Cellular effects of Coenzyme Q10 and Resveratrol in the SJL/J dysferlinopathy mouse model

By

Marnie Potgieter

Submitted in partial fulfillment of the requirements for the degree

Doctor of Philosophy
(PhD)

In the faculty of Health Sciences
Department of Anatomy
University of Pretoria
South Africa

Supervisor: Prof E Pretorius
Co-supervisor: Dr M Beukes

Department of Anatomy
Faculty of Health Sciences

2009

© University of Pretoria
Cellular effects of Coenzyme Q10 and Resveratrol in the
SJL/J dysferlinopathy mouse model

By
Marnie Potgieter

Supervisor: Prof E Pretorius
Co-supervisor: Dr M Beukes
Department: Anatomy

Degree: Doctor of Philosophy

Abstract

The muscular dystrophies (MDs) are genetic disorders of muscle degeneration due to mutations in genes that encode a wide variety of proteins. Dysferlinopathy encompasses a large variety of neuromuscular diseases characterized by the absence of dysferlin in skeletal muscle and an autosomal recessive mode of inheritance. Dysferlinopathy can manifest as limb girdle muscular dystrophy type 2B (LGMD 2B), Miyoshi myopathy (MM) or distal myopathy with anterior tibial onset (DMAT). The first symptoms usually appear during the second or third decade of life as clumsiness when running, fatigue when walking long distances and difficulty in climbing stairs. Progression of the disease eventually leads to a loss of ambulation.

A deficit in membrane-repair machinery in dysferlinopathy suggested a direct role for dysferlin in the Ca$^{2+}$-dependent membrane-repair process. Recently, dysferlin has also been implicated in the process of chemotaxis. Evidence exists that free radical mediated injury contributes to the pathogenesis of muscle necrosis in the muscular dystrophies. The imbalance of free radical synthesis and antioxidant capacity has been suggested to contribute to the necrotic process.

It is therefore imperative to explore the effect of antioxidant supplementation in the MDs. The present study followed a novel approach in investigating the cellular effects afforded by the supplementation of the SJL/J mouse model for dysferlinopathy with the antioxidants, Coenzyme
Q10 (CoQ10) and resveratrol. The study aimed to determine, at cellular level, the histopathology and ultrastructural changes in the SJL/J mouse model following a 90 day trial with antioxidant supplementation. In addition to studying the morphology, the study paid attention to non-specific parameters. The study mainly focused on the histopathology and ultrastructural alterations in the SJLL/J mouse. In addition the oxidative stress index of the affected quadriceps muscle was determined.

The outcome provides evidence that increased oxidative stress levels are present in the SJL/J mouse. Antioxidant supplementation with CoQ10 at 120mg/kg/day or a resveratrol/CoQ10 combination supplementation at 40 and 60mg/kg/day, decreased the levels of oxidative stress and dystrophic markers at a cellular level. In addition, increased physical strength was observed. This thesis provides evidence to create a new platform for combination therapeutic strategies.
Declaration

I, Marnie Potgieter, hereby declare that this thesis entitled:

Cellular effects of Coenzyme Q10 and Resveratrol in the SJL/J dysferlinopathy mouse model

which I herewith submit to the University of Pretoria for the Degree of Doctor of Philosophy in Anatomy, is my own original work and has never been submitted for any academic award to any other tertiary institution for any degree.

30 November 2009

Date

Marnie Potgieter
I will praise thee; for I am fearfully and wonderfully made: marvellous are thy works; and that my soul knoweth right well.

Psalm 139:14

Ek wil U loof, want U het my op ‘n wonderbaarlike wyse geskep. Wat Ugedoen het vervul my met verwondering.
Acknowledgements

Praise be to my Father in Heaven. Thank you, dear Lord for the opportunity, not only to walk on Thy ways in this world, but for carrying me when I get tired. Thank you for not only allowing me to dream, and for making them true, but for giving me this precious opportunity to live a dream.

Thank you to my Mother and Father for your love, constant support, and motivation throughout the years. Thank you for all the opportunities you gave me in life, it is because of you that I could achieve this great milestone. Thank you for all your prayers. My dear Mother, thank you for being my best friend and for always being just a phone call away. Thank you for always making sure that I have all I could ever need and more, throughout my life. You are God’s ever-flowering rose in my garden of hope. Thank you for the sketches that you’ve made for this thesis. It adds a very special touch.

Piet and Faan, my dear brothers. You have always been a great inspiration to me. Thank you for your love and support, and for believing in me.

Johan. How will I ever be able to put the gratitude in my heart to words. Thank you for always being by my side; for your love, support, and motivation. Thank you for always being there when I needed you most. For sacrificing so many things you could have had in life, to make sure I have all I needed.

In loving memory of dearest Grandfather, Piet Potgieter. How I wish I could share with you this dream that you have made possible for me. I am so grateful for all the wonderful times I had with you. For all the things I have learnt from you, and for all you have done for me. I know you were my greatest admirer; you were also my greatest hero. Your legendary colours paint a rainbow in my sky every day. You will forever live on in my heart, and I will always try to do what you have so masterly done as a way of living; to give without ever expecting anything in return, and to love, as if you have never been hurt.

Prof Resia Pretorius, my study leader and supervisor for four years. Thank you for your valuable contribution to make this dream come true. Thank you for the opportunity that you have given me to accomplish this milestone. Thank you for so unselfishly sacrificing your time to help me through this thesis.

Dr Mervyn Beukes, co-supervisor for the study. Thank you for all the long hours spent in the lab with me. Thank you for your words of encouragement towards the end when I struggled to keep up.

Dr Roland Auer, head of UPBRC at the time, Michelle Auer and Santa Meyer (veterinary technologists). Thank you for your commitment and dedication to make the animal study a huge success. I am grateful for all the time you have spent so selflessly to make this possible for me. Thank
you for always doing more than was expected from you. Thank you to Arno Louw, UPBRC, for all you have done to get the tensile strength test meter in time.

I owe gratitude to the staff of the Department of Anatomy, and the head of the department, Prof Jan Meiring, for having me as a student and for the great opportunity to build my career in science. Also to the Department of Biochemistry, Prof Jan Verschoor, Prof Zeno Appostolides, Nicolene Fourie, and Sandra van Wyngaardt. Thank you for having me as a guest student, for making your facilities available to me, and for your friendliness during the numerous hours I have spent in your labs.

I am also in debt to the Unit for Electron Microscopy. I am grateful for the opportunity that I had to spend so many hours in the facility, to have learnt so many things. Thank you to the staff, for all your assistance and support. Uncle Chris, thank you for being the shoulder I could cry on whenever I got tired. Thank you for your advice and encouragement. Thank you for always making me feel so at home in the facility.

Warren Vieira, I’m forever in debt to you. Thank you for all the assistance with the stats. Thank you for always being willing to help and for being available whenever I needed you.

Nanette, thank you for your constant motivation and encouragement, and for all assistance that you’ve offered so selflessly during the course of my study. Thank you for so many good years of friendship. We have now accomplished what we have started some four years ago. I am proud of you!

My true and trusted friend, Fiona. I thank you for all your support; for helping me out in a time when I needed you most. I greatly appreciate all you have done for me.

My dear friend Jana, thank you for all your prayers and constant support in good times and in bad. I am so grateful that the Lord, our God, has given me this precious friendship; a sister to run with me in this challenging race to the purpose of life on earth.

Wendy, thank you very much for the white blood cell counts.

Mrs Janis de Graaf, thank you very much for the numerous hours that you have sacrificed to help me with the grammar.

To all my friends and family, thank you for your love and support.
TABLE OF CONTENTS

CHAPTER ONE: INTRODUCTION .. 1

CHAPTER TWO: LITERATURE REVIEW .. 7

2.1 Introduction .. 7

2.2 Muscular dystrophy ... 8

2.3 Limb-girdle muscular dystrophies .. 15

2.4 Dysferlinopathy .. 17
 2.4.1 Clinical phenotypes ... 19
 2.4.2 Clinical features ... 22
 2.4.3 Muscle pathology .. 26
 2.4.4 Muscle involvement ... 28
 2.4.5 Mutations ... 30
 2.4.6 Pathogenic mechanism of dysferlinopathy .. 30

2.5 Dysferlin ... 32
 2.5.1 Other members of the ferlin-protein family ... 33
 2.5.2 C2 domains ... 36
 2.5.3 Dysferlin-mediated membrane repair: response to membrane wounding 37
 2.5.4 Proteins that interact with dysferlin ... 39
 2.5.4.1 Caveolin-3 ... 39
 2.5.4.2 Calpain 3 .. 40
 2.5.4.3 Annexins a1 and a2 .. 41
 2.5.4.4 AHNAK .. 42
 2.5.4.5 Affixin (β-parvin) ... 43
 2.5.4.6 Myogenin ... 44
 2.5.4.7 Bin 1 .. 44

2.6 Diagnosis and therapy .. 45

2.7 Oxidative stress .. 47
 2.7.1 Susceptibility of skeletal muscle to oxidative stress .. 49
 2.7.2 Evidence of oxidative stress in muscular dystrophy .. 49

2.8 Implication for antioxidants .. 50

2.9 Prospective antioxidants .. 53
 2.9.1 Coenzyme Q10 ... 53
 2.9.2 CoQ10 as an antioxidant ... 55
 2.9.3 Resveratrol ... 57

2.10 Study objectives ... 59
CHAPTER THREE: A 90 DAY ANTIOXIDANT SUPPLEMENTATION TRIAL IN THE
SJL/J MOUSE MODEL FOR DYSFERLINOPATHY ...61

3.1 Introduction ..61
3.2 Animal models in scientific practice ...61
3.3 SJL/J mice ..63
 3.3.1 Origin of the SJL/J model ...63
 3.3.2 General information on the SJL/J strain ..64
 3.3.3 Justification of the model for dysferlinopathy studies65
 3.3.4 Histological characteristics of the SJL/J model ..65
 3.3.5 Muscle regenerative capacity ..66
3.4 The animal study ...67
 3.4.1 Design and layout ..67
 3.4.2 Dose calculation, dose preparation, supplements, and solvents70
 3.4.3 Routine procedures and observations during the course of the 90 day study
 72
 3.4.3.1 Dosing72
 3.4.3.2 Weighing ..73
 3.4.3.3 Tensile strength test ..73
 3.4.3.4 Food supplementation ..75
 3.4.3.5 Observations ..75
 3.4.4 Findings, difficulties and limitations ..75
 3.4.5 Health guidelines ...80
3.5 Termination procedures ..82

CHAPTER FOUR: MEASURING NON-SPECIFIC PARAMETERS NOT DIRECTLY
RELATED TO MUSCLE CELL STRUCTURE, AND NOT DIRECTLY
AFFECTING HISTOPATHOLOGY IN DYSFERLIN-DEFICIENT
MUSCULAR DYSTROPHY ...83

4.1 Introduction ..83
4.2 Materials and methods ..85
 4.2.1 Weights and tensile strength ..85
 4.2.2 Haematological analysis ..86
 4.2.3 Laboratory tests ...86
4.3 Results and discussion ..87
 4.3.1 Body weight ...87
 4.3.2 Physical strength ...90
 4.3.3 Blood enzyme levels (ck & ldh) ...94
CHAPTER FIVE: HISTOLOGICAL ASSESSMENT OF SJL/J MICE TREATED WITH COENZYME Q10 AND RESVERATROL .. 102

5.1 Introduction .. 102
5.2 Materials and methods .. 106
 5.2.1 Morphology ... 106
 5.2.2 Morphometry ... 107
 5.2.3 Statistical analyses .. 107
5.3 Results and discussion .. 108
 5.3.1 Histological findings .. 108
 5.3.1.1 Necrosis .. 124
 5.3.1.2 Inflammatory infiltrate and the role of macrophages 125
 5.3.1.3 Muscle regeneration .. 126
 5.3.1.4 Small fibers and fiber splitting .. 127
 5.3.1.5 Ring fibers .. 128
 5.3.1.6 Connective tissue .. 129
 5.3.1.7 Capillaries ... 130
 5.3.1.8 Centronucleation .. 131
 5.3.2 Morphometric findings ... 132
 5.3.3 Fiber size ... 140
 5.3.3.1 Variation in quadriceps muscle fibers ... 140
 5.3.3.2 Hypertrophic fibers .. 142
 5.3.3.3 Variation in gastrocnemius muscle fibers .. 143
 5.3.3.4 From the morphometric results ... 143
5.4 Concluding remarks ... 144

CHAPTER SIX: INVESTIGATION TO THE ULTRASTRUCTURAL CHANGES IN SJL/J MICE FOLLOWING ANTIOXIDANT SUPPLEMENTATION .. 147

6.1 Introduction .. 147
 6.1.1 Overview of skeletal muscle ultrastructure .. 147
6.2 Materials and methods .. 151
6.3 Results and discussion .. 153
 6.3.1 Ultrastructural observations with TEM ... 153
 6.3.2 Unravelling the ultrastructural findings ... 167
 6.3.3 Ultrastructure on the surface ... 172
6.4 Concluding remarks .. 175
CHAPTER SEVEN: OXIDATIVE STRESS IN THE SJL/J MOUSE AND THE EFFECT OF COENZYME Q10 AND RESVERATROL SUPPLEMENTATION 177

7.1 Introduction ... 177
7.2 Materials and methods .. 179
 7.2.1 Total antioxidant status .. 180
 7.2.2 Lipid peroxidation ... 180
 7.2.3 Oxidative stress index ... 181
 7.2.4 Statistical analysis ... 181
7.3 Results and discussion .. 182
 7.3.1 Total antioxidant status .. 183
 7.3.2 Lipid peroxidation ... 184
 7.3.3 Degree of oxidative stress .. 186
 7.3.4 Justification of the approach followed ... 187
 7.3.5 Denotation of the results .. 188
7.4 Concluding remarks ... 190

CHAPTER EIGHT: CONCLUDING DISCUSSION ... 193

REFERENCES ... 200
LIST OF FIGURES

Figure 2.1: Schematic representation of Gower’s sign in the muscular dystrophies. .. 9

Figure 3.1: Tecniplast IVC cage with individual air supply (top removed, lying on the left)... 68

Figure 3.2: Oral dosing. ... 72

Figure 3.3: Syringe used for oral dosing at 200µl. .. 72

Figure 3.4: Weighing of an SJL/J mouse. .. 73

Figure 3.5: The tensile strength test meter. .. 73

Figure 3.6: Tensile strength test. .. 74

Figure 3.7: The termination procedure. A) Blood are collected from cardiac puncture; B) in a serum tube; C) Muscle tissue are snap-frozen in liquid nitrogen; D) Tissue sampling for microscopic analysis; E) Tissue collection in glass vials containing fixative; F) Mouse prior to dissection. ... 82

Figure 4.1: Average weights of experimental groups on specific dates as stipulated in Table 4.1 with error bars representing the standard deviation (SD).. 88

Figure 4.2: Animal weights increased significantly (P < 0.00001) in all groups from day 1 to day 90 with error bars representing the standard deviation (SD). .. 89

Figure 4.3: Average tensile strength of mice for five weeks in the 90-day trial. There was no statically significant difference between the assessed days for the various groups (P = 0.89). Standard deviation (SD) is represented by the error bars. 90

Figure 4.4: The trend in average tensile strength of experimental groups over the 5 week period, following supplementation with antioxidants. Statically significant differences (*) between certain groups in terms of their tensile strengths (P = 0.0036) occurred. The average strength of the low CoQ10 group was found to be significantly smaller than the high CoQ10 and resveratrol/CoQ10 combination groups. The resveratrol group was only found to be significantly smaller than the resveratrol/CoQ10 combination group. Error bars represent standard deviation (SD). 91

Figure 4.5: The condition of every animal was monitored before (A) and after (B) every tensile strength test. C) An animal whose grip broke, just after performing the tensile strength test. D) An animal with a firm grip during tensile strength testing. E) An animal showing adaptive behaviour. The animal prematurely released its grip every time force was exerted to the tail, and orientates its body in a side-ways direction on the grid. ... 93

Figure 4.6: Mean serum CK and LDH levels (U/I 37°C) with error bars representing standard error (SE)......................... 95

Figure 4.7: Average percentage of leukocyte species assessed per group. Statically significant differences (*) between certain groups in terms of their eosinophil counts (blue line) (P = 0.0104) and neutrophil counts (yellow line) (P = 0.0454) occurred. Standard deviation (SD) is given by the error bars. ... 97

Figure 4.8: Blood smears stained with Wright’s stain. Leukocytes from SJL/J mouse blood, a) Basophil; b) Eosinophil; c) Neutrophil; d) Monocyte; e) Lymphocyte. Scale bar = 10 µm ... 98

Figure 5.1: Schematic representation of skeletal muscle development and organization of muscle fibers and their connective tissue ensheathments. (Adapted from Kelly et al., 1984).. 104
Figure 5.2: Quadriceps muscle sections from SWR/J mice at 27 weeks of age, representing the negative control group of the study. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A) A nerve bundle (1), with axons (2), and blood vessels (3) are present in this section. (B) Myonuclei (A, 4 & B, 1) and capillaries surrounding healthy myofibers (A, 5 & B, 2) are present. Scale bars = 50μm .. 108

Figure 5.3.1: Quadriceps muscle sections from SJL/J mice at 14 weeks of age. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A) Perimysial and B) endomysial inflammatory changes are present (arrows). C) Mononuclear cells can be observed between fibers (arrow). D) Ongoing fiber necrosis was observed, where the degenerating fiber is invaded by mononuclear cells, presumably macrophages (arrow). E) Early stages of the necrotic process in a muscle fiber (1) with invasion by mononuclear phagocytic cells (2). F) A cluster of smooth muscle cells (arrow). Scale bars = 50μm ... 109

Figure 5.3.2: Quadriceps muscle sections from SJL/J mice at 14 weeks of age. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A & B) A relatively large blood vessel (arteriole) with the presence of a large number of erythrocytes in the lumen. Mononuclear cells are present in the extracellular space surrounding the arteriole (A & B, 1). Very small adipose cells are present in this region (A, 2). C) Longitudinal section of muscle fibers shows irregularly curved peripheries. D) Capillaries surrounding and indenting fibers (arrows & E, 1). E) Nerve bundles (asterisks), with blood vessels in the vicinity (2), and a muscle spindle (3) are present in the same region. F) This section display a nerve bundle with the perineurium (1), epineurium (2), individual neurons (3), and the nuclei of the perineurial cells (4) visible. Scale bars = 50μm .. 110

Figure 5.4.1: Quadriceps muscle sections from the positive control group; 27 week-old SJL/J mice treated with placebo. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. Inflammatory infiltrate is prominent in this group (asterisks). Numerous fibers in this group display central neculation (white circles). A) Fiber splitting is prevalent (1) and mononucleated cells are present in inflammatory regions (2). B) ‘Ghost cells’ (1) as a result of necrosis (asterisks) is observed. Mononucleated cells (2) are invading necrotic fibers (3). Small diameter fibers (4) are observed in nearby regions. C) Ghost cells (1) and moth-eaten appearance of cells is present. D) A necrotic fiber (1) and dense connective tissue (2) in extracellular space of fibers on a longitudinal section. E) The occurrence of ghost cells (1) in inflammatory regions (asterisk) is frequent. F) Fiber splitting (1) and hypertrophic fibers (2) are present. Scale bars = 50μm 113

Figure 5.4.2: Quadriceps muscle sections from the positive control group; 27 week-old SJL/J mice treated with placebo (stained with Toluidine Blue O and Gill’s Haematoxylin). A) Ring fibers are present (1). B) In some fibers myofibrils show a ‘streaming’ appearance (A, 1 & B, 1). B) Adipose cells (2) and vacuoles (3) are present. Scale bars = 50μm 114

Figure 5.5.1: Quadriceps muscle sections from the 27 week-old SJL/J group treated with resveratrol. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A & B show fiber splitting as a group of nested fibers (1) in an area with moderate inflammatory infiltrate (asterisks), that contain numerous mononucleated cells (2), and fiber remnants (A, 3). C) Ghost cells (1) and fibers of which the fibrils are ‘streaming’ (2) can be observed. D) Ring fibers (1) are present. E) Fibers of which the myofibrils are streaming (1) in an area infiltrated by adipose cells (2). F) Vacuolation (1) occurs in fibers of this group. Connective tissue in the perimysial areas (2) are presumably collagen, with the presence of fibroblasts (3) with thin extending processes. Scale bars = 50μm .. 116

Figure 5.5.2: Quadriceps muscle sections from of the 27 week-old SJL/J group treated with resveratrol. Samples were stained with Toluidine Blue O and Gill’s Haematoxylin, and display (A & B) capillaries surrounding and indenting fibers (1) and fibers which appear moth-eaten (2). Scale bars = 50μm .. 117

Figure 5.6.1: Quadriceps muscle sections from the 27 week-old SJL/J group treated with a low concentration of CoQ10. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A) Groups of small fibers (1) in a region with dense connective tissue (2) are present in perimysial areas. An ongoing necrotic process (3) and adipose infiltration (4) is present. B) A small group of two small fibers (1) are present with mononuclear cells (2) in the position where a fiber has undergone necrosis. C-E) Invaginations along the periphery of the fibers on a longitudinal section (pink arrows) are present. Blood vessels (C, 1) are present in the extracellular space. F) A nerve bundle (1) surrounded by a perineurium (2). Large myelinated fibers measuring up to 8μm in diameter probably represent proprioceptive afferents (3). Scale bars = 50μm
Figure 5.6.2: Quadriceps muscle sections from the 27 week-old SJL/J group treated with a low concentration of CoQ10. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. A) Tissue from this group displays an of 34.3% central nucleation. B) Nuclei, distinctly different in appearance from myonuclei, can be seen in this group, in intact fibers (green arrows). The position of the nuclei fit that of satellite cells. Scale bars = 50μm ... 119

Figure 5.7: Quadriceps muscle sections from the 27 week-old SJL/J group treated with a high concentration of CoQ10. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. Very little (A) to mild (B & C) and moderate (D) degeneration and perimysial inflammatory changes with endomysial involvement (A & D) are present. A number of small capillaries are present around fibers (white arrows). Fiber splitting (B & D, 1) is present, but less frequent. Mild adipose tissue infiltration (D, 2) is observed. Vacuolation (D, 3) is minimally distributed, while moth-eaten appearance (C, D & E, yellow asterisks) of cells is more frequent. F) Nuclei, distinctly different in appearance from myonuclei, are present (pink arrows; A, B, E & F). The position of the nuclei fit that of satellite cells Scale bars = 50μm ... 121

Figure 5.8: Quadriceps muscle sections from the 27 week-old SJL/J group treated with resveratrol/CoQ10 combination. Sections were stained with Toluidine Blue O and Gill’s Haematoxylin. Minimal (A & B) to mild (C, D & E) degenerative and perimysial inflammatory changes with endomysial involvement (C, D & E) are observed in this group. Fiber splitting (A, B & D, 1) occurs less frequently. Minimal adipose tissue infiltration (D, 2) is present. Ghost cells as a result of necrosis (D, 3), vacuolation (E, 1), and moth-eaten appearance (C & D, yellow asterisks) of cells are minimally distributed. Mononucleated cells (C, D & E, yellow arrows) are present in affected areas. Ring fibers (E, 2) are observed, where it affected only part of the fiber. Nuclei, possibly belonging to satellite cells are observed in intact fibers (A & B, pink arrows). Scale bars = 50μm 123

Figure 5.9: Percentage central nuclei in gastrocnemius and quadriceps muscle fibers. .. 132

Figure 5.10: Minimum, mean (middle part of bars) and maximum minimal Feret’s diameter of fibers measured in Quadriceps muscle tissue, with error bars representing the standard deviation (SD). ... 134

Figure 5.11: Histograms representing the distribution of mean fiber diameters in quadriceps muscles of experimental groups. .. 135

Figure 5.12: Minimum, mean (middle part of bars) and maximum minimal Feret’s diameter of fibers measured in Gastrocnemius muscle tissue, with error bars representing the standard deviation (SD). ... 136

Figure 5.13: Histograms representing the distribution of mean fiber diameters of gastrocnemius muscles of experimental groups. .. 137

Figure 5.14: Relationship between mean minimal Feret’s diameters measured in quadriceps muscle fibers and gastrocnemius muscle fibers. The error bars represent the standard deviation (SD). ... 140

Figure 6.1: Schematic representation of the components in and around skeletal muscle myofibrils on an ultrastructural level. (Adapted from Kelly et al., 1984) ... 148

Figure 6.2: Electron micrographs from the negative control, SWR/J mice at 27 weeks of age that received placebo. A) Sarcomere and associated components. B) Small vacuoles between normal myofibrils. C) Z-discs appeared thicker (arrows). D) Normal sarcomeres, with collagen fibers close to the periphery of the muscle fiber. Scale bars = 1μm............. 153

Figure 6.3: Electron micrographs from the age control group, SJL/J mice at 14 weeks of age that received no treatment. A) Mitochondria in the subsarcolemmal position and between myofibrils. The arrows point to vesicles accumulating under the sarcolemma. B) Empty vacuoles in a Z-disc position. The arrow point to a tubular structure in the region. C) Prominent Z-discs in healthy appearing myofibrils, intercepted by the presence of small vacuoles. D & E) Vacuoles between mitochondria. F) A myonucleus (left) and satellite cell (right). Scale bars = 1μm... 155
Figure 6.4: Electron micrographs from the positive control group, SJL/J mice at 27 weeks of age that received placebo. (A) Myofibrillar disruption that leads to myofibrillar loss due to necrosis (asterisks). (B) A bent in the myofibril at the level of thin filaments (double bracket) with dilated tubules (arrow) visible. (C) Small myofibrils in a state of hypercontraction. (D) Degenerative changes characterized by large open spaces, dilated tubules and mitochondrial remnants between myofibrils. (E) A myonucleus in the central position of a fiber. (F) Subsarcolemmal vacuoles (black arrow) are present. Collagen fibers (asterisk) can be seen in the extracellular spaces. Scale bars = 1μm ... 157

Figure 6.5: Electron micrographs from the resveratrol group. (A) Occasional myofibrillar degeneration. (B) Mitochondria show normal distribution, with large numbers found in the subsarcolemmal position (C). A plasmalemmal gap and basal lamina thickening is present on this freeze-substituted sample (C). A strange connection (C, arrow) of unknown origin between two mitochondria. Vacuoles (D) can be observed between myofibrils, presumably resultant from mitochondrial degeneration. (E & F) Degeneration of a mitochondrion. Scale bars = 1μm ... 159

Figure 6.6: Electron micrographs from the low CoQ10 group. (A & B) Myofibrillar disruption leads to unorderly arrangement of myofibrils in this group. Larger magnification (B) shows Z-disc loss (black arrow) in some myofibrils as well as thick filament disorientation that resulted from myofibrillar splitting (whit arrow). (D) Myofibrillar arrangement around indentations in myofibrils. Inflammatory cells, presumably macrophages, are present at the indent. (E) Thick and thin filament disorientation and probable Z-disc loss in myofibrils arranged around a fiber indent. (F) Collagen bundles (asterisk) were present around fibers in this group. Scale bars = 1μm ... 161

Figure 6.7: Electron micrographs from the high CoQ10 group. (A) An intact membrane (black arrow) on a transverse electron micrograph with a thickened basal lamina (white arrow). (B) Plasmalemmal discontinuities are present in some areas. (C) Small vacuoles can be seen between myofibrils. (D) A fiber in which Z-disc streaming (arrow) occurred. Some mitochondrial displayed areas that appeared optically empty (white areas). (E) Myofibrils bend around an indentation in a myofiber. (F) An area of focal accumulation of tubular structures surrounding a myofibrill-like segment. Scale bars = 1μm
.. 163

Figure 6.8: Electron micrographs from the high CoQ10 group. (A) A nucleus in the peripheral position and bag structure of unknown origin. (B) The bag structure was filled with vacuolar structures. In an electron micrograph from the resveratrol/CoQ10 combination group (C) a similar structure was observed. Scale bars = 1μm ... 164

Figure 6.9: Electron micrographs from the resveratrol/CoQ10 combination group. (A) Myofibrils show ‘missing’ I-bands (asterisk), this does not represent myofibrillar loss or breakdown, and is just an effect of sectioning. The I-bands appear distinctly long in size (white brace). (B) Myofibrils bend around an indentation in a myofiber. (C) Mitochondrial and vacuole accumulation in areas of myofibrillar disruption. (D) A centrally located myonucleus. (E) The area around a central nucleus. Endoplasmic reticulum (er), mitochondria (m), round spaces, presumably lysosomal (l) which contained dense debris and glycogen particles are visible. (F) Membranous whorls (arrows) beneath the sarcolemma. Scale bars = 1μm 165

Figure 6.10: A scanning electron micrograph of a mitochondrion in the subsarcolemmal position from the age control group. The mitochondrion appears normal, but the sarcolemma is disrupted. Scale bar = 2μm ... 170

Figure 6.11: Scanning electron micrographs showing myofibrillar disruption and loss in the placebo treated positive control group (A & B), and solid fibers (C) from the negative control group. Scale bar = 2μm ... 172

Figure 6.12: Vesicle accumulation under disrupted membranes from the resveratrol group (A), the low CoQ10 group (B), and the resveratrol/CoQ10 combination group (C), visualized by SEM. Scale bars = 2μm ... 173

Figure 6.13: Scanning electron micrographs of the indentations seen in transmission electron micrographs (present chapter) and light microscopy images (chapter 5). Micrograph (A) represents fibers from the negative control group, (B) represents fibers from the positive control group, and (C) represents a fiber from the high CoQ10 group. SEM clarified the uncertainty about the indentations; their formation occurred before fixation. Scale bars = 20μm ... 174
Figure 7.1: Standard curves for protein and malondialdehyde (MDA) standards. The formulas on the graphs were used for polynomial and linear regression analysis, respectively. ... 183

Figure 7.2: Levels of total antioxidant status in quadriceps muscles of SJL/J mice. The lowest antioxidant activity is observed in muscle samples from the age control group. The resveratrol/CoQ10 combination group shows a significantly lower antioxidant activity than the low CoQ10 group. The resveratrol and both CoQ10 groups all display higher antioxidant activity than what is observed in the untreated positive control group, although this difference is not significant. Significance at a level of 0.05 is indicated by * ... 184

Figure 7.3: Levels of lipid peroxidation in quadriceps muscles of all groups in the present study. An increase in MDA levels was detected in the positive and age control groups, when compared to the negative control and the treatment groups. All groups supplemented with antioxidants showed decreased levels of MDA when compared to the positive and age control groups and similar to MDA levels in the negative control group. Significance at a level of 0.05 is indicated by * 185

Figure 7.4: The tendency in the degree of oxidative stress in SJL/J mice untreated and supplemented with antioxidants. The age control group showed a significantly higher OSI in comparison to all the other groups assessed. OSI is expressed in arbitrary units (AU). Significance at a level of 0.05 is indicated by * ... 186
List of Tables and Text Boxes

Table 2.1 The Muscular Dystrophies ... 13

Table 3.1 Summary of subject classification in group order 69

Table 3.2 Important events and observations during the 90 day trail 78

Table 4.1 Days chosen for weight assessment and the reason for its utilization 88

Table 4.2 Statistical comparison serum CK and LDH levels of the six experimental groups ... 94

Table 4.3 Mean CK and LDH levels ± standard deviation (SD), and standard error (SE) for CK and LDH data ... 94

Table 4.4 Statistical comparison performed upon the various leukocyte cell species derived from the blood of the assessed groups ... 96

Table 4.5 Percentage leukocyte species per group .. 96

Table 5.1 Summary and scoring of incidence of dystrophic processes in experimental groups ... 124

Table 5.2 Summary of the mean minimal Feret’s diameter of muscle fibers from gastrocnemius and quadriceps muscles, the diameter range, the amount of fibers analysed and the number of fibers that displayed central nucleation ... 138

Table 5.3 Summary of the statistical comparison of fiber size between different groups and different muscles ... 139

Table 7.1 A summary of groups assessed for antioxidant status, lipid peroxidation, and oxidative stress index. Specification of animal age, treatment doses, and results from the TAS and TBA assays, as well as the OSI calculations are presented ... 182

Text box 2.1 Gowers’ Sign .. 10

Text box 2.2 Different stages of progression in dysferlinopathy 23

Text box 4.1 The ‘Drumstick appearance’ .. 99
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>percentage</td>
</tr>
<tr>
<td>®</td>
<td>registered sign</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celcius</td>
</tr>
<tr>
<td>µl</td>
<td>microliter</td>
</tr>
<tr>
<td>µm</td>
<td>micrometer</td>
</tr>
<tr>
<td>10q24</td>
<td>the gene location for MYOF</td>
</tr>
<tr>
<td>11q12-13</td>
<td>gene location for AHNAK</td>
</tr>
<tr>
<td>14q32</td>
<td>gene location for AHNAK nucleoprotein 2</td>
</tr>
<tr>
<td>2p13</td>
<td>gene location for DYSF</td>
</tr>
<tr>
<td>8-OH-dG</td>
<td>8-hydroxy-deoxyguanosine</td>
</tr>
<tr>
<td>A/J</td>
<td>Albino mouse strain with spontaneous progressive muscular dystrophy due to dysferlin mutation</td>
</tr>
<tr>
<td>aa</td>
<td>amino acids</td>
</tr>
<tr>
<td>A-band</td>
<td>anisotropic band</td>
</tr>
<tr>
<td>ABTS⁺</td>
<td>2,2'-azinobis(3-ethylbenzothiazoline sulphonate)</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>ADP-Fe³⁺</td>
<td>Adenosine diposphate iron tri-oxide</td>
</tr>
<tr>
<td>AED</td>
<td>animal equivalent dose</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>AU</td>
<td>arbitrary units</td>
</tr>
<tr>
<td>Balb/c</td>
<td>albino, laboratory-bred strain of the house mouse</td>
</tr>
<tr>
<td>BAR</td>
<td>family of genes</td>
</tr>
<tr>
<td>BHP</td>
<td>tert-butylhydroperoxide</td>
</tr>
<tr>
<td>BHT</td>
<td>butylated hydroxytoluene</td>
</tr>
<tr>
<td>Bin-1</td>
<td>conserved member of the BAR family of genes implicated in myoblast differentiation and membrane deformation</td>
</tr>
<tr>
<td>BMD</td>
<td>Becker muscular dystrophy</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>BSA</td>
<td>Body surface area</td>
</tr>
<tr>
<td>BW75Sc</td>
<td>Caenorhabditis elegans</td>
</tr>
<tr>
<td>C2C12</td>
<td>myoblast mouse cell line</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium</td>
</tr>
<tr>
<td>CAT</td>
<td>catalase</td>
</tr>
<tr>
<td>CAV3</td>
<td>caveolin 3 gene</td>
</tr>
<tr>
<td>CD4⁺</td>
<td>A glycoprotein expressed on the surface of T helper cells (cluster of differentiation)</td>
</tr>
</tbody>
</table>
cDNA complementary deoxyribonucleic acid
CH calponin homology
CK Creatine kinase
CMD/MDC Congenital muscular dystrophies
Co Company
CO₂ Carbon dioxide
CoQ Coenzyme Q
CoQ10 Coenzyme Q10
COQ2 OH-benzoate prenyl-transferase gene
CoQH₂ reduced form of CoQ10/ubiquinol
COX cyclooxygenase
CPK creatine phosphokinase
CT computed tomography
C-terminal carboxy terminal
Cu,Zn SOD Copper/Zinc superoxide dismutase
DACM distal anterior compartment myopathy
DAPC dystrophin associated protein complex
DFBN9 a specific type of autosomal recessive deafness in humans
DGC Dystrophin-glycoprotein complex
DHEA dehydroepiandrosterone
DHPR dihydropyridine receptor
DM Myotonic dystrophy
DMAT Distal myopathy with anterior tibial onset
DMD Duchenne muscular dystrophy
DNA deoxyribonucleic aced
DPC dystrophin protein complex
DTT 1,4-Dithiothreitol
dy/dy homozygous dystrophic mouse strain with dy mutation, suggested to be a mutation in the M-chain gene; animals display a more severe phenotype than the mdx mouse
dysferlin gene
DYSF Dysferlin
Dysf" Allele responsible for decreased levels of dysferlin in SJL/J mice; inflammatory myopathy allele
E Expect value. The E-value is a parameter that describes the number of hits on can ‘expect’ to see by chance when searching a database of a particular sized.
EAE experimental autoimmune encephalitis
EAM Autoimmune myositis
EBD extensor digitorum brevis
ECM extra cellular matrix
EDL extensor digitorum longus
EDMD Emery-Dreifuss muscular dystrophy
EDTA ethylenediaminetetraacetic acid
EHL extensor hallicus longus
EM electron microscopy
F28+ 28th generation
F4/80 an antibody used to identify mouse macrophages
FA focal adhesion
FDA Food and Drug Administration
FER-1 C. elegans ferlin-1 gene
FER-1 nematode protein ferlin-1
FER1L1 dysferlin
FER1L2 otoferlin
FER1L3 myoferlin
FER1L4-6 proteins that are predicted form the human and mouse genomic sequences but have not yet been characterized
FKRP Fukutin-related protein
FSHD Facioscapulohumeral dystrophy
g gauge
g gram
Glocuse-6-P glucose-6-phosphate
Gluconate-6-P Gluconate-6-phosphate
GM-CSF monocyte-colony stimulating factor
GPx glutathione peroxidase
GRMD golden retriever muscular dystrophy
GSH glutathione
H Hydrogen
H2O2 hydrogen peroxide
HED human equivalent dose
HEPA high efficiency particulate air
HMG-CoA 3-hydroxy-3-methylglutaryl-coenzyme A
H-zone Heller zone
I-band isotropic band
IFCC International Federation of Clinical Chemistry and Laboratory Medicine
IFN-γ interferon-γ
IgE immunoglobulin E
IL interleukin
ILK integrin-linked kinase
IU international units
IVC individually ventilated microisolator-cages
IkBα nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
K conversion factor
K2PO4 potassium phosphate
Kb kilobyte
NCL-Hamlet Mouse monoclonal antibody against dysferlin
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NK natural killer
nm nanometer
nmol/g nanomoles per gram
NO• nitric oxide
NOS nitric oxide synthase
N-terminal Nuclear terminal
O2− superoxide
O3 singlet oxygen
OGHD oxoglutarate dehydrogenase
OH− hydroxyl radical
OH hydroxide
ONOO− peroxynitrite
OPMD Oculopharyngeal muscular dystrophy
OSI oxidative stress index
OsO4 osmium tetroxide
PA Pennsylvania
PBS Phosphate buffered saline
PD proximodistal phenotype
pH measure of the acidity or basicity / potential of Hydrogen
POMT1 Protein O-linked mannose β-1,2-N-acetylglucosaminyltransferase.
PT posterior tibial
PUFA polyunsaturated fatty acids
P-value level of significance / probability value
r²-value coefficient of determination
RNA Ribonucleic acid
ROS reactive oxygen species
Rpm revolutions per minute
RuO4 ruthenium tetroxide
S100A10 a protein encoded by the S100A10 human gene
S100A11 a protein encoded by the S100A11 human gene
SD standard deviation
SE standard error
sec seconds
SEM scanning electron microscopy
SH3 domain in myoferlin that may mediate interactions with other proteins
SJL/J Swiss Jim Lambert; Dysferlin-deficient strain of Swiss mice; animal model for dysferlinopathy
SJL/Olac strain obtained by the Clinical Research Centre, Harrow from the Jackson Laboratory, Bar Harbor in 1975, to OLAC, now Harlan Laboratories in 1977. This strain is now known as SJL/J Olahsd.

SOD superoxide dismutase
SR sarcoplasmic reticulum
STIR short-time-inversion-recovery
SWR/J Swiss mice used widely in research as general purpose strain
TA anterior tibial/tibialis anterior
TAS Total antioxidant status
TBA thiobarbituric acid
TBARS TBA reactive substances
TCA trichloroacetic acid
TCAP Telethonin, a protein that interacts with, or “caps”, another protein in muscle called titin.
TEM transmission electron microscopy
TNF tumor necrosis factor
TNFα tumor necrosis factor-α
TNFα(-/-) TNFα null mice
TRIM 32 One of 37 TRIM proteins containing a tripartite motif (TRIM).
T-tubule transverse tubule
U/l unit per liter
UPBRC University of Pretoria’s Biomedical Research Centre
USA United States of America
UV ultra violet
WW a protein-binding domain on the dystrophin protein that include two conserved moieties of tryptophan, with W representing the letter code of tryptophan
Z-disc Zwischenscheibe disc
ZNF9 Zinc finger protein 9.
When you love what you’re doing, it’s hard not to.

Michael S Pepper