CHRONIC INFLAMMATORY LUNG DISEASE IN HUMAN IMMUNODEFICIENCY VIRUS (HIV)-INFECTED CHILDREN. EPIDEMIOLOGICAL CONSIDERATIONS, AETIOLOGICAL DETERMINANTS AND THE EFFICACY OF LOW DOSE ERYTHROMYCIN IN BRONCHIECTASIS

R MASEKELA
MBBCh (Wits), MMed (Paeds) Pretoria, Cert Pulm (SA) Paeds, Dip Allerg (SA), FCCP

THESIS SUBMITTED IN THE FULFILMENT OF THE DEGREE OF PHILOSOPHIAE DOCTOR (PAEDIATRICS)

DEPARTMENT OF PAEDIATRICS

FACULTY OF MEDICINE

UNIVERSITY OF PRETORIA

PROMOTER: PROF RJ GREEN PRETORIA 2012

© University of Pretoria
THE FOLLOWING ARTICLES BASED ON THE RESULTS OBTAINED IN SOME STUDIES REPORTED HEREIN; HAVE BEEN PUBLISHED IN SCIENTIFIC JOURNALS:

PEER REVIEWED JOURNALS

NON-PEER REVIEWED JOURNALS

2. Masekela R. Human immunodeficiency virus related bronchiectasis- not all abnormal x-rays are TB. *S Afr Respir J* 2010;16:17-20

ABSTRACT CONGRESS PRESENTATION

In this research, the statistical planning and analyses, and recommendations arising from these analyses, have been done in consultation with Prof PJ Becker of the Institute of Biostatistics of the Medical Research Council of South Africa, as well as Prof P Rheeder of the Clinical Epidemiology Unit of the University of Pretoria.
DECLARATION

This thesis is the candidate’s own original work, performed in the Department of Paediatrics and Child Health, University of Pretoria.

__
R. MASEKELA
ABSTRACT

Human immunodeficiency virus (HIV) infection has reached epidemic proportions in South Africa. The availability of highly active anti-retroviral therapy (HAART) prolongs life in HIV-infected persons, who may subsequently present with chronic manifestations of HIV-infection. The respiratory morbidity attendant to HIV-infection, even in the presence of HAART is high, the aftermath of which is lung tissue destruction and bronchiectasis. As a consequence of the political decision not to offer HAART to HIV-infected children, a number of children in South Africa have been left with severe consequences of uncontrolled HIV-infection. Bronchiectasis is one of those and because children with this devastating condition were numerous in the Pretoria region, the author and her colleagues began a Chronic Lung Disease Clinic in that region. This prompted the idea of investigating both the epidemiological profiles of these children and an attempt to intervene with both standard bronchiectasis guideline care and the use of a form of therapy commonly employed in other forms of bronchiectasis. This thesis explores those ideas.

Important new and novel findings that were consequent were; that bronchiectasis is diagnosed late in HIV-infected children at a mean age of 6.9 years. The predominant organisms cultured from the airways are *Haemophilus influenzae* and *parainfluenzae* in 49% of samples. *Pseudomonas aeruginosa* (PA), common in cystic fibrosis (CF)-bronchiectasis is an uncommon pathogen in HIV-related bronchiectasis; isolated in only 2% of specimens. Tuberculosis (TB), at least as reported, is a significant antecedent of bronchiectasis, reported in 48.5% of children. A further 21.2% of the patients had received more than two courses of anti-TB treatment. However, proof of TB infection has been lacking. Respiratory morbidity is significant with the mean forced expiratory flow in one second (FEV₁) of 53%, in this cohort at the time of presentation. Thirty-six percent of all children were exposed to environmental tobacco smoke, although this was not correlated with disease severity or HIV-disease progression. There is elevation of immunoglobulins in HIV-related bronchiectasis, with a mean IgE of 79 kU/l. This was not, though, associated with HIV disease progression as previously described in adult studies, nor with the presence of allergic bronchopulmonary aspergillosis (ABPA). The elevation in IgE
was also not associated with an elevation of T helper-2 mediated cytokines, confirming the lack of association with atopy.

The predominant cytokine, identified is interleukin (IL)-8, both systemically and locally (in airway secretions). There was elevation of other T helper-1 driven cytokines, reflecting an ability to mediate adequate inflammatory responses, which was independent of the level of immunosuppression. With the presence of HAART, there was a decline in the pro-inflammatory cytokines over time, which may be attributed to the ongoing effect of HAART that ties in to, or goes beyond the restoration of T cell numbers.

Soluble triggering receptor expressed on myeloid cells (sTREM), an innate immune marker, is elevated in children with HIV-related bronchiectasis when compared to a control group of children with cystic fibrosis-related bronchiectasis. sTREM is not associated with the presence of exacerbations and the level of immunosuppression. The use of an anti-inflammatory drug erythromycin also did not impact the sTREM values. There was also no relationship between sTREM and pro and anti-inflammatory cytokines and chemokines.

Fluorine-18-fluorodeoxyglucose positron emission tomography (^{18}F-FDG PET) could not reliably predict the presence of pulmonary exacerbations. Its diagnostic value was limited to identifying disease activity in acute pneumonia. ^{18}F-FDG PET also had no significant correlation with CRP, inflammatory cytokines or markers of HIV disease activity.

In a randomised controlled trial of erythromycin, a cost-effective immunomodulatory drug, compared to placebo, erythromycin was ineffective in reducing the number of pulmonary exacerbations. Erythromycin also failed to demonstrate any effect on systemic and local pro- and anti-inflammatory cytokines/chemokines. With access to anti-retroviral therapy, airway clearance, nutritional rehabilitation and vigilant follow
up there was an improvement in pulmonary function parameters and stability of the degree of bronchiectasis that we propose is probably in keeping with an organ system disease modifying effect that may be, as yet, undefined and undescribed byproduct of HAART.

Keywords

Paediatrics

Microorganisms

Biomass fuels

Highly active antiretroviral therapy

Atopy

Positron emission tomography

Macrolides

Cytokines

Chemokines

Soluble triggering receptor expressed on myeloid cells.
ACKNOWLEDGEMENTS

I wish to thank my supervisor Professor RJ Green for the encouragement, helpful criticism, unfailing support and advice throughout this project. This thesis would not have been possible without him.

These studies would not have been possible without the support of the following individuals who have all have contributed significantly to this work. Their dedication and hard work over the last four years is acknowledged.

Professor DF Wittenberg, Department of Paediatrics, University of Pretoria
Professor R Anderson, Department of Immunology, University of Pretoria
Professor M Sathekge, Department of Nuclear Medicine, University of Pretoria
Professor K de Boeck, Department of Paediatrics, University Hospital Leuven, Belgium
Dr H Gongxeka, Department of Radiology, University of Pretoria
Prof PJ Becker, Biostatistics Unit, Medical Research Council of South Africa
Dr H Fickl, Department of Immunology, University of Pretoria
Dr OP Kitchin, Department of Paediatrics, University of Pretoria,
Dr T Moodley, Department of Paediatrics, University of Pretoria
Dr SM Risenga, Department of Paediatrics, University of Pretoria
Mr R Sewnarain, Department of Immunology, University of Pretoria
Dr HC Steel, Department of Immunology, University of Pretoria
Mrs M Vreys, Department of Paediatrics, University Hospital Leuven, Belgium
Prof P Rheeder, Clinical Epidemiology Unit, University of Pretoria
Sr N Paulse, Pulmonology Outpatient Department, Steve Biko Academic Hospital
Mrs B Mnisi, Pulmonology Outpatient Department, Steve Biko Academic Hospital
DEDICATION

I would like to dedicate this thesis to my mother Dikeledi, who has been a constant source of support and has given me the faith that everything is possible if you work hard enough for it. Next I would like to thank my father David for the legacy to think outside the box and to be the best.

I would also like to thank my sisters Kedibone, Dimakatso, Mmasamo and Mabatho for their unfailing support over the years.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>i-ii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iii</td>
</tr>
<tr>
<td>List of Boxes</td>
<td>iii</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>Background and literature review</td>
<td>3</td>
</tr>
<tr>
<td>2.1 HIV infection in South Africa</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Lung diseases and HIV infection</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Bronchiectasis</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Immunological markers and bronchiectasis</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Treatment of bronchiectasis</td>
<td>23</td>
</tr>
<tr>
<td>2.6 Immunomodulators and bronchiectasis</td>
<td>27</td>
</tr>
<tr>
<td>A. Macrolides and bronchiectasis</td>
<td>27</td>
</tr>
<tr>
<td>B. Macrolide resistance and safety</td>
<td>30</td>
</tr>
<tr>
<td>2.7 Metabolic imaging and bronchiectasis</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td></td>
</tr>
<tr>
<td>Scope of research and hypothesis</td>
<td>36</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td></td>
</tr>
<tr>
<td>Subjects and methods</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER V

Demographic characteristics and epidemiologic determinants of children with HIV-related bronchiectasis

5.1 Objectives ... 44
5.2 Subjects and methods .. 44
5.2.1 Subjects .. 44
5.2.2 Methods .. 46
5.3 Results .. 47
5.4 Discussion .. 53
5.5 Conclusion .. 57

CHAPTER VI

Pulmonary and systemic cytokine and chemokine profiles in children with HIV-related bronchiectasis.

6.1 Objective.. 58
6.2 Subjects and methods .. 58
6.2.1 Subjects .. 58
6.2.2 Methods .. 59
6.3 Results .. 61
6.4 Discussion .. 68
6.5 Conclusion .. 71
CHAPTER VII

Soluble triggering receptor expressed on myeloid cells in sputum of children with HIV-related bronchiectasis.

7.1 Objective ... 73
7.2 Subjects and methods .. 73
7.2.1 Subjects .. 73
7.2.2 Methods .. 74
7.3 Results .. 76
7.4 Discussion .. 79
7.5 Conclusion .. 82

CHAPTER VIII

Positron emission tomography in the prediction of inflammation in children with HIV-related bronchiectasis.

8.1 Objectives ... 83
8.2 Subjects and methods .. 83
8.2.1 Subjects .. 83
8.2.2 Methods .. 83
8.3 Results .. 85
8.4 Discussion .. 92
8.5 Conclusion .. 95
CHAPTER IX

The efficacy of low dose erythromycin in improving the outcome of HIV-infected children with bronchiectasis.

9.1 Objectives ... 96

9.2 Subjects and methods .. 96

9.2.1 Subjects .. 96

9.2.2 Methods .. 97

9.3 Results .. 100

9.4 Discussion .. 108

9.5 Conclusion .. 113

CHAPTER X

Summary and conclusions .. 114

CHAPTER XI

Study limitations and recommendations .. 121

APPENDICES

Appendix A Subject data collection sheet ... 124

Appendix B Ethics Committee approval .. 130

Appendix C Patient information leaflet, consent and assent form 132

Appendix D Bhalla score ... 140

REFERENCES .. 141

TERMINOLOGY AND ABBREVIATIONS ... 165-167
LIST OF TABLES

Table 1 A summary of studies documenting the aetiology of bronchiectasis in both developed and developing countries. ... 13

Table 2 Inflammatory and anti-inflammatory cytokines and chemokines involved in chronic inflammation adapted from reference 129 ... 18

Table 3 Types of macrolide antibiotics. .. 27

Table 4 A summary of clinical trials of the use of macrolide therapy in bronchiectasis ... 30

Table 5 Summary table of clinical trials using 18F-FDG PET for chronic pulmonary diseases ... 35

Table 6 Baseline characteristics of children with human immunodeficiency virus-related bronchiectasis .. 49

Table 7 Comparison of children with HIV-related bronchiectasis with and without viral suppression .. 50

Table 8 Comparison of serum and sputum cytokines/chemokines of children with HIV-related bronchiectasis with and without HIV viral suppression 64

Table 9 Skin prick test findings of HIV-infected children without bronchiectasis according to immunological staging (N=50) ... 67

Table 10 Clinical and laboratory data of children with HIV-related bronchiectasis (N=24) .. 78

Table 11 Baseline parameters of children with cystic fibrosis-related bronchiectasis (N=18) .. 79

Table 12 Baseline characteristics of children with HIV-related bronchiectasis 18F-FDG-PET (N=41) .. 88
Table 13 Inflammatory markers for children with HIV-related bronchiectasis with and without 18F-FDG uptake ...92

Table 14 Baseline characteristics of children with HIV-related bronchiectasis treated with erythromycin or placebo ...103

Table 15 Characteristics of children with human immunodeficiency virus-related bronchiectasis pre- and post treatment with erythromycin and placebo105

Table 16 Summary of serum and sputum cytokines in children with human immunodeficiency virus-related bronchiectasis before and after treatment with erythromycin or placebo ...106
LIST OF FIGURES

Figure 1 Timeline for human immunodeficiency virus infection and prevention of mother-to-child (PMTCT) interventions ... 7
Figure 2 Stages of bronchiectasis according to the Reid classification system 11
Figure 3 Proposed pathophysiology of bronchiectasis in human immunodeficiency virus-related bronchiectasis .. 15
Figure 4 Enrolment and follow-up plan on children with human immunodeficiency virus-related bronchiectasis ... 47
Figure 5 Sputum microbiology results of children with HIV-related bronchiectasis-cumulative data for 161 samples (N=35) .. 52
Figure 6 The baseline serum and sputum cytokine values of children with HIV-related bronchiectasis .. 63
Figure 7 Plot demonstrating Spearman correlations between IgE and CD4+ percentage cell counts of children with HIV-related bronchiectasis........... 65
Figure 8 Graphic presentation of specific positive skin prick tests in HIV-infected children without bronchiectasis and HIV-negative children............. 66
Figure 9 Flow diagram of 18F-FDG PET results of children with human immunodeficiency virus-related bronchiectasis 89
Figure 10 Transverse and axial views of 18F-FDG-PET/CT of a patient with consolidation and positive 18F-FDG uptake in the right upper lobe (indicated with arrows) .. 90
Figure 11 Enrolment and randomisation of participants included in the study..... 102

LIST OF BOXES

Box 1 High resolution computed tomography features of bronchiectasis 11