LIST OF FIGURES

Fig. 2.1 Neutron probe placed on the access tube. The probe is lowered down the access tube without exposing the operator to the radioactive source...19

Fig. 3.1 (a) Electronic (FullStop), and (b) manual (MACH) version of the newly patented wetting front detector...32

Fig. 4.1 The lucerne crop with the rain shelter open to allow for exposure of the crop to ambient environmental conditions...42

Fig. 4.2 The 30 external plots around the edges (without treatment labels) served as border plots, whilst the 30 internal plots were treatment plots..44

Fig. 4.3 An experimental plot with drip set-up. Each plot had four drip lines and three cross pieces at the end. Lucerne was planted in two rows between each dripper line...45

Fig. 5.1 Cumulative Irrigation applied to the FS1, FS2, SWB and NP treatments throughout the January/February growth cycle...53

Fig. 5.2 Soil water deficit measured (a) within the "managed effective root zone" (0 - 60 cm), (b) below the root zone (60 – 120 cm) and (c) for the entire soil profile (0 – 120 cm) for the FS1, FS2, SWB and NP treatments during the January/February growth cycle...54

Fig. 5.3 Measured soil water deficit and (b) amount of water applied per irrigation to the NP treatment during the January/February growth cycle...55
Fig. 5.4 Measured soil water deficit, and (b) observed detectors responding as well as the amount of water applied per irrigation to the FS1 treatment during the January/February growth cycle.

Fig. 5.5 Measured soil water deficit, and (b) observed detector response as well as water applied per irrigation event to the FS2 during the January/February growth cycle.

Fig. 5.6 Measured soil water deficit and (b) irrigation amount applied per irrigation event to the SWB treatment during the January/February growth cycle.

Fig. 5.7 Cumulative Irrigation applied to the MACH, CF, NP, FS1 and FS2 treatments throughout the March/April growth cycle.

Fig. 5.8 Soil water deficit measured for the MACH, CF, NP, FS1 and FS2 treatments (a) within the effective root zone (0 - 60 cm), (b) below the root zone (60 – 120 cm), and (c) for the entire soil profile during the March/April growth cycle.

Fig. 5.9 Measured soil water deficit and (b) amount of water applied per irrigation event to the NP treatment during the March/April growth cycle.

Fig. 5.10 Measured soil water deficits, and (b) amount of water applied per irrigation episode as well observed detectors responding for the MACH treatment during the March/April growth cycle.

Fig. 5.11 (a) Measured soil water deficit, (b) observed shallow and deep detectors responding as well as the amount of water applied per irrigation and (c) crop factor and ET₀ plotted against time for CF treatment during the March/April growth cycle.

Fig. 5.12 Measured soil water deficit, and (b) observed detector responding as well as amount of water applied per irrigation to the FS1 treatment through the March/April growth cycle.
Fig. 5.13 (a) Measured soil water deficit, and (b) irrigation amount applied per irrigation event, as well as observed detector response for the FS2 treatment throughout the March/April growth cycle.

Fig. 5.14 Cumulative irrigation applied to the MACH, CF, NP, SWB, FS1, and FS2 treatments throughout the April/May growth cycle.

Fig. 5.15 Soil water deficit measured for the MACH, CF, NP, SWB, FS1 and FS2 treatments (a) within the effective root zone (0 - 60 cm), (b) below the managed root zone (60 - 120 cm), and (c) for the entire soil profile (0 - 120 cm) during the April/May growth cycle.

Fig. 5.16 (a) Measured soil water deficit and (b) amount of water applied per irrigation to the NP treatment during the April/May growth cycle.

Fig. 5.17 (a) Amount of water applied per irrigation event, (b) measured soil water deficit and (c) observed detector response for the MACH treatment through the April/May growth cycle.

Fig. 5.18 (a) Observed detectors responding as well as amount of water applied per irrigation event, (b) measured soil water deficit and (c) daily crop factor and measured average daily ET₀ for the CF treatment during the April/May growth cycle.

Fig. 5.19 (a) Measured soil water deficit and (b) observed detector response as well as the amount of water applied per irrigation event for the FS1 treatment during the April/May growth cycle.

Fig. 5.20 (a) Measured soil water deficit, and (b) observed detector response as well as the amount of water applied per irrigation to the FS2 treatment during the April/May growth cycle.

Fig. 5.21 (a) Measured soil water deficit, and (b) irrigation amount applied per irrigation to the SWB treatment during the April/May growth cycle.
Fig. 6.1 Trends that depicts possible scenarios that can be obtained with the measurements of soil water deficit.
LIST OF TABLES

Table 3.1 Water content for different levels or points obtained from the soil moisture retention curve (Appendix B) ...38

Table 5.1 Dry matter yields obtained, cumulative irrigation applied to, and calculated ET + D_r, as well as change in soil water storage (ΔS) for the entire soil profile for the FS1, FS2, SWB and CF treatments throughout the January/February growth cycle ..53

Table 5.2 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, and observed detector response for the FS1 treatment during the January/February growth cycle ..57

Table 5.3 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, and observed detector response for the FS2 treatment during the January/February growth cycle ..60

Table 5.4 Dry matter yields obtained, cumulative irrigation applied to, calculated ET + D_r, as well as change in soil water storage for the FS1, FS2, MACH, NP and CF treatments for the March/April growth cycle ..65

Table 5.5 Amount of water applied, observed detector response as well as algorithm followed for the MACH treatment throughout the March/April growth cycle ..68

Table 5.6 The calculated ET_0, adjustment in crop factors based on deep detector response and irrigation amounts applied to the CF treatment during the March/April growth cycle ..70

Table 5.7 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, as well as observed detector response for the FS1 treatment during the March/April growth cycle ..73
Table 5.8 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, as well as observed detector response and the replicate that skipped irrigation for the FS2 treatment during the March/April lucerne growth cycle.................................75

Table 5.9 Dry matter yields, cumulative irrigation applied, change in water storage, and estimated ET + D, for the NP, FS1, FS2, MACH, CF and SWB treatments for the April/May growth cycle.............................78

Table 5.10 Amount of water applied, observed detector response as well as algorithm followed for the MACH treatment throughout the April/May growth cycle...83

Table 5.11 Measured ET₀ and methodological action taken for the CF treatment as well as irrigation applied and observed detector responding throughout the April/May growth cycle.................................85

Table 5.12 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, as well as observed detectors response for FS1 during the April/May growth cycle...87

Table 5.13 Amount of water that the treatment ‘wanted’ and that the control detector ‘gave’, as well as observed detector response and replicates that ‘missed’ irrigation after responding to irrigation for FS2 treatment during April/May growth cycle...89

Table 6.1 Dry matter yield (t ha⁻¹) obtained with each treatment per growth cycle...94

Table 6.2 Cumulative irrigation (mm) applied to each treatment over the three growth cycles...95

Table 6.3 Estimated crop water requirements plus drainage for all treatments per growth cycle calculated from equation 4.2...97
LIST OF SYMBOLS AND ACRONYMS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a</code></td>
<td>Constant for neutron probe calibration equation that depends upon substances in the soil</td>
</tr>
<tr>
<td><code>ADL</code></td>
<td>Allowable depletion level</td>
</tr>
<tr>
<td><code>b</code></td>
<td>Slope of the neutron probe calibration equation</td>
</tr>
<tr>
<td><code>CF</code></td>
<td>Crop Factor</td>
</tr>
<tr>
<td><code>d_o</code></td>
<td>Depth of placement of the detector (m)</td>
</tr>
<tr>
<td><code>DOY</code></td>
<td>Day of the year</td>
</tr>
<tr>
<td><code>D_t</code></td>
<td>Drainage (mm)</td>
</tr>
<tr>
<td><code>E_{pan}</code></td>
<td>Evaporation from a class A pan (m)</td>
</tr>
<tr>
<td><code>E_s</code></td>
<td>Direct evaporation from the soil surface (m)</td>
</tr>
<tr>
<td><code>E_{sp}</code></td>
<td>Potential soil evaporation (kg m^{-2} s^{-1})</td>
</tr>
<tr>
<td><code>ET</code></td>
<td>Evapotranspiration (m)</td>
</tr>
<tr>
<td><code>ET_a</code></td>
<td>Actual evapotranspiration (m)</td>
</tr>
<tr>
<td><code>ET_m</code></td>
<td>Maximum crop evaporation (m)</td>
</tr>
<tr>
<td><code>ET_o</code></td>
<td>Reference evapotranspiration (m)</td>
</tr>
<tr>
<td><code>FC</code></td>
<td>Field capacity</td>
</tr>
<tr>
<td><code>FS1</code></td>
<td>FullStop 1</td>
</tr>
<tr>
<td><code>FS2</code></td>
<td>FullStop 2</td>
</tr>
</tbody>
</table>
K_c - Crop coefficient

K_{pan} - Pan coefficient

MACH - Machingilana

N - Count ratio for the neutron probe

NP - Neutron probe

O - Overhead from a wetting front detector

P - Precipitation (mm)

PAW - Plant available water

PET - Potential evapotranspiration (mm)

PT - Potential transpiration (mm)

PWP - Permanent wilting point

R - Run-off from the soil surface (mm)

SWB - Soil Water Balance model

T - Transpiration (mm)

T_d - Daily transpiration (mm day$^{-1}$)

TDR - Time Domain Reflectometry

Σ - The sum of

I - Neutron probe count rate

I_{std} - Neutron probe standard counts
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>Volumetric soil water content (m m(^{-3}))</td>
</tr>
<tr>
<td>(\theta_{\text{dul}})</td>
<td>Volumetric water content at drained upper limit (m m(^{-3}))</td>
</tr>
<tr>
<td>(\theta_{\text{i}})</td>
<td>Initial water content in the soil</td>
</tr>
<tr>
<td>(\theta_{\text{l}})</td>
<td>Volumetric water content at lower limit (m m(^{-3}))</td>
</tr>
<tr>
<td>(\theta_{\text{r}})</td>
<td>Volumetric water content at refill point (m m(^{-3}))</td>
</tr>
<tr>
<td>(\theta_{\text{w}})</td>
<td>Volumetric water content at the wetting front (m m(^{-3}))</td>
</tr>
<tr>
<td>(\Delta S)</td>
<td>Change in soil water storage (mm)</td>
</tr>
<tr>
<td>(\circ)</td>
<td>Original trade name for product (x)</td>
</tr>
<tr>
<td>(\ell)</td>
<td>litre</td>
</tr>
<tr>
<td>(\psi_{\ell})</td>
<td>Leaf water potential (J kg(^{-1}))</td>
</tr>
</tbody>
</table>
APPENDIX A

(i) A Hydrus simulation of how soil suction plays a critical role in the operation of the wetting front detector. In an initially dry soil, gravity and suction are the driving force for water movement, and therefore the build-up suction in the WFD will cause water to flow into the detector. (ii) The position of the wetting front (and the soil tension above and below it) after detection by the WFD.

Soil Tension (cm)

-50 -40 -30 -20 -10 0 10 20
APPENDIX B

Soil water characteristic curve for the WFD experiment, Hatfield experimental farm, determined according to the ‘desorption’ method described by Hillel (1998); and Gardner (1986). The samples collected with a core sampler of a known volume were subject to different suction levels with a pressure plate until equilibrium was reached. The bulk density the soil sample was also determined.

\[y = 2E-08x^{7.2555} \]

\[R^2 = 0.9208 \]
APPENDIX C

Schematic layout of the WFD trial – Hatfield Experimental Farm showing only the treatment plots; border plots are excluded.

---|---|---|---|---|---|---|---|---|---
SWB	FS1	CF	MACH	FS1	NP	SWB	NP	MACH	FS2
MACH | NP | FS2 | FS1 | CF | MACH | FS1 | FS2 | SWB | CF
---|---|---|---|---|---|---|---|---|---
FS2 | CF | SWB | NP | SWB | FS2 | CF | MACH | FS1 | NP
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10)

Legend

FS1 - FuliStop 1
FS2 - FuliStop 2
MACH - Machingilana
SWB - SWB model
NP - Neutron probe
CF - WFD generated crop factor
APPENDIX D

The irrigation controller configuration of WFD experiment at Hatfield experimental farm showing the flow rates as well the stations that controlled each solenoid valve.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>FS1 rep 1</th>
<th>FS1 rep 2</th>
<th>FS1 rep 3</th>
<th>FS1 rep 4</th>
<th>FS1 rep 5</th>
<th>FS2 rep 1</th>
<th>FS2 rep 2</th>
<th>FS2 rep 3</th>
<th>FS2 rep 4</th>
<th>FS2 rep 5</th>
<th>NP</th>
<th>SWB</th>
<th>CF</th>
<th>Machingilana</th>
<th>Main meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solenoid valve</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Water meter number</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Control station</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of plots</td>
<td>*8</td>
<td>*8</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Flow rate</td>
<td>*544</td>
<td>*544</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>272</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td>340</td>
<td></td>
</tr>
</tbody>
</table>

N:B * Indicates that the solenoid valves for this replicates where connected to a common control station although each one shuts-off irrigation separately.
REFERENCES

TOLLEFSON, L.C., 1996. Requirements For Improved Interactive Communication Between Researchers, Managers, Extensionists, And Farmers (Summary). In: Irrigation Scheduling: From Theory To Practice. ICID/FAO. Rome, Italy.

