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Abstract 

 

In vitro testing includes both cell-based and cell-free systems that can be used to detect 

toxicity induced by xenobiotics. In vitro methods are especially useful in rapidly gathering 

intelligence regarding the toxicity of compounds for which none is available such as new 

chemical entities developed in the pharmaceutical industry. In addition to this, in vitro 

investigations are invaluable in providing information concerning mechanisms of toxicity of 

xenobiotics. This type of toxicity testing has gained popularity among the research and 

development community because of a number of advantages such as scalability to high 

throughput screening, cost-effectiveness and predictive power. Hepatotoxicity is one of the 

major causes of drug attrition and the high cost associated with drug development poses a 

heavy burden on the development of new chemical entities. Early detection of hepatotoxic 

agents by in vitro methods will improve lead optimisation and decrease the cost of drug 

development and reduce drug-induced liver injury. Literature highlights the need for a cell-

based in vitro model that is capable of assessing multiple toxicity parameters, which 

assesses a wider scope of toxicity and would be able to detect subtle types of 

hepatotoxicity. 

 

The present study was aimed at developing an in vitro procedure capable of mechanistically 

profiling the effects of known hepatotoxin dichlorodiphenyl trichloroethane (DDT) and its 

metabolites, dichlorodiphenyl dichloroethylene (DDE) and dichlorodiphenyl dichloroethane 

(DDD) on an established liver-derived cell line, HepG2, by evaluating several different 

aspects of cellular function using a number of simultaneous in vitro assays on a single 96 

well microplate. Examined parameters have been suggested by the European Medicines 

Agency and include: cell viability, phase I metabolism, oxidative stress, mitochondrial 

toxicity and mode of cell death (apoptosis vs. necrosis). To further assess whether the 

developed method was capable of detecting hepatoprotection, the effect of the known 

hepatoprotectant, N-acetylcysteine, was determined. 

 

Viability decreased in a dose-dependent manner yielding IC50 values of 54 µM, 64 µM and 

44 µM for DDT, DDE and DDD, respectively. Evaluation of phase I metabolism showed that 
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cytochrome P4501A1 activity was dose-dependently induced. Test compounds decreased 

levels of reactive oxygen species, and significantly hyperpolarised the mitochondrial 

membrane potential. Assessment of the mode of cell death revealed a significant elevation 

of caspase-3 activity, with DDD proving to be most potent. DDT alone induced dose-

dependent loss of membrane integrity. 

 

These results suggest that the tested compounds produce apoptotic death likely due to 

mitochondrial toxicity with subsequent caspase-3 activation and apoptotic cell death. The 

developed in vitro assay method reduces the time it would take to assess the tested 

parameters separately, produces results from multiple endpoints that broadens the scope 

of toxicity compared to single-endpoint methods. In addition to this the method provides 

results that are truly comparable as all of the assays utilise the same batch of cells and are 

conducted on the same plate under the exact same conditions, which eliminates a 

considerable amount of variability that would be unavoidable otherwise. The present study 

laid a solid foundation for further development of this method by highlighting the 

unforeseen shortcomings that can be adjusted to improve scalability and predictive power. 

 

Keywords: Apoptosis, CYP1A1, DDD, DDE, DDT, hepatotoxicity, mechanistic profiling, 

mitochondrial hyperpolarisation, necrosis, organochlorine, reactive oxygen species. 
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tests). 
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Grubb's test results for detecting outliers in the observed ROS data. Values given in the table are p-

values. Instances where p < 0.05 (*) indicates the presence of outliers. 

Table 5.2._______________________________________________________________________66 

Shapiro-Francia test normality results of the observed ROS data after removal of outliers detected 

with Grubb's test. Values given in the table are p-values. Instances where p < 0.05 are significantly 

non-normal. * indicates p < 0.05. 

Table 5.3._______________________________________________________________________67 

ROS generation in HepG2 cells following 3 h exposure to DDT, DDE, DDD and AAPH (positive control). 

Results (% of Control) are presented as mean ±SEM. * indicates p < 0.05, ** p < 0.01 and *** p < 

0.001 as determined by Mann-Whitney tests. 

Table 5.4._______________________________________________________________________68 

ROS generation in HepG2 cells due to DDT, DDE, DDD, with or without 1 h pre-treatment with NAC. 

There were no statistically significant differences between cells pre-treated with NAC and those that 

were exposed to test compounds only. 
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Outliers in ∆ψm data, detected by Grubb's test. Values given in the table are p-values. Instances 

where p < 0.05 (*) indicates the presence of outliers. 
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Shapiro-Francia test normality results of the observed ∆ψm data after removal of outliers detected 

with Grubb's test. Values given in the table are p-values. Instances where p < 0.05 are significantly 

non-normal. * indicates p < 0.05. 
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Changes in ∆ψm in HepG2 cells following 1 h exposure to DDT, DDE, DDD and Tamoxifen (positive 

control). Results (% of Control) are presented as mean ±SEM. *** = p < 0.001  as determined by 

Student's t-tests and Mann-Whitney tests. 
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Changes in ∆ψm in HepG2 cells due to DDT, DDE, DDD, with or without 1 h pre-treatment with NAC. 

* indicates p < 0.05, ** p < 0.01 and *** p < 0.001 as determined by Mann-Whitney tests. 
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Grubb's test results for detecting outliers in Cas-3 data. Values given in the table are p-values. 

Instances where p < 0.05 (*) indicates the presence of outliers. 
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Shapiro-Francia test normality results of the observed Cas-3 data after removal of outliers detected 

with Grubb's test. Values given in the table are p-values. Instances where p < 0.05 are significantly 

non-normal. * indicates p < 0.05. 
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Active Cas-3 in HepG2 cells following 6 h exposure to DDT, DDE, DDD and Staurosporine (positive 

control). Results (% of Control) are presented as mean ±SEM. ** indicates p < 0.01 and *** p < 0.001 

as determined by Mann-Whitney and Student's t-tests. 
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Table 7.4._______________________________________________________________________97 

Relative Cas-3 activity in HepG2 cells after exposure to DDT, DDE, DDD, with or without 1 h pre-

treatment with NAC. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 as determined by Mann-Whitney 

and Student's t-tests. 
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Grubb's test results for detecting outliers in the data from PI staining. Values given in the table are p-

values. Instances where p < 0.05 (*) indicates the presence of outliers. 

Table 7.6.________________________________________________________________________98 

Shapiro-Francia test normality results of the observed PI data after removal of outliers detected with 

Grubb's test. Values given in the table are p-values. Instances where p < 0.05 are significantly non-

normal. * indicates p < 0.05. 

Table 7.7._______________________________________________________________________99 

PI staining in HepG2 cells following 3 h exposure to DDT, DDE, DDD and Triton X-100 (positive 

control). Results (% of Control) are presented as mean ±SEM. * indicates p < 0.05 and ** p < 0.01 as 

determined by Mann-Whitney tests. 

Table 7.8.______________________________________________________________________100 

PI staining in HepG2 cells due to DDT, DDE, DDD, with or without 1 h pre-treatment with NAC. * 

indicates p < 0.05 as determined by Mann-Whitney tests. 
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