COMPARITIVE VALIDITY OF ICE-SKATING PERFORMANCE TESTS TO ASSESS AEROBIC CAPACITY

by

SUZAN MARY KUISIS

University of Pretoria

Submitted in fulfilment of the requirements for the degree

DPHIL (Human Movement Science)

in the

DEPARTMENT OF BIOKINETICS, SPORT & LEISURE SCIENCES

FACULTY OF HUMANITIES

UNIVERSITY OF PRETORIA

April 2007
ACKNOWLEDGEMENTS

I express my thanks and gratitude to the following persons and institutions for the roles they have played in the completion of the study:

My promoter, Dr Johan van Heerden (Department of Biokinetics, Sport and Leisure Sciences, University of Pretoria), for his never-ending patience, motivation and guidance.

My co-promoter, Prof. Luc Léger (Department of Kinesiology, University of Montreal), for the unbelievable care, guidance and involvement in my study. Also for his kindness, friendship, and logistical arrangements.

Dr Bernard Janse van Vuuren (Department of Biokinetics, Sport and Leisure Sciences, University of Pretoria), for inspiring and motivating me to pursue international collaboration, and for his friendship.

The Director of the Institute for Sport Research, University of Pretoria, Prof. Ernst Krüger, for granting me two months paid leave in order to travel to Montreal to collect data, and my fellow staff members who kept everything running perfectly smoothly while I was in Montreal.

University of Montreal (Department of Kinesiology) for accommodating me as a student and for use of the equipment and facilities.

University of Pretoria International Liaison Office for the maximum international travel grant, and in particular Mrs Isobel Vosloo for her friendliness and patience.
University of Pretoria for the postgraduate bursaries.

The Head of the Human Performance Laboratory (University of Montreal), Arthur Long for his logistical assistance and support.

Nabyl Bekaroui (University of Montreal) for assistance in recruiting subjects for the study and logistical arrangements.

Chantal Daigle (University of Montreal) for her interest, support and friendship.

Pierre Allard (Montreal) for his assistance in the recruitment of subjects, and the subjects who so willingly participated in the study with much interest and enthusiasm. Without them, this research would not have been possible.

My family, for their interest and love.

The Man Up There who looks after me all of the time, who never gives up on me, and who gives me such strength and inner peace.

Lastly, but mostly to Lionel Bowman, the love of my life, who has been so supportive, helpful and encouraging. I would never have done this without him!
SUMMARY

Comparative Validity of Ice-Skating Performance Tests to Assess Aerobic Capacity

Student: S.M. Kuisis
Supervisor: Dr Johan van Heerden (University of Pretoria)
Co-supervisor: Prof. Luc Léger (University of Montréal)
Department: Department of Biokinetics, Sport, & Leisure Science
Degree: DPHIL (Human Movement Science)

Three multistage aerobic ice skating field tests have recently been introduced: 1) MS20MST (Modified Skating 20 MST; Kuisis, 2003), a maximal continuous multistage stop-and-go test over 20 m; 2) SMAT (Skating Multistage Aerobic Test; Leone et al., 2002), a maximal intermittent multistage shuttle test with stop-and-go over 45 m (both using full ice-hockey equipment); and 3) FAST (Faught Aerobic Skating Test; Petrella et al., 2007), a maximal continuous multistage 160 ft (48.8 m) ice-skating shuttle test with wide turns wearing only gloves, hockey stick and helmet. The aim of the study was to 1) compare the MS20MST, SMAT, and FAST to determine how they relate to each other and to determine their common variance, 2) assess the external and relative validity of the three new practical ice-skating tests to predict maximal aerobic power ($\dot{V}O_2$ max) in adult male hockey players that have mastered their skating skills, using direct treadmill $\dot{V}O_2$ max (“gold standard”) as the criterion variable and predicted $\dot{V}O_2$ max from original equations of the SMAT and FAST (a regression was developed in this study to predict $\dot{V}O_2$ max for the MS20MST). Each test was also compared to the 20 MST (Léger et al., 1988; to determine concurrent validity), 3) determine which test is rated by the players as being the best suited and most functional test (using a 7-point Likert Resemblance Scale), and 4) to determine if these on-ice skating tests are in effect better than the over-ground 20 MST.
Twenty-six adult ice-hockey players of various fitness levels but with good skating skills participated in the study. Expectedly, maximal speed increased from MS20MST to SMAT and to FAST protocols but the latter shows lowest Borg RPE, lactate_max and HR_max (p≤0.05, Repeated ANOVA and Tukey test). Similitude with the intensity of a hockey game and suitability as an aerobic test for ice-hockey was also judged lowest by the subjects for the FAST test on a 7 point subjective Likert Resemblance Scale. Compared to treadmill VO_2 max, correlations were 0.74, 0.73, 0.41 and 0.84 for MS20MST, SMAT, FAST and the 20 MST, respectively. Correlations were slightly better with treadmill max speed (0.75, 0.78, 0.53 and 0.94, respectively) due to small but common accuracy problem of VO_2 measure. Thus using the treadmill test as a standard, the FAST is less valid than the two other skating protocols implying that the ice skating protocol that elicits the highest VO_2 max values would be a better standard. Nevertheless lower HR_max and lactate_max values for the FAST do not support that test. Correlations between the MS20MST, SMAT and the 20 MST were approximately 0.7 but lower between these tests and FAST (approximately 0.4). Based on these results, it is recommended to either use MS20MST or SMAT protocols in elite players if ice time is available, alternatively, the 20 MST. Future study is needed to identify which test yields highest VO_2 max values on ice.

Keywords: ice-hockey, aerobic power, skating, modified skating 20 MST, SMAT, FAST.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION & AIM

1.1. Introduction 1
1.2. Recent Developments in the Field of Ice-Skating 5
1.3. Statement of the Problem 6
1.4. Aim of the Study 8

CHAPTER 2: LITERATURE REVIEW

2.1 Locomotion on Ice, Development of Skates, Skating Sport
 History, and Surface 10
 2.1.1 Locomotion on Ice 10
 2.1.2 Development of Skates 11
 2.1.3 Skating Sport History 13
 a) Ice-Hockey 13
 b) Figure Skating 16
 c) Speed Skating 18
 2.1.4 Surface 19
2.2 Basic Rules and Requirements in Ice-Hockey

2.2.1 Basic Rules of Ice-Hockey
2.2.2 Task Analysis
 a) Total Duration of a Game
 b) Phases of Play (Stoppages)
 c) Distance Skated During a Game
 d) Skating Velocity
2.2.3 Physical, Muscular, and Metabolic Characteristics and Requirements
 a) Physical Characteristics and Requirements
 b) Muscular Characteristics and Requirements (Power, Strength, Endurance)
 c) Metabolic Characteristics and Requirements (Aerobic and Anaerobic Capacity)

2.3 Bioenergetics, Energy cost & Efficiency

2.3.1 Energy Cost (Running versus Skating)
2.3.2 External Load (Equipment)
2.3.3 Drafting
2.3.4 Air & Ice Friction
2.3.5 Efficiency with Specific Regard to Technique

2.4 Aerobic Assessment/ Bioenergetic Aptitude Assessment (Including Aerobic and Anaerobic)

2.4.1 Purpose of Testing (Why is it Necessary?)
2.4.2 Criteria of a Fitness Test
2.4.3 Specificity of Physiological Testing (Laboratory Based vs. Field Tests)
2.4.4 Examples of Sport Specific Testing in Other Sports 53
2.4.5 Off-Ice Non Skating Tests 54
 a) Laboratory Treadmill and Cycling Tests
 (Traditional Modes of Testing) 54
 b) Field Tests 56
 University of Montreal Track Test (UM-TT) 56
 Cooper 12 Minute Test 57
 5 Min Maximal Running Test 57
 40 m Shuttle Running 57
 20 m Multistage Shuttle Run Test (20 MST) 58
 Interval Shuttle Run Test (ISRT) 60
 Modified 5-m Multiple Shuttle Test (5-m MST) 60
 Repeated Sprint Test for Field Hockey 61
2.4.6 Off-Ice Skating Tests 62
 a) Skating Treadmill 62
 b) Slide Board 64
2.4.7 On-Ice Skating Tests 65
 Tests of Speed, Hockey Ability & Anaerobic Capacity 65
 Tests of Aerobic Capacity/ Power 67
2.4.8 Off-Ice Testing versus On-Ice Testing 72

CHAPTER 3: METHODOLOGY 74
3.1. Subjects 74

3.2. Ethical Considerations 76

3.3. Study Design 76
3.4. Procedures and Instrumentation
Biographic Data
Physical Data
Warm-up and Recovery Procedures
Heart Rate
Blood Lactate
Oxygen Consumption (\(\bar{VO}_2\))
Rating of Perceived Exertion
Likert Resemblance Score

3.5. Maximal Multistage Laboratory Treadmill Running Test

3.6. Field Tests
3.6.1. Modified (Skating) 20 MST (MS20MST)
3.6.2. Skating Multistage Aerobic Test (SMAT)
3.6.3. Faught Aerobic Skating Test (FAST)
3.6.4. 20 Metre Multistage Shuttle Run Test

3.7. Statistical Analysis and Treatment of Data

CHAPTER 4: RESULTS & DISCUSSION

4.1 Subject Characteristics and Experimental Conditions

4.2 Comparison of Different Variables in All Five Tests
4.2.1 Final Speed
4.2.2 Duration
4.2.3 Maximum Heart Rate
4.2.4 Rating of Perceived Exertion
4.2.5 Lactate
4.2.6 $\dot{V}O_2$ max

Development of the MS20MST Equation

4.3 Assessing and Comparing the Validity of Each Test

4.3.1 Correlations

Final Speed

Duration

Rating of Perceived Exertion

Lactate

VO_2 max

4.3.2 Predictive Validity of Field Tests

4.4 Qualitative Analysis: Determining Which Test is Rated by Ice-Hockey Players as Being Best Suited as the Most Functional Using the Likert Scale

Question 1: Similarity of basic skating skills (not puck handling) of the test compared to those of a hockey game

Question 2: Resemblance between maximal intensity of the test & maximal intensity of a hockey game

Question 3: How is the test suited to evaluate aerobic fitness of hockey players?

Question 4: How is the test suited to evaluate overall fitness (including muscular & cardiovascular fitness) of hockey players?

Question 5: How is the test suited to evaluate overall hockey ability (fitness & skating skills) of hockey players?

Correlations Among Q1-5
4.5 General Discussion

Final Speed 133
Heart Rate 134
Lactate 135
$\dot{V}O_2$ max 136

CHAPTER 5: CONCLUSIONS & RECOMMENDATIONS 140
Summary 141
Conclusions & Recommendations for Practice 142
Future Research 145

REFERENCES 146

APPENDICES
Appendix A- Time Motion Analysis of Game Play
Appendix B- Physical Characteristics of Ice-Hockey Players
Appendix C- Muscular Endurance, Flexibility & Speed Characteristics of Ice-Hockey Players
Appendix D- Aerobic & Anaerobic Capacity of Ice-Hockey Players
Appendix E- Physical Activity Readiness Questionnaire (PARQ)
Appendix F-Letters of Approval from University of Pretoria & University of Montreal Ethical Committees
Appendix G- Informed Consent
Appendix H-Order of Testing
Appendix I-Raw Data Collection Sheet
Appendix J- Borg RPE Scale
Appendix K- Likert Scale
Appendix L- Congress and Manuscript to be submitted for Publication
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Characteristics of the Maximal Multistage Running & Ice-Skating Field Tests to be used in this Study</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>The Skating Multistage Aerobic Test (SMAT) Maximal Oxygen Consumption Prediction Table for Adult Male Ice-Hockey Players</td>
<td>93</td>
</tr>
<tr>
<td>4.1</td>
<td>Subject Characteristics of the Original Sample (n=26)</td>
<td>100</td>
</tr>
<tr>
<td>4.2</td>
<td>Subject Characteristics of the Sample Used (n=16)</td>
<td>100</td>
</tr>
<tr>
<td>4.3</td>
<td>Regression Summary for Dependent Variable: (\dot{V}O_2) max (n=21)</td>
<td>113</td>
</tr>
<tr>
<td>4.4</td>
<td>Correlations of Maximum (Final) Speed Values</td>
<td>114</td>
</tr>
<tr>
<td>4.5</td>
<td>Correlations of Test Duration</td>
<td>115</td>
</tr>
<tr>
<td>4.6</td>
<td>Correlations of RPE Values</td>
<td>116</td>
</tr>
<tr>
<td>4.7</td>
<td>Correlations of Lactate Values</td>
<td>117</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlations of (\dot{V}O_2) max Values</td>
<td>118</td>
</tr>
<tr>
<td>4.9</td>
<td>Correlations and Standard Errors of Estimate Predicting Treadmill (\dot{V}O_2) max and Maximal Speed from Field Test Maximal Speed</td>
<td>119</td>
</tr>
<tr>
<td>4.10</td>
<td>Correlations of Question 1 Values</td>
<td>131</td>
</tr>
<tr>
<td>4.11</td>
<td>Correlations of Question 2 Values</td>
<td>131</td>
</tr>
<tr>
<td>4.12</td>
<td>Correlations of Question 4 Values</td>
<td>132</td>
</tr>
<tr>
<td>4.13</td>
<td>Correlations of Question 5 Values</td>
<td>132</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>2.1</td>
<td>Medieval Scene of Ice-Skating by Esaias van de Velde</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Figure, Hockey and Speed Skates</td>
<td>12</td>
</tr>
<tr>
<td>2.3</td>
<td>Figure, Hockey, and Speed Blades</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Ice-Hockey Played at McGill University, Montreal, 1901</td>
<td>14</td>
</tr>
<tr>
<td>2.5</td>
<td>Jaap Eden, the First Official World Champion</td>
<td>19</td>
</tr>
<tr>
<td>2.6</td>
<td>Typical Layout of an Ice-Hockey Rink Surface</td>
<td>20</td>
</tr>
<tr>
<td>2.1</td>
<td>Two Subject Participants and the Researcher</td>
<td>74</td>
</tr>
<tr>
<td>2.2</td>
<td>Subject Participants After the Running 20 MST</td>
<td>75</td>
</tr>
<tr>
<td>2.3</td>
<td>The Frankfort Plane</td>
<td>78</td>
</tr>
<tr>
<td>2.4</td>
<td>A Subject Being Weighed With Full Kit</td>
<td>79</td>
</tr>
<tr>
<td>2.5</td>
<td>Moxus Modular ÕO₂ System</td>
<td>81</td>
</tr>
<tr>
<td>2.6</td>
<td>Human Performance Laboratory</td>
<td>83</td>
</tr>
<tr>
<td>2.7</td>
<td>Quinton 65 Treadmill</td>
<td>84</td>
</tr>
<tr>
<td>2.8</td>
<td>Mouthpiece Components</td>
<td>85</td>
</tr>
<tr>
<td>2.9</td>
<td>Mouthpiece Assembly</td>
<td>85</td>
</tr>
<tr>
<td>3.1</td>
<td>Headset</td>
<td>87</td>
</tr>
<tr>
<td>3.2</td>
<td>Subject Participant During a Maximal Treadmill Running Test</td>
<td>87</td>
</tr>
<tr>
<td>3.3</td>
<td>Ice Arena in the CEPSUM</td>
<td>88</td>
</tr>
<tr>
<td>3.4</td>
<td>Ice Layout for Field Tests</td>
<td>88</td>
</tr>
<tr>
<td>3.5</td>
<td>Subject Performing the MS20SMT</td>
<td>90</td>
</tr>
<tr>
<td>3.6</td>
<td>Ice Layout of the Modified (Skating) 20 MST (Kuisis, 2003)</td>
<td>90</td>
</tr>
<tr>
<td>3.7</td>
<td>Ice Layout of the SMAT</td>
<td>92</td>
</tr>
<tr>
<td>3.8</td>
<td>Layout of the FAST</td>
<td>94</td>
</tr>
<tr>
<td>3.9</td>
<td>Indoor Running Track at the CEPSUM</td>
<td>96</td>
</tr>
<tr>
<td>4.1</td>
<td>Comparison of Variables Between Various Tests (n=16)</td>
<td>104</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean Maximal Speed (km h⁻¹) Comparison Between Tests (n=16)</td>
<td>105</td>
</tr>
</tbody>
</table>
Figure 4.3 Mean Test Duration (Min) Comparison Between Tests (n=16) 106
Figure 4.4 Mean Maximal Heart Rate (beats min⁻¹) Comparison Between Tests (n=16) 108
Figure 4.5 Mean Maximal Borg Rating of Perceived Exertion (RPE) Comparison Between Tests (n=16) 108
Figure 4.6 Mean Maximal Lactate (mmol L⁻¹) Comparison Between Tests (n=16) 110
Figure 4.7 Mean maximal $\dot{V}O_2$ max (ml kg⁻¹ min⁻¹) comparison between tests (n=16) 112
Figure 4.8 Treadmill $\dot{V}O_2$ max as a Function of Speed in the Treadmill Test 118
Figure 4.9 Treadmill $\dot{V}O_2$ max as a Function of Speed in the MS20MST 118
Figure 4.10 Treadmill $\dot{V}O_2$ max as a Function of Speed in the SMAT 119
Figure 4.11 Treadmill $\dot{V}O_2$ max as a Function of Speed in the FAST 119
Figure 4.12 Treadmill $\dot{V}O_2$ max as a Function of Speed in the 20 MST 119
Figure 4.13 Comparison of Treadmill Speed as a Function of $\dot{V}O_2$ max in All Tests 123
Figure 4.14 Comparison of Scores Obtained on the Likert Resemblance Scale (1-7) During Different Tests 125
Figure 4.15 Mean Rating For Similarity of Basic Skating Skills of the Different Tests as Compared to the Game of Ice-Hockey (n=16) 126
Figure 4.16 Mean Rating of Similarity of Intensity of the Different Tests as Compared to the Game of Ice-Hockey (n=16) 127
Figure 4.17 Mean Rating of Suitability of the Different Tests to Evaluate Aerobic Fitness of Hockey Players (n=16) 128
Figure 4.18 Mean Ratings With Regard to Suitability of Each Test to Evaluate Overall Fitness (Including Muscular & Cardiovascular Fitness) of Hockey Players (n=16) 129
Figure 4.19 Mean Rating of Suitability of Tests to Evaluate Overall Fitness in Ice-Hockey Players (n=16)

Figure 4.20 Progression of Speed in the Three ice-Skating Protocols

LIST OF ABREVIATIONS

% percentage (one part in every hundred)
°/s degrees per second (measurement of angular velocity)
°C degree Celsius (measurement of temperature)

20 MST 20 Metre Multistage Shuttle Run Test (field test that predicts maximal oxygen consumption)

MS20MST Modified (Skating) 20 Metre Shuttle Test

ft foot (linear measurement of distance)

FAST Faught Aerobic Skating Test

g gram (unit of mass)

HR heart rate (measured in beats per minute)

HR max maximal heart rate (measured in beats per minute)

kg kilograms (unit of mass)

km h⁻¹ kilometres per hour (unit of speed or velocity)

cm centimetre (linear measurement of distance)

m metre (linear measurement of distance)

min minutes (unit of time)

m min⁻¹ metres per minute (unit of speed or velocity)

m s⁻¹ metres per second (unit of speed or velocity)

m min⁻¹ metres per minute (unit of speed or velocity)

MET metabolic equivalent (a way of expressing energy cost of an activity; a standard quantity of oxygen required for maintenance of life, on a per kilogram body weight basis, per minute under quiet
resting conditions; as a standard value it is equal to 3.5 millilitres of oxygen per minute

- **ml**: millilitre (unit of volume or capacity)
- **ml kg\(^{-1}\) min\(^{-1}\)**: millilitre per kilogram of body mass per minute (unit of oxygen consumption)
- **mmHg**: millimetres mercury (unit of measure of barometric pressure)
- **mmol L\(^{-1}\)**: millimole per litre (unit of molecular weight of a substance; unit of measurement of blood lactic acid)
- **m h\(^{-1}\)**: miles per hour (unit of speed or velocity)
- **n**: number of participants in a group
- **NHL**: National Hockey League
- **O\(_2\)**: oxygen
- **pH**: negative decimal logarithm of hydrogen-ion concentration in moles per litre, giving measures of acidity or alkalinity of a solution
- **r**: correlation
- **r\(^2\)**: coefficient of determination
- **RSS**: Reed Repeat Sprint Skate Test (requires players to skate 55 m six times every 30 seconds)
- **s**: seconds (unit of time)
- **SAS\(_{40}\)**: Sargeant Anaerobic Skate Test (consists of players skating back and forth along pylons placed at a distance of 55 m on the ice for a total of 40 seconds)
- **SD**: standard deviation (the number by which scores deviate from the mean)
- **SEE**: standard error of the estimate (also called standard error of prediction), the amount of error expected in a prediction
- **SMAT**: Skating Multistage Aerobic Test
- **STPD**: the volume of gas expired under standard conditions of temperature (0 °C), pressure (760 mmHg), and dry (no water vapour)
<table>
<thead>
<tr>
<th>USA</th>
<th>United States of America</th>
</tr>
</thead>
<tbody>
<tr>
<td>VE</td>
<td>minute ventilation (the amount of air expired in one minute)</td>
</tr>
<tr>
<td>$\dot{V}O_2$</td>
<td>oxygen consumption (expressed in text as $\dot{V}O_2$)</td>
</tr>
<tr>
<td>$\dot{V}O_2\text{ max}$</td>
<td>maximal oxygen consumption (measured in litres per minute or as millilitres per kilogram per minute); expressed in text as $\dot{V}O_2\text{ max}$</td>
</tr>
<tr>
<td>$W\text{ kg}^{-1}$</td>
<td>watt per kilogram (unit of power)</td>
</tr>
<tr>
<td>yr</td>
<td>year (unit of time)</td>
</tr>
</tbody>
</table>