The petrography and geochemistry of the Platreef on the farm Townlands, near Potgietersrus, northern Bushveld Complex

By

Tawanda Darlington Manyeruke

Submitted in partial fulfillment of the requirements for the degree

MASTER IN SCIENCE

In the Faculty of Natural & Agricultural Science

Geology Department

University of Pretoria

Pretoria

Supervisor: Prof. W.D. Maier

Co-supervisor: Prof. S.A. de Waal

August 2003
TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION
 1.1. Introduction and Aims
 1.2. General Geology
 1.3. Methodology
 1.4. Previous Work

2. OVERVIEW OF THE BUSHVELD COMPLEX
 2.1. General
 2.2. The Rustenburg Layered Suite
 2.3. PGE Mineralisation

3. STRATIGRAPHY

4. PETROGRAPHY
 4.1. Sedimentary Rocks
 4.2. Platreef
 4.2.1 Lower Platreef
 4.2.2 Middle Platreef
 4.2.3 Upper Platreef
 4.3. Other Intrusive Rocks
 4.4. Sulphides

5. MINERAL CHEMISTRY
 5.1. Introduction
 5.2. Orthopyroxene
 5.3. Clinopyroxene
 5.4. Olivine
 5.5. Plagioclase

6. WHOLE ROCK CHEMISTRY
 6.1. Introduction
 6.1. Major Elements
 6.2. Trace Elements
 6.3. Platinum Group Elements

7. S-ISOTOPTES

8. DISCUSSION AND CONCLUSIONS
 8.1. Nomenclature
 8.2. Lithophile Major and Trace Element Data
 8.3. Contamination
 8.4. Platinum-Group Elements
 8.5. Sulphur Saturation and Magma Emplacement

9. ACKNOWLEDGEMENTS

10. REFERENCES
APPENDIX I: Analytical Methods
APPENDIX II: Thin Section Sample List
APPENDIX III: XRF Sample List
APPENDIX IV: Mineral Chemistry
APPENDIX V: Major Element, Trace Element and PGE
APPENDIX VI: TL1-03 Borehole Log
ABSTRACT

The Platreef is a platinum group element (PGE) and base metal enriched mafic/ultramafic layer situated along the base of the northern (Potgietersrus) limb of the Bushveld Complex. It represents an important resource of PGE which is only in its early stages of exploitation. The present study contains a detailed petrographic and geochemical investigation of a borehole core drilled on the farm Townlands. At this locality, the Platreef rests on metasedimentary rocks of the Silverton Formation of the Transvaal Supergroup, and is comprised of three medium grained units of gabbronorite/feldspathic pyroxenite that are separated by hornfels interlayers. I refer to the three platiniferous layers as the Lower, Middle and Upper Platreef. The Middle Platreef is the main mineralised layer, with total PGE contents up to 4 ppm. The Lower and Upper Platreefs are less well mineralised (up to 1.5 ppm).

Trace element and S-isotope data show compositional breaks between the different platiniferous layers suggesting that they represent distinct sill-like intrusions. The study also reveals a reversed differentiation trend of more primitive rocks towards the top of the succession. For example, pyroxene shows an increase in \(\text{Cr}_2\text{O}_3 \) with height coupled with a decrease in \(\text{TiO}_2 \). Olivine from the Upper Platreef has Fo contents between 80-83 (averaging Fo81) and those from the Middle Platreef have Fo from 78-83 (averaging Fo79).
The Upper and Lower Platreefs have $\delta^{34}S$ values averaging 8 $\%$ while the Middle Platreef has $\delta^{34}S$ values averaging 4 $\%$. All three Platreef layers have elevated $\delta^{34}S$ values, indicating addition of ^{34}S-enriched crustal sulphur. The model of contamination is supported by elevated K, Ca, Zr and Y contents in the Platreef relative to Critical Zone rocks from elsewhere in the Bushveld Complex, and by high Zr/Y ratios.

Well defined correlations between concentrations of the individual PGE, and between the PGE and S suggest that the concentration of the PGE was controlled by segregating sulphide melt. Alteration of the rocks, possibly due to infiltration by fluids derived from the floor rocks, caused localized redistribution of Cu and, to a lesser degree, the PGE.

A model is proposed whereby the Platreef magma assimilated calcsilicate and hornfels from the country rocks. The hornfels and calcsilicate of the Silverton Formation that forms the floor rocks to the Platreef on the farm Townlands constitute a possible source of the crustal sulphur. Release of S from the floor rocks caused S-supersaturation in the magma, followed by segregation of an immiscible sulphide melt. The sulphide melt scavenged the PGE from the silicate magma. The sulphides and the xenoliths were entrained by successive, metal-undepleted magma flows, causing high metal tenors in the sulphides and undepleted Ni contents in associated olivine.