Anatomie Afdeling, Skool vir Geneeskunde, Fakuliteit Gesondheidswetenskappe, Universiteit van Pretoria, Pretoria, Suid Afrika.

2 Direkteur van Mediese Onderrig, Narkose, Seattle Children’s Hospital, Seattle, VSA

Graad: PhD (Anatomie)

In 1973 het Winnie en medewerkers bevind dat geen mediese tegniek maklik, veilig of konstant genoem kan word alvorens die anatomie noukeurig bestudeer is nie. Dit is duidelik wanneer daar na die literatuur gekyk word dat a.g.v verskeie anatomiese gebaseerde studies wat met regionale narkose in die volwassene verband hou geleë het tot die verbetering van bestaande tegnieke. Derglike studies het ook aanleiding gegee vir die ontwikkeling van nuwer, veiliger, en meer doeltreffende prosedures. Narkotiseurs wat hierdie prosedures uitvoer moet ‘n voldoende kennis van die anatomie, die invloed van ouderdom en grootte voortdurend in ag neem. Hulle behoort ook deeglik bewus te wees van potensiële komplikasies en slaggate van elke prosedure. Aangesien dit nodig is om goeie resultate te verkry en sodoende morbiditeit te vermy, is ‘n deeglike kennis van die anatomie van pediatriese pasiënte’n noodsaaklikheid. Vir die suksesvolle uitvoering van senuweeblokke, behoort daar ‘n prosedure ontwikkel te word wat die blindelingse rondsteek van ‘n naald, wat aan ‘n senuweestimuleerder gekoppel is, binne in ‘n pasiënt te vervang. Die anatomie wat in volwassenes beskryf word is ook nie altyd toepasbaar in kinders nie, want anatomiese landmerke variëer in groeiende kinders. Benige landmerke is swak ontwikkel in jong kinders voor die ouderdom wat hulle hul eie gewig kan dra. Spier en tendineuse landmerke, wat oor die algemeen in volwassenes gebruik word, neig ook om ongedefinieer te wees in kinders. Die doelwitte van die navorsing was dus om ‘n aantal neonatale kadawers, sowel as ‘n aantal magnetise resonansie skanderings te bestudeer, met die doel om die relevante anatomie wat met noodsaaklike senuweeblokke geassosieer word en wat deur narkotiseurs in Suid-Afrikaanse hospitale uitgevoer word, te beskryf. Die navorsing het die verskille tussen die anatomie in ‘n neonaat en volwassene uitgelig. Dit is relevant aangesien die meerderheid van vorige paedatriese regionale narkotiese tegnieke, uit studies wat oorspronklik op volwasse pasiënte uitgevoer was, ontwikkel is. Om die suksesvolle uitvoering van hierdie regionale senuweeblokke in paedatriese pasiënte te verbeter, moes heidige tegnieke ge-analiseer word. Waar nodig was moes nuwe verbeteringe beskryf word deur van maklike identifiseerbare en konstante benige landmerke gebruik te maak met die doel om ‘n volwaardige kennis en begrip van anatomie te bekom sodat enige senuweeblok suksesvol uit gevoer kan word. Hierdie studie wys dat om bloot ekstrapolasi van anatomiese bevindinge vanaf volwasse studies slegs af te skaal om dit op jong kinders te gebruik is onvanpas en kan lei tot onsuksesvolle blokke en ernstige komplikasies. Dit sal dus meer voordelig wees om data wat vanaf die disseskie van neonatale kadawers verkry is te gebruik.
Table of Content

CHAPTER 1: INTRODUCTION

1.1) A brief history of paediatric regional anaesthesia 1
1.2) The importance of clinical anatomy in regional anaesthesia 3
1.3) Indications and limitations of paediatric regional anaesthesia 4
 1.3.1 General indications of regional anaesthesia 5
 1.3.1.1 Disorders of the respiratory tract 5
 1.3.1.2 Disorders of the central nervous system 6
 1.3.1.3 Myopathy and myasthenia 6
 1.3.2 General contraindications or limitations of regional anaesthesia 6
 1.3.2.1 Patient refusal 7
 1.3.2.2 Local infections at the needle insertion site 7
 1.3.2.3 Septicaemia (presence of pathogens in the blood) 7
 1.3.2.4 Coagulation disorders 7
 1.3.2.5 Neurological diseases involving the peripheral nerves (neuropathy) 7
 1.3.2.6 Allergy to the local anaesthetic solution 8
 1.3.2.7 Lack of training 8
1.4) Equipment used for paediatric regional anaesthesia 8
1.5) Imaging techniques used to aid in regional anaesthesia 9
 1.5.1 Nerve stimulators and regional anaesthesia 9
 1.5.1.1 Basic principles of nerve stimulation 10
 1.5.1.2 Essential features of nerve stimulators 11
 1.5.2 Ultrasound guidance and regional anaesthesia 13
 1.5.2.1 Advantages of ultrasound guidance during regional anaesthesia 13
 1.5.2.2 Basic principles of ultrasound 14
 1.5.2.3 Ultrasound guided regional anaesthesia: 14
 1.5.2.4 Ultrasound in children 16
 1.5.3 Magnetic Resonance (MR) Imaging 17
1.6) A survey into paediatric regional anaesthesia in South Africa:
 Clinical anatomy competence, pitfalls & complications 17

CHAPTER 2: LITERATURE REVIEW

2.1) Paediatric caudal epidural block 20
 2.1.1 Introduction 20
 2.1.1.1 History of caudal epidural blocks 20
 2.1.1.2 Advantages of paediatric vs. adult caudal epidural blocks 23
 2.1.2 Indications & contraindications 24
 2.1.2.1 Indications 24
 2.1.2.2 Contraindications 26
 2.1.3 Anatomy 28
 2.1.3.1 The sacrum 28
 2.1.3.2 Abnormalities of the sacrum 29
 2.1.3.3 The sacral hiatus 31
 2.1.3.4 The termination of the spinal cord (conus medullaris) 31
2.1.3.5 The dural sac 33
2.1.3.6 The caudal canal and caudal epidural space 33
2.1.3.7 Vasculature of the spinal cord 34
2.1.4 Techniques 35
 2.1.4.1 Safety precautions 35
 2.1.4.2 Classic technique: Single-shot caudal epidural block 36
 2.1.4.3 Classic technique: Continuous caudal epidural block 39
2.1.5 Complications 39
 2.1.5.1 Dural puncture 39
 2.1.5.2 Vascular puncture 41
 2.1.5.3 Systemic toxicity 41
 2.1.5.4 Misplacement of the needle into soft tissue 41
 2.1.5.5 Puncture of the sacral foramen 42
 2.1.5.6 Partial or complete failure of the block 42
 2.1.5.7 Lateralisation of the block 42
 2.1.5.8 Infection due to the placement of a continuous catheter 43
 2.1.5.9 Other complications associated with caudal epidural blocks 43
2.1.6 Imaging modalities used for paediatric caudal and lumbar epidural blocks 44
 2.1.6.1 Radiographic methods 44
 2.1.6.2 Ultra-sound guidance 45
2.2) Paediatric lumbar epidural block 46
 2.2.1 Introduction 46
 2.2.1.1 History of lumbar epidural blocks 47
 2.2.1.2 Advantages of lumbar epidural blocks over spinal anaesthesia 48
 2.2.2 Indications and contraindications 48
 2.2.2.1 Indications 48
 2.2.2.2 Contraindications 49
 2.2.3 Anatomy 50
 2.2.3.1 Course of the epidural needle – from skin to epidural space 50
 2.2.3.2 Surface anatomy of the vertebral column 52
 2.2.3.3 Development of the vertebral column 53
 2.2.3.4 Abnormalities of the vertebral column 54
 2.2.3.5 The epidural space 58
 2.2.3.6 Content of the epidural space 60
 2.2.3.7 The ligamentum flavum 62
 2.2.3.8 The meninges 62
 2.2.3.9 Iliac crests as bony landmarks 63
 2.2.3.10 Similarities between relevant anatomy for caudal and lumbar epidural blocks 64
 2.2.4 Techniques 64
 2.2.4.1 Classic technique: Single-shot lumbar epidural block 64
 2.2.4.2 Classic technique: Continuous lumbar epidural block 66
 2.2.5 Complications 67
 2.2.5.1 Dural puncture 67
 2.2.5.2 Vascular puncture 68
 2.2.5.3 Systemic toxicity 68
Trauma of the spinal cord and roots 68
Partial or complete failure of block 69
Lateralisation of the block 69
Complications related to epidural catheters 70
Complications due to “loss of resistance” with air 71
Infection due to the placement of a continuous catheter 71

2.3) Paediatric infraclavicular brachial plexus block 72

2.3.1 Introduction 72

2.3.1.1 History of brachial plexus blocks 72

2.3.1.2 Comparison between infraclavicular and axillary blocks 75

2.3.1.3 Advantages of the infraclavicular brachial plexus block 76

2.3.1.4 Disadvantages of the infraclavicular brachial plexus block 78

2.3.2 Indications & contraindications 79

2.3.2.1 Indications 79

2.3.2.2 Contraindications 80

2.3.3 Anatomy 80

2.3.3.1 Axilla and related bony landmarks 82

2.3.3.2 Roots of the brachial plexus 82

2.3.3.3 Trunks of the brachial plexus 83

2.3.3.4 Divisions of the brachial plexus 83

2.3.3.5 Cords of the brachial plexus 83

2.3.3.6 Terminal branches of the brachial plexus 84

2.3.3.7 Axillary artery and vein 86

2.3.3.8 Axillary sheath 87

2.3.3.9 Paediatric anatomy 88

2.3.4 Techniques 88

2.3.4.1 Safety precautions 88

2.3.4.2 Infraclavicular approach according to Raj et al. (1973) 89

2.3.4.3 Technique developed by Sims (1977) 89

2.3.4.4 Technique developed by Whiffler (1981) 90

2.3.4.5 Technique described by Kilka et al. (1995) 90

2.3.4.6 Lateral infraclavicular technique as described by Kapral et al. (1996) 90

2.3.4.7 Technique described by Wilson et al. (1998) 91

2.3.4.8 “Modified” Raj technique developed by Borgeat et al., (2001) 91

2.3.4.9 Niedhart–Haro techniques 91

2.3.4.10 Continuous infraclavicular block 92

2.3.5 Complications 93

2.3.5.1 Vascular puncture 93

2.3.5.2 Systemic toxicity 94

2.3.5.3 Pneumothorax 94

2.3.5.4 Phrenic nerve block 95

2.3.5.5 Horner’s syndrome 95

2.3.5.6 Nerve injury 96

2.3.6 Use of nerve stimulation and other imaging modalities 96

2.3.6.1 Nerve stimulators and infraclavicular blocks 96

2.3.6.2 Ultrasound guidance for improving infraclavicular blocks 96
2.4) Paediatric Femoral nerve block 97
 2.4.1 Introduction 97
 2.4.1.2 Advantages of femoral nerve blocks 98
 2.4.1.3 Disadvantages of femoral nerve blocks 99
 2.4.2 Indications & contraindications 99
 2.4.2.1 Indications 99
 2.4.2.2 Contraindications 101
 2.4.3 Anatomy 102
 2.4.3.1 The lumbar plexus 102
 2.4.3.2 The femoral triangle 104
 2.4.3.3 Femoral nerve (L2-L4) 107
 2.4.3.4 Femoral blood vessels 108
 2.4.3.5 Paediatric anatomy 109
 2.4.4 Techniques 109
 2.4.4.1 Classic femoral nerve block technique 109
 2.4.4.2 “3-in-1” block technique as described by Winnie et al. (1973) 111
 2.4.4.3 Fascia iliaca compartment block as described by Dalens et al. (1989) 111
 2.4.4.4 Continuous femoral nerve block technique 113
 2.4.5 Complications 113
 2.4.5.1 Vascular puncture 114
 2.4.5.2 Systemic toxicity 114
 2.4.5.3 Nerve trauma 115
 2.4.6 Use of nerve stimulation and other imaging modalities 115
 2.4.6.1 Nerve stimulation 115
 2.4.6.2 Ultrasound guidance 115

2.5) Paediatric ilio-inguinal/iliohypogastric nerve block 116
 2.5.1 Introduction 116
 2.5.2 Indications & contraindications 117
 2.5.2.1 Indications 117
 2.5.2.2 Contraindications 118
 2.5.3 Anatomy 118
 2.5.3.1 L1 spinal nerve 118
 2.5.3.2 The ilio-inguinal nerve 119
 2.5.3.3 The iliohypogastric nerve 119
 2.5.3.4 Paediatric anatomy 120
 2.5.4 Technique 120
 2.5.4.1 Technique described by Von Bahr (1979) 120
 2.5.4.2 Technique described by Sethna and Berde (1989) 123
 2.5.4.3 Technique described by Schulte-Steinberg (1990) 123
 2.5.4.4 Proposed technique by the author 124
 2.5.4.5 Ultrasound-guided technique described by Willschke et al. (2005) 125
 2.5.5 Complications 125
 2.5.5.1 Partial or complete failure of block 125
 2.5.5.2 Intravascular injection 126
 2.5.5.3 Systemic toxicity 126
 2.5.5.4 Intrapertoneal injection 126
 2.5.5.5 Nerve damage 127
CHAPTER 3: AIMS OF THE THESIS 130

3.1) Paediatric caudal epidural block 130
3.1.1 Dimensions of the neonatal sacrococcygeal membrane 130
3.1.2 The distance of the lumbar interlaminar spaces from the apex of the sacrococcygeal membrane in a neonatal sample 130
3.1.3 The vertebral level of termination and distance from the apex of the sacrococcygeal membrane to the dural sac 131
3.2) Paediatric lumbar epidural block 132
3.2.1 The value of Tuffier’s or the intercrestal line in neonates 132
3.2.2 The dimensions of the lumbar interlaminar spaces in neonates in both a prone and flexed position 132
3.2.3 The vertebral level and distance from the apex of the sacrococcygeal membrane of the conus medullaris 133
3.3) Paediatric infraclavicular approach to the brachial plexus 134
3.3.1 Anatomical considerations of the neonatal infraclavicular brachial plexus block 134
3.3.2 Anatomical considerations of the infraclavicular brachial plexus block—comparison between neonatal and adult data 135
3.4) Paediatric femoral nerve block 136
3.4.1 Anatomical considerations of the neonatal femoral nerve block 136
3.4.2 Anatomical considerations of the femoral nerve block—comparison between neonatal and adult data 137
3.5) Paediatric ilio-inguinal/iliohypogastric nerve block 137
3.5.1 Anatomical considerations of the neonatal ilio-inguinal/iliohypogastric nerve block 137
3.6) Problem statement 138

CHAPTER 4: MATERIALS & METHODS 139

4.1) Paediatric caudal epidural block 139
4.1.1 Dimensions of the neonatal sacrococcygeal membrane 139
4.1.2 The distance of the lumbar interlaminar spaces from the apex of the sacrococcygeal membrane in a neonatal sample 140
4.1.3 The vertebral level of termination and distance from the apex of the sacrococcygeal membrane to the dural sac 141
4.2) Paediatric lumbar epidural block 144
4.2.1 The value of Tuffier’s or the intercrestal line in neonates 144
4.2.2 The dimensions of the lumbar interlaminar spaces in neonates in both a prone and flexed position 146
4.2.3 The vertebral level and distance from the apex of the sacrococcygeal membrane of the conus medullaris 146
4.2.3.1 Neonatal cadavers 146
4.2.3.2 MR images 148
4.3) Paediatric infraclavicular approach to the brachial plexus 149
 4.3.1 Anatomical considerations of the neonatal infraclavicular brachial plexus block 149
 4.3.2 Anatomical considerations of the infraclavicular brachial plexus block–comparison between neonatal and adult data 153
4.4) Paediatric femoral nerve block 154
 4.4.1 Anatomical considerations of the neonatal femoral nerve block 154
 4.4.2 Anatomical considerations of the femoral nerve block–comparison between neonatal and adult data 155
4.5) Paediatric ilio-inguinal/ iliohypogastric nerve block 156
 4.5.1 Anatomical considerations of the neonatal ilio-inguinal/iliohypogastric nerve block 156
4.6) Sample size and selection 159
 4.6.1 Neonatal sample 159
 4.6.2 Adult sample 160
 4.6.3 MRI scans 160
4.7) Ethical considerations 160
4.8) Statistical analysis 161
4.9) Limitations of the study 162

CHAPTER 5: RESULTS 163
5.1) Paediatric caudal epidural block 163
 5.1.1 Dimensions of the neonatal sacroccocygeal membrane 163
 5.1.2 The distance of the lumbar interlaminar spaces from the apex of the sacroccocygeal membrane in a neonatal sample 164
 5.1.3 The vertebral level of termination and distance from the apex of the sacroccocygeal membrane to the dural sac 167
5.2) Paediatric lumbar epidural block 168
 5.2.1 The value of Tuffier’s or the intercrestal line in neonates 168
 5.2.2 The dimensions of the lumbar interlaminar spaces in neonates in both a prone and flexed position 170
 5.2.3 The vertebral level and distance from the apex of the sacroccocygeal membrane of the conus medullaris 173
 5.2.3.1 Neonatal cadavers 173
 5.2.3.2 MR images 174
5.3) Paediatric infraclavicular approach to the brachial plexus 175
 5.3.1 Anatomical considerations of the neonatal infraclavicular brachial plexus block 175
 5.3.2 Anatomical considerations of the infraclavicular brachial plexus block–comparison between neonatal and adult data 182
 5.3.2.1 Comparison between adult and neonatal data 187
5.4) Paediatric femoral nerve block 189
 5.4.1 Anatomical considerations of the neonatal femoral nerve block 189
 5.4.2 Anatomical considerations of the femoral nerve block–comparison between neonatal and adult data 194
 5.4.2.1 Comparison between adult and neonatal data 198
5.5) Paediatric ilio-inguinal/iliohypogastric nerve block 200
5.5.1 Anatomical considerations of the neonatal ilio-inguinal/iliohypogastric nerve block 200

CHAPTER 6: DISCUSSION 206
6.1) Paediatric caudal epidural block 206
6.1.1 Dimensions of the neonatal sacrococcygeal membrane 206
6.1.2 The distance of the lumbar interlaminar spaces from the apex of the sacrococcygeal membrane in a neonatal sample 207
6.1.3 The vertebral level of termination and distance from the apex of the sacrococcygeal membrane of the dural sac 208
6.2) Paediatric lumbar epidural block 211
6.2.1 The value of Tuffier’s (intercrestal) line in neonates 211
6.2.2 The dimensions of the lumbar interlaminar spaces in neonates in both a prone and flexed position 213
6.2.3 The vertebral level and distance from the apex of the sacrococcygeal membrane of the conus medullaris 214
6.2.4 Conclusion for caudal and lumbar epidural blocks 217
6.3) Paediatric infraclavicular brachial plexus block 218
6.3.1 Anatomical considerations of the neonatal infraclavicular brachial plexus block 218
6.3.2 Anatomical considerations of the infraclavicular brachial plexus block–comparison between neonatal and adult data 223
6.3.3 Conclusion 224
6.4) Paediatric femoral nerve block 225
6.4.1 Anatomical considerations of the neonatal femoral nerve block 225
6.4.2 Anatomical considerations of the femoral nerve block–comparison between neonatal and adult data 226
6.4.3 Conclusion 229
6.5) Paediatric ilio-inguinal/iliohypogastric nerve block 230
6.5.1 Anatomical considerations of the neonatal ilio-inguinal/iliohypogastric nerve block 230
6.5.2 Conclusion 233
6.6) Conclusion of the thesis 233

BIBLIOGRAPHY 235
APPENDICES 275
List of Figures

CHAPTER 1: INTRODUCTION

Figure 1.1: Some commercially available peripheral nerve stimulators. 10
Figure 1.2: (a) Probe and needle alignment during performance of an interscalene block. 16
Figure 1.2: (b) Probe and needle alignment during performance of a subgluteal sciatic nerve block. 16

CHAPTER 2: LITERATURE REVIEW

Figure 2.1: Photograph of the dorsal surface of the sacrum. 29
Figure 2.2: Level of termination of the spinal cord plotted against gestational age. 32
Figure 2.3: The equilateral triangle and bony landmarks described by Senoglu et al., 2005. 37
Figure 2.4: Colour Doppler ultrasonography, midsagittal view of the sacrum. 45
Figure 2.5: Posterior view of the neonatal vertebral column and iliac crests. 53
Figure 2.6: Transverse section through the L1 vertebra (highlighted in green) of a neonatal cadaver. 59
Figure 2.7: Dissection of a neonatal vertebral column. 61
Figure 2.8: Areolar tissue found within the epidural space is being removed. 61
Figure 2.9: Dissection of a neonatal vertebral column. 70
Figure 2.10: Brachial plexus and related structures within the axilla and at the root of the neck. 81
Figure 2.11: The lumbar plexus of a neonate. 103
Figure 2.12: (a) The femoral triangle (indicated by the white dashed line) dissected in order to expose its content in a neonate. 105
Figure 2.12: (b) The sartorius muscle is reflected to show the structures travelling within the adductor canal. 105
Figure 2.13: Superficial dissection of a neonatal femoral triangle with enlarged superficial inguinal lymph nodes. 106
Figure 2.14: Classical femoral nerve block technique on an infant. 110
Figure 2.15: Technique described by Von Bahr (1979). 121
Figure 2.16: Technique described by Sethna and Berde (1989). 123
Figure 2.17: Technique described by Schulte-Steinberg (1990). 124

CHAPTER 4: MATERIALS & METHODS

Figure 4.1: Exposed lumbar vertebrae and apex of sacrococcygeal membrane (yellow triangle) of a neonate in the prone position. 140
Figure 4.2: Content of the vertebral canal 142
Figure 4.3: MR image of a 2 year old showing how the vertebrae were divided into thirds. 143
Figure 4.4: The exposed lumbar vertebrae of a neonatal cadaver in a prone position.

Figure 4.5: An exposed spinal cord (highlighted in yellow) of a neonatal cadaver.

Figure 4.6: MR image of a 2 year old showing how the vertebrae were divided into thirds.

Figure 4.7: Skin reflected from the pectoral region of a neonatal cadaver in order to expose the pectoralis major muscle.

Figure 4.8: Pectoralis major muscle (highlighted in red) reflected in order to expose the pectoralis minor muscle (highlighted in orange).

Figure 4.9: (a) Pectoralis minor muscle. (b) Content of the axilla.

Figure 4.10: Schematic of measurements taken on exposed brachial plexus.

Figure 4.11: Neonatal femoral triangle.

Figure 4.12: Superficial and deeper dissections of the anterior abdominal wall of a neonatal cadaver.

Figure 4.13: Dissection of anterior abdominal wall and the ilio-inguinal nerve.

Figure 4.14: Dissection of the anterior abdominal wall and the ilio-inguinal and iliohypogastric nerves.

CHAPTER 5: RESULTS

Figure 5.1: Distances from the apex of the sacroccocygeal membrane to the neonatal lumbar epidural spaces.

Figure 5.2: Percentage change of the distance from the apex of the sacroccocygeal membrane to the neonatal lumbar epidural spaces.

Figure 5.3: Surface area of neonatal lumbar interlaminar spaces.

Figure 5.4: Percentage change of the surface area measurements of the neonatal lumbar interlaminar spaces.

Figure 5.5: Linear regression formula for the distance of the point of needle insertion in neonates.

Figure 5.6: Linear regression formula for the distance of the point of needle insertion in adults.

Figure 5.7: Linear regression formulae, for both the neonatal and adult samples.

Figure 5.8: Measurements for total sample of neonatal cadavers.

Figure 5.9: Linear regression formula for the distance of the neonatal femoral nerve from the ASIS.

Figure 5.10: Measurements for total sample of adult cadavers.

Figure 5.11: Linear regression formula for the distance of the adult femoral nerve from the ASIS.

Figure 5.12: Comparison of distance of the femoral nerve (N) and femoral artery (A) from the ASIS.

Figure 5.13: Linear regression formulae, for both the neonatal and adult sample.
Figure 5.14: Linear regression formula for the distance of the ilioinguinal nerve from the ASIS. 203

Figure 5.15: Linear regression formula for the distance of the iliohypogastric nerve from the ASIS. 204

Figure 5.16: Linear regression formula for the distance of the point of needle insertion from the ASIS. 204

CHAPTER 6: DISCUSSION

Figure 6.1: Dissection of the shoulder to expose the coracoid process. 219

Figure 6.2: The coracoid process (A) and the xiphisternal joint (B) with the CP-XS line (dashed line) between them. 220

Figure 6.4: Linear regression formulae, for both the neonatal and adult samples. 228

APPENDICES

Figure C1: Importance of clinical anatomy knowledge in decreasing complications. 281

Figure C2: Importance of clinical anatomy knowledge in increasing comfort levels. 281
List of Tables

CHAPTER 2: LITERATURE REVIEW
Table 2.1: Upper limb neural innervation pathways. 85
Table 2.2: Responses to incorrect nerve stimulation and corrective action when performing the coracoid infraclavicular block. 86
Table 2.3: Complications of infraclavicular blocks reported in the literature (excluding single case studies). 93

CHAPTER 3: AIMS OF THE THESIS
Table 3.1: Summary of cases where the infraclavicular brachial plexus blocks were performed on paediatric patients. 138

CHAPTER 5: RESULTS
Table 5.1: Summary of the measurements taken on the neonatal sacrococcygeal membrane. 163
Table 5.2: Measurements of the apex of the sacrococcygeal membrane to the neonatal lumbar interlaminar spaces. 164
Table 5.3: Measurements of the apex of the sacrococcygeal membrane to the neonatal lumbar interlaminar spaces. 165
Table 5.4: Vertebral level of dural sac termination on MR images. The corresponding number of each division is given in brackets. 167
Table 5.5: Average level of Tuffier's line in a neonatal sample in both a prone and flexed position. The corresponding number of each division is given in brackets. 168
Table 5.6: Measurement of the apex of the sacrococcygeal membrane to Tuffier's line on a neonatal sample in both a prone and flexed position. 169
Table 5.7: Surface area measurements of the neonatal lumbar interlaminar spaces. 170
Table 5.8: Surface area measurements of the neonatal lumbar interlaminar spaces. 171
Table 5.9: Summary of the distance from the apex of the sacrococcygeal membrane to the conus medullaris. 173
Table 5.10: Vertebral level of spinal cord termination in the neonatal cadaver sample. The corresponding number is given in brackets. 174
Table 5.11: Vertebral level of spinal cord termination on MR images. The corresponding number is given in brackets. 175
Table 5.12: Distances of the neonatal brachial plexus from the coracoid process, on the right side. 176
Table 5.13: Distances of the neonatal brachial plexus from the coracoid process, on the left side. 177
Table 5.14: Distances of the brachial plexus, of the total neonatal population from the coracoid process. 178
Table 5.15: Point of needle insertion for the right, left, and total neonatal sample. 179
Table 5.16: Distances of the adult brachial plexus from the right coracoid process. 182
Table 5.17: Distances of the adult brachial plexus from the left coracoid process. 183
Table 5.18: Distances of the brachial plexus of the total adult population from the coracoid process. 184
Table 5.19: Point of needle insertion for the right, left, and total adult sample. 185
Table 5.20: Distances of the neonatal femoral nerve and artery from the ASIS, on the right side. 190
Table 5.21: Distances of the neonatal femoral nerve and artery from the ASIS, on the left side. 190
Table 5.22: Distances of the femoral nerve and artery from the ASIS for the total neonatal sample. 191
Table 5.23: Distances of the adult femoral nerve and artery from the ASIS on the right side. 194
Table 5.24: Distances of the adult femoral nerve and artery from the ASIS on the left side. 195
Table 5.25: Distances of the adult femoral nerve and artery from the ASIS for the total adult sample. 196
Table 5.26: Distances (in mm) of the right and left ilio-inguinal and iliohypogastric nerves from the ASIS. 201
Table 5.27: Distances (in mm) of the ilio-inguinal and iliohypogastric nerves from the ASIS for the total neonatal sample. 202

CHAPTER 6: DISCUSSION
Table 6.1: Frequency of termination of the dural sac. 209
Table 6.2: Frequency of the level of Tuffier's line in a neonatal cadaver population. 212
Table 6.3: Frequency of level of conus medullaris. 215
Table 6.4: Frequencies of spinal cord termination. 216

APPENDICES
Table B1: Example of questionnaire given to anaesthesiologists. 276
Table B2: List of 17 paediatric regional anaesthetic procedures included in the questionnaire. 277
Table C1: Procedures that scored the highest points, according to the scoring option. 278
Table C2: Importance rating, comfort levels and possible difficulties associated with the most frequently performed procedures. 279
Table C3: Complications experienced during the performance of the five “problem” procedures. 280
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISC:</td>
<td>Distance between the two sacral cornuae</td>
</tr>
<tr>
<td>SC Height:</td>
<td>Height of the sacrococcygeal membrane</td>
</tr>
<tr>
<td>SC Area:</td>
<td>Surface area of the sacrococcygeal membrane</td>
</tr>
<tr>
<td>CP-XS:</td>
<td>Distance (mm) between the coracoid process and the xiphisternal joint</td>
</tr>
<tr>
<td>CP-LBP:</td>
<td>Distance (mm) from the coracoid process to the LBP</td>
</tr>
<tr>
<td>CP-LBP %:</td>
<td>Distance from the coracoid process to the LBP as a percentage of the CP-XS line distance</td>
</tr>
<tr>
<td>CP-MBP:</td>
<td>Distance (mm) from the coracoid process to the MBP</td>
</tr>
<tr>
<td>CP-MBP %:</td>
<td>Distance from the coracoid process to the MBP as a percentage of the CP-XS line distance</td>
</tr>
<tr>
<td>LBP-MBP:</td>
<td>Distance (mm) between the LBP and MBP</td>
</tr>
<tr>
<td>LBP-MBP %:</td>
<td>Distance between the LBP and MBP as a percentage of the CP-XS line distance</td>
</tr>
<tr>
<td>MBP-Rib:</td>
<td>Distance between the MBP and the closest rib</td>
</tr>
<tr>
<td>ASIS-PT:</td>
<td>Distance (mm) between the ASIS and the PT</td>
</tr>
<tr>
<td>ASIS-N:</td>
<td>Distance (mm) from the ASIS to the femoral nerve</td>
</tr>
<tr>
<td>ASIS-N %:</td>
<td>Distance from the ASIS to the femoral nerve in a percentage of the ASIS-PT distance</td>
</tr>
<tr>
<td>ASIS-A:</td>
<td>Distance (mm) from the ASIS to the femoral artery</td>
</tr>
<tr>
<td>ASIS-A %:</td>
<td>Distance from the ASIS to the femoral artery in a percentage of the ASIS-PT distance</td>
</tr>
<tr>
<td>A-N:</td>
<td>Distance (mm) between the femoral nerve and the femoral artery</td>
</tr>
<tr>
<td>II–IH:</td>
<td>Distance between the ilio-inguinal and iliohypogastric nerves</td>
</tr>
<tr>
<td>CI 95%:</td>
<td>Confidence interval with a 95% confidence level</td>
</tr>
<tr>
<td>Lower:</td>
<td>Lower range of the Confidence interval with a level of confidence of 95%</td>
</tr>
<tr>
<td>Upper:</td>
<td>Upper range of the Confidence interval with a level of confidence of 95%</td>
</tr>
</tbody>
</table>