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In this thesis, we undertake a theoretical many-body investigation into the
ground and first excited states of a class of model non-adiabatic Hamiltonians
describing the interaction of a two-level fermionic system with one or more
modes of a quantized bosonic field. These models are of topical interest in
quantum optics, solid state physics and quantum chemistry, and we focus
here in particular on the Rabi Hamiltonian (or Jaynes—-Cummings model
without the rotating wave approximation) in quantum optics, and the linear

F ® e Jahn-Teller and pseudo Jahn-Teller systems in quantum chemistry.

Due to their simplicity, these Hamiltonians exhibit interesting symme-

tries, allowing them to serve as useful testirig grounds for quantum many—
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body techniques. Here we analyze these models by means of the the coupled
cluster method (CCM). The CCM has an impressive record as a powerful
and versatile ab initio method, having been successfully applied in nuclear
physics, quantum chemistry, lattice gauge and continuum field theories, and
spin and electron lattice models. For comparison, we also present results for
our model Hamiltonians obtained via a variety of other many-body meth-
ods. In particular, we present an excellent variational calculation for the
Rabi Hamiltonian in which the importance of the incorporation of the cor-
rect symmetry in the variational ansatz is highlighted, as well as an elegant
operator method useful in the analysis of the linear £ ® e Jahn-Teller and
pseudo Jahn-Teller models.

The CCM analysis of the class of Hamiltonians considered here displays
a critical dependence on the choice of the model state and corresponding
creation operators which characterize the method. For certain physically
reasonable choices, we present a formal demonstration of an essential in-
completeness, to any finite order, in the CCM ansatz for the ground-state
wave function of the system. As a result, the CCM results for these systems
stfongly suggest a phase transition which does not in fact exist. We also show
that, for certain other choices of the model state and creation operators, the
CCM breaks down as a result of the non—-Hermiticity of the method.

This breakdown of the CCM is closely related to the marked change in
character of the ground state of the systems considered here. Using a model
state which mimics this change in character, excellent CCM results for these
systems can be obtained; in particular, we present a simple yet extremely

accurate CCM calculation for the linear £ ® e Jahn—Teller and pseudo Jahn-

1ii
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Teller models. The dependence of the CCM results for the Hamiltonians
considered here on the choice of the model state and creation operators is of
considerable importance, given that the CCM formalism does not a prior:
specify this choice beyond the overall symmetry requirements of the Hamil-
tonian. The results demonstrate that the gross physical properties of the
exact solution need to be reproduced by the model state if even qualitatively

correct behaviour is to be obtained from a CCM calculation.

iv



University of Pretoria etd — Van der Walt, D M (1999)

Samevatting

Gekoppelde—bondel-analise van model
nie—adiabatiese Hamilton operatore

deur
David Michael van der Walt

Voorgelé ter gedeeltelike vervulling van die vereistes vir die graad
Philosophiae Doctor (Fisika)
in die Fakulteit Natuurwetenskappe
Universiteit van Pretoria
Pretoria

April 1999

Promotor: Prof. R. M. Carter

Medepromotor: Dr. N. J. Davidson

In hierdie tesis word 'n teoretiese veeldeeltjie—ondersoek geloods na die grond-
toestand en die laagste opgewekte toestand van 'n bepaalde klas nie-adiabatiese
model-Hamilton operatore wat die interaksie beskryf tussen 'n tweevlak
fermionsisteem en een of meer modes van 'n gekwantiseerde bosoniese veld.
Hierdie modelle is tans van belang in kwantumoptika, vastetoestandfisika
en kwantumchemie, en ons fokus hier spesifiek op die Rabi Hamilton ope-
rator (of Jaynes—Cummings model sonder die roterende-golf-benadering) in
kwantumoptika, en die lineére £ ® e Jahn-Teller en kwasi—Jahn-Teller sis-
teme in kwantumchemie.

As gevolg van hul eenvoud vertoon hierdie Hamilton operatore interes-
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sante simmetrieé, wat hul in staat stel om as 'n toetsterrein te dien vir
veeldeeltjietegnieke. Ons analiseer hierdie modelle hier deur middel van die
gekoppelde-bondel-tegniek (CCM). Die CCM het 'n indrukwekkende rekord,
en is al suksesvol aangewend in kernfisika, kwantumchemie, rooster-yk- en
kontinuumveldteorié, en spin— en elektron-matriksmodelle. Ter vergelyking
wys ons ook resultate vir ons model-Hamilton operatore wat deur middel
van 'n verskeidenheid ander metodes verkry is. In die besonder bied ons 'n
akkurate variasie berekening vir die Rabi Hamilton operator aan wat die be-
lang van die insluiting van die korrekte simmetrieé in die variasie aanname
beklemtoon, asook 'n elegante operatormetode wat in die analise van die
lineére E @ e Jahn—Teller en kwasi—Jahn-Teller sisteme benut kan word.

Die CCM analise van die klas Hamilton operatore wat hier beskou word
toon 'n kritiese afhanklikheid van die keuse van modeltoestand en ooreen-
stemmende skeppingsoperatore wat die metode karakteriseer. Vir bepaalde
fisies verantwoordbare keuses, toon ons formeel aan dat daar 'n essentiéle
ontoereikendheid bestaan, tot enige eindige orde, in die CCM-aanname vir
die grondtoestand-golffunksie van die sisteem. As gevolg hiervan bied die
CCM resultate sterk getuienis vir 'n fase-oorgang wat in werklikheid nie
bestaan nie. Ons toon ook aan dat die CCM, vir sekere ander keuses van die
modeltoestand en skeppingsoperatore, faal as gevolg van die nie-Hermitiese
aard van die metode.

Hierdie mislukkings van die CCM is nou verwant aan die skerp gedragsveran-
dering in die grondtoestand van die sisteme wat ons hier beskou. Mits 'n
modeltoestand gebruik word wat hierdie gedragsverandering naboots, kan

uitstekende CCM resultate vir hierdie sisteme verkry word; ons vertoon in
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besonder 'n eenvoudige dog uiters akkurate CCM berekening vir die lineére
E & e Jahn-Teller en kwasi—Jahn-Teller sisteme. Die modeltoestand— en
skeppingsoperatorafhanklikheid van die CCM resultate vir die Hamilton ope-
ratore wat hier beskou word is van groot belang, gegewe dat die CCM nie
a priori die keuse van of die modeltoestand of skeppingsoperatore voorskryf
buiten die oorkoepelende simmetrieé van die Hamilton operator nie. Die
resultate demonstreer dat die uitstaande fisieke eienskappe van die eksakte
oplossing in die modeltoestand vervat moet word indien selfs kwalitatief kor-

rekte gedrag deur middel van 'n CCM berekening verlang word.
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Chapter 1

Introduction

Non-adiabatic models of a two-level fermionic system interacting with ei-
ther one or two independent modes of a quantized bosonic field are of topical
interest for several reasons. Firstly, these models serve as generic proto-
types for a wide variety of physical systems. In quantum optics, models of
this form are employed to describe the resonant or near-resonant interaction
of a two-level atom with either a single or two perpendicularly polarized
modes of a quantized electromagnetic field [Sh93, Mi91]. In the case of a sin-
gle electromagnetic mode, the model is known as the Rabi Hamiltonian, or
equivalently as the Jaynes—-Cummings model without the rotating wave ap-
proximation (RWA). In quantum chemistry, models of this form describe the
vibronic coupling between two electronic levels and two degenerate nuclear
vibrational modes in a molecule or crystal. This is known as the linear E® e
Jahn-Teller model in the case where the electronic levels are degenerate, and

as the linear £ ® e pseudo Jahn—-Teller model in the case where the electronic
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levels are non—degenerate [Berb]. The term non-adiabatic arises in the con-
text of quantum chemistry, and refers to the intimate coupling between the
electronic and nuclear motions which occurs when it is no longer possible for
the electrons to adiabatically follow the generally slower displacements of the
more massive nuclei. Yet another realization of these models is provided by
the two—site polaron in solid state physics, describing the interaction of an
electron confined to two sites in a crystal lattice with the quantized phononic

field of the lattice [Mah, Hak].

Judd [Ju77, Ju79] and subsequently Reik [Re87], guided by the results
of early numerical diagonalizations [Lo58, Th68], proved the existence of an-
alytic solutions for the linear £ @ e Jahn—Teller and Rabi Hamiltonians at
isolated values of the coupling. Complete analytic solutions, valid for all
couplings, are however only known for a few special cases of the class of
non-adiabatic Hamiltonians considered here. Given their physical relevance,
these models have therefore been the subject of much theoretical investiga-
tion. Recent many-body analyses of the Rabi Hamiltonian include the use of
time-independent perturbation theory (TIPT) [Gr84b, Ph89, Qi98]. a vari-
ational approach [Qi98], and several methods aimed at finding numerically
exact results for the Rabi spectrum [Lo96, Fe96, Qi98]. Several variational
calculations have also recently been performed for the linear E®e Jahn-Teller

system [Lo91, Hu98].

The theoretical models considered here always represent, to a greater or
lesser degree, an idealized simplification of the real physical system under

consideration. It is in the very simplicity of these models, however, that
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their further utility lies. Besides the isolated analytic solutions, quasi—exact
numerical results for these models are also available, or relatively easy to
obtain. Furthermore, simple Hamiltonians such as these often contain in-
teresting symmetries, and as such are ideal testing grounds for approximate

many-body methods.

Finally, apart from their practical value, these models represent some
of the simplest non-trivial examples of quantum many-body physics. The
straightforward appearance of these models hides a wealth of interesting
quantum behaviour, which is readily contrasted with that of their classical
or semi—classical counterparts [B196]. It is instructive to note that, despite
intensive investigation, a complete analytic description of even the ground

state of the Rabi Hamiltonian has not yet been found.

In this thesis, we therefore analyze several of these Hamiltonians from the
perspective of quantum many-body theory. As a starting point, it is worth
summarizing the characteristics which a good many-body method should

embody:

1. It should be a microscopic or ab initio method, i.e. it should be a
first—principles approach which readily reveals the physical significance
of both its approximation scheme and its results. This requirement is
generally not met by, e.g., a large scale numerical diagonalization, or a

quantum Monte Carlo calculation.

2. A related but different requirement is that the method should always be

exact in principle, i.e., it should reproduce the exact result in the limit



University of Pretoria etd — Van der Walt, D M (1999)

where the method is applied to infinite order, or equivalently, is applied
without any form of approximation. This excludes perturbation theory,

which fails in this respect when applied to non—perturbative systems.

3. It should be universal, i.e. the method should be applicable, with very

little or ideally no modification of its standard form, to any given many-
body system. This requirement excludes, e.g., the method of canonical
transformation, which generally requires either a lucky guess, a trial-

and—error approach, or an inordinate amount of physical insight.

. The method should be capable of systematic improvement, and should
yield results that converge uniformly as the order to which the method

is applied is increased. In general, this excludes the variational method.

. Finally, the application of the method should be computationally sim-

ple or, at the very least, tractable.

The coupled cluster method (CCM) is one of the few quantum many-

body techniques which can lay claim to satisfying almost all the criteria

listed above. This non—perturbative method, originally developed in nuclear

physics by Coester and Kiimmel [Co58, Co60], has since been successfully

applied in the analysis of the many-body ground-state in quantum chem-

istry [Ci66, Bar78, Pu82, Mo87, No87, No88, Bar89, Wo94, Wo96a], the

electron gas [Bi78, Em84], quantum tunneling in the presence of a phonon

bath [Wo96b], lattice gauge [Bi93, Le93, Ba96, Le98] and continuum field

[Fu87, Ar90] theories, and spin and electron lattice models [Ro90, Bi91b]. An

alternative formulation of the CCM, the so—called extended coupled cluster

method (ECCM) introduced by Arponen [Ar83a], has also been successfully

4
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applied [Ar83a, Ar83b, Ro89] to the Lipkin-Meshkov-Glick (LMG) model
[Li65] in nuclear physics. This is a particularly important application of
the method, given that the nucleus in the LMG model is known to exhibit
a phase transition from a spherically symmetric to a deformed shape. Both

the normal and extended CCM have also been reformulated in order to study

excited states [Em81, Ar83a, Ar87].

In addition to its power and scope, the CCM also yields size—extensive
results for all ground-state observables, including the ground-state energy, at
every level of approximation (the cluster property). This is due to the CCM
prescription for calculating the expectation value of an arbitrary ground-
state observable, which implies that such expectation values are calculated

as a sum over linked diagrams only.

No many-body method is perfect, and the CCM does display some less
desirable features. There is no guarantee of uniform convergence in the CCM,
although this is often the case in practice. Also, the method can sometimes be
computationally expensive, although this is often the result of an injudicious

choice for the model state and cluster correlation operator which characterize

the CCM.

Perhaps the most serious known criticism of the method is that the CCM,
to any finite order, is manifestly non-Hermitian, relying on an independent
parameterization of the ground—-state bra and ket. Although the CCM is a
genuine variational method, this non-Hermiticity implies that an approxi-

mate CCM result for the ground-state energy no longer provides an upper
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bound to the true ground-state energy '.  This loss of the upper—bound
property is offset by the following factors: firstly, the similarity transformed
Hamiltonian which occurs in the CCM formalism is amenable to the Haus-
dorfl expansion, which in most cases either terminates naturally or is re-
summable to closed form without approximation; secondly, at every level of
approximation, the CCM in its purest form is compatible with the Hellman-—

Feynman theorem.

The primary aim of this thesis is to investigate the applicability of the
CCM to the class of non-adiabatic Hamiltonians introduced above. In par-
ticular, we apply the CCM to the ground and first excited states of the
Rabi Hamiltonian and the linear £ @ e Jahn-Teller and pseudo Jahn-Teller

systems.

For comparison, we also consider the application of other many-body
techniques to the Rabi and linear £ @ e Jahn—Teller systems. We present an
operator-based method which simplifies the analysis of the isolated analytic
(Juddian) solutions for the linear E®e Jahn-Teller models, and yields explicit
closed—form expressions for the wave functions at the Juddian points. We also
perform a weak—coupling TIPT calculation, analytic to any finite order, for
the Rabi Hamiltonian, as well as a simple variational calculation which yields
results, for both the ground and first excited states of the Rabi Hamiltonian,

far superior to those obtained by previous methods.

The CCM has previously been applied to the Rabi and linear £ ® e Jahn—

1See also [Sc92] for a discussion of the implementation of a variational principle in
p p

certain non-Hermitian systems.
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Teller systems. Wong and Lo have used the CCM to calculate the ground-
state energy of both the multimode Rabi [Wo96b| and the linear E ® e pure
(as opposed to pseudo) Jahn-Teller Hamiltonians [Wo94, Wo96a]. In both
cases, these authors perform a unitary transformation which destroys at least
two of the symmetries of the Hamiltonian, and then apply the CCM to the
transformed Hamiltonian. For the linear E ® e Jahn—Teller system, where
the fermionic levels are degenerate, they obtain very accurate results over the
full coupling spectrum. For the Rabi and pseudo Jahn-Teller Hamiltonians,
however, the fermionic level splitting is nonzero, and as a result the eigen-
states of these systems are of definite symmetry. Thus the approach of Wong
and Lo yields quantitatively inaccurate CCM results for the Rabi Hamilto-
nian in the intermediate coupling regime, does not readily generalize to the
pseudo Jahn-Teller system, and also does not allow for a CCM calculation

of the first excited state energy.

Our main purpose is to show that it is possible to obtain quantitatively
accurate results for the ground and first excited state energies of the Rabi,
linear £ ® e Jahn-Teller, and linear £ ® e pseudo Jahn-Teller systems within
the CCM by maintaining the correct symmetries throughout the analysis. We
show that this is in fact possible, provided that a CCM model state is chosen
which is also capable of following the change in character which occurs in the

ground state of these systems.

We also demonstrate that, for a naive choice of model state and corre-
lation operator, the CCM fails when applied to the Rabi and linear F @ e

Jahn-Teller Hamiltonians. We show not only that the non—-Hermiticity of the
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CCM can lead to a breakdown in the method, but also that the method may
fail as a result of an essential incompleteness due to the exponential form
of the CCM ansatz for the ground-state wave function. Given the broad
freedom of choice for the model state and correlation operator implicit in the
method, these defects have severe implications not only for the CCM, but

also for other methods which employ the exponential form.

To conclude this introduction, we present here an outline of the remainder
of this thesis. In Chapter 2 we introduce the general class of model Hamilto-
nians under consideration. Chapter 3 gives an overview of the coupled cluster
method. Chapters 4-6 are devoted to the Rabi Hamiltonian, and Chapters
7-8 to the Jahn-Teller systems. In Chapter 9 we summarize the main results

of the thesis, and present conclusions.
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Chapter 2

The Model Hamiltonians

In this chapter we introduce the general Hamiltonian which spans the entire
class of non—adiabatic systems considered here. We discuss the two special
cases of the general model whose analysis forms the remainder of the thesis.
The symmetries associated with these systems are of particular interest, and

these are discussed in detail.

2.1 The general model Hamiltonian

The most general form for the fully quantized Hamiltonian describing a two-
level fermion interacting with two independent bosonic field modes in the

dipole approximation is given by
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l
H = 5&)0 o + wi 5151 + woy b;bg

+m (bl +b1) 0" — 2 (B} +82) 0, (2.1)

where wq is the fermionic level splitting, w; and w, are the frequencies of
the two modes and 1; and 7, the corresponding dipole coupling constants
linking the bosonic modes to the fermion and thus indirectly to each other.
The operators by, by and bL b;ﬂ are boson annihilation and creation operators,

respectively, satisfying the standard commutation relations

[b1,0]] = [b2,8]] =1

[b,b2] = [b],08] = [b1,b}] = [bsb]] = 0, (2.2)

and o%, 0¥, 0% are Pauli matrices which form a convenient basis for the two—
dimensional fermionic subspace of the full Hilbert space relevant to the
Hamiltonian (2.1). The origin of the fermionic energy scale has been cho-
sen such that the lower (upper) fermionic state corresponds to energy —%wg
(3wo), and the constant zero point energy jwi + jws of the field modes has
been neglected. For convenience, we employ units such that 2 = 1. A deriva-
tion of the general model Hamiltonian (2.1) in the context of quantum optics

is given in Appendix A.

There is a parity symmetry associated with the Hamiltonian (2.1). We

define an operator

1
N =blb; + blb, + - (e% +1) (2.3)

which counts the number of bosonic and fermionic quanta (excitations) and

10
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introduce the parity operators (with eigenvalues +1)

I, ‘= ekip {m 115, + %(ay + 1)]} — —exp {inblty} o,
II, = exp {z'fr -beg - %(orJE - 1)]} = —exp {iwbgbz} T
I = —ILI, -
= exp {i'fr -bJ{bl + biby + % (0. + 1)]}
= —exp {iﬂ'bibl} exp {iwbgbg} a; - (2.4)
Then
[H,IL] = ikwy exp{irblb,} o,
[H,1;] = —ihwy exp{inbib,} o,
[H,II] = 0, (2.5)

where we have used the relevant identities from Appendix B. The eigenstates

of the Hamiltonian (2.1) may thus be chosen to be states of definite II parity.

2.2 Special cases of the general Hamiltonian

2.2.1 The Rabi Hamiltonian

The dipole interaction between a two-level atom with level-splitting wy and

a single electromagnetic field mode of frequency w may be modelled by the

Rabi Hamiltonian

Hpani =

1
iwgaz + wbdlb 4+ g (bT-I—b)O'I
1

w0 o + wbb + 2g (bT + b) s (2.6)

11
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which is the simplest non-trivial realization of the general model Hamiltonian
(2.1), obtained by setting w; = w,w, = 0, and with the coupling convention-
ally relabelled via n; = n = 2¢,7, = 0. This model was originally employed
in the context of nuclear magnetic resonance [Ra37, Ra54], and is of topical
interest in quantum optics [Sh93, Mi91]. The Hamiltonian (2.6) conserves
the parity

HRani = exp {irr [bTb + % (o + 1)]} . (2.7)
It is important to note that the Rabi Hamiltonian is not a continuous limit
of the general model Hamiltonian (2.1), since it operates in a fundamentally
different Hilbert space where the additional degrees of freedom corresponding

to the second bosonic mode are absent.

2.2.2 The linear F ® ¢ Jahn—Teller and pseudo Jahn—

Teller Hamiltonians

In the case of degenerate bosonic modes (w; = wy; = w) equally coupled
(m = n2 = n) to a fermionic system, the general Hamiltonian (2.1) reduces

to the linear £ @ e pseudo Jahn-Teller (PJT) model

1
Heyp = Zwoo® +w biby + w blb,
+n (bl +b1) 0 — 5 (b} +b2) 0¥ . (2.8)

If, in addition, the fermionic levels are degenerate (wy = 0), then we obtain
the (pure) linear £ @ e Jahn-Teller (JT) Hamiltonian Hjr. These models
are of relevance not only in quantum optics, but also in quantum chemistry

(Berb], where they describe the non-adiabatic vibronic interaction between a

12
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two—fold degenerate or quasi-degenerate electronic level (E£) and a doubly-
degenerate nuclear vibrational mode (e). The designation “linear” indicates
that the vibronic interaction terms, expanded in powers of the nuclear con-

figurational coordinates, have been truncated at first order.

There is another symmetry, besides the parity symmetry (2.4), associ-
ated with the PJT Hamiltonian (and therefore also with the JT Hamilto-

nian) which is not obvious from the form (2.8). If we perform the canonical

transformation
a; = 1 (by + 1b2) al = L (bJ{ = Ebg)
V2 2
1 . 1 )
(]',2 = E (b]_ —_ sz) G-E = _2 (b‘{ + Zbg) L] (29)

which preserves the commutation relations (2.2), then the Hamiltonian (2.8)

and parity operator (2.4) become

Hpyr = §w0 o® + waial 4 wagaz
+ v (a1 + ag) ot + v (aJ{ - (12) o~ (2.10)
. 1
IIp;r = exp {zvr [a{al-l-agag-l—i(az—{-l)]} : (2.11)

where v = 17/+/2. In the form (2.10), it is readily seen that, for arbitrary w,

Hpjr commutes with the operator

1
J = elai~alas + -2~Jz ; (2.12)

The transformation (2.9) and the symmetry [Hpyr,J] = 0 have a simple
physical meaning. In the quantum optics context, Equations (2.9) corre-
spond to a transformation to field modes of circular rather than linear polar-

ization, with aJ{ (a%) denoting an operator which creates a photon of positive

13
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(negative) helicity. The operator J then represents a conserved angular mo-
mentum component. Since J also commutes with the parity operator (2.11),
the eigenstates of Hpjr (and Hjr) need thus only be sought amongst those

states with definite Ilp;r and J.

14
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Chapter 3

The Coupled Cluster Method

We present here an overview of the CCM. For a more detailed exposition of
the CCM, including a comprehensive list of references and a discussion of
the treatment of excited states and dynamics in the CCM, see, e.g. [Bi91a],
[Ar83a], or [Ar87]. A simple introduction to the CCM is also given in [Bi87].

The basic ingredients of the CCM are the so—called model state |®), to-
gether with a set of mutually commuting (independent) multiconfigurational
creation operators {C’}} defined with respect to the state |®). The model
state plays the role of a reference state or “vacuum?”, so that the state C}|®)
may be thought of as a multiparticle cluster configuration obtained by intro-

ducing [ “elementary excitations” on |®).

The CCM model state and corresponding creation operators must satisfy
two essential requirements. Firstly, the state |®) should not be orthogonal

to the exact ground state. Thus one must ensure that the model state in-

15
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corporates the underlying statistics and other symmetries of the many—body
Hamiltonian. Furthermore, the creation operators {C}} must be chosen such
that the set {C}r@)} spans the relevant many-body Hilbert space, i.e. such
that {CH@)} is complete.

Besides these formal requirements, the choice of |®) and {C’}} is in prin-
ciple arbitrary [Bi91al. It is clear that a judicious choice should lead to more
rapid convergence of the CCM results, and this consideration should govern
the choice of S and |®). In practice, due to the complexity of the CCM calcu-
lations, the choice of the model state and cluster operator is often the simplest
possible one satisfying the essential requirements listed above. There is no
evidence in the literature that this choice has ever led to physically spurious

predictions.

Although not essential, 1t is furthermore convenient for computational

purposes if the creation operators are chosen such that

Crl®) =0=(d|C] V I#0 (3.1)
and

(®|C;CHR)=0 V¥ J#I. (3.2)

The first condition ensures that the Hermitian adjoint operators {C;} annihi-
late the model state, and the second that the states {Cﬂ@)} form a mutually
orthogonal set. Unless stated otherwise, we will assume in what follows that

this is the case.

To obtain a size—extensive result for the ground-state energy of a many-

body system, the effective many-body Hamiltonian must be separable when

16
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the system is separated into subsystems which are then removed sufficiently
far from each other in configuration space (the so-called cluster property).
In diagrammatic perturbation theory, Hugenholtz [Hu57, Tho| showed that
linked (connected) diagrams always give contributions to the ground-state
energy with the correct dependence on the extent of the system. Thus, in
order to obtain results for the ground-state energy which obey the cluster
property at any level of approximation, the energy must always be calculated
as a sum over linked diagrams only. In the CCM, this is achieved by making
the following ansatz for the ground-state wave function |U):

[Ih=ae™( B ¢ 1 SN e 5 (3.3)

I#0

The exclusion of the identity operator C§ = 1 from the cluster correlation

operator S leads to the intermediate normalization condition
(0|T) = (®|®) =1, (3.4)

provided that (3.1) is satisfied. The operator S, being additively separable,
corresponds to a sum over linked diagrams, and therefore ensures the size—
extensivity of the CCM ground-state energy at any level of approximation.
The exponential form (3.3) also ensures the correct counting of all possible

correlated /-body excitations from the model state.
In the CCM, the ground-state energy is now determined by rewriting the
ground-state Schrodinger equation H|¥) = E,|¥) in the form
e S He’|®) = Eo|®) . (3.5)
The inner product of (3.5) with the model state |®) yields
Eo = (®le " HeS[@) (3.6)

17
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which determines the ground-state energy E, as a function of the cluster
correlation coefficients {s;}. In turn, these coefficients are determined via
the coupled equations

(®|Cre™"He®|®) =0, (3.7)

obtained by taking the inner product of (3.5) with the set {CH(I))} I # 0.
The similarity transformed Hamiltonian e ™ He® can be expanded via the

Hausdorff (nested commutator) expansion
1
e ®He’ = H+[H, S+ E[[H’ 818 Lues s (3.8)

Provided that, as is the case for the model systems considered here, the
many-body Hamiltonian contains a finite number of destruction operators
defined with respect to the model state |®), the nested commutator expansion
(3.8) either terminates naturally at finite order or is resummable to closed

form without approximation.

The CCM formalism as presented above, and in particular the ansatz
(3.3) for the ground-state wave function, is in principle exact. However, in
general the cluster correlation operator S must be summed to infinite order
to obtain the exact solution. Therefore, in the application of the method,
approximations are introduced since the operator S must be truncated in
order to render the CCM equations (3.14) tractable. The truncation of S at
finite order, say N, is referred to as the SUB-N approximation scheme, and
has a physically intuitive and appealing meaning, namely that all /-body
correlations on the model state |®) up to / = N have been included in the
CCM approximation to the exact ground-state wave function. Although it is

thus possible to systematically increase the order N of the SUB-N approxi-

18
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mation scheme, there is however no guarantee that the corresponding results

converge uniformly towards the exact results.

The determination of the ground-state expectation value A of an arbi-
trary operator A via the CCM requires, in addition to the CCM ground-state
ket introduced above, also the ground-state bra. If the bra is simply taken
as the Hermitian adjoint of the ket, then

((D|€StA€S|‘I)>
(®|eS'e5| D)

AHermitian =

= (9] ("' 4¢%)  |@) (3.9)

where the suffix £ denotes a sum over linked diagrams. However, when
expanded in powers of S and ST, the unitary (rather than similarity) trans-
formed operator €5’ Ae® does not in general terminate after a finite number of
terms, and it is not possible to write down an explicit expression for Apermitian-
Also, if the operators S and ST are approximated by truncation at finite or-
der, then Agermitian 1S no longer calculated from the same set of diagrams as
for the energy [Tho], and therefore does not satisfy the requirements of the

Hellmann-Feynman theorem [He35, Fe39].

For a system whose observables are represented by a set of Hermitian
operators, the operators obtained via a similarity transform of the members
of this set are in general non-Hermitian. It is always possible to regain a
Hermitian description of the system, i.e. one where the observables have real
eigenvalues and expectation values, via a redefinition of the scalar product
(see also [Sc92]). For the reasons mentioned above, this is not done in the
CCM. Rather, the ground-state bra (¥| in the CCM is parameterized inde-

pendently from the ket state |¥), and is thus not (to any finite order) the
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manifest Hermitian conjugate of |¥) . This non-Hermiticity can lead to
imaginary values for the CCM energy, but, in earlier work, the appearance
of an imaginary part in the energy has always correctly indicated a phase
transition in the system (see e.g. [Ro90, Bi91b]). Also, as a result of the non—
Hermiticity of the method, an approximate CCM result for the ground-state
energy does not necessarily provide an upper bound for the true ground-state
energy, despite the fact that, as will be shown shortly, the method may be
formulated variationally. This loss of the upper-bound property is offset by
the fact that the parameterization of the bra can be done in a manner which
leads to explicit expressions for arbitrary expectation values, and which is
compatible with the Hellmann-Feynman theorem at any level of approxima-

tion. Here we present two such formulations of the method [Ar83a): In the

so—called normal CCM (NCCM),

(¥|noom = (B[S, §=1+3 50, (3.10)
I#0

whilst in the extended CCM (ECCM),
(Ulgoem = (Dlee™®, == > oiCr. (3.11)

Here the bra-state coefficients {37} ({o7}) are regarded as independent pa-
rameters; the Hermitian adjoint relation which formally specifies these pa-

rameters in terms of the ket—state coefficients {s;} is ignored. In both the

NCCM and ECCM, condition (3.1) leads to the normalization

(|0) = (2|0) =1, (3.12)

!To infinite order, the CCM prescription for the ground-state bra is formally identical
to the Hermitian adjoint of the ground—state ket, and this non-Hermiticity disappears. In
the application of the method, however, the cluster operator must in general be truncated

for computational purposes, and this observation is thus mostly of academic interest.
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and the expectation value of an arbitrary observable A is given by A4 = (¥|A|T).

In particular, the expectation value
H = (U|H|T) (3.13)

of the Hamiltonian becomes a functional of the NCCM (ECCM) coefficients

{s1,51} ({s1,01}), which are then determined by the variational conditions
oH 0H (0H oH

—=0=— [([z—=0=—] . 3.14

831 65[ (88[ 60'1) ( )

In both the NCCM and ECCM, the CCM ground-state energy is obtained

by evaluating the energy functional H at the stationary point where the

variational conditions (3.14) are satisfied. In the NCCM, the coefficients

{51} appear only linearly in the functional

-H"NCCM — (@|56_3H63|@> ; (3.15)
so that the conditions
H
8—~ = (®|Cre " He’|®) =0 (3.16)
85;

identically reduce to the previous equations (3.7), and it is clear that the
expression (3.6) for the CCM ground-state energy again obtains. Thus in
the NCCM the coefficients {s;}, and therefore also the CCM ground-state
energy, are determined independently of {37}, and the bra—state coefficients

are only required if other ground-state properties of the system are to be

calculated. In the ECCM, however,
FEGCM = (@|626_5H63|@> (3.17)

and the CCM equations (3.14) for {s;} and {o;} are coupled. Thus both

sets of coefficients have to be solved for simultaneously in order to determine
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the ground-state energy. As before, in the SUB-N approximation scheme,
the operators S, S (S, %) in the NCCM (ECCM) truncate at order N.

To any finite order in both the NCCM and ECCM, an arbitrary ground-
state observable is calculated as a sum over linked diagrams only, and there-
fore exhibits the cluster property. In the NCCM, however, the ground-state
bra amplitude S itself contains unlinked terms. Due to its double exponential
structure, the ECCM has the added advantage that both the ground-state
ket and bra amplitudes are fully linked. As such, the ECCM, although com-
putationally more involved than the NCCM, is capable of describing global
phenomena such as phase transitions [Bi9la, Ar83a]. In the LMG model, for
example, a spherical nucleus consisting of /N nucleons undergoes a transition
to a deformed shape above a region of critical coupling. The transition is only
a true (sharp) phase transition in the thermodynamic limit N — oc with the
density of nucleons held fixed. Arponen [Ar82] has shown that, at least in
low order (SUB-2), the NCCM based on a model state of spherical symmetry
cannot accurately approximate the exact LMG ground-state energy in the
deformed phase. Although no formal proof exists, it has been conjectured
[Ar82] that the NCCM SUB-n results, for a model state of spherical symme-
try, would not be accurate in the deformed phase for any finite n, and that
a deformed model state is thus necessarily required for a successful NCCM
calculation above the critical coupling regime. Subsequently, it was shown
[Ar83a, Ar83b, Ro89| that it is possible, within the ECCM formulation of
the method, to obtain accurate CCM results for the LMG ground-state en-
ergy over the full coupling spectrum, encompassing both the symmetric and

deformed phases, using a single model state.

22



University of Pretoria etd — Van der Walt, D M (1999)

Chapter 4

The Rabi Hamiltonian

In this chapter, we discuss the analytic limits of the Rabi Hamiltonian,
and benchmark the numerical diagonalization results for the Rabi spectrum
against known analytic results. We investigate the physical nature of the
Rabi ground state, and present a review of some existing results for the
ground and first excited states obtained via many-body methods other than

the CCM.

4.1 Discussion of the Rabi Hamiltonian

The Rabi Hamiltonian

Haap = %wo oF + wblb + n (b?—}-b) o’
= %wo 0% + wblb + g'(bT-i—b) (a"’—i—a') i (4.1)
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where 7 = 2g, and its conserved parity
] 1
Mray = exp {irN}, N = b'b+ =(e*+1]) (4.2)

were introduced in Cha,pter' 2. Given that most recent interest in the Rabi
Hamiltonian is in the field of quantum optics, we present our analysis of the
Hamiltonian in this context. In typical optical applications, the coupling
g is small, and the so—called counter-rotating terms g (b*a"‘ - ba‘) in the
Hamiltonian (4.1), corresponding respectively to the processes where a pho-
ton is created as the atom makes an upward transition and where a photon
is annihilated as the atom makes a downward transition, may to good ap-
proximation be neglected. This rotating wave approximation (RWA) results

in the well-known Jaynes-Cummings Hamiltonian [Ja63]

1
Hic = 5o o + wblb + gblo™ + gbot. (4.3)

In the Jaynes—Cummings model [Hjc, N] = 0 and the model is exactly sol-
uble, since we may diagonalize Hjc in each subspace labelled by a fixed
number, say n, of quanta. For n = 0, there is only one state, namely the
product state |0)| ), where the first ket refers to the field mode in the oc-
cupation number (Fock) representation and the second denotes the atomic
state with the atom in its lower level, corresponding to energy E3C = —Liwg
where the notation is convenient in what follows. For n > 1, the states |n)|])

and |n —1)|1) form a basis for the subspace corresponding to a given n, and

one may diagonalize the resulting set of 2 x 2 matrices to obtain

Bz =uw (”‘ %) i%\/(w—wo)2+16ﬂ92 (n>1). (44)

Since E}9 > 0> E3€ V n > 1, the ground-state energy of Hjc is given, at

each value of the coupling g, by the smallest element of the set {E;LC_, n >0}
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The corresponding eigenstates are often referred to as “dressed” states in
quantum optics, where they are utilized in the study of, amongst others, the
time development of the system given particular initial conditions for the
atom and field [Mi91, Sh93], and the quasiperiodic recurrence phenomena of

collapse and revival which characterize the Jaynes—Cummings model [Na88,

Ge90, Mi91, Sh93].

The more general Rabi Hamiltonian (4.1), which extends the Jaynes—
Cummings model beyond the RWA, is of interest for a variety of reasons.
Given that quantum optics experiments are nowadays being performed with
ever-increasing field intensities [An94], there is considerable agreement (see,
e.g., [Cr91, Fe96, Lo98]) that the full Rabi Hamiltonian merits investigation.
Furthermore, it is known (see [Mi83] and references therein) that quantum
chaotic behaviour does not occur in the RWA. Although there is no consensus
as to whether the Rabi Hamiltonian does exhibit chaotic behaviour [Gr84a,
Ku85, Ei86, Mi91], it is clear that the counter-rotating terms are essential if
the possibility of quantum chaos is to exist. Finally, Hamiltonians similar to
(4.1) occur in the theory of vibronic interactions [Berb] and in the analysis
of a quantum tunneling system under the influence of a phonon bath [Le87],
as well as in the study of the two-site polaron Hamiltonian in solid state

physics [Mah].

The strict limitation of the fermionic subsystem of the Rabi model to
two levels represents an idealization which, from a physical point of view,
may generally only be regarded as realistic for wy ~ w. For large atom—

field detuning, one might reasonably expect that effects due to the multilevel
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nature of the true atomic system would be at least as important as those due
to the non-rotating terms included in (4.1); in most of what follows we will
therefore focus on the case of resonance. It is then convenient to scale out
the w-dependence by setting w = wg = 1, and we will refer to the resulting

Hamiltonian as the scaled resonant Rabi Hamiltonian.

4.1.1 Exact limits of the Hamiltonian

The Rabi Hamiltonian is analytically soluble in two limits, namely that of
zero coupling (g = 0), and that of degenerate electronic levels (wg = 0). For
zero coupling and nondegenerate atomic levels (wy > 0), the exact ground
state assumes the form |0)|]), and the corresponding ground-state energy is
given by Eg=° = =32. Note that, in this case, the ground state is unique and

of positive parity.

The case of nonzero coupling and degenerate atomic levels is important
because, as we will demonstrate below, the Hamiltonian with a finite value
wp =0

for wg approaches this case as g =+ 0o. For wy = 0, [HRabi ,0‘”] = 0, so that

the eigenstates of Hi°r" may be taken to be eigenstates of 0%, and we obtain
Hy? =wblox2g (61 +0) (4.5)

where the upper (lower) sign refers to the choice of the upper (lower) eigen-
state of ¢”. The Hamiltonian (4.5) represents a shifted harmonic oscillator,

as is easily seen by performing the canonical transformations (see e.g. [Hak])

be bl BLo=bte 2 (4.6)
w

w

26



University of Pretoria etd — Van der Walt, D M (1999)

which preserve the bosonic commutation relations, to yield

o 2
H=0 = o BB, — 29 (4.7)
w
For the ground state |¥) of H:,
" 29
bWy =0 = B¥) =FZ|0). (4.8)

Thus the (normalized) degenerate ground states |Wq;) and |¥gq) of the Rabi
Hamiltonian for wy = 0 are the (normalized) coherent bosonic states
30 = Pon[Ftfio =Y Ty )
n=0 '

with ¢ = 2¢/w, multiplied by the corresponding eigenfunctions of o

\/iéexp [2o*/2)l0h = S= () £11)) (4.10)

SI

and may thus be written as [Gr84b],

Vo) = —sl=ahexp /2] 1)
9 %/ o [-%"-w] 10) (14) + 1))
|We) = %Lx)e}cp [—0+/2]|¢>

_ %/ exp [ 23] 10) (14 -11)) (4.11)

with the ground-state energy in both cases given by Eg°=° = —4¢?%/w.

Having obtained the solution (4.11), we now demonstrate that the equiv-
alence of the limits wy — 0 and g — oo, although not formally proven, is at
least consistent with this form of the solution. Heuristically treating the set

of states {|Wo1),|Wo2)} as a basis for the full Rabi Hamiltonian (4.1) with
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wg > 0, we obtain the matrix representation

ik _%woe—ngfwz
) (4.12)
_%woe_s.qz/wz _é.g_

w

for Hpapi. For finite g, the Hamiltonian couples the states |Up;) and |Wgy)

via the off-diagonal terms, and the diagonalization of (4.12) yields the two

eigenenergies
By = By=F une™0'1 (413)
with corresponding eigenfunctions
1
4) = 75(“1’01) + [Woz))
1
v_) = E(N’m) — |Woa)) . (4.14)

As g — oo with wg finite, the off-diagonal elements of the matrix (4.12)
vanish exponentially. In this limit, the eigenfunctions (4.14), which are lin-
ear combinations of the states (4.11), thus become degenerate with energy

B = EB3°=° and the wy = 0 solution is reproduced. Furthermore, since
HRani|Wo1) = [Yo2) , MRabi|Vo2) = |Pa1) , (4.15)

we may write the states (4.14) in the form

¥4) = 75 (1+ M) o)
) = %(1-Haabi)|wm>. (4.16)

Given that II§,,; = 1, the states |¥,) and |¥_) are therefore of positive
and negative parity, respectively. Also, the bosonic coherent states | +2¢/w)
reduce to the bosonic vacuum [0) at g = 0, and the state |¥y) (|T_)),
although not the exact ground (first excited) state at finite g, is therefore the

analytic ground (first excited) state at g = 0.
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4.1.2 Juddian solutions and the configuration—interaction

(CI) method

Several attempts at an analytically exact treatment of the Rabi Hamiltonian
have been made. There is very strong numerical support for the conjecture
of Reik et. al. [Re86, Re87] involving generalized spheroidal wave functions,
but a formal proof of the integrability of (4.1) is still missing (note here
the work of Szopa et. al. [Sz96]). As demonstrated in the introduction
to this chapter, the Jaynes-Cummings model, i.e. the Rabi Hamiltonian
within the RWA, is analytically soluble. This result may also be obtained
via a unitary Holstein-Primakoff mapping of both the fermionic and bosonic
aspects of the Jaynes—Cummings Hamiltonian into a system composed of
two ideal boson modes, where the resulting bosonized Hamiltonian may be
solved exactly [Ci98] *. This success of this bosonization approach, however,
depends crucially on the fact that Hjc commutes with the number operator

N introduced in (4.2), while [Hgabi, N] # 0.

However, isolated analytic solutions for some of the higher lying states in
the spectrum of the Rabi Hamiltonian are known. These solutions were first
obtained for a class of Jahn-Teller systems by Judd [Ju79], who established
explicit finite order equations for the isolated values of the coupling at which
the Jahn-Teller eigenvalues can be determined analytically, and these isolated
exact solutions are thus known as Juddian solutions. Subsequently, Reik

et.al. [Re82] showed that the Juddian solutions for the Rabi Hamiltonian

1Gee also the non-unitary Dyson boson mapping technique employed in [Ca87], albeit

to a different Hamiltonian.
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may be obtained as a special case of those for the linear £ ® e pseudo Jahn-
Teller model. A fuller discussion of the approach taken by Reik et.al. is
thus deferred to Chapter 7. Here we simply point out that the values of the
coupling g for which Juddian solutions for the Rabi system occur are given
[Re82] by the solutions of

Ay + By =0 (4.17)

where N € {0,1,2,...}, and Ay and By are determined recursively via

B, My M B,
o [ B R n=01,2..,N—1 (418)
An+1 M21 M22 An
with
24° 2¢* 1
B — A = S e e e N
2 w? ’ 4 w? 4 5+2
2¢% /1 N
My =~
H w? (4 2)
R i
Ma = -5 (3-8+n-3)
262 5 NY (1 N 2
o = (+irorn-3) G-+ 3)-Hosn
2¢° 5 N\ /1 N 2g*
My = (%‘l‘g‘f‘(g“'n—?)(Z—6+n_?)_%(n+l)
Wy —w
6 = !
- (4.19)

For a given value of N, the sum Ay + By is a polynomial of degree N in
g%, and (4.17) thus yields N solutions for g?. The positive square roots of
the positive g? solutions to (4.17) yield the values of the coupling for which
Juddian isolated exact solutions exist, and the energies corresponding to

these couplings then lie on the Nth so-called baseline, defined by

. 4q?
EBaseline _ 7, % . (4.20)
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For N =0, Ag+ By = —i—é, which is independent of the coupling g, and
(4.17) is then only satisfied in the special case § = —i, which corresponds
to wg = 0 i.e. degenerate atomic levels. It is then clear from (4.20) that
the Juddian solution for N = 0 and wy = 0 yields the wy = 0 solution
(4.11) presented in Section 4.1, which is a degenerate ground-state solution
analytic for all couplings. This two—fold degeneracy is a generic feature of
the Juddian solutions for the Rabi Hamiltonian for all N, and indicates that
these solutions always occur at points where two energy levels simultaneously

cross the Nth baseline.

For N = 0 and wy # 0, isolated exact solutions do not exist for any
value of the coupling g. In fact, at least at resonance (wg = w or equivalently
4 = 0), no Juddian solutions occur for either the ground or first excited states
of the Rabi system for any value of the coupling [Re82]. For N > 0, however,
isolated analytic solutions corresponding to higher lying states of the Rabi
Hamiltonian may be found at particular values of g, and these Juddian so-
lutions then provide a useful benchmark against which approximate results

may be checked.

Although in this thesis we focus mainly on the coupled cluster method,
it is of interest for purposes of comparison to analyze the Rabi system using
other many-body techniques. In particular, we consider here techniques
which yield quasi—exact numerical results. The configuration-interaction
(CI) method (also known as the Rayleigh-Ritz method or simply diagonaliza-
tion), is generally regarded as such a method, and entails the diagonalization

of a Hamiltonian in a subspace of the full many-body Hilbert space. For any
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given range of values of the coupling g, care must be taken to ensure that
the dimension N of the subspace is large enough so that the calculation may
be deemed to have converged at each value of g in the given interval. This
typically requires N ~ 100, so that the diagonalization has to be done nu-
merically. We construct a typical subspace as the span of a basis consisting
of products of bosonic occupation number states and two-level atomic states.
Since the Rabi Hamiltonian (4.1) conserves the parity (4.2), the matrix rep-
resentation of (4.1) blocks into even and odd parity sectors, simplifying the

numerical calculation.

It is important to note that there is no a priori guarantee that the CI
results, even when done to arbitrarily high (finite) order N, are practically
exact (see e.g. [Lo98], where it is demonstrated that this is not the case for the
multiquantum or k—photon Rabi model). For the Rabi Hamiltonian, however,
we may use the Juddian solutions to benchmark the CI results. As shown in
Table 4.1, a CI diagonalization of the scaled resonant Rabi Hamiltonian in a
basis of N > 61 states reproduces the known exact results for the ninth and
tenth excited states at the representative Juddian point g = g* = 0.75824924
to within the limits of numerical precision (< 1071%). In Table 4.1 we also
tabulate the (even—parity) ground state and (odd—parity) first excited state
energies at ¢ = ¢g*. Although there does not appear to be a formal proof
of this, it is reasonable to expect that, in the same order N, the error in
the lower-lying energies should be at most of the same order of magnitude
as that for the higher-lying states, particularly since the lower-lying energy

eigenvalues appear to converge at least as quickly with increasing N as their
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higher-lying counterparts 2. Results of similar accuracy may be obtained
at other Juddian points, and we may thus assert that the CI results are for

all practical purposes exact over the full coupling spectrum.

Table 4.1: Comparison of the results of a CI diagonalization of the scaled resonant
(w = wo = 1) Rabi Hamiltonian in a basis of N states with the Juddian solution
occurring at g = g~ = 0.75824924 for which the ezact energies of the ninth (Eg)
and tenth (Eqo) excited states are given by Eg = E19 = E* = 1.70023235. Clearly
the CI method effectively reproduces the exact Juddian result for N > 61. Also
shown are the CI results for the even-parity ground (Eg) and odd-parity first
ezcited (E;) state energies at the same coupling g*. The converged CI results for

Eqy and E; are clearly well separated at this value of g.

N EM B M. g gt _ms | e | i | g )
11 | 5.40691445 | 7.30537548 | 3.7067x10° 5.6051x10° | -2.2528 | -2.1830 | 6.9734x10~2
21 | 2.36187405 | 2.36800390 | 6.6164x10~! 6.8777x10~! | -2.3361 | -2.3247 | 1.1383x10~2
31 | 1.70942030 | 1.74049648 | 9.1879x10~% | 4.0264x10~2 | -2.3363 | -2.3255 | 1.0753x10~2
41 | 1.70024476 | 1.70027293 | 1.2407x10~° | 4.0578x10~° | -2.3363 | -2.3255 | 1.0753x102
51 | 1.70023235 | 1.70023236 | 7.9560x10~1% | 8.5000%10~° | -2.3363 | -2.3255 | 1.0753x102
61 | 1.70023235 | 1.70023235 | 8.8867x107!2 | 9.8461x10~!! | -2.3363 | -2.3255 | 1.0753x10™2
101 | 1.70023235 | 1.70023235 | 1.8695x10711 | 8.6098x10~!! | -2.3363 | -2.3255 | 1.0753x10~2

2Although theorems such as those on interleaving eigenvalues may in certain cases be

used to bracket the exact eigenvalues, we have not been able to find any useful theorems
relating the rate of convergence (with increasing V) of the higher-lying eigenvalues to that

of the lowest eigenvalues in the literature.
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4.2 Physical characteristics of the Rabi ground

state

Systems similar to the Rabi Hamiltonian are known to exhibit interesting
ground-state behaviour. A case in point is the polaron, consisting of an
electron interacting with the phononic lattice field in a solid [Mah]. It is
well known that there is a crossover from the so—called large polaron regime,
where the electron is essentially free to roam the solid (and the Frohlich
Hamiltonian, which treats the ionic background as a continuum, applies), to
the small polaron regime, where the discrete nature of the lattice manifests
itself and the electron is to a greater or lesser degree localized to a particu-
lar atomic site. The crossover from large to small polaron behaviour as the
electron-phonon coupling is increased does not constitute a phase transition,
but it does signify a drastic change in the character of the polaron ground
state in a reasonably well-defined coupling regime. In fact, an application
of time-independent (Rayleigh—-Schrédinger) perturbation theory (TIPT) to
the Frohlich Hamiltonian yields an infinite effective mass for the electron at
a particular value of the coupling (see [Mah| and references therein), an ob-
viously erroneous result which may however be used to identify the crossover
regime. Similar crossover behaviour is also observed in the study of a quan-
tum particle tunneling between two wells in the presence of a phonon bath
(see [Lo95] and references therein). In this system, which is closely analo-
gous to the Rabi Hamiltonian and which may also be used as a model of
the two-site polaron, there is competition between the localization inher-

ent in the interaction with the phonons, and the delocalization inherent in
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the tunneling. Again, although several variational studies find evidence for
a sharp (discontinuous) transition, the localization—delocalization crossover
which occurs for intermediate coupling between the particle and the phonons
does not consitute a true phase transition, but simply a change in character

in the ground state of the system.

It is thus not surprising to find that a similar crossover regime exists
for the quantum optical system described by the Rabi Hamiltonian. Using
the (essentially exact) CI results for the resonant Rabi ground-state wave
function, we have also determined the expectation value (¢*), which indicates
to what extent the atom may be regarded as being in its upper or lower
state, as well as the fluctuation Ac* = 4/1 — (0%)?, as a function of the
coupling g. The results, which are shown in Figure 4.1, indicate that there is
a marked change in the physical character of the ground-state wave function
in the region where g ~ 0.6. Below this transitional region, the atom is
predominantly in its lower state. Above the transitional region, the atom
is essentially in an equal superposition of the upper and lower states. The
change in character in the ground state also manifests itself in (n), the average
number of photons in the field in the Rabi ground state, as well as in the
fluctuation An in the photon number, as a function of the coupling g. Again
using the CI result for the Rabi ground-state wave function at resonance,
we find that (n) ~ An = 1 at g ~ 0.6, which defines the same transitional

region as before.

The change in character in the Rabi ground state, although marked, is not

discontinuous, and there is thus no evidence for a phase transition. Note that
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the Rabi system has an infinite number of degrees of freedom (the number of
bosons can be infinite), and that, unlike a finite system, it could in principle
display a true phase transition. If such a phase transition were present,
the ground and first excited states would become degenerate at the critical
coupling for the transition. The absence of such a transition is thus also
substantiated by the CI results for the ground and first excited state energies

Ey and E;, which are well separated in the transitional region, even (see

Figure 4.1: The expectation value (¢*) (solid line) and the fluctuation Ac* (thick
solid line) in the ground state of the scaled resonant (w = wg = 1) Rabi Hamilto-
nian, as a function of the coupling g, as determined via a CI diagonalization in a

basis of 101 even—parity states.

0.6 - ]

0.2 - .

(c%),Ac?0
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Table 4.1) at the Juddian point ¢ = g* = 0.75824924 located well above this
region. Even in the limit wy = 0 where the (analytic) ground state is doubly
degenerate for all couplings and there is definitely no phase transition, this

continuous yet marked character change still occurs in the even-parity ground

state W) (see Figure 4.3).

For the Frohlich polaron problem, the large-to-small polaron crossover is
accompanied by a localization of the electronic wave packet in configuration
space. No such localization occurs in the angular wave packet associated with
the angle variable conjugate to o® [Ca68, Za69, Pei], since the even—parity
symmetry constraint on the ground-state wave function renders the angular
probability distribution flat. This is not surprising, since the Rabi Hamilto-
nian is analogous to the two-site polaron problem, where the localization—

delocalization crossover has a similar meaning to that found here.
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4.3 Approximate many—body approaches to

the Rabi Hamiltonian

Historically, the non-rotating terms included in the Rabi Hamiltonian were
considered to act merely as sources of small frequency shifts, the so—called
Bloch-Siegert shifts, with respect to the Jaynes—-Cummings spectrum [Bl40]
(see also [Mi91, Sh93] and references therein). As discussed in Section 4.1,
however, there has been renewed interest in the full Rabi Hamiltonian (4.1),
and recent many-body analyses of the Hamiltonian include, amongst others,
a weak-coupling time-independent perturbative expansion in g [Ph89, Qi98],
a first-order strong coupling perturbative expansion in wy [Gr84b], a calcu-
lation based on a variational coherent state [Qi98], and a path-integral ap-
proach applied in the weak coupling regime [Za88]. Also, numerically exact
(though not analytic) results for the Rabi system have recently been ob-
tained via the operator method [Fe96], via a power series solution [Qi98],
and via a combination of unitary transformations and numerical diagonal-

ization [Lo96].

4.3.1 Time—independent perturbation theory

Consider first the application of time-independent (Rayleigh-Schrédinger)
perturbation theory to the Rabi Hamiltonian (see also [Ph89, Qi98]). We
write

Hrari = Hé&)bi 5 o ng':{abi (421)
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where
A e t
thi — EUJQO- + Lde b 5
Hpgi = (b1+0) (0% +07) . (4.22)

We restrict the perturbative calculation to the even—parity sector, and only
consider wg # 0 . Since the spectrum of ng‘;)bi, the “noninteracting” (g = 0)

Rabi Hamiltonian is simply determined as

nggbilqlir?)) = EO 0O m=20,1,2,...

|m)|l) m even

) =
Im)|1) modd
EQ® = mw-— _21) wo (4.23)

and since furthermore the ground state of ngbi is nondegenerate for wg # 0,
a perturbative ground-state expansion in powers of the coupling g is feasible
and in principle straightforward. To Nth order, we expand the true ground-
state wave function |Uy) and energy Ej as
N N
Vo) = 1¥°) + L g195) = 0)14) + L g'1¥%")
i= i=

N N
(i 1 il
Eo = EQ+Y ¢'B) =—swo+) ¢'Ef . (4.24)
=1 = =1

We express the ith order correction |¥§) to the ground-state wave function

in the basis consisting of the eigenstates of Hl(%cgbi via

. M o
Wy = 5T iy sk iy, LU (4.25)
m=1

where M is a cutoff introduced for computational purposes. The neglect

of the m = 0 term in (4.25) simply results in an overall rescaling of the

39



University of Pretoria etd — Van der Walt, D M (1999)

perturbative ground-state wave function [Mer]. Upon substituting (4.24)
and (4.25) into the Schrédinger equation H|¥o) = Eg|¥y), and comparing

terms of equal order in g, we obtain the equations

1 o ) _
(B9 - EP) ) = 2 T i 2 Vit T iy — 2 vim &)
=2
m=19. 0400, i=12...N

EY) = 27V, i=1,2....N, (4.26)

which are to be solved for the required unknowns {c()} and {E{"}. These
equations must be solved for M large enough so that the results are effectively
independent of M, i.e. so that we may safely neglect {c();: = 1,2,..., N}
for all m > M. This calculation, which we shall refer to as weak-coupling
perturbation theory, may be done analytically to arbitrary finite order using
algebraic manipulation packages such as Mathematica [Mat], and the results
at resonance are shown in Figure 4.2. Since the weak—coupling Rayleigh-
Schrodinger perturbation series for the ground-state energy, which at reso-
nance (w = wp = 1) assumes the form

1 41 113
E('j"veak:—~2-—2g2—294—296+6gm+?912+Egl4+... . (4.27)

does not appear to follow a discernably regular pattern, we have not been
able to analytically determine the radius of convergence of this series. It is
apparent from Figure 4.2, however, that the perturbative approach breaks
down at g = 0.6, which defines the same transitional region as described in
Section 4.2, and further highlights the analogy between the Rabi system and

the polaron problem, where a similar breakdown in TIPT occurs.

Since the spectrum of the Rabi Hamiltonian in the limit wy = 0 is known

[Gr84b], it is in principle also possible to analyze the Hamiltonian via strong—
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Figure 4.2: The ground-state energy Eq of the scaled resonant (w = wg = 1) Rabi
Hamiltonian as a function of the coupling g as determined via 12th, 20th and 50th
order weak—coupling TIPT (solid lines), and via first order strong—coupling TIPT
(thin solid line), compared to results obtained via a CI diagonalization in a basis

of 101 even—parity states (thick solid line).
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coupling perturbation theory. This involves a ground-state expansion in
powers of wy (see comment just before equation (4.11). The first order strong—
coupling perturbative correction (which multiplies wp) to the wy = 0 ground-
state energy E(()O) = —4¢?/w is given by

1 1
EWM = (V4507 0y) = —56—892/‘”2 , (4.28)

where |0, ) is the positive-parity wy = 0 ground state introduced in (4.16).

The resulting approximation to the ground-state energy,

42 1
Bt = — et (4.29)

is also plotted at resonance (w = wp = 1) in Figure 4.2. Although the
energy g™ is quantitatively inaccurate for intermediate coupling, it is
at least qualitatively adequate over the full coupling spectrum, and there
is no breakdown in TIPT analogous to that observed in the weak—-coupling
case. This reflects the fact that the state |V, ), which is analytic in both the
limits of zero and infinite coupling, must incorporate at least some of the
features responsible for the change in character in the Rabi ground state in
the transitional region. This is confirmed in Figure 4.3, where the expectation

value (¢*) and the fluctuation Ac?, in the state |¥.), are shown as a function

of the coupling g.

We have attempted to apply a version of perturbation theory similar to
that used for the weak—coupling case in order to extend the strong—coupling
perturbative approach to higher order. A cutoff M was again introduced
in the strong—coupling expansion analogous to (4.25). We have not, how-
ever, been able to obtain numerically stable results, ¢.e. results which are

effectively independent of the cutoff M, using this approach.
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Figure 4.3: The ezpectation value (67) (solid line) and the fluctuation Ac* (thick
solid line) in the even—parity wo =0 ground state |V.) of the scaled resonant
(w = wg = 1) Rabi Hamiltonian, as a function of the coupling g, compared
to the same quantities (dotted lines) determined via a CI diagonelization in a

basis of 101 even—parity states.
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4.3.2 Variational results for the Rabi Hamiltonian

The variational method is a commonly used approach to simple many-body
Hamiltonians when a computationally inexpensive estimate of the ground-
state energy of the system is required. The basis of the method is a postulated

ansatz for the many-body wave function, containing parameters whose values
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are determined by minimizing the expectation value (H) of the Hamiltonian
in the trial state. This minimal expectation value (i.e. (H) evaluated at
the optimal values of the variational parameters) yields an estimate of the
ground-state energy. A considerable advantage of the variational method is
that the approximate energy thus obtained provides an upper bound for the

exact ground-state energy for any choice of the trial wave function.

It 1s possible to obtain very good results from variational calculations for
the Rabi Hamiltonian [Bi99a]. Motivated by the form (4.11) of the exact
ground-state wave function in the limit ¢ — oo, we initially consider a

normalized two—parameter variational ground state

[T (x,y)) = (4.30)

1
+
————|z) explyc™ /2 ;
\/WI ) explyo™/2]|1)
where |z) represents a coherent bosonic state of the form (4.9). The corre-
sponding variational energy E)" assumes the analytic form (see Appendix C)

1

E[\)’a.r = —§UJO ; q < \/wwg/tl
4  ww?
Var 0
E, = _64g2 , g > wwo /4 . (4.31)

These results were previously obtained by Qin et.al. [Qi98], and the energy

Ey?" is plotted in Figure 4.4 for the case of resonance (w = wy = 1).

It is clear that, for a coherent variational state of the form (4.30), the
variational ground-state energy may at best be regarded as qualitatively
acceptable. Furthermore, although Ey" is both continuous and differentiable
(smooth) at the crossover point g = ,/wwg/4 between the two branches
of the variational solution, there is a discontinuity in the second derivative

d?Ey? /dg* at this point. By contrast, a numerical differentiation of the CI
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(large scale diagonalization) result for the Rabi ground-state energy yields
smooth results for both the first and second order derivatives of Eg with
respect to g. We are thus led to seek a variational trial state better capable

of following the character change in the Rabi ground state.

Figure 4.4: The ground-state energy Eq of the scaled resonant (w = wp = 1)
Rabi Hamiltonian as a function of the coupling g as determined via a variational
caleulation based on the mized parity two-parameter coherent state (4.30) (thin
solid line), as well as via an even-parity projection after variation (PAV) based
on the same state (dotted solid line, see (4.35)), compared to results obtained via

a CT diagonalization in a basis of 101 even-parity states (thick solid line).
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The important omission from the variational ansatz (4.30) is that the
parity symmetry Ilgap; of the Hamiltonian has not been taken into account.
We know from the CI (diagonalization) results that the exact ground state

of the Rabi Hamiltonian is of even parity, and it is clear that the state

TV (2, y)) = %mmpwmm
1

o m /272}\/_%,‘ {|~L +y|T>}

does not have good IlRap; parity. There are two possibilities for incorporating

(4.32)

the correct parity symmetry into the variational calculation. In the approach
known as projection after variation (PAV), the optimal values zop; and yops
of the variational parameters @ and y in (4.30) are determined as before, and
one then projects out the positive-parity component |4V} of the resulting
ground-state wave function |UVa"(z,pue, Yops)) via

|“I’PAV) = (1 + Ilrani) |q’var($0pta Yopt))

= |wvar($0pt:yor>t)> T |qjvar(_$0ptv —yapt» ’ (4.33)
where we have used the fact that
HRabi| ¥V (2, y)) = [¥V*(~2, —y)) (4.34)

for arbitrary @ and y. The variational ground-state energy is then given by

pPAV (TFAY | B | 9P 57
0 (QPAVPI;PAV}

Yo
- prentan (5]

yopt
4w :t:Opt [1 — exp ( Qﬂﬁopt) (1 T Opt)]

yoptxopt
(i)}
. 1 + yopt
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The PAV ground-state energy results are also shown in Figure 4.4, and it
is clear that, although there is considerable improvement on the mixed-
parity variational results for large coupling, the PAV approach still fails at
intermediate coupling where the mixed parity variational results are poor. It
is also apparent from Figure 4.4 that the derivative dEf4" /dg (rather than
d*EFAY [dg?) is already discontinuous at the crossover point g = ,/wwg/4,
so that the PAV approach actually accentuates the spurious discontinuity in

the Rabi ground state.

To include the parity in a self-consistent manner, we consider projection
before variation (PBV). We construct (as yet unnormalized) states of good
parity from the mixed-parity two-parameter state |¥V?*(z,7)) (here x and

y are still free variational parameters) by projection:

(% (2,)) o (1 Hpabi) [V (2, y))
= [V (2,y)) £ [¥Y*" (-2, —y))
x {lz}£[-2)}[{) + y {le) F|-2)} 1)
= |2)z[l) +y le)z|1), (4.36)

where

o0 2n

T = |laV+|—2)=2e"/2 2n
lz). = |z)—|—z) =272 1;] __(m[Qn +1), (4.37)

and the upper (lower) sign in (4.36) thus clearly denotes a state with positive
(negative) parity. Thus we obtain, besides the positive-parity state which

approximates the Rabi ground state, also a negative-parity ansatz for the
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first excited state. For numerical reasons, it turns out to be more convenient
to normalize the states |z)+|]) and |z)<|1) individually before constructing
the combination, and we therefore consider the two-parameter variational

states [Bi99a]
[OEPV2(x,0)) = Ay (Asle)|d) + vAzl2)z] 1)) , (4.38)

where as before the upper (lower) sign refers to a state of even (odd) Igrap;

parity, and

A, = (1+v2)—1/2,

A = 2z (4.39)
The minimization of the expectation value
(Hravi)y ' (z,0) = (U5PV*(e, )| Hrani| V27 V2 (2, v)) (4.40)

with respect to x and v yields two equations for the optimal values z,p,¢ and
Vopt Of the variational parameters (see Appendix C). For both the positive-
and negative—parity cases, the equation for v,y is analytically soluble, so that
the variational (PBV) approach based on the two-parameter state (4.38)
only requires the numerical solution of one non-linear equation in the single
unknown z.p. We will denote the positive—parity variational ground-state

PBV2
Eq

energy thus obtained by , and the corresponding negative—parity first

excited state energy by ETBVZ,

The inclusion of the correct parity symmetry in the variational ansatz
yields a dramatic quantitative improvement in the variational estimate for

the ground-state energy of the Rabi system. -On the scale of our graphs, the
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results for EEBW

are indistinguishable from the diagonalization results over
the full coupling spectrum, and in Table 4.2 we therefore tabulate EJBV?,
together with the optimal values z,,; and Vopts as a function of ¢ for a range

of frequencies. For comparison, we also tabulate the converged CI results

Table 4.2: Comparison of the ground-state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the even—parity two-parameter ansatz
(4.38), EFBV2, with the results of a CI diagonalization in a basis of 101 even-
parity states, Egl. Also shown are the percentage error EEBW - E§I| JES§! x 100,

and the values of the variational parameters tope and vop at the stationary point

of the energy.

wo | w g Eé’BVZ EST % Error Topt Vopt
1.0 | 1.0 | 0.05 | -5.05012x10~! | -5.05013x10~! | 2x10—* 0.071 | -0.050
0.1 | -5.20201x10-! | -5.20202x10~! | 2x10—* 0.142 | -0.101
0.2 -5.83285x107! | -5.83327x10~! | 7x10-3 0.291 -0.208
0.5 -1.14211 -1.14795 5x10~! 0.859 | -0.626
1.0 -4.01580 -4.01693 3x10—2 1.995 | -0.939
2.0 | -1.60039x10! -1.60040x 10! 6x10—4 4.000 | -0.984
5.0 | -1.00001x10? -1.00001 x 102 < 1x10~% | 10.000 | -0.998
1.0 | 2.0 | 0.05 | -5.03334x10~1 | -5.03335%x10~! | 2x10—* 0.041 | -0.033
0.1 -5.13362x10~! | -5.13363x10~! | 2x10—¢ 0.082 | -0.067
0.2 -5.53807x10~! | -5.53809%x10~! | 4x10—¢ 0.164 | -0.135
0.5 -8.51754x107! | -8.51992x10~! | 3x10~2 0.424 | -0.416
1.0 | -2.10416 -2.10825 2x10~1 0.938 | -0.747
2.0 | -8.00798 -8.00855 7103 1.999 | -0.969
5.0 | -5.00012x10! -5.00013x 10! 2x10™1 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.00334 -1.00334 <1x107* | 0.058 | -0.033
0.1 | -1.01345 -1.01345 <1x10™* | 0.116 | -0.067
0.2 | -1.05530 -1.05533 3xio—? 0.237 | -0.138
0.5 | -1.42799 -1.43655 6x10~! 0.699 | -0.430
1.0 | -4.06288 -4.06746 1x10~1! 1.983 | -0.882
2.0 | -1.60156x10! -1.60159x 10! 2x10~% 3.998 | -0.969
5.0 | -1.00002x10? -1.00003 x 10? 1x10-3 10.000 | -0.995

49




University of Pretoria etd — Van der Walt, D M (1999)

for the ground-state energy, as well as the percentage error in EFBVY? as
compared to the CI results. The percentage error is less than 1 % over the
full range of couplings and frequencies. Note that the parameters zop; and
Vopt €volve smoothly from their ¢ = 0 values of 0 to their large-g values of
2g/w and —1, respectively, where it is easily seen that they correspond to a

positive—parity solution of the form (4.16).

Table 4.3 contains the analogous results for a two—parameter PBV cal-
culation of the (negative—parity) first excited state energy. The results are
good — the large percentage error in regions where the first excited state en-
ergy is close to zero is artificial, since the absolute error is small in all cases.
The first excited state results are however not in general at the same level
of accuracy as those for the ground state, particularly for small coupling in
the sub-resonant case (wp = 2w). This may be attributed to the absence of
two-boson correlations in the variational ansatz (4.38). For wg much larger
than w, it would be necessary to determine which n—-boson correlations need
to be included in the variational ansatz. For resonance and supra-resonance

(wo < w), however, the calculation presented here is acceptable.

Although variational calculations are useful in determining energies, par-
ticularly due to the upper-bound nature of their results, there is no guar-
antee that the variational wave function itself is accurate. A failure of the
wave function is usually revealed in the calculation of expectation values
of quantities other than the Hamiltonian. To examine the quality of the
(positive—parity) ground-state ansatz (4.38), we have therefore calculated

the expectation values (¢%)FBY2 and (b'b)FBY? in this state. Explicit expres-
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sions for these quantities are given in Appendix C. In Figure 4.5, the results
for (0°)FBVZ at resonance (w = wy = 1) are compared to results obtained
via numerical diagonalization, as well as results based on the mixed—parity

variational ansatz (4.30). The dramatic improvement obtained by the parity

Table 4.3: Comparison of the first excited state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the odd-parity two-parameter ansatz
(4.38), EYBV2 with the results of a CI diagonalization in a basis of 101 odd-parity
states, EYY. Also shown are the percentage error |EYBY? — EFI| JECT x 100, and

the values of the variational parameters zqpy and vopy at the stationary point of

the energy.

wo | w g FEEVE ECI % BError Zopt Vopt

1.0 | 1.0 | 0.05 | 3.96137x10~! | 3.95102x10~! | 3x10~! 0.279 | -0.982
0.1 | 2.84083x10~! | 2.80666x10~! | 1.2 0.401 | -0.964
0.2 | 3.24806x10~2 | 2.33675x10~2 | 40 0.590 | -0.932
0.5 | -9.98782x10~! | -1.01018 1.1 1.067 | -0.885
1.0 | -4.01545 -4.01658 3x1072 1.997 | -0.940
2.0 | -1.60039x10! -1.60040x 10! 6x10~1 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 102 <1x10™% | 10.000 | -0.998

1.0 | 2.0 | 0.05 | 4.90049x107! | 4.90049x10~! | < 1x10~% | 0.070 | -10.050
0.1 | 4.60760x10~! | 4.60758x10~! | 4x10~* 0.140 | -5.098
0.2 | 3.50617x107! | 3.50542x10~! | 2x102 0.270 | -2.864
0.5 | -2.69004x10~! | -2.71650x10~1 | 1 0.595 | -1.355
1.0 -1.96664 -1.97218 3x10-! 1.042 -1.000
2.0 | -8.00764 -8.00821 7Tx10~? 1.999 | -0.970
5.0 -5.00013x 10! -5.00013% 10° <1x%10~% | 5.000 | -0.995

2.0 | 1.0 | 0.05 | -1.01956x10~2 | -1.65009x10~2 | 38 0.173 | -0.102
0.1 | -4.28514x1072 | -6.42075x10~2 | 33 0.340 | -0.212
0.2 | -1.87367x10~! | -2.35841x10~! | 21 0.601 | -0.419
0.5 | -1.11473 -1.15708 3.8 1.079 | -0.706
1.0 | -4.06213 -4.06664 1x10-1 1.986 | -0.882
2.0 | -1.60156x10! -1.60159% 10? 21074 3.998 | -0.969
5.0 | -1.00002x10% -1.00003 x 102 1x10—4 10.000 | -0.995
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projection is clearly seen, and the good—parity variational results, like those
obtained via the CI method, show no evidence for any discontinuity in the
Rabi ground state. The corresponding results for (676)FBV2 are shown in Fig-
ure 4.6, and here the agreement with the CI diagonalization is even better

— the differences between the CI and two—parameter PBV results are not

Figure 4.5: The ground-state ezpectation value of o* for the scaled resonant (w =
wog = 1) Rabi Hamiltonian in the mizved-parity two-parameter variational state
(4.30) (thick solid line denoted by Var), in the two-parameter PBV state (4.38)
(solid line denoted by PBV2), and in the three-parameter PBV state (4.41) (dotted
line denoted by PBV3), as a function of the coupling g, compared to results obtained

via a CI diagonalization in a basis of 101 even—-parity states (thin solid line).
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visible in the plot. Examination of the actual values shows that the varia-
tional values lie slightly below the diagonalization results for g < 0.61, and

slightly above for larger couplings.

Figure 4.6: The ground-state ezpectation value of b'b for the scaled resonant (w =
wg = 1) Rabi Hamiltonian in the mived-parity two-parameter variational state
(4.30) (thick solid line denoted by Var), in the two-parameter PBV state (4.38)
(solid line denoted by PBV2), and in the three-parameter PBV state (4.41) (dotted
line denoted by PBV3), as a function of the coupling g, compared to results obtained
via a CI diagonalization in a basis of 101 even—parity states (thin solid line). On
this scale, the PBV results are virtually indistinguishable from the diagonalization

results.
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The quality of the results obtained indicates that the even—parity vari-
ational wave function (4.38) is very close to the exact ground-state wave
function for the Rabi Hamiltonian, and re-emphasizes the importance of in-
corporating the parity symmetry in the variational calculation. In the context
of a quantum tunneling system coupled to several modes of a phonon bath
(see [Lo95] and references therein), variational calculations based on both
a multimode coherent state and a multimode squeezed state ® yield results
which also provide evidence for a discontinuous localization—delocalization
transition which turns out to be nonexistent. These results are thus anal-
ogous to the mixed—parity variational results obtained above for the Rabi
Hamiltonian. Lo and Wong [Lo95] performed a variational calculation for
the quantum tunneling system based on a correlated squeezed state, and
found that the correlations between the various phononic modes resulted in
a significant suppression of the evidence for a discontinuous transition in the
system. We conjecture that, for the multimode Rabi system, the inclusion
of the correct parity symmetry in the variational ansatz will yield results
which closely mimic the localization—delocalization crossover, without pro-

viding any spurious evidence for a discontinuity in the ground state.

It is possible to obtain a three-parameter ansatz for the Rabi ground-
state and first excited state wave functions from the two—parameter ansatze
(4.38) by noting that there is no a priori reason for assuming that the two
combinations (4.37) of coherent boson states should have the same param-

eter x, and we therefore propose the following as a three-parameter ansatz

3A squeezed state is a minimum uncertainty state with a reduction, compared to the

coherent state, in one of the two quadrature components of the phonon mode.
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for the Rabi Hamiltonian [Bi99al:

(UEPY3 (21, 20,0)) = Ay (Arzlzi)z]l) + vAzzlza)%[1))
= A, (Arg{lz) £|—z1)})

+vAgg {|z2) F| —22)} 1) » (4.41)

where as before the upper (lower) sign refers to a state of positive (negative)

IIRan; parity, and

A, = {1 + vz]_I/Z \
Ay = [2 (l Lexp [—21%})]-1/2 5
Ags = [2(1xexp[-203])]7" . (4.42)

We note here that the positive-parity (negative—parity) ansatz (4.41) is
clearly invariant under the replacement z; — —z; (22 — —2») as well as un-
der the simultaneous replacements z; = —z3, v = —v (21 = —z1, v = —v).

For convenience, we consider here only the case z1,z, > 0.

As shown in Appendix C, the minimization of the expectation value of
HRgapi in the state (4.41) again yields an analytically soluble equation for the
optimal value v,p, of the parameter v, and it remains only to solve two coupled
non-linear equations for the optimal values &1 op¢ and 3 opt. Our variational
results for the ground and first excited state energies for the three-parameter
ansatze (4.41) are shown in Tables 4.4 and 4.5, and the percentage error
relative to the diagonalization results is also plotted in Figures 4.7 and 4.8.
It is clear from the values presented that we have obtained very accurate
approximations for both the ground-state and first excited state energies

of the Rabi Hamiltonian with very little numerical effort. The results for
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the ground-state energy agree to within 0.1 % with the CI results over the

full coupling and frequency spectrum, while the maximum error in the first

excited state energy is of the order of 2 % (the same comments as for the

two—parameter case apply here).

Table 4.4: Comparison of the ground-state energy of the Rabi Hamiltonian

obtained from a

(1.41), EFBYE,

PBYV calculation based on the even—parity three-parameter ansaiz

with the results of a CI diagonalization in a basis of 101 even—

parity states, ES'. Also shown are the percentage error prBvs EDCI' JESY % 100,

and the values

stationary point

of the wvariational parameters Ticps, L2.0pt; and Uopy at the

of the energy.
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wo | w g E(I;BVS E‘?I % Error T1,0pt T2,0p1 Vopt
1.0 | 1.0 | 0.05 | -5.05013%10~! | -5.05013x10~! | < 1x10~% | 0.071 | 0.087 | -0.050
0.1 | -5.20202x10~! | -5.20202x10~* | < 1x10~% | 0.142 | 0.174 | -0.101
0.2 | -5.83326x10~! | -5.83327x10~! | 2x10~* 0.292 | 0.351 | -0.208
0.5 | -1.14678 -1.14795 1x10-} 0.856 | 0.942 | -0.618
1.0 | -4.01677 -4.01693 4x10~3 1.987 | 2.003 | -0.935
2.0 | -1.60040x 10! -1.60040%10! <1x10™% | 3.999 | 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 10? <1x10~% | 10.000 | 10.000 | -0.997
1.0 | 2.0 | 0.05 | -5.03334%10~1 | -5.03335x10~! | 2x10~ 0.041 | 0.046 | -0.033
0.1 | -5.13363x10~" | -5.13363x10~" | < 1x 10~* | 0.082 | 0.093 | -0.067
0.2 | -5.53809x10~! | -5.53809x10~! | < 1x 10~* | 0.164 | 0.186 | -0.135
0.5 -8.51976x10~1 | -8.51992x10~! | 2x10—2 0.424 | 0.470 | -0.351
1.0 | -2.10739 -2.10825 4x1072 0.932 | 0977 | -0.738
2.0 | -8.00847 -8.00855 1x10™* 1.995 | 2.003 | -0.967
5.0 | -5.00013x10! -5.00013x 10! <1x10~% | 5.000 | 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.00334 -1.00334 <1x10~* | 0.058 | 0.078 | -0.033
0.1 | -1.01345 -1.01345 <1%x10~% [ 0.116 | 0.155 | -0.067
0.2 | -1.05533 -1.05533 <1x10~% | 0.238 | 0.314 | -0.138
0.5 | -1.43491 -1.43655 1x10~} 0.712 | 0.857 | -0.432
1.0 | -4.06678 -4.06746 2x1072 1.966 | 1.998 | -0.875
2.0 | -1.60159x10" -1.60159% 10! <1x10~% | 3.996 | 4.000 | -0.969
5.0 | -1.00003x10% | -1.00003x102 < 1x%10™* | 10.000 | 10.000 | -0.995
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We note that the ground—state energy is accurately given by the two—
parameter ansatz and that the three—parameter ansatz does not significantly
improve on these results. Furthermore an examination of the variational pa-

rameters for the two ansédtze shows that 1 opt ™ Z2,0pt =~ Zopt- This indicates

Table 4.5: Comparison of the first excited state energy of the Rabi Hamiltonian
obtained from a PBV calculation based on the odd-parity three—parameter ansatz
(4.41), EFBY3, with the results of a CI diagonalization in a basis of 101 odd-parity
states, ECY. Also shown are the percentage error |EYBVZ — EFI| JES! x 100, and

the values of the variational parameters T opt, To,0pt; and vVope at the stationary

point of the energy.

wo | w g EFBV:’ EFI % Error Z1 opt 36t Uopt
1.0 | 1.0 | 0.05 | 3.95108x10~! | 3.95102x10~! | 2x10™% 0.119 | 0.316 | -0.956
0.1 | 2.80737x10~! | 2.80666x10™! | 2.5x107? 0.230 | 0.448 | -0.922
0.2 2.39619x10~2 | 2.33675x10~2 | 2.5 0.437 | 0.639 | -0.877
0.5 | -1.00774 -1.01018 2.4x10"1 1.005 | 1.097 | -0.853
1.0 | -4.01643 -4.01658 3x10-3 1.989 | 2.004 | -0.936
2.0 | -1.60040x10! -1.60040x10* <1x10™% | 3.999 | 4.000 | -0.984
5.0 | -1.00001x10% -1.00001 x 102 <1x10~% | 10.000 | 10.000 | -0.997
1.0 | 2.0 | 0.05 | 4.90049x10~! | 4.90049x10~! | <1x 10~ | 0.055 | 0.071 | -10.050
0.1 4.60758x107! | 4.60758x107! | <1x 1077 | 0.109 | 0.140 | -5.097
0.2 | 3.50544x10~! | 3.50542x10~! | 5x10~* 0.217 | 0.271 | -2.680
0.5 | -2.71436x10~! | -2.71650%x10~! | 8x10~2 0.526 | 0.603 | -1.333
1.0 | -1.97098 -1.97218 6x1072 1.009 | 1.055 | -0.983
2.0 | -8.00813 -8.00821 1x10~% 1.995 | 2.003 | -0.968
5.0 | -5.00013x10! -5.00013x 10! <1x10~% | 5,000 | 5.000 | -0.995
2.0 | 1.0 | 0.05 | -1.61742%10~2 | -1.65009%10~2 | 1.9 0.104 | 0.774 | -0.110
0.1 | -6.29720x10~2 | -6.42075x10~2 | 1.9 0.207 | 0.791 | -0.212
0.2 | -2.31762x10~! | -2.35841x10~! | 1.7 0.405 | 0.849 | -0.379
0.5 | -1.14872 -1.15708 7x10~1! 0.966 | 1.147 | -0.658
1.0 | -4.06603 -4.06664 2x10™2 1.969 | 2.000 | -0.875
2.0 | -1.60159x10! -1.60159x 10! <1x10~% | 3.996 | 4.000 | -0.969
5.0 | -1.00003x10% | -1.00003x102 < 1x10™% | 10.000 | 10.000 | -0.995
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Figure 4.7: The percentage error in the ground-state energy of the Rabi Hamilto-

nian obtained from the even-parity three—parameter PBV ansatz (4.41), E§BV3,

compared to the results of a CI diagonalization in a basis of 101 even-parity

states, as a function of the coupling g/w and the two-level splitting wo/w.
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Figure 4.8: The percentage error in the first excited state energy of the Rabi
Hamiltonian obtained from the odd-parity three-parameter PBV ansatz (4.41),
EfBVS, compared to the results of a CI diagonalization in a basis of 101 odd-parity

states, as a function of the coupling g/w and the two-level splitting wo/w. Note

that we have had to truncate the plot in the vertical direction since one obtains an

infinite percentage error when the energy becomes zero.
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that the ground state is a singly peaked function in z-space. The same is
certainly not true for the first excited state where z; opt and 3 op¢ are signifi-
cantly different both from each other and from zpt, and the three-parameter
ansatz is essential to obtain good values for the energy. This suggests that
the first excited state is doubly peaked in z-space. We conjecture [Bi99a]
that the wave function for the n-th state requires in total n + 1 parameters,

where the ground state corresponds to n = 1.

The expectation values of o and the photon number operator b in the
three—parameter variational state (4.41) (see Appendix C) are also plotted in
Figures 4.5 and 4.6. At all couplings, the three-parameter results are in even
better agreement with the diagonalization than the two-parameter results,
and it is clear that the three-parameter wave function is thus extremely close

to the exact ground-state wave function of the Rabi Hamiltonian.

In conclusion, our even—parity two—parameter variational results for the
ground-state energy are already superior to results (see, e.g. [Qi98, Wo96b])
obtained via other approximate many-body techniques. Using the computa-
tionally inexpensive three-parameter variational calculation, we obtain even
better results for both the energies and wave functions of the ground and
first excited states of the Rabi system. This calculation therefore provides a
benchmark of simplicity and accuracy against which other methods, such as

the CCM, may be measured.
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Chapter 5

Simple Applications of the
CCM to the Rabi Hamiltonian

[n many cases, the non-perturbative nature of the CCM permits calcula-
tions based on very simple model states (typically the noninteracting state)
to be performed well beyond the perturbative region without convergence
problems. However, this is not always the case, as the calculations presented
in this chapter indicate. In fact, for the Rabi system, where the ground
state undergoes a major character change, it can be shown that the calcu-
lation fails due to an essential incompleteness, to arbitrary finite order, in
the CCM ansatz for the ground-state wave function for a particularly sim-
ple, yet in principle valid, choice of the CCM model state and correlation
operator. For a different but equally simple choice, we also show that the

non-Hermiticity of the CCM can lead to the breakdown of the method.
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5.1 Earlier CCM analyses of the Rabi Hamil-

tonian

Of particular relevance for this thesis is the recent application of the CCM
to a multimode Rabi Hamiltonian by Wong and Lo [Wo96b]. Although their
calculation was done in the context of a quantum system tunneling between
two levels in the presence of a phonon bath, their model Hamiltonian repre-
sents a simple generalization of the Rabi Hamiltonian to the case of multiple
bosonic modes, and the Rabi Hamiltonian may thus be regarded as a special
case of the model studied by Wong and Lo. Their results for the ground-
state energy of the multimode Rabi system are qualitatively acceptable, and
furthermore they find that the CCM results give no indication of the spurious
discontinuous localization—delocalization transition of the two-level system

observed in earlier variational studies (see [Lo95] and references therein).

Several comments regarding the work of Wong and Lo [Wo96b] are how-
ever in order. Firstly, they apply the CCM to a unitary transformed version
of the Rabi Hamiltonian (4.1), which leaves the spectrum unaffected. How-
ever, their choice of unitary transform destroys the parity symmetry (4.2)
associated with the Hamiltonian. As a result, their CCM results for the
ground-state energy are, by their own admission, quantitatively inaccurate
for intermediate coupling, and it is furthermore not possible in their approach

to readily obtain accurate CCM results for the first excited state.

A more minor criticism of the CCM analysis of Wong and Lo relates to

their use of the so—called successive coupled cluster approximation (SCCA), a
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variant of the standard SUB-N CCM approximation. At a particular order of
approximation in the SCCA, the similarity transformed Hamiltonian e~ He®
is allowed to act on the CCM model state |®), and the CCM coefficients
and ground-state energy are determined via term-by-term comparison, with
any remaining nonvanishing terms being neglected. At the subsequent level
of approximation, terms are added to the cluster correlation operator S in
such a manner that their contribution cancels the nonvanishing terms in
the previous order of approximation, and the procedure is repeated. The
advantage of this approximation scheme is that it naturally tends to select
the most important terms which are to be included in the cluster correlation
operator, and in some cases (see, e.g. [Wo94, Wo96a]), the SCCA leads to
rapid, accurate convergence of the CCM. However, not only is the intuitively
simple physical meaning of the SUB-NV approximation scheme lost, but it is
also not clear that the SCCA may be rigorously justified, particularly since
there is no gaurantee in the SCCA that the set of configurations {C]|®)},
where the index / runs over all possible configurations generated within the

SCCA, satisfies the requirement of completeness.

5.2 Evidence for a spurious symmetry—breaking

phase transition

We turn now to our CCM calculations for the Rabi Hamiltonian. For ease
of reference, we shall refer to a particular choice of CCM model state and

corresponding creation operators as a CCM scheme. We have considered a
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variety of CCM schemes for the Rabi Hamiltonian (see Table D.1 in Appendix
D). An obvious choice for the model state |®) is the positive—parity g = 0
ground state |0)| |) of Hgapi, which we shall refer to as the noninteracting
model state. For our first NCCM calculation of the Rabi ground-state energy,

we use the noninteracting model state and the correlation operator [Bi96]

5 = 545
S = Yo s0(8)", $=30s@ (1) o+, (5.1)
n=1 n=1

which we shall refer to as Scheme I. For this scheme, the nested commutator
expansion (3.8) for the similarity transformed Hamiltonian e=% Hgapie® ter-
minates at third order in S, and it is straightforward to show that the CCM

ground-state energy assumes the form

1
O = —5wo + 4g {31 3(12) + s5 )} . (5.2)

In the SUB-N approximation scheme, both S; and S, truncate at n = N,
and the 2N coefficients {sg‘),.sgf)}, n=12...,N are determined via the
NCCM equations (3.16). Explicit expressions for the similarity transformed

Hamiltonian and NCCM equations for Scheme I are given in Appendix D.

Since the g = 0 ground state has even parity, we expect the ground state
to have the same parity for ¢ > 0. Thus the NCCM calculation based on
Scheme I is restricted to states of positive parity. In this case, terms in the
cluster correlation operator S with n odd are zero, there are only N CCM
coefficients to solve for in the SUB-/N approximation, and the CCM ground-
state energy then depends only on the single coefficient 3 . Starting from

g = 0, we solve for increasing values of the coupling by using the solution
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at the previous coupling as input to the iterative routine for solving the
CCM equations. For simplicity, we only quote results for the scaled resonant

(w = wo = 1) Rabi Hamiltonian.

We find that the even—parity NCCM Scheme I results provide strong
evidence for spontaneous breaking of the parity symmetry IIgay; [Bi96]. For
all N > 6, the positive—parity ground-state solution terminates at a finite
value of the coupling which we shall denote by g\™). There is a qualitative
difference in the nature of the termination depending on whether N/2 is even
or odd. Here we restrict ourselves to the simpler case where N/2 is odd (see
[Bi96] for a fuller discussion of the case where N/2 is even). The ground-state
energy results for N = 10,30, 50 at resonance are shown in Figure 5.1. The
termination points { g )} of the positive-parity NCCM Scheme I results are

clearly visible.

The termination in the positive-parity NCCM Scheme I ground-state
solution is real rather than numerical. For any N, the NCCM equations
(3.16) can in this case be rewritten as a polynomial in 352) (see Appendix D),
and the termination in the ground-state solution then corresponds to the

(2)

vanishing of the relevant real root for sy~ at the termination point g{V)

c

[Bi97]. Figure 5.2 shows these critical values of the coupling as a function of
the cutoff N. An investigation of the behaviour of E, and its derivatives just
below the critical coupling [Bi96] suggests a fit of g™ to the form a — BN,
with v = —2/3. Using a least-squares fit, we find a = 0.665 and b = 0.722,
and the NCCM based on Scheme I therefore strongly suggests a parity—

breaking phase transition at g. = limy o g(N) = 0.665.

c
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Figure 5.1: The ground-state energy Eq of the scaled resonant (w = wy = 1)
Rabi Hamiltonian as a functi’on of the coupling g as determined via a SUB-N,
N=10,30,50, NCCM analysis based on Scheme I (see Table D.1), compared to

results obtained via a CI diagonalization in a basis of 101 even—parity states.
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Figure 5.2: The critical coupling g(EN) as a function of the level of approzima-
tion N in the NCCM Scheme I analysis of the scaled resonant (w = wy = 1) Rabi
Hamiltonian. The solid line is the function 0.665 — 0.722N /3 obtained from a

least-squares fit to ggN) for 62 < N < 98.
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It is straightforward to adapt the NCCM analysis above to the odd—parity
first excited state of the Rabi Hamiltonian. We confine the CCM calculation
to the odd~parity sector by choosing the odd-parity model state |®) = |0)|1),
and restricting the correlation operator to terms of positive parity only as
before. The results are very similar to those obtained for the ground state,

with the odd-parity solution terminating at ¢29¢ = 0.601.
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Motivated by the results obtained by Arponen and others for the LMG
model (see [Ar82, Ar83a, Ar83b, Ro89] and the discussion in Chapter 3),
we also apply the ECCM to the Rabi Hamiltonian [Bi98]. The ECCM,
based on a single symmetric model state, is capable of correctly describ-
ing a symmetry-breaking phase transition. One might therefore expect the
ECCM, based on the noninteracting model state, to be able to successfully
describe the Rabi ground state for all couplings. We thus retain the nonin-
teracting model state and correlation operator S introduced above, introduce

the additional ECCM correlation operator

S o= %43, (5.3)

25 o= Y oM, B = > o5 e,
n=1 n=1

and drop the even—parity restriction that the coefficients {sg), 552 g4l), J,(f)}
with n odd must be zero. In the ECCM SUB-N approximation scheme,
both 51,52 and X;,¥; truncate at n = N. The ground-state energy has
the same form (5.2) as before, but as discussed in Chapter 3 the coefficients
{5511),5512)} cannot be obtained independently of {or?(ll),crr(f)}. In the SUB-N
approximation one is thus obliged to solve the CCM equations (3.14) for all
4N unknowns. The ECCM functional Hpap = (®|e*e™ Hpapie®|®), which

is required in order to set up these equations, is shown in Appendix D.

In the SUB-1 approximation, the ECCM Scheme I equations can be solved
analytically (see Appendix D). At resonance (w = wy = 1), one finds, for
g < 1/4, only the trivial solution where all four SUB-1 ECCM coefficients
are identically zero. In this coupling regime the ECCM approximation to

the exact ground state is thus simply the evén—parity noninteracting model
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state [0)| ), with corresponding energy Eo = —1/2. For g > 1/4, the SUB-1
ECCM equations also allow for a mixed—parity solution corresponding to the
lower energy Eq = —4g® — 1/4. Thus the SUB-1 ECCM ground-state energy
is continuous but not differentiable at the crossover point g = 1/4 where the

symmetry of the ground state is broken. This result in plotted in Figure 5.3,

Figure 5.3: The ground-state energy Eq of the scaled resonant (w = wo = 1) Rabi
Hamiltonian as a function of the coupling g as determined via a SUB-1 (solid
line), SUB-2 (thin solid line) and SUB-3 (dotted line) ECCM analysis based on
Scheme I (see Table D.1), compared to results obtained via a CI diagonalization

in a basis of 101 even—parity states (thick solid line).

-0.5
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where we also present the results of a numerical SUB-N, N = 2,3, ECCM
calculation of the Rabi ground-state energy as a function of the coupling g.
Here similar behaviour occurs to that observed in the SUB-1 case. Although
the ground-state energy approximates the CI result quite closely for all g, it
is evident from the graph there is a narrow coupling region around g ~ 0.4
where smooth SUB-2 and SUB-3 ECCM solutions cannot be found. In Ta-
ble 5.1, we tabulate some of the SUB-3 ECCM coefficients, and it is clear
from the behaviour of the coeflicients with odd index n that the symmetry
of the ECCM ground state is in fact broken at g ~ 0.37. This in good agree-
ment with the NCCM SUB-2 result based on the same scheme, for which the
even—parity ground-state solution terminates at g = 0.397. Due to numerical
limitations, we have not been able to go beyond SUB-3 in the ECCM. At least
in low order, however, the ECCM analysis based on Scheme I provides further

evidence for a parity-breaking phase transition in the Rabi ground state.

The numerical diagonalization of the Rabi Hamiltonian, which accurately
reproduces the analytic results at the Juddian points, yields a positive-parity
ground state for all values of the coupling, with no evidence for a symmetry—
breaking phase transition. For intermediate and large coupling, the CCM
based on Scheme I therefore fails when applied to the Rabi Hamiltonian.
Nonetheless, for small coupling (¢ < 0.4), the NCCM based on Scheme I
yields results for the ground-state energy which are in better quantitative
agreement with the CI results than any of the other methods considered here,
including the three-parameter variational approach. For small coupling, this
straightforward application of the CCM is therefore the preferred a priori

method for determining the Rabi ground-state energy accurately and quickly.
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Table 5.1: The behaviour of the SUB-3 ECCM Scheme I coefficients as a function of
the coupling g for the ground state of the scaled resonant (w = wq = 1) Rabi Hamiltonian.
Coefficients of both even and odd order n are nonzero for g > 0.38, indicating that the
ECCM ground state is of mized parity in this coupling regime. The odd order coefficients
vanish abruptly between g = 0.38 and g = 0.37, and are effectively zero for g < 0.37, where

the ground state is therefore of positive parity.

g | n | o o) o
0.50 | 1 | -5.126 x107! 1717 x10— -7.549 x10~! 1.843 x10~!
2 | 1.348 x10~! -1.902 x10~! | 1.020 x10~! -9.711 %102
3 | 1.164 x10~2 -3.941 x10~2 | 2.366 x10~2 -3.648 x1072
0.45 | 1 | -3.508 x10~} 1.217 x10~1 -5.315 x107! 1.457 x10~!
2 | 1.359 x10~t -1.992 x10~! 1.391 x10~* -1.312 x10~!
3 | 1.157 x10~2 -3.620 x1072 | 2,727 x10~2 -3.927 x10~2
0.40 | 1 | -2.095 x10~! | 7.465 x10~2 -3.123 x10~1 | 9.821 x10—2
2 | 1.184 x10~! -1.876 x10~' | 1.456 x10~! -1.508 x10~!
3 | 9.046 x10~2 -2.363 x10~2 | 1.884 x1072 -2.850 x10~2
039 | 1 | -1.706 x10~' | 6.100 x10—2 -2.529 x10~1 | 8.194 x10~2
2 | 187 %107! -1.841 x10~! 1.458 x10~1 -1.547 x10~!
3 | 7.747 x10~2 -1.939 x10~2 | 1.568 x10~2 -2.402 x1072
0.38 | 1 | -1.195 x10~! 4.287 x1072 -1.762 x10~1! 5.885 x10—2
2 | 1.086 x10~} -1.802 x10~! 1.458 x10~1! -1.588 x10~!
3 | 5.701 x10~® -1.366 x10—2 1.121 x10~2 -1.742 x10~2
0.37 | 1 | 3.356 x10~17 | -1.206 x10~17 | 4.888 x10~17 | -1.683 x10~17
2 | 1.031 x10~! -1.761 x10~' | 1.453 x10~! -1.628 x10~!
3 | -1.649 x10~!8 | 3.807 x10~'® | -3.222 x10~!8 | 5.063 x10~!8
036 | 1 | 2.350 x10~2! | -8.791 x10—22 | 3.414 x10~2! | -1.207 x10—2!
2 | 9.971 x1072 -1.729 x10~! 1.383 x10~! <1.601:x10~!
3 | -1.208 x10722 | 2,550 x10722 | -1.423 x10™22 | 2,939 x10~22
0.35 | 1 | 9.415 x10~27 | -3.648 x10~27 | 1.344 x10~2% | -4.852 x10—27
2 | 9.624 x10—? -1.696 x10~! 1.313 x10—! -1.573 x10~1
3 | -4.714 x1072% | 9.446 x1072% | -2.732 x1072% | 9,122 x10~28
0.30 | 1 | 6.794 x107%0 | _2.858 x10—%C | 8.247 x10~60 | _3.350 x10—80
2 | 7.775 x10~2 -1.505 x10~1 9.785 x10—2 -1.411 x10~!
3 | -1.556 x107%! | 3.143 x107%! | 4,082 x10~%! | -1.579 x10~%!
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5.3 Incompleteness of the CCM ground—state

ansatz

It is possible to illustrate numerically that the breakdown of the method is
formally due to the incompleteness, to any finite order, of the exponential
CCM ansatz (3.3) for the ground-state wave function for the model state
and creation operators of Scheme I. We investigate whether it is possible, to

good approximation for all values of the coupling g, to write
[Ter)(g) = €°|@) . (5.4)

Here |¥cr)(g) represents the (essentially exact) positive-parity ground-state
ket determined as a function of g via the CI diagonalization, |®) = |0)|]) is
the noninteracting model state, and S is the cluster correlation operator (5.1)
of Scheme I in the SUB-N approximation, restricted to terms of even parity
as before. We expand both sides of (5.4) in a basis consisting of bosonic
oscillator states multiplied by eigenfunctions of ¢%, and determine the coef-
ficients {sg)(g),sf)(g)}, n = 2,4,6,...,N, via term-by-term comparison.
Due to the intermediate normalization condition (3.4) imposed by the CCM,

the state |Ur)(g) must be scaled so that the coefficient of |0)|]) is unity. For

the sequence sgi)(g), sg) (9),...,89(g),...;1 = 1,2, we numerically determine
the ratio
; 3(5)2(9)
RY(g) = Jim | =L i=1,2. (5.5)
n—0oo S (g)
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At resonance (w = wo = 1),.we find

RM <1, R® <1 at g =0.665
RY ~1, R®~1 at g~0.8
RY>1, R® >1 at g=1.0. (5.6)

In order for a SUB-N CCM calculation to yield an acceptable approximation
to the exact ground state, it is essential that one should safely be able to
neglect coefficients in S of order n > N. Our results for the ratio R indicate
that, for the model state and cluster operator of Scheme I, this is not always
possible. For ¢=20.8, the exact resonant Rabi ground state cannot be ade-
quately approximated by the exponential form (5.4) for any finite value of
N, and it is in this sense that the exponential ground-state ansatz renders
the CCM incomplete !. Note that the CCM breaks down at a value of the
coupling below the critical value determined above. This incompleteness is a
serious defect not only of the CCM, but also of other methods reliant on the
exp S form, and is compounded by the fact that the model state and creation
operators of Scheme I represent perhaps the most obvious choice for a CCM

analysis of the Rabi system.

There is some overlap between the breakdown of the CCM observed here
and that reported by Arponen [Ar82] who, based on a SUB-2 NCCM anal-
ysis of the LMG model, conjectured without proof that a SUB-N NCCM

INote that the incompleteness, to arbitrary finite order, of the CCM based on scheme I
does not contradict the fact that the CCM formalism is in principle exact — an expansion
of the form (5.4) does exist for arbitrary coupling g, provided that the cluster operator S
is not truncated at all. Of course, this is of no practical significance in the application of

the method, where a truncation at finite order is unavoidable.
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analysis of the LMG ground state based on a spherically symmetric model
state would fail for any value of N. In the LMG model, however, a true
phase transition occurs in the thermodynamic limit, and the breakdown of
the NCCM correctly signals the onset of symmetry-breaking. Also, unlike
the situation for the LMG model with a finite number of nucleons, the failure
of the CCM for the Rabi Hamiltonian cannot simply be ascribed to the onset
of near—degeneracy in the ground state for intermediate coupling. To show
this, we have repeated the even—parity NCCM Scheme I calculation for the
case of degenerate atomic levels (wy = 0), where the analytic positive- and

negative—parity ground states (4.16) are degenerate for all couplings.

For wy = 0, we find that the even—parity NCCM Scheme I ground-state
solution again terminates at intermediate coupling. As before, we test the

CCM ansatz (3.3) for completeness by writing

[esd 2n 00 m2n+1
Vi) = ;\/—)[2?’&“) gml%ﬂ-l)m

= ¢%9), (5.7)

where |W,) is the positive-parity ground state (4.16) with z = 2g/w (scaled
so as to meet the normalization condition (3.4)), and |®) (.5) represents the
model state (even—parity cluster correlation operator) of Scheme I. Given
the explicit expansion (5.7) for the exact ground state |¥ ), it can be shown
analytically that

(4) i)
i Sn ) an n 4.9 s
Ao = 220 = 5‘(,—), i=12, (53
(g)  an an’ \ ¥

Sn
where the parameters {a(!)};i = 1,2 are independent of the coupling g. These

parameters obey a set of algebraic recurrence relations which we have not
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been able to solve in closed. form. We therefore scale out the w-dependence

by setting w = 1, and numerically investigate the ratios
(1)

1) — %nta
A,Sl) = ag)
(2) aﬂl
A = 0 (5.9)

as a function of n. We find that both quantities increase uniformly with
increasing n. At n = 51, the ratio A has converged to the value 0.406, and
Al attains the value 0.396. Although the convergence of A% with increasing
n is not rapid enough to state the true limiting value with certainty, the

important conclusion is that

AW = Tim A > 0.396

A = lim A® = 0.406 . (5.10)
n—o0
Therefore
RW(g) = lim RY(g) = 44Mg* > 1.584¢’
R?(g) = lim RP(g) = 4AP¢* = 1.624¢" (5.11)
and it is clear that
1
R > 1 forg> = 0.795
(9) 2 1dorg 2 ——mms
1
R > 1 forg> —— =0.785. 5.12
(9) 2 o A (5.12)

Thus for g > 0.785 (and, depending on the true limiting value A1), possibly
even below g = 0.785), the exact positive—parity ground state |V, ) cannot,
to any finite order, be adequately approximated by the exp S form required
by the COM. This proof of incompleteness for the case wy = 0 is strengthened
by the fact that, unlike the wy # 0 case where the exact ground state had to

be determined numerically, the state |[¥.) is here known analytically.
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5.4 An alternative CCM calculation based on

the noninteracting model state

Given the above incompleteness for scheme I, we are therefore led to consider
alternative CCM schemes for the Rabi Hamiltonian. Using (4.11) and (4.37),
it is easily shown that the positive-parity ¢ — oo ground state (4.16) may

be written in the form

2
w,) = e exp{ (=) st o) (5.13)
Thus for Scheme II (see Table D.1), we retain the noninteracting model state
|®) = |0)[{) of Scheme I, but introduce a new correlation operator

8= i Sn (cT)n , ct =blo” . (5.14)

n=1
The nested commutator expansion (3.8), although non-terminating, now as-
sumes a closed (exponential) form, and the CCM ground-state energy is
given by

1
E§CCM'H = —3%o + 2gs; . (5.15)

This calculation is also restricted to the positive-parity sector, as is obvious
from the form of both the model state and the CCM creation operators.
Explicit expressions for the similarity transformed Hamiltonian and NCCM

equations for Scheme II are given in Appendix D.

We find that the CCM yields results (not shown here) for the ground-
state energy which again fail, in a manner very similar to that observed
for Scheme I, at intermediate and large coupling. Although we have not

proved this, the breakdown of the NCCM based on Scheme II for intermediate

76



University of Pretoria etd — Van der Walt, DM (1999)

coupling is almost certainly due to an incompleteness similar to that shown
for Scheme I. Furthermore, the failure of this approach at large coupling
is particularly significant, since it is obvious from (5.13) that the ¢ — oo
ground state |¥y) is of SUB-1 form with s; = —2g/w. The two-parameter
variational calculation presented in Chapter 4, which was based on a trial
state of SUB-1 Scheme II form, correctly determines the limiting behaviour
of s; as g — oo. For the CCM, which is based on a similarity rather than
a unitary transform (see the discussion in Chapter 3), it can however be
shown analytically (see Appendix D) that s; = —2g/(w + wg) in the SUB-1
approximation, and at resonance the SUB-1 result is thus not even correct
to leading order. Thus, for Scheme II, the CCM also fails as a result of the

non-Hermiticity of the method.
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Chapter 6

Successful Application of the
CCM to the Rabi Hamiltonian

In order to determine whether quantitatively accurate results for the Rabi
Hamiltonian can be obtained using a CCM calculation which takes into ac-
count the symmetries of the Hamiltonian, we investigate the use of various
coupling-dependent CCM model states for the Rabi Hamiltonian, as well as

the application of the method to a unitary transformed Hamiltonian.
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6.1 Coupling—dependent CCM model states

for the Rabi Hamiltonian

It is significant that, like TIPT, the CCM based on the noninteracting model
state of Schemes I and II breaks down in the transitional region where the
Rabi ground state undergoes the marked change in character discussed in
Section 4.2. This suggests that the noninteracting model state should be
replaced by a coupling-dependent model state capable of following this char-
acter change. For Scheme III, we therefore perform an NCCM calculation
based on a model state of the form |®) = |U,) [see (4.16)], which is a
coupling-dependent, even—parity superposition of the coherent states (4.11),
and which we shall thus refer to as the coherent superposition (CS) model
state (see Table D.1). The CS model state is an exact eigenstate of Hgap,
not only in the wy = 0 (g — oo) limit, but also in the g = 0 limit, where it

reduces to the noninteracting model state. The correlation operator
S = isn (CT)n cf EbTa”‘"—l—Q—g (6.1)
n=1 | i

for Scheme III again incorporates the required even—parity symmetry in the
CCM ground state. Note that the CCM creation operators {(CT)n} have been
chosen so as to satisfy the requirement that the set {(cT)n I‘I’)} is complete,
and also so that their Hermitian conjugates {c"} conveniently annihilate
the CS model state. As for Scheme II, the nested commutator expansion
(3.8), rather than terminating, assumes a closed form (see Equation (D.21)

in Appendix D), and one obtains for the ground-state energy

; 1 i 4\ 4d°
Eé\.coM,HI =-3 wo €891 exp {Z Sy, (g) } = —z- . (6.2)
n=1
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We have used Mathematica [Mat] to set up the energy functional H and
the CCM equations (3.14) for the coefficients {s,} and {5,} (see Equations
(D.23) and (D.25) in Appendix D).

In Table 6.1 we tabulate the resonant Scheme III ground-state energy

results, which are indistinguishable from the CI results on the scale of our

Table 6.1: The ground-state energy of the scaled resonant (w = wo = 1) Rabi
Hamiltonian as a function of the coupling g as determined via a SUB-10 NCCM
Scheme III calculation, labelled EgJCCM’m, and via a SUB-10 NCCM analysis
based on Scheme IV, labeled ng COMIY (see Table D.1). For comparison, we also
tabulate results obtained via a CI diagonalization in a basis of 101 even—parity
states, labelled ES', as well as the results of the benchmark three—parameter

variational calculation, labelled Eg’BW.

CI NCCM,IV NCCM,ITT PBV3
g Eg Eq Eq Eq

0.0 | -0.50000 | -0.50000 | -0.50000 | -0.50000
0.1 | -0.52020 | -0.52020 | -0.52020 | -0.52020
0.2 | -0.58333 | -0.58333 | -0.58333 | -0.58333
0.3 | -0.69762 | -0.69762 | -0.69763 | -0.69757
0.4 | -0.87855 | -0.87847 | -0.87882 | -0.87822
0.5 ]-1.14795 | -1.14642 | -1.14964 | -1.14676
0.6 | -1.52396 | -1.51961 | -1.52343 | -1.52211
0.7 | -2.00825 | -2.00414 | -1.99657 | -2.00685
0.8 | -2.59070 | -2.58827 | -2.57057 | -2.58998
0.9 | -3.26191 | -3.26061 | -3.24192 | -3.26158

1.0 | -4.01693 | -4.01620 | -4.00028 | -4.01677
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figures, as a function of g, along with the benchmark three-parameter varia-
tional ground-state energy results. To moderate order (SUB-10), the results
show good agreement, over the full coupling spectrum, with the results of the
CI diagonalization. Some comments are however in order: To higher order
(~ SUB-20 and above), we find that the NCCM Scheme III solution breaks
down in isolated coupling regions, possibly for numerical reasons. Further-
more, for Scheme I1II, the NCCM result for (o) (which is shown in Figure 6.1
along with the Scheme I results for comparison; explicit expressions for (o)
in both schemes are given in Equations (D.5) and (D.27) in Appendix D)
also fails quantitatively in and above the transitional region, even in mod-
erate order (SUB-10) where the CCM ground-state energy is in very good
agreement with the CI result. In this regard, it is significant that the Scheme
III analysis fails to resolve the (admittedly small) difference between the ex-
act ground-state energy and the so—called baseline energy —4¢?/w for g ~ 1.
Thus the CS model state of Scheme III, though a definite improvement on
the noninteracting model state, is still not entirely capable of tracking the

character change in the Rabi ground state.

We have therefore also performed an NCCM calculation based on a coupling-
dependent model state of the even—parity two—parameter variational form
(4.38) (see Scheme IV in Table D.1), which also reduces to the exact ground
state in both the limits of small and infinitely large coupling. For Scheme IV,
we use the same (even—parity) correlation operator S as for Scheme II. This
computationally convenient choice has some drawbacks: The set of states
{(c*)n |@)}; n=0,1,2,... does not span the many-body Hilbert space, and

the Hermitian—adjoint destruction operators {c"}, n > 1 do not annihilate

81



University of Pretoria etd — Van der Walt, DM (1999)

Figure 6.1: The ezpectation value of o, in the ground state of the scaled resonanit
(w =wo = 1) Rabi Hamiltonian as a function of the coupling ¢ as determined via
a SUB-N, N =10,50, NCCM analysis based on Scheme I (thin solid lines), as well
as via a SUB-10 NCCM analysis based on Scheme III (dotted line), compared to
results obtained via a CI diagonalization (solid line} in a basis of 101 even—parity

states.

-0.4 SUB-10, scheme III

the model state. The purpose of this calculation, however, is simply to show
that the CCM may be successfully applied to the Rabi Hamiltonian provided
that a suitable model state is chosen. As for Schemes II and III, the nested

commutator expansion (3.8) assumes a closed form (see Equation (D.28) in
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Appendix D), and we obtain for the ground-state energy in Scheme IV

1 il
ke SRR G {— wo cosh a ('vgpt - 1)

1/1 —l—vgpt 2

_ Vops €XP ( —222
+ wy sinh a i ( Opt)

\/ 1 —exp (-—43:31,,;)

VoptTo
\/1 — €Xp (_4xopt)
Kad ¢ 2n PontTonk
4+ 22 (2n +1) 250, Song1 |9 + w
n=0 \/ 1 —exp (—4$§pt)
— 2n—2 2 YoptTopt
4 Z 2nw Topt  So2n |W Zopt & 49 ’(63)

n=1 \/1 — exp (—4$gpt)

with
a= i 2 Sony1 Tt (6.4)
n=0
Here the parameters zop¢ and vept are predetermined via the variational equa-
tions (C.7) and (C.8) at each value of the coupling g. Since the creation
operators for Scheme IV do not satisfy the requirements (3.1) and (3.2), the
coefficients {s,} cannot be determined via the standard NCCM equations

(3.16). In Section D.5 of Appendix D, we derive a consistent set of equations

for these coefficients in the SUB-N approximation scheme.

It is clear from ground-state energy results shown in Table 6.1 that
the NCCM based on Scheme IV yields excellent agreement with the CI
diagonalization for all couplings. Thus it is possible to obtain very good
CCM ground-state energy results for the Rabi Hamiltonian, provided that
a coupling-dependent model state is chosen which, besides the parity sym-

metry, also incorporates the important physical features of the exact ground
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state, in particular the change in character in the transitional region. It is also
straightforward to adapt the NCCM Scheme IIT and IV approaches above in
order to determine the odd—parity first excited state energy E; via the CCM
(see Table D.2 in Appendix D). In Table 6.2 we tabulate the NCCM Scheme
IV results for E;, which are again in very good agreement with the CI re-
sults. Note, however, that when considered over the full coupling spectrum,

the three-parameter variational calculation outperforms even the Scheme IV

Table 6.2: The first excited state energy of the scaled resonani (w = wy = 1)
Rabi Hamiltonian as a function of the coupling g as determined via ¢ SUB-10
NCCM Scheme IV calculation, labelled EY°™MIY | compared to results obtained
via a CI diagonalization in a basis of 101 odd-parity states, labelled ECY, and via

the benchmark three—parameter variational calculation, labelled Ef Bv3,

CI NCCM,IV PBV3
g Er E; Ej

0.0 | 0.50000 | 0.50000 0.50000

0.1 | 0.28067 | 0.28064 0.28074

0.2 | 0.02337 | 0.02328 0.02396

0.3 ]-0.27391 | -0.27386 | -0.27237
0.4 | -0.61609 | -0.61555 | -0.61376
0.5 [ -1.01018 | -1.00895 | -1.00774
0.6 | -1.46444 | -1.46268 | -1.46256
0.7 | -1.98701 | -1.98518 | -1.98587
0.8 | -2.58432 | -2.58283 | -2.58373
0.9 | -3.26028 | -3.25924 | -3.25999

1.0 | -4.01658 | -4.01590 | -4.01643
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NCCM calculation at a fraction of the computational cost.

Due to the fact that the creation operators and model state of Scheme
IV do not satisfy the requifements (3.1) and (3.2), it is difficult to set up
a consistent set of equations for the NCCM bra state coefficients {5,}. We
have therefore not calculated the expectation value of observables other than
the Hamiltonian in the NCCM Scheme IV ground state. However, given
the ground and first excited state energy results presented above, we do not
expect that the CCM would yield more accurate results for quantities such
as o” than those obtained via the even—parity three-parameter variational

calculation.

6.2 The method of unitary transformations

The method of unitary transformations offers an alternative approach to
the application of the CCM to the Rabi Hamiltonian. In this approach, a
unitary rotation U = exp R, R' = —R is applied to the Hamiltonian, leaving
the spectrum unchanged, and the CCM is then applied to the transformed
Hamiltonian HY = UTHU. In their analysis of the multimode Rabi system,
Wong and Lo [Wo96b] applied a unitary displacement transformation of the
form

U =expRi, Ri= %9 (b’f 3 b) ! (6.5)

w

to the Hamiltonian. We have performed an NCCM calculation, based on the
model state and creation operators of Scheme I, for the transformed Rabi

Hamiltonian HR!,,. Since the transformation (6.5) does not conserve the
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parity Il api, this NCCM calculation is not restricted to the even—parity sector
as before, and it is no longer possible within the CCM to distinguish between
the ground and first excited states on the basis of their parity symmetry.
Due to the disregard for the parity symmetry, the CCM ground-state energy
results are quantitatively inaccurate in and above the transitional region (as is
the case for the multimode Rabi system considered in [Wo96b]). Futhermore,
since the results are considerably less accurate than those obtained via, say,
the even—parity two-parameter variational calculation, these results are not

presented here.

We have also considered the application of the CCM to the transformed

Hamiltonian H%?, ., where U, represents a more general unitary rotation of
Rabi»

the form
Uy=expR;, Ry=p/ (bT — b) +iyo? . (6.6)

However, since the transformation (6.6) does not conserve parity, the same
comments apply as for (6.5). The NCCM ground-state energy results (not
shown here) are in excellent agreement with the diagonalization results for
large coupling (g > 0.7), and are comparable to the results obtained via the
three-parameter variational calculation in this region. The CCM solution,
however, terminates upon entering the transitional region from above, and

is therefore not shown here.

Thus, despite moderate success, neither of the above CCM calculations
based a unitary transformed Rabi Hamiltonian yield good results over the
full coupling spectrum. This is at least partly due to the fact that both

rotations destroy the parity symmetry IIgap;. One may also consider a parity—
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conserving unitary transformation of the Rabi Hamiltonian of the form

Us=expRs, Rs= i—g (b-b") 0" (6.7)
The algebra involved in an NCCM analysis of the rotated Hamiltonian HE2,
becomes prohibitively involved beyond the level of the SUB-1 approximation.
Note however that, since the CS model state |¥U.) of Scheme III may be

written in the form

[U,) = e /2 exp Rs|0)] 1), (6.8)

it is clear that a SUB-1 NCCM Scheme I calculation on the rotated Hami-
tonian Hggbi is equivalent to a SUB-1 NCCM Scheme III calculation on the
unrotated Rabi Hamiltonian (4.1). Although this is no longer true in the
SUB-N, N > 2 approximation, we do not expect the results of this calcu-
lation to differ qualitatively from those obtained via our NCCM Scheme III

analysis of the unrotated Rabi Hamiltonian.
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Chapter 7

The Linear F ® e Jahn—Teller
and Pseudo Jahn—Teller

Hamiltonians

The linear E ® e Jahn-Teller (JT) and pseudo Jahn-Teller (PJT) Hamilto-
nians are of topical interest in the field of quantum chemistry, and, in this
chapter, we therefore discuss the relevance of these Hamiltonians in this field.
We present a representation-independent operator approach to the numer-
ical diagonalization of Hjr and Hpjr which also simplifies the analysis of
the isolated exact (Juddian) solutions for these models. In particular, we
give a simple closed form for the analytic ground—-state wave function of the
linear £ ® e resonant pseudo Jahn-Teller (RPJT) Hamiltonian. An analysis
of the ground-state behaviour of the linear £ ® e JT and PJT models is

also presented. Finally, we review the results of some earlier approximate
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many-body analyses of these systems. The application of the CCM to the
linear £ ® e JT and PJT Hamiltonians forms the subject of Chapter 8, and

is therefore not discussed here.

7.1 Discussion of the Hamiltonians

The linear £ ® e PJT Hamiltonian
1
HPJT = §w0 o’ + w ]\fb =+ n (bl + bl) a¥ — n (b; -+ bg) a¥
1
= —wyo+wNy+7 (al - ag) ot + 4 (a;r - ag) o, (7.1)
2
with 4 = 7/4/2 and the bosonic number operator N, defined by

Ny = blby + b5y = ala; +alas (7.2)

was introduced in Chapter 2. The bosonic creation and annihilation oper-
ators in the first (second) line of (7.1) refer to modes of linear (circular)
polarization, and the zero—point energy w of these two modes has been ne-

glected. The (pure) linear £ ® e JT Hamiltonian

Hir = wiNy+17 (bir+b1)0$—17 (b$+52)0y
= wiNy+7 (al—l—ag) ot 4+ (aJ{—I—ag) a7, (7.3)

may formally be regarded as the special case of Hpjt where the two fermionic

levels are degenerate (wg = 0). Both Hjyr and Hpjr have the symmetries

T s 2 {m [Nb + %(az 4 1)}} (7.4)

and

: 1 1
J =4 (bJ{bg - blbg) + Eaz =ald; —alay + 50”’ , (7.5)
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where the expression in terms of operators referring to modes of circular
polarization highlights the physical meaning of the angular momentum com-

ponent J in terms of helicity. It is clear that the eigenvalues of J are elements

5 3 1 .13 5
of the set {'"’_E’_E’_§7§’§’§""}'

7.1.1 Vibronic interactions and non—adiabaticity in quan-

tum chemistry

The linear £ ® ¢ JT and PJT Hamiltonians are clearly relevant in quan-
tum optics, where they describe a simple extension of the Rabi Hamiltonian
to the case of two degenerate perpendicularly polarized field modes. The
Hamiltonians can also be used to model a two-level fermion moving in a cir-
cular ring which can undergo elliptical deformation in a plane [Lo58]. Both
Hamiltonians, and Hjr in particular, have however been extensively studied
in quantum chemistry [Bera, Berb], and we present here an introduction to

non—-adiabatic models in this field.

One of the most important simplifications of the Schrédinger equation
for the electrons and nuclei in a molecular system is the separation of their
respective motions in the adiabatic approximation [Bo27, Bor]. Based on the
mass difference between an electron and a typical nucleus, it is assumed in
this approximation that every instantaneous (fixed) configuration @ of the
nuclei corresponds to a set of stationary electronic states. The ()-dependent
(or so-called vibronic) electron-nuclear interactions which couple different

electronic states are ignored, and each electronic energy eigenvalue is used
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to construct a corresponding adiabatic potential (also known as a potential-
energy surface [Mo87]). The adiabatic potential represents the potential
energy of the nuclei in the mean field of the electrons in the corresponding
electronic state, and the molecular structure for this state is determined by

finding the nuclear configuration (}g which minimizes the adiabatic potential.

Landau argued [Berb] that, in the adiabatic approximation, a given sym-
metric nuclear configuration (), would be unstable if any of the corresponding
electronic states were degenerate, and that the degeneracy would result in
nuclear displacements which destroy the symmetry of Q,. This statement is
not entirely correct. For a system where n sheets of the adiabatic potential
intersect (corresponding to n—fold electronic degeneracy) at a particular nu-
clear configuration @*, it is true that at least one of these sheets does not
have an extremum at the point Q* — this is the essence of the Jahn-Teller
theorem [Ja37, Berb]. However, the adiabatic potential in the neighbourhood
of the point of instability, *, cannot be interpreted as the potential energy
of the nuclei in the mean field of the electrons, and therefore cannot be used
to draw conclusions about the nuclear behaviour. Rather, the correct con-
clusion is that the instability at @* implies that it is necessary to reexamine

the validity of the adiabatic potential in this region.

For the nuclear motion to be localized about a given minimal configu-
ration @g, the quantum w of small nuclear vibrations about Qg should not
allow for tunneling through the potential barrier (centered at the point Q*)

separating (Jo from other minima. A criterion for the applicability of the
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adiabatic approximation is therefore given by [Bera]
w K |€n = €k| 3 (76)

where ¢; denotes the eigenenergy of the i~th electronic state, calculated at
the point Qo. If this condition is satisfied, the physical implication is that
the adiabatic approximation is self-consistent, i.e. that the molecular system
may be modelled as a combination of stable electronic states and localized
vibrational nuclear states. If condition (7.6) is not satisfied, it is necessary to
go beyond the adiabatic approximation. This requires the consideration of
the vibronic electron-nuclear interactions, which couple the electronic states
of the adiabatic approximation as a function of the nuclear configuration Q,
and the resultant effect on the nuclear dynamics is known as the dynami-
cal JT effect. The linear (quadratic) dynamical JT effect occurs when the
vibronic interaction terms, expanded in powers of @, are truncated at first

(second) order in Q.

The linear £ @ e JT Hamiltonian Hjr represents a simple non-adiabatic
molecular model of the vibronic interaction between a two-fold degenerate
electronic level (£) and two degenerate nuclear vibrational modes (e). The
bosonic quanta corresponding to the vibrational modes are thus phonons. In
the case of electronic near-degeneracy, non-adiabatic (pseudo Jahn-Teller)
effects also occur if the electronic level splitting wy is comparable to the
nuclear vibrational excitation energy w. We therefore also consider the linear
E ® e PJT Hamiltonian Hpjr, which generalizes the (pure) JT model to the
case of nondegenerate electronic levels. In both cases it is assumed that the

two levels under consideration are well separated from other electronic levels.
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7.1.2 Analytic solutions in the limit of zero coupling

In the analysis of a Hamiltonian describing an interacting many-body sys-
tem, the eigenbasis of the noninteracting Hamiltonian is often useful both
for TIPT and the CI (diagonalization) method. The linear £ ® e JT and
PJT Hamiltonians are analytic in the limit of zero coupling ~. Consider
the noninteracting JT Hamiltonian H}5° = wiN,. The exact ground states
of H)7? are the states |0)[0)|]) and |0}]0)|1), where in each case the first
(second) ket refers to the bosonic occupation number vacuum for the first
(second) bosonic mode, and the third ket denotes the lower (||}) or upper
(| 1)) level of the fermionic mode. For v = 0 these states are degenerate with
ground-state energy EJr = 0. The state |0)]0)|4) (]0)]0)|1)) is of positive
(negative) Ilpyr parity and corresponds to angular momentum component
j =—=1/2 (j =1/2). The complete spectrum of Hj5® is simply determined;
the n—th excited level has energy E, = nw and is 2(n + 1)-fold degenerate.
The factor 2 arises from the electronic degeneracy, and there are (n + 1) ways

to distribute the n bosonic quanta over the two modes.

In the limit of zero coupling the noninteracting PJT Hamiltonian

o 1
HY5E = swo ot + why (wo > 0) (7.7)

has the exact ground state |0)|0)|)), which uniquely corresponds to the
ground-state energy ERjp = —wo/2. Here the ground state is thus of pos-
itive Ilpyr parity, and has angular momentum component j = —1/2. The
determination of the complete spectrum of Hajy, which is dependent on the

relative magnitudes of w and wy, is straightforward.
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7.1.3 Numerical diagonalization of the JT and PJT

models

Although there is strong numerical support for the conjecture of Reik et.al.
[Re87], and although the linear £ ® e JT and PJT Hamiltonians have fur-
thermore been written in canonical form [Sz97], the integrability of these
models for arbitrary coupling v and fermionic level splitting wy has not been
explicitly demonstrated. We therefore turn to the CI method, which involves
the numerical diagonalization of the Hamiltonian in a finite subspace of the

full Hilbert space.

For v > 0, the Hamiltonian Hpjyr (for arbitrary wy and thus including
the JT case wg = 0) does not commute with the bosonic number operator
N, and the noninteracting eigenbasis is no longer the most appropriate ba-
sis for the diagonalization of the Hamiltonian. Rather, since the operators
Hpjr, J and Ilpyr form a mutually commuting set, the matrix representa-
tion of Hpjr in a simultaneous eigenbasis of J and IIpjt blocks into sectors
corresponding to fixed eigenvalue j of the operator J and either positive or
negative Ilpjr—parity. This not only results in a considerable reduction in
the numerical effort involved in the diagonalization of the Hamiltonian, but
also, as we will show, yields an explanation of the two—fold degeneracy of all

energy levels in the spectrum of the linear £ ® e JT Hamiltonian.

We present here an operator—based approach to the construction of an ap-
propriate simultaneous eigenbasis of the operators J and IIp;7. We introduce

the operator ¢! and its Hermitian conjugate ¢ via
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Il

Sl =Sl

(bJ{cr“T — bgo*‘") = é ( EO‘+ + &‘.IO'_)

(bla"’ — bgO’y) S (0220‘_ + a.10'+) . (78)

L
2
It is easily shown that

[, J] = [, J] =0

[e, Ipyr] = [CT,HPJT] =0, (7.9)

and also that
(1) = %[(1){)24r (b;)z] = alal. (7.10)

The Hamiltonian Hpjr may, for arbitrary wqg, be rewritten as

1
Hpyr = §w0 Ftw Ny +2yel +2v¢, (7.11)

where the bosonic number operator NV, assumes the form

1
Nb=2CTC+JO'Z—§. (712)
Here Jo* = cct — cfe — %, and the parity operator IIp;r retains the form (7.4).

The operators ¢, ¢! and ¢* obey the relations !

I:c, (CT) 2nj| — 5 (CT)2'n—1 ’ |icv (CT)Zn-I-l] _ (C_I_)?n (Jo'z i %)
o] = [o ()] = o], = [ ()] =0 (ra3)
forn =0,1,2,... . It then follows that
[Nb, (CT)R] =n (ch)n , [e, N3] = ¢ (7.14)

1The subscript + denotes an anticommutator.
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and, as expected,

[J,07] = [J,N;] =0. (7.15)

Consider an arbitrary j—sector, which is an infinite-dimensional subspace of

the full Hilbert space. We postulate that the requirement

) =0 (7.16)

uniquely determines the state |‘II)58f, which is a reference state of angular
momentum component j that will be used as a starting vector for the con-

struction of a suitable basis for this sector. Using (7.13), one obtains
c{o?| @)} = —oc Ty = 0, (7.17)

and from (7.15) it follows that the state {az|lII);-ef} is also an eigenstate
of J with eigenvalue j. The assumed uniqueness of |lI')fff implies that the
reference state must therefore be an eigenstate |¥)™f of o* with eigenvalue
s € {—1,1}. It follows from a similar argument using (7.14) and (7.15) that
the reference state must also be an eigenstate of the bosonic number op-
erator IV, with eigenvalue n;, € {0,1,2,...}. Using the form (7.12) and the

requirement (7.16), it is clear that

nszs—%zo, (7.18)
and also that
i X 1 re
HPJT |\I’)§f = exp [37’( (j + 5) S] I@)L‘E . (719)

There are now two possibilities:

1. The eigenvalue j is positive, so that j = p+ 1/2 with p € {0,1,2,...}.

In this case, condition (7.18) implies that s = 1 and ny = p, and

96



University of Pretoria etd — Van der Walt, D M (1999)

we deduce from (7.19) that the reference state |lll)§e=fp+1/2‘s:1 for this

positive—j sector is of even (odd) IIpyr—parity for p odd (even).

[S]

. The eigenvalue j is negative, so that j = —p — 1/2 withp € {0,1,2,...}.
In this case, condition (7.18) implies that s = —1 and n; = p, and we
deduce from (7.19) that the reference state I‘I’>;e=f_p_1/2,s=_1 for this

negative—j sector is of even (odd) Ilpjr—parity for p even (odd).

Clearly js = p+1/2 in both cases. Given the eigenvalue j = +(p + 1/2),
the condition (7.16) therefore fully determines the reference state |¥)™f. For
example, in the occupation number representation of modes of circular polar-
ization, the reference state for the j = p 4 1/2-sector is |p)|0)|1), and that
for the j = —p — 1/2-sector is |0)|p)|}). These examples clearly illustrate

the role of the reference state as the “simplest” state in the given sector.

The operator approach now allows for the construction of a suitable basis
for this j—sector, without the need to specify the explicit form of the basis
states in terms of e.g. linearly of circularly polarized bosonic modes. For an
arbitrary j-sector eigenstate |¥); of Hppyr, we construct the power series

expansion

9 = Y X ()" 10t (7.20)

n=0

Since ¢! commutes with both J and [pjt, it is clear that the state |¥);
has the same J and Ilpjr quantum numbers as the reference state |\P)§e§ ;

Substituting the expansion (7.20) into the Schrédinger equation
HPJT|\IJ)j = E|LI1>5, . (7.21)
and using the relations (7.13), (7.14) and the condition (7.16), one obtains
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for the coefficients {X;} the recurrence relations

it
0 = 29Xo, 1+ [(p-{- 2n)w + s§w0 — E] Xon+2v(p+n+1)Xont
: 1
0 = 29X, + [(p+ 2n+ 1w — S5%0 = E] Xont1+27(n+ 1) Xonya (7.22)

where s =1 for j =p+1/2 and s = —1 for j = —p — 1/2. These equations
constitute a simple reformulation of the Longuet—Higgins recurrence relations
[Lo58, Ju79, Re81a], generalized to incorporate the case wy > 0. The solution
of these recurrence relations is equivalent to the diagonalization of the tri-

diagonal matrix representation of Hpjr in the j-sector,

[ pw+swo  2WpFI 0 0 0
29vP+1 (p+1)w— Suwo 29v/1 0 0
0 2v/1 (p+2) w+ Lwo 29/p+2 0
0 0 29vP+2  (p+3)w—5wo 29V2
0 0 0 29v2 (p+4) w+ fwo

(7.23)-

In general (i.e. wo > 0 arbitrary), the eigenvalues of the matrix (7.23)
will be different for the cases s = 1, and the eigenstates of Hpj are thus
singlet states of definite parity and angular momentum component j. In
particular, the ground state of Hpjr is a unique positive-parity state, corre-
sponding to j = —1/2, for all values of the coupling 7. Since the Longuet-
Higgins relations (7.22) are invariant under the simultaneous replacements
{wy = —wo,J — —7,8 — —s}, it is clear that the first excited state of Hpjr.
which is a unique negative-parity state corresponding to j = 1/2 and s = 1,

may be obtained by replacing wy by —wg.

The matrix representation of the linear £ @ e JT Hamiltonian Hjt in

the j-sector is obtained by setting wg = 0 in (7.23). The representations
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of Hyr in the j = p+1/2 and j = —p — 1/2-sectors (which are of opposite
parity) are therefore identical, which explains the two—fold degeneracy of
all energy levels in the spectrum of the linear E ® e JT Hamiltonian. In
particular, the diagonalization of (7.23) for {wg =0;p=0,5 = —1/2} and
{wo =0;p=0,7 =1/2} yields the energy of the positive- and negative-
parity ground states of Hjy, which are degenerate for all couplings. Thus
the inclusion of the (vibronic) interaction terms transforms the electronic de-
generacy of the noninteracting ground state of Hjr into a parity degeneracy
(also referred to as a vibronic degeneracy [Berb]) at finite coupling. In the
Hpjr model, the finite fermionic level splitting wq lifts the parity degeneracy
of the ground state for all values of the coupling, and the Hamiltonian Hp;

is in this sense analogous to the Rabi Hamiltonian.

For the Hamiltonian Hjr, i.e. for wy = 0, the numerical diagonalization
of (7.23) was first performed by Longuet-Higgins ef.al. [Lo58]). Besides the
energy spectrum of the linear £ ® e JT model, the eigenvalues of the matrix
(7.23) with wy = 0 also yield the energies of the linear I's @ 7 JT model.
However, for this model, which describes the vibronic interactions between
a fourfold-degenerate electronic state and a triply—-degenerate nuclear vibra-
tional mode, the quantum number p is replaced by the quantity m. which
assumes half-integer rather than integer values. Numerical results for the en-

ergy levels of the linear I's ® 7 JT Hamiltonian were presented by Thorson

and Moffit [Th68].
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7.1.4 Juddian solutions for the JT and PJT models

As is the case for the Rabi Hamiltonian, analytic solutions for some of the en-
ergy eigenvalues of the Hamiltonians Hyr and Hpjr occur at isolated values
of the coupling v. Using algebraic methods, Judd [Ju79, Ju77] showed that,
for both the linear I's ® 7 and linear F ® e JT models, rational eigenvalues
occur at isolated values of 4 where the Longuet—Higgins recurrence relations
can be solved in closed form. Reik et.al. [Re81a, Re81b, Re81c, Re82] simpli-
fied the analysis of these Juddian solutions by reformulating the eigenvalue
problem for both models in Bargmann’s space of analytical functions, and
extended the search for Juddian solutions to the Rabi and linear £ @ ¢ PJT
Hamiltonians [Re82]. The important contribution of Reik et.al. is the obser-
vation that, at the Juddian points, a Neumann expansion of the wave function
in modified Bessel functions terminates after a finite number of terms. This
allows for the systematic and (at least in principle) straightforward determi-
nation, in closed form, of the values of the coupling v and energy E at the

Juddian points.

Here we rederive the results of Reik et.al. using the operator approach in-
troduced in the previous section. Our motivation is threefold: the equations
which determine the Juddian values of the coupling and energy are more sim-
ply derived in this approach; the operator ¢, which obeys the relation (7.10),
plays the role of the the Bargmann number /Zz in [Re82|, and therefore allows
for the construction of explicit expressions for the Juddian wave functions
in the Dirac rather than the Bargmann representation; finally, the operator

approach yields results which are independent of the explicit realization of
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the bosonic modes. By analogy with the approach in [Re82], we therefore

construct the following (unnormalized) Neumann expansion for |¥);:

) = 3 —mr (ke!)" ™ Ly (26cf) |25

4nna, 1
= winl

+y S (k) Lngprn (26h) [O)E, (7.29)
n=0 :

where k = v/w, I, is a modified Bessel function of the first kind of order n
(see e.g. [Abr]),and as befores =1 (s =—1)forj=p+1/2(j = —p—1/2).
Then

271-'—2‘6
n

o), = >

n=0

]Ij r_ef
Kin! g__% kEl(p+n+ k)! | )J’s
)2n+2k+1

© g & (HCT

+ bRt

i 9
Z il e Fptn kD) )

71,8

Substituting (7.25) into the Schrédinger equation (7.21) we obtain forn = 0,1, 2,. . .,

w E
0 — {I‘) TR _}$n+m2yn + 06" (21 + Yn1)
4w 2w

2
=r g P 1 wo E
0 = Grent{fentg-sgt - hn
+{p+n+l+fc2}:ﬂn+n&4(rn—1 + Yn-1) » (7.26)

where by definition z_; = y_; = 0. Elimating z,,_1 +y,—; from the recurrence

relations (7.26), and introducing the parameters § and v via

Wy —w
6 =
4w
1 2
E = v-—§—2f<z W, (7.27)
one obtains, for the case j = —p — 1/2 where s = —1,
My, M T
il P R n=01,2,...,
Yn+1 My My Yn

101



University of Pretoria etd — Van der Walt, DM (1999)

My = —&? (3+1+5+3>

2 2
My, =-r€2(2+1+5+n—g)
— figd e g0 —nl T L} P
Ma, —(f» +2+1 d+n 2)(2+1+5+2) & (n+1)
Ma, =(K2+§+1—5+n—§) (g+1+6+n—g)—K?(n+1),(7-28)

with the initial condition
v _
n‘izyo = — (ﬁ;z e g -4 - 5) Zg . (729)

The parameter x¢ simply fixes the norm of |¥)_,_;/;. For an eigenstate of
Hpjyr corresponding to the positive J eigenvalue j = p 4+ 1/2, a similar analy-
sis with s = 1 yields equations identical in form to (7.28), but with ¢ replaced
by —d — 1/2, or equivalently with wp replaced by —wg. Taking zo = 2 and
s = 1, Equations (7.28) and (7.29) become identical to Equations (3.4-3.8)
and (3.11), respectively, of [Re82], so that the correspondence between (7.24)

and the Bargmann analysis of [Re82] is complete.

The derivation of (7.28) is valid for arbitrary wp, including the JT case
wg = 0. Furthermore, it can be shown [Re82] that, in the case p = —1/2, the
solution of (7.28) yields the energy eigenvalues £ = (v — 25%) w of the Rabi
Hamiltonian. Thus the set of equations (7.28) are to be solved for both §
and § - —d — 1/2, and in each case for arbitrary nonnegative integers p as

well as for p = —1/2.

Juddian solutions for Hjyt, Hpyr and Hgap; occur whenever the Neumann
series (7.24) terminates at finite order; such a termination occurs at the

N-th term if and only if both the conditions'v = N and ¥y =y +ynv =0
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are met [Re82]. By (7.27), the condition v = N ensures that the energy
corresponding to these solutions lies on the Nth baseline, defined for the JT
and PJT systems by
; 1 1 27?2
Baseline _ N — - — 2) = ( _ _) .l S -
Ex ( 5 2k° | w N 5]~ (7.30)

The quantity Ly is a polynomial of degree N in x?. For given values of

the parameters p and ¢, the conditions v = N, Xy = 0 therefore algebraically
determine the values of the coupling for which Juddian solutions on the N-th

baseline exist.

For v = N =0, the condition £ = z¢ + yo = 0 reduces to
pT—28=0, (7.31)

which is independent of the coupling x, and thus yields an analytic solution,
valid for all coupling, for p =p*,d =d*. The case p* = —1/2,6* = —1/4,
which refers to the Rabi Hamiltonian with degenerate atomic levels, was
discussed in Chapter 4. Here we consider also the case of the linear £ ® e
resonant (wg = w) pseudo Jahn-Teller Hamiltonian Hgpjt, for which § = 0.
For Hgpjt, the condition (7.31) is therefore satisfied for p* = 0, which corre-
sponds to the negative J eigenvalue j* = —p* —1/2 = —1/2 and s = —1. In
this case the reference state |¥)*f has the form [0)[0)||), where |0)[0) is the
bosonic vacuum for any particular realization of the bosonic modes. Thus

we find that the ground (j = —1/2) state [¥FFIT) of the RPJT Hamiltonian

Hrpjr = —wo® + wa{al + wa;ag

2
+7 (a+af) ot + 9 (al +a2) 0" (7.32)
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assumes the closed form
W5™) = Anear {1 (2c") — I (2x¢) O)IO)IY) . (7.33)

where Agrpjr is a normalization constant, and the corresponding ground-
state energy is
1 272

ERPJT EIBa.selme = i o, 34
W= — (7.34)

This solution, which is analytic for all coupling v, clearly highlights the
advantages of the operator approach. Expressed in terms of bosonic modes

of circular polarization, |UFFIT) assumes the explicit form

2kt

llligtPJT ArpiT Z {\/WI NEY L) — m

|k>lk+1>|T)}, (7.35)

which allows for the determination of Agpjr via

co [ ik rAkt2 i
AgrpiTr = {EO (k!k! . El(k + 1)!)}
_ {IO (252) + _[1 (252) }—1/2 . (736)

For v = N > 0, the conditions X5 = 25 + yy = 0 may be used to find
other Juddian solutions for Hgrapi, Hy, and Hpjyr. It has been conjectured
[Re87] that an expansion of the wave function in generalized spheroidal func-
tions terminates at all values of the coupling, rather than only at the Juddian
points. Despite very strong numerical evidence, this conjecture has not been
proved. However, the Juddian solutions may be still used to gauge the accu-
racy of approximate many-body techniques, even if only at isolated values
of the coupling. In particular, the converged CI (diagonalization) results

for the spectra of Hyr and Hpjr can be shown to be exact for all practical
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purposes. Also, it can be shown [Re81a] that, for large coupling -, all eigen-
values of Hjyr and Hpjr approach the baselines (7.30). In particular, both
the ground and first excited state energies of these Hamiltonians approach

the value EBaseline — FRPIT — _,/9 _ 942/4 in the limit v — oo.

7.2 Physical characteristics of the JT and PJT

ground states

The ground-state behaviour of the linear £ ® e JT and PJT Hamiltonians
is analogous to that of the Rabi ground state, in that a marked change in
character occurs in the ground state in the intermediate coupling regime.
Again, this character change manifests itself in the ground-state expectation
value of the operator o*, which is readily evaluated using the CI method.
In the ground state of Hpjr with wy > 0, the fermion is more likely to be
found in the lower state for small coupling, and (almost) equally likely to
be found in either the upper or lower state at large coupling. The crossover
between these two regimes, though not discontinuous, takes place in a fairly
well-defined region of coupling, which is dependent on the the fermionic
level splitting wg. For Hyr, the same behaviour is observed, provided that
the ground state is restricted to, say, even Ilpjr parity (or equivalently to
the negative J eigenvalue j = —1/2). Thus, as before, one may use the
expectation value (o*) or, more effectively, the fluctuation Ac?, to identify

the transitional coupling region.
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The physical nature of the crossover observed here may be seen by exam-
ining the behaviour of the ground state of the (part of a) molecular system
described by either the JT or PJT Hamiltonian, for large values of the scaled
coupling . Consider first the simpler Hamiltonian Hjr. Denoting the en-
ergy gap between the two sheets of the adiabatic potential corresponding
to the ground state by A(Q), it is readily shown that Ay = A (Qy) = 8wk?,
where (Jo represents the minimum-energy nuclear configuration [Berb]. For
large s, it is evident that Ag is much larger than the nuclear vibrational
quantum w. Thus the criterion (7.6) is satisfied, and the lower sheet of the
adiabatic potential may be interpreted as the ground-state potential energy
of the nuclei in the average field of the electrons. Quantizing the motion
of the nuclei in this potential, one obtains the observed form (7.34) of the
ground-state energy for large coupling [Berb]. The criterion Ag ~ w provides
a simple measure of the onset of this type of ground-state behaviour, so that

we expect a change in character of the ground state of HjT at
1
7

This is in good agreement with the transitional coupling region for Hjt iden-

trans

(7.37)

tified by considering the behaviour of Ac*. Although the finite fermionic
level splitting wp in the linear £ @ e PJT model affects the shape of the
adiabatic potentials, the ground—state behaviour for large coupling is similar
to that described above for Hjr [Berb|, and a similar transitional region is

observed.

106



University of Pretoria etd — Van der Walt, D M (1999)

7.3 Approximate many—-body approaches to
the JT and PJT models

The approach outlined in Section 7.2 above may be used [Berb] to obtain
quantitatively accurate results for the spectrum of both Hjr and Hpjr in
the limit of large coupling 7. Accurate results for these models can also be
obtained in the opposite limit of small 7, using an operator version of time-
independent perturbation theory (see [Bera, Berb] and references therein).
For both Hjr and Hpjr, however, physically realistic values of the vibronic
interaction constant mostly correspond to the region of intermediate coupling

[Berb], where quasi—analytic results cannot be obtained.

In the intermediate coupling regime, accurate results for the spectra of
the Hamiltonians Hjyr and Hpyr can be found using quasi-exact numeri-
cal methods such as the CI (diagonalization) approach. Generally, however,
these methods do not provide much physical insight into the nature of the
solution, and a variety of other many-body techniques have therefore been
applied to the linear £ ® e JT and PJT models, with the bulk of the work
being done on the former. Most of these calculations have involved either
variational techniques (see [Berb, Lo91] and references therein), or some form
of unitary transformation (see e.g. [Fu6l]). In many cases, these methods are
used in combination; recent examples include a variational calculation based
on a correlated squeezed state [Lo91] for Hyr, and a similar calculation for
Hpyr [Hu98]. None of these calculations, however, yield quantitatively accu-

rate results in the physically interesting region of intermediate coupling. As
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is always the case, the failure of the variational method can be attributed
to a shortcoming in the variational ansatz for the wave function. As for the
method of unitary transformations (which is often just a variational shift
of the Hamiltonian rather than the wave function), the transformations em-
ployed often destroy either or both of the symmetries J and Ilpjr. This
eliminates the use of these symmetries as an aid in simplifying the solution

of the Hyr and Hpjy eigenvalue problems.

Given the excellent variational results [Bi99a] obtained for the Rabi Hamil-
tonian via a trial state of the coherent superposition form (4.38), we have
attempted to perform a variational calculation for both & JT and HpjT based
on an analogous ansatz for the case of two bosonic modes. The resulting
ansatz is not, however, a state of good j quantum number, and this calcula-

tion therefore fails at intermediate and large coupling.
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Chapter 8

Application of the CCM to
Linear £ ® e Jahn—Teller
Systems

In this chapter, we review previous applications of the CCM to the ground
state of the linear £ ® e JT Hamiltonian, and present new CCM results for
the ground and first excited state energies of both the linear £ ® e JT and
PJT models. Given the observed character change in the ground state of
these models, it is not surprising to find that, as is the case for the Rabi
Hamiltonian, a CCM calculation based on a naive choice of the model state
fails in the intermediate coupling regime. We present, however, a CCM calcu-
lation, based on the analytic ground state of the linear E ® e resonant pseudo
Jahn-Teller (RPJT) Hamiltonian, which to first order yields excellent results

for both the ground and first excited states of the models considered here.
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8.1 Previous CCM calculations for the linear

F ® e Jahn—Teller Hamiltonian

Monkhorst presented a critical analysis of the treatment of molecular systems
in the adiabatic approximation, and argued that the CCM is an especially
suitable method for the analysis of such systems in a manner which does not
rely on the adiabatic approximation [Mo87]. Wong and Lo have applied the
CCM to the ground state of the linear £ ® e JT Hamiltonian, which is a
manifestly non-adiabatic model. Initially, these authors applied the unitary
transformation

U=expR, R=X(b-b), (8.1)
with A = n/w, to the Hamiltonian in the form

Hyr = w (blby + blby) + 17 (b] +b1) 0% — 1 (B + b)Y,  (8.2)

and applied the CCM to the transformed Hamiltonian using the SCCA ap-
proximation scheme discussed in Section 5.1 [Wo94]|. The same authors sub-
sequently presented an improved ground-state CCM calculation for Hjr,
referred to as the optimal coupled cluster approximation [Wo96a]. In this
approach, the parameter A in the unitary transformation (8.1) is treated as
a variational parameter, the optimal value A* of which is determined by
a method which combines aspects of both the CCM and the variational
method. Finally, the CCM is applied to the “optimally” (A = A*) trans-

formed Hamiltonian to yield the required ground-state energy results.

The optimal CCM results of Wong and Lo for the ground-state energy

of Hyr are more accurate, over the full coupling spectrum, than those ob-
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tained via previous calculations based on either the variational method or
the method of unitary transformations [Wo96a]. Their calculations, however,
take no account of either of the symmetries J and IIpjr of the Hamiltonian:
in fact, it is evident that the unitary transformation (8.1) destroys both these
symmetries. Besides the resulting loss of accuracy in the ground-state energy
results, their approach is therefore also not readily generalized either to the

first excited state, or to the case of nondegenerate electronic levels (wo > 0).

8.2 Naive applications of the CCM to Hjy

and HPJT

We have generalized the CCM schemes ! employed in our application of the
method to the Rabi Hamiltonian (see Table D.1) to the linear E®e JT
and PJT case of two degenerate bosonic modes. Given the results obtained
for the Rabi Hamiltonian via CCM calculations based on the noninteracting
model state, and the character change in the ground states of Hyt and Hpjr,
it is unreasonable to expect that a CCM calculation based on the model state
|0)[0)]{) would be successful here. Indeed, we have confirmed that, for the
model state |0)|0)|}) and a cluster operator S of the form

S = S0 )+ 5 zw () ()" 0%, (89

n=1 k=0

which represents a simple generalization of Scheme I for the Rabi Hamilto-

nian, the CCM results, although very accurate for weak coupling, again fail

'As before, a CCM scheme refers to a particular choice of the model state |®) and

cluster operator S.
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at intermediate and large coupling. The same holds true for the generaliza-
tion of Scheme II. Although we have not formally proven this, it is highly
likely that the failure of the method is again due to an incompleteness, to any
finite order, in the CCM ansatz for the ground-state wave function. Also,
these calculations do not conserve the J symmetry of the Hamiltonians Hjt

and HPJT.

We have also performed a CCM calculation for Hyr and Hpjt based on

a coupling-dependent model state of the form

) = %{I — 2)[0)]1;0%) — |2)[0)] L;0%)} - (8.4)

Here |z) is a bosonic coherent state with coherent parameter z = n/w, the
bosonic states refer to modes of linear polarization, and the fermionic states
refer to eigenstates of 0. The state (8.4) represents a generalized form
of the model state |¥,) employed in the Scheme III analysis of the Rabi
Hamiltonian. Using a similar form for the cluster operator S to that employed
there, we again find that the CCM breaks down at intermediate and large
coupling. The reason is two—fold: the model state (8.4) does not mimic the
change in character in the ground states of Hyr and Hpjr with sufficient

accuracy, and the J symmetry has again been neglected.

Since an accurate variational calculation similar to that presented in
Chapter 4 for the Rabi Hamiltonian is not available for the linear E @ e
JT and PJT Hamiltonians, it is not possible to generalize the very successful
CCM Scheme IV calculation for the Rabi Hamiltonian to the models con-
sidered here. For a CCM analysis of Hyr and Hpjr, we therefore seek an

alternative model state |®) which must
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e incorporate the symmetries Ilpyt and J,

e allow for the construction of a suitable cluster operator S which con-

serves these symmetries, and

e be capable of tracking the character change in the ground state.

8.3 Successful CCM calculations for Hjr and Hpjt

For the Hamiltonians Hjr and Hpjt, the analytic ground state of the linear

E ® e RPJT Hamiltonian, ?

[GRPITY — \/ID (2K2)1+ o {IO (2;{&‘) - I (QrccT)} [0)[0)[4)  (8.5)

with ¥ = vy/w, and where the operator ¢! was introduced in (7.8), satisfies all
the requirements for an effective CCM model state [Bi99b]. The state |¥FFIT)
clearly has the correct even—parity and j = —1/2 symmetries required of the

ground state. Furthermore, since it is easily shown that

| UEPITY = g | gRPITY | (8.6)

the operator ¢ + x annihilates the model state |®) = |URFIT). This suggests
the following (clearly symmetry—conserving) form for the cluster correlation
operator S:
o n
8= ¥ (CT—I-&) : (8.7)
n=1
We shall refer to this choice of the model state and correlation operator as the

RPJT scheme. Consider the SUB-1 approximation, where S = s; (cT - f-c).

2Here I,, refers to a modified Bessel function of the first kind of order n.
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With the Hamiltonian Hpjyr (for arbitrary wp including the JT case wy = 0)
written in the convenient form (7.11), the nested commutator expansion (3.8)

may be used to obtain the similarity transformed Hamiltonian

1 1
e S Hpyre® = §w@exp{—231cT}oz Tl §w

+ ws; (CT + n) + 2wk (cJr -+ c)

1 1 = QSIK(—Zslcf)m
—w(2 z =
P P ey

(2J) 0%.(8.8)

For the ground state, one may make the replacement 2J — —1. Furthermore,
given the relation ¢|®) = (—«)|®) and its Hermitian conjugate (®|ct = (®|(—&),

it follows that the SUB-1 CCM ground-state energy has the form

E(?CM = ((I)|€_SHPJT68|‘I)>

1 1
= gt 2oK? + 5 (wo — w)exp{2s1k} (%) , (8.9)

where the model state expectation value {¢*) is given by

I (26%) — I (2&2)]

(8.10)

(0%) = (®lo7[|®) = - lfo (2x2%) 4+ I1 (2x2)

Using the commutation relations (7.13), one obtains the overlap equation

0 = (®|(c+~&)eSHpyre’|®)
1 1
= exp{2s1k} (wo —w) (rs — 531) (c®) + F@S1 [1—(c%)]
Wo . v W o g

o sinh {2s;x} + P [1 — cosh {2s1x}]

+ i [1 —exp{2s1£}](c?) , (8.11)
which determines the coefficient s;, and thereby also the SUB-1 CCM ground-
state energy (8.9) in the RPJT scheme. It is clear from the form (8.9) that, as
expected, the SUB-1 CCM ground-state energy E§™ for the RPJT scheme

is exact in the case of resonance wy = w.
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For ease of comparison with other results, we scale out the w-dependence

of the Hamiltonian by setting w = 1, and introduce the coupling parameter
k? =497 = 4K* = 207 (w=1). (8.12)

In Table 8.1 we compare our SUB-1 CCM results for the ground-state energy
of the (pure) linear F' ® e Hamiltonian (for which wy = 0) to the numerically

exact results obtained via the CI diagonalization, and also to results obtained

Table 8.1: Comparison of the ground-state energy E§™ of the scaled (w = 1) linear
E®e JT (wo = 0) Hamiltonian, obtained as a function of the coupling k* from a SUB-1
CCM calculation based on the RPJT scheme, with the results of other many-body calcula-
tions. In accordance with the other results quoted here, we have added unity (the zero—point
energy of the bosonic modes for w = 1) to our results. The (effectively exact) CI results are
labeled EST. The results from [Wo96a] are the so-called optimal CCM ground-state energy
results obtained there. The other columns, which are reproduced from [Wo96a], represent
results obtained via an earlier CCM analysis [Wo94], and via variational methods and the

method of unitary transformations [Al69, Ba78, Ba77, Zh90, Lo91].

k| EST4+1 | ESCM 41 | [Wo96a] | [Wo94] | [Al69, BaTs) [Ba77] [Zhao] [Lo91]
0.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.25 0.7738 0.7739 0.7741 0.7742 0.7766 0.7883 0.7877 0.7767
0.50 0.5780 0.5785 0.5799 0.5806 0.5920 0.6155 0.6119 0.5877
0.75 | 0.3997 0.4009 | 0.4045 | 0.4066 0.4308 | 0.4609 | 0.4522 | 0.4173
1.00 | 0.2330 0.2350 | 0.2415 | 0.2453 0.2838 | 0.3168 | 0.3017 | 0.2586
2.00 | -0.3689 -0.3637 | -0.3441 | -0.3343 -0.2454 | -0.2166 | -0.2577 | -0.3157
3.00 | -0.9189 -0.9117 | -0.8824 | -0.8704 -0.7494 | -0.7281 | -0.7886 | -0.8466
5.00 | -1.9610 -1.9532 | -1.9173 | -1.9051 -1.9750 | -1.7371 | -1.8225 | -1.8716
7.00 | -2.9761 -2.9693 | -2.9345 | -2.9231 -2.7500 | -2.7409 | -2.8418 | -2.8833
10.00 -4.4850 -4.4797 -4.4492 -4.4391 -4.2500 -4.4360 -4.3600 -4.3937
15.00 -6.9907 -6.9870 -6.9625 -6.9538 -6.7500 -6.7458 -6.8780 -6.9042
20.00 -9.4932 -9.4904 -9.4700 -9.4623 -9.2500 -9.2468 -9.3894 -9.4111
30.00 | -14.4956 -14.4937 | -14.4783 | -14.4719 -14.2500 | -14.2479 | -14.4035 | -14.4202
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via a variety of many-body calculations. It is clear that, even in first order,
our CCM calculation based on the RPJT scheme yields a considerable im-
provement, over the full coupling spectrum, on the earlier “optimal” CCM
results of [Wo96a|, which in turn are far superior to results obtained via
other many-body techniques. Furthermore, the CCM results of Wong and
Lo given in [Wo96a] were obtained in the third level of their successive cou-
pled cluster approximation scheme, and required the numerical solution of
13 nonlinear coupled equations. It is evident that the proper inclusion of
the J and Ilpjr symmetries in our calculation, which requires the numerical
solution of only the single trancendental equation (8.11), leads to a much
simpler and considerably more accurate CCM calculation of the linear £ @ e

JT ground-state energy.

In Table 8.2 we present the results of a SUB-1 CCM calculation, based
on the RPJT scheme, of the ground—state energy of the scaled (w = 1) linear
E ® e PJT Hamiltonian in the sub-resonant cases wg = 0 (this is again the
pure JT case) and wy = 0.5, as a function of the coupling k2. Here we also
show the percentage error in the CCM results, as compared to the (converged)
results of a CI diagonalization of Hp;r in a basis consisting of 101 even—parity
J = —1/2 states. Similar results for the supra-resonant cases wy = 1.5 and
wo = 2.0 are tabulated in Table 8.3. It is clear that, already in the SUB-1
approximation, the CCM ground-state energy results for the RPJT scheme
are extremely accurate over the full coupling regime and for a wide range
of values of the fermionic level splitting wo, with a percentage error, relative
to the CI results, of no more than 0.38 % (see Figure 8.1) for the range of

parameters considered here.
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Table 8.2: The ground-state energy ESM of the scaled (w=1) linear EQe
PJT Hamiltonian, in the sub-resonant cases wg = 0.0 and wo = 0.5, obtained as
a function of the coupling k? from a SUB-1 CCM calculation based on the RPJT

scheme, compared to results (labeled ES') obtained via a CI diagonalization. Also
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shown is the percentage error |E§CM - E§I| JE§* x 100.

wo k2 E§1 ESCM | 9% Error
0.0 0.00 0.0000 0.0000 0.00
0.25 -0.2262 -0.2261 0.04

0.50 -0.4220 -0.4215 0.12

0.75 -0.6003 -0.5991 0.20

1.00 -0.7670 -0.7650 0.26

2.00 -1.3689 -1.3637 0.38

3.00 -1.9189 -1.9117 0.38

5.00 -2.9610 -2.9532 0.26

7.00 -3.9761 -3.9693 0.17

10.00 -5.4850 -5.4797 0.10
15.00 -7.9907 -7.9870 0.05

20.00 | -10.4932 | -10.4904 0.03

30.00 | -15.4956 | -15.4937 0.01

0.5 0.00 -0.2500 -0.2500 0.00
0.25 -0.4125 -0.4125 0.00

0.50 -0.5679 -0.5679 0.00

0.75 -0.7180 -0.7178 0.03

1.00 -0.8639 -0.8635 0.05

2.00 -1.4191 -1.4179 0.08

3.00 -1.9481 -1.9463 0.09

5.00 -2.9736 -2.9716 0.07

7.00 -3.9832 -3.9815 0.04

10.00 -5,4892 -5.4878 0.03

15.00 -7.9932 -7.9922 0.01

20.00 | -10.4950 | -10.4943 0.01

30.00 | -15.4967 | -15.4963 0.00
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Table 8.3: The ground-state energy ESM of the scaled (w = 1) linear E® e
PJT Hamiltonian, in the supra-resonant cases wg = 1.5 and wy = 2.0, obtained as
a function of the coupling k* from a SUB-1 CCM calculation based on the RPJT

scheme, compared to results (labeled E§T) obtained via a CI diagonalization. Also

University of Pretoria etd — Van der Walt, D M (1999)

shown is the percentage error 'EgCM - EEI| /ES x 100.

wp K2 EOCI EECM % Error
1.5 0.00 -0.7500 -0.7500 0.00
0.25 -0.8510 -0.8510 0.00

0.50 -0.9540 -0.9539 0.01

0.75 -1.0589 -1.0588 0.01

1.00 -1.1656 -1.1654 0.02

2.00 -1.6095 -1.6085 0.06

3.00 -2.0745 -2.0728 0.08

5.00 -3.0402 -3.0382 0.07

7.00 -4.0264 -4.0245 0.05

10.00 -5.5174 -5.5159 0.03

15.00 -8.0111 -8.0101 0.01

20.00 | -10.5082 | -10.5074 0.01
30.00 | -15.5054 | -15.5048 0.00

2.0 0.00 -1.0000 -1.0000 0.00
0.25 -1.0845 -1,0845 0.00

0.50 -1.1714 -1.1713 0.01

0.75 -1.2607 -1.2604 0.02

1.00 -1.3525 -1.3519 0.04

2.00 -1.7440 -1.7407 0.19

3.00 -2.1708 -2.1645 0.29

5.00 -3.0945 -3.0861 0.27

7.00 -4.0625 -4.0549 0.19

10.00 -5.5413 -5.5354 0.11

15.00 -8.0266 -8.0224 0.05

20.00 | -10.5196 | -10.5164 0.03
30.00 | -15.5129 | -15.5107 0.01
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Figure 8.1:

The percentage error, as compared to the results of a CI diago-
nalization, in the ground-state energy of the scaled (w = 1) linear E®e PJT
Hamultonian obtained from a SUB-1 CCM calculation based on the RPJT scheme,

as a function of the coupling k? and the two-level splitting wy.
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In order to determine ground-state expectation values other than the

energy in the SUB-1 RPJT scheme, we construct the energy functional
FPJT [81, §1] = (‘I)le_SHP'JTESJ@> + §1<(I)[ (c 1= K) e_SHPJTeS](I’) ; (813)

The NCCM bra state coeflicient §; is determined via the equation

O H, .
8§1JT = To -I— SlTl =0 5 (814)
where
—8 S
T, = O(®|e ;f”e [©) = k(wo — w)exp {251k} (c?)
1
3(<I>| (C + ﬁ:) G_SHpJTeS|@>
Tl = a
S1
1 1
= 2rexp{2s16} (wo — w) (KJ - 531) () + 5 €XP {2516} (wo — w) (07)
1
- %w [1—(c*)] + %wo cosh {2s;k} — 3w sinh {2s;k}
1
— —wexp{2s1x} (¢*) . (8.15)

2

The NCCM ground-state expectation value of the operator ¢* in the SUB-1

RPJT scheme is then given by

(0%)°M = exp {2s:5} (6%) (1 — 515, + 263;) + ;—1 sinh{2s;x}, (8.16)
K

with s; and §; determined via (8.11) and (8.15), respectively. In Figure 8.2,

our results for (%)™, for the representative cases wp =0 and wy = 2.0

?

are compared to the numerical diagonalization results. Our CCM results,

though quantitatively inaccurate for intermediate and large coupling, are at

least qualitatively acceptable over the full coupling spectrum.
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Figure 8.2: The ground-state ezpectation value (c%) for the scaled (w=1) linear
E ®e PJT Hamiltonian, in the representative cases wg = 0.0 and wg = 2.0, ob-
tained as a function of the coupling k* from a SUB-1 CCM calculation based on
the RPJT scheme (dotted lines labeled (UZ)CCM), compared to results obtained via

a CI diagonalization (solid lines labeled (a*)°").
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i r SRR TR 1 [ o o s
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The first excited state energy of Hpjr is useful in e.g. the analysis of
the optical absorption properties of the linear £ @ ¢ PJT model. Since the
symmetries of the Hamiltonian Hpjp are built into our calculation, it is
straightforward to extend the CCM analysis based on the RPJT scheme to
the first excited state of Hpyr, which is an odd-parity state corresponding

to j =1/2. This can be done by repeating the ground-state analysis above,

121



University of Pretoria etd — Van der Walt, D M (1999)

but with a model state of the form

1
I (2-2) + I (

|®) o {L(2x¢) = L (26c) }l0)O) 1) . (8.17)

However, it is easily shown that this is equivalent to the following procedure:
the first excited state of Hpr is, due to the invariance properties of the (ex-
act) Longuet-Higgins relations discussed in Chapter 7, given by the ground
state of the new Hamiltonian obtained by making the replacement wy — —wy
in Hpyr; for the first excited state in the CCM, one therefore simply makes
this replacement in Equation (8.9), which determines the CCM energy, and
in Equations (8.11) and (8.15), which determine the CCM coefficients s, and
51. The calculation is otherwise identical to that presented above for the
ground state. It is important to note, however, that the model state (8.17)
is not the analytic first excited state of the resonant (wg = w) linear £ @ ¢
pseudo Jahn-Teller Hamiltonian, Hrpjr. Also, for the pure JT case (wo = 0),
the procedure outlined above clearly gives the same energy results as for the
ground state, reproducing the known two-fold degeneracy of the Hjy ground

state.

In Table 8.4 we present the results of a SUB-1 CCM calculation, based on
the RPJT scheme, of the first excited state energy of the scaled (w = 1) linear
E ® e PJT Hamiltonian, in the cases wy = 0.5 and wy = 1.0, as a function
of the coupling k?. We also show the percentage error in the CCM results,
as compared to the (converged) results of a CI diagonalization of Hpjt in a
basis consisting of 101 odd-parity j = 1/2 states. Though not as good as the
ground-state results, the CCM results for the first excited state energy are

still very accurate, over the full coupling spectrum, for the range of wy
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Table 8.4: The first excited state energy ECM of the scaled (w = 1) linear E @ e
PJT Hamiltonian, in the cases wp = 0.5 and wy = 1.0, obtained as a function
of the coupling k* from a SUB-1 CCM calculation based on the RPJT scheme,
compared to results (labeled EX') obtained via a CI diagonalization. Also shown

is the percentage error ‘EFCM - E1CI| /EST x 100.

wp k2 ElcI EFCM % Error

0.5 0.00 0.2500 0.2500 | 0.000000

0.25 -0.0935 -0.0930 | 0.531421
0.50 -0.3325 -0.3307 | 0.528784
0.75 -0.5351 -0.5317 | 0.636452
1.00 -0.7176 -0.7124 | 0.726559
2.00 -1.3505 -1.3387 | 0.874016
3.00 -1.9123 -1.8967 | 0.815322
5.00 -2.9620 -2.9454 | 0.559254
7.00 -3.9785 -3.9641 | 0.361388
10.00 -5.4874 -5.4763 | 0.201573
15.00 -7.9925 -7.9848 | 0.096169
20.00 | -10.4946 | -10.4888 | 0.055698
30.00 | -15.4966 | -15.4927 | 0.025425

1.0 0.00 0.5000 0.5000 | 0.000000
0.25 -0.0560 -0.0558 | 0.395322
0.50 -0.3173 -0.3156 | 0.552823
0.75 -0.5307 -0.5267 | 0.757497
1.00 -0.7197 -0.7130 | 0.921794
2.00 -1.3633 -1.3466 | 1.227422
3.00 -1.9277 -1.9047 | 1.192903
5.00 -2.9764 -2.9511 | 0.848603
7.00 -3.9904 -3.9682 | 0.554943

10.00 -5.4963 -5.4792 | 0.310645

15.00 -7.9986 -7.9868 | 0.148102

20.00 | -10.4993 | -10.4903 | 0.085685

30.00 | -15.4997 | -15.4936 | 0.039062

123



University of Pretoria etd — Van der Walt, D M (1999)

considered here. For wg > 1, the SUB-1 calculation based on the RPJT
scheme breaks down, indicating that the model state (8.17) is not a physically

realistic starting state for the first excited state beyond wy = 1.

In Figure 8.3 we plot the percentage error in the results of the SUB-1
RPJT scheme calculation of the first excited state energy of Hpyr, as com-
pared to results obtained via the CI method, as a function of k2 and ws.
For the range 0 < wp < 1, the maximum percentage error of 1.2 % occurs
at intermediate coupling for the resonant case wg = 1. Thus we have shown
that, even to first order, the CCM can yield very accurate results for the
ground and first excited states of the linear E® e JT and PJT Hamiltoni-
ans, provided that a model state is chosen which not only mimics the physical
behaviour of these states, but also incorporates the correct J and IIpjT sym-

metries.

124



University of Pretoria etd — Van der Walt, D M (1999)

i
1.2
.10
o
m
3 08
4
T 06
s
0
g 04
02 - 1.0

0.5

DN

Figure 8.3: The percentage error, as compared to the results of a CI diagonal

ization, in the first excited state energy of the scaled (w = 1) linear E@ e PJT

Hamiltonian obtained from a SUB-1 CCM calculation based on the RPJT scheme

as a function of the coupling k? and the two-level splitting wo
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Chapter 9

Conclusions

The Rabi and linear £ ® e Jahn-Teller and pseudo Jahn-Teller Hamiltoni-
ans exhibit much interesting physical behaviour, and are relevant in many
fields in physics. These non—adiabatic models capture and, by virtue of their
simplicity, highlight some of the essential aspects of the interacting many—
body problem. Thus the application of the coupled cluster method, with its
highly impressive history as a powerful and versatile ab initio many-body
technique, to such apparently straightforward models is of interest. Indeed,
in this thesis, we have found that a CCM analysis of the Rabi and linear
E®e JT and PJT Hamiltonians is anything but trivial, and that a thor-
ough investigation of these models is required in order to apply the method

successfully.

Analytic solutions for the spectra of the Rabi and linear £ ® e JT and

PJT Hamiltonians are available only at the isolated Juddian values of the
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parameters which occur in these Hamiltonians. In this thesis, we have pre-
sented an elegant operator-based method which simplifies the analysis of the
Juddian solutions for the linear £ ®@ e JT and PJT models [Bi99b]. For all
the Hamiltonians considered here, we have used the isolated analytic solu-
tions as a benchmark for the ground and first excited state results obtained
via the configuration—interaction method. We conclude that the numerical
diagonalization of these models yields results which are effectively exact, pro-
vided that the set of configurations included in the CI method is sufficiently

large.

In the analysis of a given many-body Hamiltonian, it is important that
the symmetries of the Hamiltonian be taken into account. In general, this
not only simplifies the analysis, but also leads to more accurate results. A
parity symmetry is associated with each of the Hamiltonians considered here.
In the case where the two levels of the fermionic subsystem are degenerate,
the eigenstates of the Hamiltonian are doubly degenerate for all values of
the coupling strength of the interaction between the fermionic and bosonic
degrees of freedom. For finite fermionic level splitting wo, however, the parity
symmetry lifts this degeneracy; in particular, the ground (first excited) state

is then a unique even-parity (odd-parity) state for all values of the coupling.

For the Rabi Hamiltonian with wy > 0, we have presented a simple three—
parameter variational calculation which, due to the incorporation of the cor-
rect parity symmetry, yields excellent results for both the ground and first
excited states of the system; in the physically interesting case of atom-field

resonance, the maximal percentage error in the ground-state energy, over
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the full coupling spectrum, is 0.1 % [Bi99a]. For the linear £ ® e JT and
PJT Hamiltonians, there is, in addition to the parity, also a conserved an-
gular momentum component J. Due to the neglect of the J symmetry, the
variational approach employed for the Rabi Hamiltonian does not readily

generalize to the linear £ ® e JT and PJT case of two bosonic modes.

Using the CI results, the physical nature of the ground state of the Rabi
and linear £ ® e JT and PJT Hamiltonians has been thoroughly examined.
Although a phase transition does not occur, we have found that the ground
state undergoes a change in character in a fairly well-defined transitional
region of intermediate coupling. We have shown that this character change,
which is closely analogous to the well-known crossover behaviour in the po-
laron problem, manifests itself in the occupation probabilities for the two
levels of the fermionic system. Furthermore, we have found that this change
in character also occurs in the even—parity ground-state in the case wy = 0,
where the ground state is in fact doubly degenerate. It follows that the
character change in the case wy > 0 is therefore not related to the onset of

near—degeneracy in the transitional coupling region.

In previous applications of the CCM to both a multimode Rabi Hamilto-
nian and the linear ¥ @ e JT Hamiltonian, the symmetries of these Hamilto-
nians have been neglected. Our initial attempts at applying the CCM to the
ground and first excited states of the Rabi Hamiltonian, with proper con-
sideration of the parity symmetry, were based on the noninteracting model
state of Schemes I and II (see Tables D.1). These calculations yielded very

accurate results in the weak-coupling regime. However, the results also pro-

128



University of Pretoria etd — Van der Walt, D M (1999)

vided strong evidence for a spurious parity—breaking phase transition in the
transitional coupling region [Bi96], even in the case wp = 0. Physically, the
breakdown of the method in this regime is a result of the marked charac-
ter change in the exact ground state, which is not in any way reflected in
the noninteracting model state. We have formally demonstrated that the
method fails as a direct result of the exponential form of the CCM ansatz for
the ground-state wave function, which is incomplete, to any finite order, for
the model state |®) and cluster operator S of Scheme I. This is despite the
fact that |®) and S = ¥, 5;C] satisfy the requirement, dictated by the CCM
formalism (see Chapter 3), that the set of states {CH(D)} should span the
many—body Hilbert space. This incompleteness is a serious defect not only
of the CCM, but also of any method which relies on an exp S|®) parameter-

1zation of the ground state.

Subsequently, we showed that accurate CCM results for the ground and
first excited state energies of the Rabi Hamiltonian can be obtained, provided
that a coupling-dependent model state is chosen which mimics the change in
character in the Rabi ground state; a common characteristic of such states
is that they are exact in both the limits of zero and infinite coupling. In
particular, a CCM calculation based on a model state of the two—parameter
variational form (see Scheme IV in Table D.1) yields quantitatively accurate
results which, for all couplings, compare favourably with results obtained via
the benchmark three—parameter variational calculation. This CCM calcula-
tion is however not entirely satisfactory, since it involves considerably more
computational effort than the variational analysis, and requires the use of a

model state which of itself yields the overwhelming contribution to the exact
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ground and first excited state energies.

None of the schemes employed in the CCM analysis of the Rabi Hamil-
tonian effectively generalize.to the linear £ ® ¢ JT and PJT Hamiltonians,
since these schemes do not incorporate the J symmetry of the linear £ ® e
models. For these Hamiltonians, however, we have obtained excellent first—
order CCM results for the ground and first excited state energies, using as
model states the analytic ground state of the linear £ @ e RPJT Hamiltonian,
and the corresponding spin—flipped state, respectively [Bi99b]. These results,
which require the solution of only a single transcendental equation, are far
superior to those obtained via earlier CCM analyses and other many-body
methods, and are quantitatively accurate over the full coupling spectrum for
a range of values for the parameter wy. Also, in contrast to the Scheme IV
calculation for the Rabi Hamiltonian, the CCM energy here dramatically im-
proves on the model-state energy. This is especially true for the (pure) linear
E @ e JT model in the physically interesting region of intermediate coupling,

where the exact energy differs substantially from the model-state energy.

The analyses and results presented in this thesis suggest several avenues
for further exploration. It would be of interest to apply the CCM to the
polaron problem. This would determine whether the incompleteness of the
exponential ansatz for the ground-state wave function is also a feature of
other systems which undergo a drastic ground-state character change with-
out a true phase transition. Given the quality of the good—parity variational
results for the Rabi Hamiltonian, it would also be interesting to investigate

the possibility of constructing a variational ansatz for the linear £E @ e JT
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and PJT Hamiltonians which incorporates all the symmetries of these models.
Furthermore, the extension of our variational results for the Rabi Hamilto-
nian, and of our CCM results for the linear £ ® e JT and PJT Hamiltonians,
to higher-lying states would allow for the consideration of both the time-
and temperature-dependence of these models. This would permit compari-

son with experimental results.
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Appendix A

Derivation of the General

Model Hamiltonian

Here we present a first-principles derivation (in the context of quantum op-

tics) of the general Hamiltonian (2.1).

A.1 The two—level atom

Consider an two-level atom, with the two relevant atomic states labeled |a)
and [b), and let fiwy = E; — E, denote the energy gap between the states.
Choose the origin of the atomic energy scale midway between the levels,
so that £, = r—%hwo, and E, = %htﬁg = E, + Awg. The Pauli matrices
(supplemented by the 2 x 2 unit matrix), form a convenient operator basis in

the two-dimensional matrix space corresponding to the atom, and we may
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thus, with a suitable choice of the z—axis, write the Hamiltonian for the atom
as

iH = %hwgoz : (A.1)

A.2 Quantization of the electromagnetic field

Consider now the quantization of the free (zero charge and current density)
electromagnetic field [Man]. After eliminating from Maxwell’s equations (in
rationalized Gaussian units) the electric [E(r,t)] and magnetic [B(r, ¢)] fields

in favour of the classical scalar [®(r,t)] and vector [A(r,t)] potentials via

10A
B = =_-== .
VxA, E=-—— (A.2)

and then enforcing the Coulomb or transverse gauge V - A = 0, one finds

that A satisfies the wave equation

1 5%°A

whilst @ is identically zero. We now treat the field as though it were confined
to a cubical box of volume V' = L* and impose periodic boundary conditions.
If necessary, one may take the limit V' — oo at the end of the calculation.

We expand the vector potential in a Fourier series

- he? g .
A(r,t) = —i bis(t) €T — br (t) e ™ " e, , (A4
(1) = =i 23 g7 (el e bot) € oes,  (A)

with wy = ¢|k|, where the k—sum is over all wave vectors

K —Qg(nmnwm) (g, ny,ne = 0,£1,£2,...) (A.5)
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satisfying the boundary conditions, and where éxs,s = 1,2 represent unit
vectors along the two independent directions perpendicular to the wave vec-
tor k, thereby also satisfying the requirement of transversality imposed by
the Coulomb gauge. Thus (A.4) corresponds to an expansion of the vec-
tor potential A in terms of linearly polarized travelling wave modes. The
fact that (A.4) must satisfy the wave equation (A.3) determines the time

dependence of the Fourier coefficients as

bi o (t) = by .e™ k¢, (A.6)

and the constant in (A.4) has been chosen so that the total energy
Hﬁ d = l / (E2 g Bg) d31‘ (A 7)
2 v '
of the radiation field then assumes the time-independent form
2
Hgela = Y Y hwiby bis - (A.8)
k s=1
By analogy with a system of decoupled harmonic oscillators, this form for the
classical field energy suggests that the field may be quantized by promoting
the Fourier coefficients by s(t) in the expansion (A.4) to operators by s satisfy-
ing Bose commutation relations. Confining ourselves to two perpendicularly
polarized modes, of frequencies w; and w, and which we shall label modes 1

and 2, and neglecting the constant zero point energy of the two modes, we

may then write for the field the Hamiltonian
Hgela = hwy biby + Fiws blb, (A.9)

where the bosonic operators satisfy the standard commutation relations (2.2).

Furthermore, E,, the electric field corresponding to mode n, now becomes
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an operator of the form
En(r,t) = —en {bn €™ + b} e} gy, (n=1,2) (A.10)

where €, = +/ ﬁz—‘;} denotes the electric field per quantum (photon) in mode
N, €kn * €km = Onm since the fields are perpendicularly polarized, and with
a similar expression for the magnetic field. There are many subtleties in the

quantization of the electromagnetic field that have been ignored here (see

e.g. [Mar], [Coh] or [Hua]).

A.3 The dipole interaction Hamiltonian

In order to determine the interaction Hamiltonian for the coupling of the
atom to the field modes, we neglect any interaction with the magnetic field,
and make the co—called dipole approximation [Mar, Man]. If we take the
origin for r at the atomic center of mass, and assume that the fields do not
vary appreciably over distances of the order of the atomic dimensions so that
we may take k-r = 0, then the dipole interaction between the atom and the

two field modes has the form
Hipe =—p-(E1 + Ey) . (A.11)

Here the atomic dipole moment operator p for the N atomic electrons, each

of charge e, located at positions r;,7 = 1,2,..., N has the form

1| N
p:Ne(ﬁZri

1=1

) = er, (A.12)

and

En(r,t) = —e{bn + bf}éun (n=1,2) (A.13)
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due to the dipole approximation. By the atomic parity selection rule, the
diagonal elements of the matrix representing the dipole operator p in the
atomic basis {|a), |b)} are zero, and we only consider atomic levels such that

the off-diagonal elements
Pt = (a|plb) = (alex|b)z + (a|ey|b)y + (alez|b)z
pP. = (bpla) = p;, (A.14)

with 2 representing the atomic quantization axis, are nonzero. It is then
straightforward to show that the interaction Hamiltonian (A.11) assumes

the form

Hu = B (b +b1) (Re (8] 0 — Im[8)] o)

+ k(b + by) (Re [B2] 0° — Im [By] oY) (A.15)

By = ’Pn\/ﬁ (n=1,2) (A.16)

and P, denotes the component of p,;, along é,.

where

We may now, without loss of generality, take the parameters 3; and 3,
to be pure real and pure imaginary, respectively, as shown by the following
argument: Choose the atomic quantization axis Z so as to be perpendicular
to the plane defined by the orthogonal polarization axes of the two modes.
Orient # and § such that &, makes an angle a, with &, with ay = a; 4+ 7/2,
and o, as yet arbitrary. By the atomic angular momentum selection rule (or,

more formally, via the Wigner-Eckhardt theorem) (a|y|b) = £i(a|z|b). Thus
Pn = Pab- & = e (alx|b)eEon (A.17)
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We are free to choose a; such that e¥*®! cancels the phase of (a|z|b), so that
P1 = e|(a|z|b)| is pure real, and P, = *e|(a|z|b)|i is pure imaginary. Thus

the interaction Hamiltonian (A.15) may be written in the final form

Hie = ki (b +b1) 0® — finy (b + by) o (A.18)
where
Wn
m=ellale Bl /o (n=1,2) (A19)

denotes the (purely real) dipole coupling constant for mode n. Combining
the Hamiltonians (A.1), (A.9) and (A.18), and setting & = 1, we obtain the

general model Hamiltonian (2.1).
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Appendix B

Useful Identities and

Commutation Relations

For the model Hamiltonians considered here, the Hausdorff expansion (3.8)
often involves commutators either of Pauli matrices or of operators which
obey bosonic commutation relations. Here we therefore present several iden-
tities for such operators which are useful in the application of the CCM to

these models.

138



University of Pretoria etd — Van der Walt, DM (1999)

B.1 Operators for two—level systems

The Pauli matrices 0%,k € {z,y, 2}, and the raising and lowering operators

o* and o~ respectively, have the following form in the eigenbasis of o*:

1 o'd 10
o = , [ =
¢ =id 0 1
1 (01 - 0 —i
o= Lot 4om) = B
2 (10 2 i 0
o 2] | 00
" =ioPfdol= , 0 =o%—io¥= . (B.1)
[ 0 0 | 20
Note that some authors choose to define o* = 1% £ ig¥, resulting in a

rescaling of the dipole coupling constant 7 in our model Hamiltonians.

In the following identities, k,l{,m € {z,y,z}, n is an arbitrary integer, and

« is an arbitrary real number:
2 n 2n+1
(") =()" =1, ()7 =d

exp {iar [} (o* +1)]} = [cos %)Hsm( 2)o*] exp (ia3)

(e
exp {z'fr [% (Jk % 1)]} =17 s (B.2)

The latter identity is particularly useful in verifying the commutation re-

lations between the various parity operators (2.4) and the general model

Hamiltonian (2.1) in Chapter 2.
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We make frequent use of the following products and commutation relations
(here k,I,m € {z,y,z} with £ # [, and €y, is the totally antisymmetric

Levi-Civita symbol):

ool = tepmom , olok = —iepmon, ) [ak, al] = 1€, 0
afe¢t =6t oto® = —ot, [6%,07] = 20

ofoT = —o~ orof =g, [6%,07] = =20~

ot =1—¢¥ gta®=14 o%, [6%,07] = —20%

oo =1+ 07, oot =1—0", [6%,67] = 20*

oot =1(l —0o7) , octo¥=1(1+07) , [0Y,0] = —2i0*

o¥o" =—i{l+0*), o d¥=—-i(l-0%), |[o¥07]=—-2ic"
cto~=2(1+0%*), o ot=2(1-0¢%), [oF,07]=40".

(B.3)

B.2 General commutation relations

Let A,B,C,D denote arbitrary operators. We make frequent use of the

following standard identities:

[A,BC] = [A,B] C+B [A,C]
[AB,C] = A [B,C]+[A,C] B. (B.4)

If [A,B] = [A,D] =0 and also [C, B] = [C, D] = 0, then

[AB,CD] = [A,C]BD+C A[B,D]

= [A,C]DB+ACI[B,D] . (B.5)
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B.2.1 The Hausdorff expansion

For arbitrary operators A and B, we define
B, Al, =8, [B, Al = [[B,A],, , Al [0 =100 192 0. ) (B

Note that [B, A], = [B, A], the usual commutator. Let C(k,m) denote the

binomial coefficient m,—(;&'m—)‘ Then it can readily be shown by induction that,

for any n € {0,1,2,...},

k
A"B = A F ST (-1)" C(k,m) [B,A], AF™ V¥V ke{0,1,2,...,n}
m=0

mn

= Y (~1)™ C(n,m) [B, 4], A™™ (k=n). (B.7)

m=0

Assuming that the exponential is well-defined, one may thus write

e~ 4Bet = ZﬂAnB el

n!

_1\n+m
m&(: . i B Al AT

= i i": Ln_m![B,A]m An—m EA

ml(n —m)
= i[ ’A]m) (i%/ﬁ) e

- > LB, (B)

which is the Hausdorff or nested commutator expansion (3.8) for the similar-
ity transform of B through A (see also [Mer] for an alternative proof). The

commutator

M=

[A",B] = Y (-1)"C(n,m)[B,A],, A"™ — BA™

m=0

Il
M=

(=1)"C(n,m)[B, A],, A"™ (n>0)  (B.9)

m=1

will also be useful in what follows.
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B.2.2 Operators for which the commutator is a num-

ber

Consider now two otherwise arbitrary operators A and B for which the com-
mutator is a c-number, say [A, B] = z. Then, since [4,B]_ =0 V m > 2,

it is clear from (B.9) above that
[A, B =nB"12". [ 0). (B.10)

Let f(B) now be an arbitrary function of B only, subject to the usual re-
striction that a convergent power series expansion
oo
f(BYy=-Y u,B" (B.11)
n=0

exists. It is clear from (B.10) that we may formally write

14,78) = L 18) . (B.12)

where, for the purposes of evaluating the derivative, the operator B is treated
as a real variable (see, e.g. [Mer] or [Hak]). We have also generalized (B.12)
to show that, for any integer n > 0,
[A", f(B)] = Y_ C(n,m) f™)(B) z™ A™™™, (B.13)
m=1
where f(™)(B) is a convenient shorthand for %1, and we define f(°(B) =
f(B). The relation (B.13) is easily proved by induction. A final identity

which we have often used is the Glauber-Weyl formula [Mer]

etel = eAtB+2/2 (B.14)

142



University of Pretoria etd — Van der Walt, D M (1999)

B.3 Bosonic commutation relations

For the bosonic annihilation and creation operators, b and b' respectively,
the standard commutation relation reads [b, b?} = 1, so that the relations

(B.12) and (B.13) apply with A=b6, B=>band 2 =1 or A = b7, B =15 and

z = —1. Thus for f an arbitrary function of the given argument only,
d f(b") d f(b)
| = t = .
[b, £(8")] = - and [f, £(5)] = Ti (B.15)

In particular, for any integer n > 0

. (bJr)n—l

]

[6h,6"] = —nbn
)
]

= 0 [ ()] = ()"

= [6%,6"] b= —nb", (B.16)

and for all n,k >0

4 Min(n,k)
[b”, (b*)‘] = 3 ml(n__::ﬁ!(k = B . (B
Other useful identities include
ettt = gbtbt+1/2
[b,b*b]m = b

| = o{(#'-1)" - ()"}
lexp {iam b'b},b] = b exp{iam b'b} (e7iem —1)
[exp {im b'b},b]

phof] = (-n)mbt -

= —20bexp {i'.rr bfb} (a=1)
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[(6%)", 6] = o {(¢%6+1)" — (b'5)"}

[exp {iafr bTb}, bT] = b exp {iaﬂ' bTb} (eé""’" — 1)

lexp {in 16}, = —20bt exp{ir b}  (a=1)
b8, b]o = [bft, bT]O =b'p
[b1, b]l = —b (6", bf]l = bf
[bfb,b]m = [bfb,bT]m =0 ¥Ym>2, (B.18)

where it is important to note that the relations (B.15) are in general only
valid in the case where f is strictly a function of the indicated argument only,

so that a power series expansion for f of the form (B.11) exists.
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Appendix C

Explicit Forms for Variational

Expressions

Here explicit expressions are shown for the expectation values of the Rabi
Hamiltonian, the operator 0% and the boson number operator b'b in the var-
ious variational states considered in Chapter 4. The equations which deter-
mine the corresponding variational parameters are also shown. The analytic
behaviour of these parameters in the limit of small coupling is discussed in

cases where this is useful for numerical purposes.
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C.1 The mixed—parity two—parameter ansatz (4.30)

The expectation value of Hgap; in the state (4.30) is given by
(Hﬂabi)var($7y) = (‘I’V“(w:y”HRabiPI’var(fay))

. Il 1—g? 9 yz
= 2w0(1+y2)—|—wa: +Sg(1+y2 s [Cal)

The minimization of (C.1) with respect to the variational parameters z and

y yields the following results [Qi98] for the optimal values zope and yope, and
the variational ground-state energy Ey*" = (HRabi)Var (Zsty Yopt):

o 1
Yopt = Topt = 0 3 E(y Y= _’Z'WO (C‘.Z)

% L 16g% — wwy
opt = 1692 + wwy

|
Topt = F=—1/256g% — w?w

for g < ,/wwg/4, and

8gw
42  ww?
Var .o _ 0
By™t = W g (C.3)

for g > \/wwy/4. As a check, note that the correct limiting behaviour
2 4g*
yopt — *1 5 Topt —3 :Fzg . E(\)/ar — _i (04)

w

obtains as g — oo.

The expectation values of ¢* and b'b are given by
2
z ar yﬂ - ]'
(J )V Wi ( 2pt 1)
yopt +
(BTBy¥> = g2 (C.5)
with zope and v,y determined via (C.2) and (C.3).

146



University of Pretoria etd — Van der Walt, D M (1999)

C.2 The good—parity two—parameter ansatz (4.38)

The expectation value of Hgap;i in the state (4.38) is given by

(Hravi)z '~ (2,0) = (U5BY%(z,v)| Hpani| U5BV(2, v))
B 1 1 — o2
= (15w
3;2 2 +1 2 9 1
+w (1 -f-v'-’) ([tanh:c ] + v [coth-:c ] )

Tv 4.2\ ~1/2
+8g (1+v2) (1 - ) (C.6)

The derivative of ( Hj Rabi)szz (z,v) with respect to v yields the first equation,

0 = [t -en (-45,0) ]
_ [wo T w mgpt (tanh 2, — coth mgpt)] Vopt
_ [4 o g (1 —exp {—4a:§pt}) _1/2] , (C.7)
to be satisfied by the optimal values z,p¢ and vep. For the case of positive

PBV2

parity (i.e. for the ground state), the derivative of (HRabi)+

(z,v) with

respect to z yields the second variational equation

- 2 2 2
0 = Wit (tanh Topt + Ugps cOth mopt)

g mgpt ([sech :L'gpt]z = vfpt [CSCh xtz)pt]z)
o e (L )

flem 4:.5'3,[3t exp{—élmgpt} (©8)
1 —exp {—4$gpt} - '

The corresponding expression for the negative—parity (first excited) state is

obtained by making the substitutions

tanhz?, +— cothz?,
2 : 2
[sech mgpt] —_ = [csch mzpt] ; (C.9)
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Note that (C.7), being quadratic in vept, is easily solved to yield an analytic
expression for the parameter vope in terms of xop, so that the variational
(PBV) approach based on the two-parameter state (4.38) thus only requires
the numerical solution of one non-linear equation (C.8) in the single un-

known zqp.

The expectation values of 0% and the photon number operator b'b in the

state (4.38) are given by

P |
<O_z>PBV2 — (Zpt )

Uopt + 1

2
(bTB)PBYZ % (tanh x2. + vl coth mopt) ; (C.10)
op

with zopt and vepe determined via the variational equations (C.7) and (C.8).

C.3 The good—parity three—parameter ansatz (4.41)

In the state (4.41), Hgani has the expectation value

<HRa.bi>iBV3 (xla Ia, U) (LIIPBVS(:BI-: Lo, U )1HRabi|@iBV3($la Ty, U))

= A [—wg 'u —1)
+ w (501 [ta,nh azl]i + vig? [coth :cglil>

+ 8gvBi(zy,x3)] (C.11)

with

B:l:(CUI,iE?) e Al,:i:AZ,:F {(332 o wl)e"(mmxz)?ﬂ o (332 _ xl)e—(m-i-a:z)?/?} )
(C.12)
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The minimization of (HRab;)iBVS (21,22, v) with respect to v yields a quadratic
equation for vep in terms of x opy and 3 ope. The solution with the lowest

energy is always given by

2
Vopt = wo + wci(ml,opt5$2,opt) = s (WO + wcﬂ:(ml,oph $2,opt)) : (Clg)
8.QTB:I:(-TEI,opta m?,opt) SgB:I:(Il_.opta m22,0131:)

where

Cilzy,a3) = —a8 [ta.nhxf]:l:1 + 22 [coth :cg]il

For the ground state, we are then left with the two coupled non-linear equa-

tions to be solved numerically for @y opt and 3 opt, namely

0 = wxi0pt (ta,nh $gpc + ‘,Ef,opt [sech 'Tgpt]z)
4+ 4 g VoptT1opt (1 +exp {_2$?|0pt})_3/2 (1 — exp {—23:%’0]”})—1/2 X
exp {—Qccf’opt} X (Jil'lopt + 371,opt] exp {_é [331,0[3'3 - $2=°Pt]2}
1 2
4 [ 61— E1,008] €XD {—5 [1,0pt + 22,0p¢] })
+ 2 g vopt (1 + exp {—2miom})—1/2 (1 — exp {—ng’opt})—lﬂ X
I::cg,opt - :Ef,opt + 1} 2

1 1
(eXp {—5 [1,0pt — mQ,opt]z} — exp {—5 [Z1,0pt + mz,opt]2}> (C.14)

and

0 = wvgpt T2 opt (Coth a:gpt — azg‘opt [csch 5’3zpt]2)
— 4 g Vopt2,0pt (1 + exp {—QEf’Gpt}) i (1 — exp {—ng,opt}) hals X
exp {—ziﬂg,opt} # ([xz,opt + 1,0pt] €XP {—% [Z1,0pt — xz,optlz}
+ [Z2,0pt — Z1,0pt] €XP {—% (1,00t + m2.0131:]2})

4+ 2g Uopt (l + exp {_gxiopt})—ln (1 o {_23:%,0]){})—1/2 y
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‘::E%,opt o m%,c.]::;f: =+ 1] X
1 2 1 2
(GXP {_i [ml,opt = IZ,Opt] } + exp {_5 [:L'l,opt o :’L'Z,opr.] }) . (015)

The corresponding expressions for the first excited state are obtained by

making the substitutions

exp {—23:2-2’0pt} +— —exp {—me'opt} (i = 1,2)
1 2 1 2
exp {—5 [#1.0nt F Z50p8] } S —exp {_5 [1,0pt + T2,0pt] }
tanh2?, <— coth xipt
[sech :cgpt] " gy g [csch mgpt]g ; (C.16)

We note that there are classes of solutions with x; op¢ = 0 (ground state) and
T3.0pt = 0 (excited state), but these do not minimize the energies, and so are

not considered.

In the limit of very small couplings, it is possible to obtain asymptotic

expressions for the parameters vops, 1,0pt and zzept, for the ground state,

_29

Uopt = w+LxJ0’
2 -1/2

-‘Tl,opt — §{1+%} 5 (Cl?)
29‘ Wwo -1/2

T2 0pt —+ :{l‘i'%} ’

which yield good starting values for the numerical solution routines.

The situation for the first excited state is more complex, and depends
explicitly on whether the system is sub- or supra-resonant. In fact, for the
sub-resonant case (w < wp), the asymptotic forms are the solutions of tran-
scendental equations; however, one can show that in the limit of zero cou-

pling, #1,0pt and wvap are zero, but x4 4p¢ is a non-zero constant dependent on
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the frequencies. For the other two cases, the asymptotic expression are

Uopt — -1

vy

T1opt — = (C.18)
for the case wg = w, and
gt w02;w
S %g {1 - %}—1/2, (C.19)

for the case wy < w.

The expectation values of o* and the photon number operator b'b in the
three-parameter variational state (4.41) are given by

(07)PBVS = (ngt_l)

Uczrnpt + 1

PBV3 1
1 S NN (P 2 2 2 2
<b b = — 1 opt aND T7 ooy + Vo T3 o cOth 25 1 )
Uopt + 1

(C.20)

It is often useful to express the wavefunctions for Hamiltonians such as
the Rabi Hamiltonian in terms of their expansion in a basis of products of
oscillator and two-level states, as these are often the form in which initial
conditions are formulated. We present here the expansions for the three-

parameter ansatze for the ground and first excited states:
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[lI!iBVB(;rI,:z:g,U)) = A, |Arse i Z [2n
n=0 1/ (2?’1
2 /9 i 2n+1
+ vA;_ e "2 |2n + 1))
n=0 14/ (27’& + 1
2n+1
|1D13Bvs(mlsm2av)> — A'L— AI,— e-—-a:?/ \/—-|2n+1 I‘L
2 i $2n
+ vAyg 722 3 2 |2n)|1) (C.21)
n=0 (2?’2,)'

The expansions for the two-parameter states can be found by setting z; = z, = 2

in these equations.
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Appendix D

Explicit Forms for CCM

Expressions

We present here explicit expressions for the similarity transformed Hamil-
tonian (3.5) and the CCM equations (3.14) for the various CCM schemes
employed in the ground-state analysis of the Rabi Hamiltonian (see Table
D.1). Where quantities other than the ground-state energy are required,
we also give expressions for the energy functional Hrap; and the expectation

value of these quantities in the CCM.

In Table D.2, we also show how the four ground-state CCM schemes
may be modified to deal with the odd—parity first excited state of the Rabi
Hamiltonian. It is intuitively clear, however, that the first excited state
results may be obtained from the ground-state formalism by making the

replacement wy — —wy, and in practice we have taken this simpler route to
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generate, in addition to the ground-state results, first excited state results

for the each of the CCM schemes considered here.

Table D.1: The four schemes, labelled I—IV, employed in the ground-state
CCM analysis of the (unrotated) Rabi Hamiltonian, showing the choice of model
state |®) and cluster correlation operators for each scheme. For all schemes, the
cluster correlation operator S, which is required for the calculation of the NCCM
ground-state energy, is shown. For Schemes I and III, the operator S, which
is required for the calculation of other ground-state properties of the system in
the NCCM, is shown, and for Scheme I, the operator ¥ required for an ECCM

ground-state energy calculation is also shown.

Scheme | Model state |®) Cluster correlation operators S, S, ©
I 0)[4) §=251+5

=2, Sg)(bf)n

S =2, s (bhn-1ot

S=1+4+8 + 5’2
5‘1 =Yoo Smb”
>
=% 4+ 3,

D=1 (1)bn
22_ o] (2)bn 1 -

I 0)] L) S=%2 s, (cf) .t =bte®

111 |Ty) [see (4.16)] S =38, (cf)n , ¢ =bla*42g/w
S=1432,5c" c=bo"+2g/w

IV | 1R (opt, vopr)) [see (4:38)] | S = Tg2 s (¢f)",  of =blo®

154



University of Pretoria etd — Van der Walt, D M (1999)

Table D.2: The four schemes, labelled I'—IV’, employed in the CCM analysis

of the first excited state of the Rabi Hamiltonian, showing the choice of model

state |®) and cluster correlation operators for each scheme. For all primed

schemes,

the cluster correlation operator S is identical to that used for the

corresponding unprimed (ground-state) scheme, and the model state is chosen so

as to incorporate the odd-parity symmetry of the first excited state.

Scheme | Model state |®) Cluster correlation operators S, S, &
r 10y 1) S=5+5
Sy =3 (1)(bf)n
Sy =2, B (phyn-1g+
S=1+5+ 5"2
G =y sgn
85 =2, §£L2)b”_1cr"‘
D= 45,
S =2, olMpn
T,=% (2)bn 15—
I’ 0)/1) § = o%i sn (c*) .t =blo"
1 |W_) [see (4.16)] 5= s, ( ) ot =bto® +2g/w
8 =143 18:¢",  e=bo"+2¢g/w
v’ |OPBY2 (20, vopt))  [see (4.38)]

B = 3 By (CT) , cf=bte"
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D.1 NCCM Scheme I

For Scheme I, we obtain the following form for the similarity transformed

Hamiltonian:
1
e S Hpaie® = §wgo"' + wb'b + g (bf + b) (o"" - a_)
-+ Z sfnl) {nw (bf)ﬂ + ng (bf) ‘- (0'+ -} o_)}
+ ) s (2) {[(n—l)w—i—wg] (b*) ot
+ g(n—1) (bT) "ot — 4g (Z)T)n_1 (45T - b) O'z}
E £ )
—4g i > 5@ {(n -1) (bT)n+nr_3 a’o’t
n (b,r)n+n-'_2 (bT " b) o_+}
1633 S B n () o
The energy functional
H = (@|§e_5Hﬂabies|®)
= _%wg + 4g s + 4g 511) @)
oo k+1
- Z k! é}(:] {wk s’ +4g 5(2) +4g(k +1) 3,(\_22 +4g> n sg)sﬁz_n}
n=1

+4Z k—1)! {gdkg—é-gk.sk -|—[w(k—l)+wg]

kt1 o 15 k-1 i)
—4g> (n— st )sk+2 =49 st

k k+l-n @)
—4g Y Z n S(l) Sy 5k+2-n n,} : (D2}

n=1 n'=
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may now be used to set up the CCM equations (3.14) for {sk s k= e 2

85
0 = wksk)-{-flgs )-|-4g(k+l) s§c+2+4gz:ns Sklz e
n=1
0 = g8ra+gk s+ [wk—1)+w] s? 4gz 1) s@s2,
4g2 s - 492 Z s S (D.3)
n=1 n=1l n'=1
and for {5, 5 k = R e
0 = 4gbps s\2 + wk! .§§€I) + 4g(k — 1)! §i2) +4g > nl 5&1)5533_2_,:
n=Maxz[k—1,1]
oo ntl1-—k @) (@)
—16gz Z n—1)! (2) St Snid—_k_n!
n=k n'=1
0 = g6ua+gokt st +gkl 3 + gk — DI(1 - Ga)(1 — &2) 5,
+(k— 1wk —1)+w) 582 +g Z nl(n + 2 — k) 30s8,
n=Maz[k—1,1]
—4g Z n! 3(2 _+— 8¢ Z n—1)! 535 (2)
n=Maz[k-1,1] n=k+1
oo nt+l—-k
—SQZ > (n—1) @B (D.4)
n=k n'=1

Note that equations (D.3) may be solved for s(.”, s , so that these coeffi-
k k

cients are known quantities when solving (D.4). The expectation value of o*

assumes the form

(o)NOMI = _1 48 Z 155® (D.5)
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D.1.1 Termination of the even—parity NCCM Scheme

I calculation

If the CCM calculation is restricted to the even—parity sector, then
s =53 =9 (D.6)

for all odd n, and the only coefficient required in order to determine the CCM
ground-state energy is z = sgz). In the SUB-2 approximation, the equations

(D.3) then reduce to

3 W, ww+tw) W

ig 1642 g O (D7)
For g — 0 at scaled resonance (w = wy = 1), equation (D.7) has one real root
corresponding to a positive, and two real roots corresponding to a negative
ground-state energy. One of the latter roots describes the exact ground state
at g = 0, and the other gives a spurious solution with lower energy. As the
coupling g is increased, these two roots meet and form a complex conjugate
pair at

g = 3(20+14v7) 7" = 0.3972. (D.8)

Thus the physical even—parity SUB-2 solution terminates at this point, above
which there exist only a single real root corresponding to an unphysical posi-
tive ground-state energy, and a pair of complex conjugate roots correspond-
ing to a complex ground-state energy. This behaviour is illustrated in Figure
D.1. In the even—parity SUB-N approximation, it may be shown using Math-
ematica [Mat| that the CCM equations (D.3) may always be reduced to a

polynomial of order N + 1 in 2, and for all N/2 odd behaviour similar to
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that in the SUB-2 case is observed. In the case N/2 even, there is no un-
physical negative root for sf) which, together with the physical root, can
form a complex pair at finite coupling, and the physical solution therefore
does not terminate. In this case, however, the CCM ground-state energy
corresponding to the physical root peels off the exact ground-state energy in

the same coupling region where the N/2 odd solution terminates.

Figure D.1: The behaviour of the three roots for the single CCM coefficient

322) in the even—parity SUB-2 NCCM Scheme I analysis of the scaled resonant
(w=wo=1) Rabi Hamiltonian. The termination point at g = g£2) = 0.3972,
where the physical and unphysical negative roots meet to form a complez conju-

gate pair, is indicated by the symbol ®.

2 I I I T
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D.2 ECCM Scheme I

The similarity transform e=% Hrapie® has the same form as for the NCCM,

but the functional H in the ECCM SUB-N approximation is now given by

11
= (q)leEe—SHRabieSm)) — ZC; (Dg)
with
1
01 = = 5“—’0
C, = d4dg 0{2)
N J LTI_N-'C_N_ Ln—Nk 2—...—3k3J
Cy = Z Z Z .. Z n! nw
n=1kyny=0 ky_;=0 ko=0
3(1) [ (1) ]vz—NkN—...—2k2 [a’él)]kz e [0%)} kn
(n— Nch 2k Ry
B=m— N" Ln—m—Nk —...—3k3J
2
€ = ZZ Z Z > (n—1)! 4ng
n=lm=1 ky=0 ky_;=0 k=0
o0 ] i ek o)
(n—m — Nkw — ... — 2k) kol . .. k!
I el e "“”‘NJ e
C: = Y, XL 3 (n—1)!4[we + (n — 1))
n=1m=1 kny=0 ky_1=0 kz=0
s(2) [09) e [crél)}kg e [a}&)]kf\r a(2)
(n—m— Nkn — ... —2k)lks! .. . Ekn!
N LERR) ] (Rt
Ce = ) 3. e 3. (n—2)14(n—1)g
n=1 ky=0 kxy_1=0 ka=0
8(2) [Gil)]n—Q—NﬁnN—...—Zkg {iaél)]kg o [JE\P]kN
(n—2— Nky — ... — 2ks)'ka! ... ol
- I_-}%;J Ln NLNJ [_n—Nsz_m_skSJ
n=1ky=0 ky_;=0 kz=0
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5@ [ogll]n—NkN—...—%z [0(1)]1@ A3 [af\})] K

2
N Ln+n = Lﬂ+n —2— NkNJ Ln+n'—2-—NkN-...—3k3j
Cs = >, > Z i) (n+n' —2)! 4ng
n,n'=1 kyx=0 ky—1=0 k2=0
n4n’'—2—-Nkpy—...—2k k k
s,(ll)sg:) [Jil)] ’ [agl)] — [a%)] 4
(n+n'—2—Nky —...—2k) k! .. kn!

| A +n'—m—2—-Nk
n+nNm 2J L”’ n'—-m NJ

Min[n+n'—2,N] |

“--3 x> ¥

nn'=1 k=0 ky_1=0
Ln-f-n um—-?—éNkN—...—.'!ksj
> (n+n'—3)16(n —1)g
ko=0
ndn'—m—2—Nky—...—2ko k k
@@ [0 (o)™ o] ot
(n+n'—m—2— Nkny—...—2ky)lks! ... kn!

]
—m—Nky
Min[n4n',N] LMJ Ln+n Nnii J

R Y >

n,n'=1 k=0 kpn—1=0
Ln-i-n —m—Nsz—...—akaj
> (n+n'—1)! 16g
ko, =0
n'—m—Nky—...—2k; k: k
NN ELC il FTC) L A0 L0
(n+n —m— Nky — ... — 2ky) kol ... k!
N Mz'n[n+n’+n"—2,N] Ln+n-’+1_;\;f_2—mj '.n+n,+nHA73Tm_NkN_]
Cu = — 3, 2 2 >
n,nf,n'=1 m=1 k=0 kn—1=0
Ln+n'+n”—2—mé—NkN—...—3k3J
> (n+n' +n" — 3)! 16ng s s
ko =0
ntn'+n""—m—2—Nky—...—2k k k
o] A PG L A, )
: .10
(n+n'4+n"—2—m—Nky —...—2k)ks! ... ky! ( )

The 4N ECCM Scheme I equations are
OH oH oH oH

s asy? 7 oo 9o

k=1,2,...,N. (D.11)
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D.2.1 The SUB-1 case

Here the ECCM equations above are analytically soluble, and yield the trivial

(even—parity) solution

sgl) = 352) = o{l) = 052) =0
1

for g < \/wwy/4, and the doubly-degenerate (odd-parity) solution

25692 — wiw?
8gw

1 [16g% —
2V 16¢% + wwyq
/25692 — ww?

64g*

sgl) agl) ==

g, = F
4g* 1

for g > /wwe /4.

D.3 NCCM Scheme II

The similarity transformed Hamiltonian is given by
e~ Hpapie® = %ng (CT) 0% +wcle + 2g (CT + c)
oo .0}
—!—wZnsn (CT)n -{—QQZn 8 (CT)H“I (D.14)
n=1 n=1
with ¢f = bto?, [c, CT] = [b, bT} =1 and

F (cf) = exp [G (cT)] , G (cT) = -2 i Sop—1 (cT) o . (D.15)
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Using the overlap form (3.7) of the CCM equations, we obtain the following

set of simultaneous equations for {sg; & =1,2,3,...} (see also Appendix B):
1
0 = 29841 + whk! s + 29(k + 1)k! spy1 — swo(®[F® (1) [@) . (D.16)

We have used Mathematica [Mat] to evaluate the functional derivative

OFF (¢t g* A _
FO) = G(C’E)k) = 5@ =) el

and the form of the equations is greatly simplified by the fact that (®|c! = 0.

D.3.1 Analytics for the SUB-1 and SUB-2 cases

In the SUB-1 approximation, one obtains the solution s; = —2¢/(w + wy),

valid for all coupling, with corresponding ground-state energy

1 4q?
Eq _§w0_w+w0 (D.18)
In the SUB-2 case, one finds the analytic solution
—w (w4 wg) + \/uﬂ (w 4+ wo)? — 16g%wwq
s =
) 4guwyg
w
Sy = 5-53? (D.19)
with corresponding ground-state energy
1 3 ? — 1642
B = s w (w +WU) 4 \/w (Ld +w0) g wWwo (DQO)
2 2wg 2wg

below g{?) = %\/g (w4 wp). Above this value of the coupling, there are no
physical solutions to the SUB-2 NCCM Scheme II equations. At resonance
(w =wg = 1), the SUB-2 NCCM Scheme II solution (which is always of even—

parity) thus terminates at g{® = 0.5.
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D.4 NCCM Scheme III

For Scheme III, the similarity transformed Hamiltonian e~ Hg,p,;e° assumes

the form

e~% Hpapie® = %ng (c ) 0% +wele — 4i+w2n Sy ( T)n (D.21)

n=1

with ¢l = bfo® 4+ 2g/w, [c, CT] = [b,bf] =1 and

F(d)zew[6()], ¢()=Ta{(Z-¢) - ()"} o2

n=1

The energy functional H is given by

F = (‘I)lge_SHRabi Sl@)

1 2 e
- g1 55,5 0y (1) aire () o)
k=0
1 27,2 4 4g*
—5&?08_89 v” exp {Z (-Jg) sn} £ +w Z nn! s,3, (D.23)
= n=1 n=1
where C'(n, k) denotes the binomial coefficient {_ET and
OFF (c*)
FO () =22\ D.24
(C ) 9 (car)k ( )

The CCM equations (3.14) for {s;; £k =1,2,3,...} (see also Appendix B)

are given by

S i
2 ’ w

n=0

+ wkk! sy, (D.25)

and those for {3x; £k =1,2,3,...} by

1 27,2 - dg
0 = oo 355 {3 ) (2)7 2 [1air () 03]
n=1 m=0 k
s 2 r4g\" 4g\* N
—gwoe 89°/w" exp {HZ::I (;g) sn} (f—) + wkk! 3 , (D.26)
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so that the expectation value of o* assumes the form

o0

P e ORIl Y {g C(n, k) (4_9) - (| F® () |¢>)}

=1 w

P oo 4 n
_e“Sgi’/w2 exp {Z (Eg) Sn} ; (DQT)
n=1

In (D.25), (D.26) and (D.27) we have again used Mathematica [Mat] to eval-
uate the derivatives explicitly, and as before (®|c' = 0. For Scheme III, it is

not possible to solve even the SUB-1 CCM equations analytically.

D.5 NCCM Scheme IV

Here the similarity transformed Hamiltonian
Hiw = e SHpae®
1
_ 1 t) = t t e
- QwoF(b)J +wblb + 2g (b + b) &
o0 n 20 n-1
+w Y n s, (bTa”’) +29> ns, (chrr) (D.28)
n=1

n=1

with
F)zexp[a()], G0)=-2% s (5)""0r  (D29)

obviously has the same form as for Scheme II.

In this section, all expectation values refer to the model state
|(I)) T |‘I}EBV2(xopt:'Uopt)) (D30)

(see (4.38)) of Scheme IV, i.e.  (A) = (®|A|D) for arbitrary A. Note
also that the optimal values 2o, and vope of the variational parameters are

predetermined via (C.7) and (C.8) at each value of the coupling g.
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The Hermitian conjugate ¢ = ba® of ¢! = bfo® does not annihilate the model

state |®). However, since

o) = b7/0) = 22,|0) , (D.31)
it follows that
@) = ax5,|®), e = 2,4,6, o
@) = alilc]®) = 2l bo®|0) m=1,3,5... . (D.32)

This, together with the fact that [c c*] [b bf] =1, allows us to set up the

equations for {sx; £ =1,2,3,...} by constructing, for m = 2,4,6,..., the

overlaps
= (Hamb™) + Y C(m, )(Hil;,bm ")
r=1
= 2By MY 4 Z C(m,r)as" (Hin)

" even

i3 Z C(m,r)am:"" (HGMb) , (D.33)

f‘ odd
and, for m = 1,3, 5, ..., the overlaps
(CmHsim) - <bm—lbo_x r:I;«WCCM,IV> o :;tlENCCMIV (bO':B)
=, 30 Clmyr) < z {1 pm= '">
r=0
m—1
= acg;;l (" Hamb) + Z C(m,r):t::;:’"_l < ‘"’HSI’;I)16>
r=2

r even

‘{‘Zcmf‘" optr<x 51m> D34

T odd

166



University of Pretoria etd — Van der Walt, D M (1999)

Here Ej ™1 is the NCCM Scheme IV ground-state energy (6.3), and

HY) =

Fr)
(12) = Jou (PO

nn! .
+ w Z (n——?"'j-'-:co}]t I(bo‘) Sn

nn! _
tw mw .

T even
o0

n—r—1
+ 2g Z T T Ti%on S
(n—r—1)!
n=r+1
1 odd

+ 29 Z e ),mE;J 2(b0®) 5.,  re€{2,4,6,...}

n=r+2 r—
n even

(HDB) = 5en(FOb0%) + {wady, +29 (bo™)} 8.4

nn! -
+WZ(TI, )’ opt (bg) Sn
T odd

o

te 2 (nm!)r 25 ™ (b16) s

n=r+1
7L even

+ 29 Z (n — - (n—r—1) Topt 2<bTb>

n=r+2 r =
7l odd

+2g Z Py ),wﬁp‘t’ BBy sns 1€ {8,500
Teven

(") = Swo (FOboo")

o0

nn!
tw Yy el l(bfb)
ey (1)
e nn!
o & o (7)o

N even
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+ 2¢ Z n_r_l),a:gp; {bo®) s,

n—r+1
n odd

+ 2g Z ' g e <bfb> Sn s r € {2,4,6,...}
n=r+2

T even

’ 1
<0-$H5(1n)1> = 5&)0 <F(r) % z>+ {w (bO’ )+2g} (5,.,1
T ;, (n—r)!
1 odd
=2 nn! e r
+w ) —(n _r)!:cgpt Yba®) s,

nn!
n—r
Tt n

n=r+1
7L even

+2.g Z )ixgptr 2(1)0’ ) Sn

n_r+2
T odd

n—r=1
"’gn;l (n—T‘ )'m"pt Sn s S {1?3’57'-'}
v o —1
(%) = 2
Uopt + 1
bipY = mgpt h 22
< > = 12y (tan :r:opt—}-v tcothxopt)

2wopl: Uopt

b) = T (- ewl-ad))

(bo®c®) = gwoptvoitixj E Qmom] (1 —exp{ 4:copt])_1/2 . (D.35)
op

-1/2

We have again used Mathematica [Mat] to set up the derivatives F(") as a

function of the set {G(k); RS ) A } with

G () | 252, B (B " btor s, ke{0,2,4,...)

kT n—k
a(bf) 22,, . o= L}, (bT) % 55 ke{1,3,5,...}
(D.36)

(k)

One may readily prove the identity

(@]exp [G (b)] = (@] cosh o — (D) (Si“h O‘) blo® (D.37)

mopt
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with

Q= Z 2 San+1 .’L‘gg:-l 5 (D38)

n=0

which is the final element required in order to set up the CCM equations

(D.33) and (D.34).
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Appendix E

Acronyms and Abbreviations

Acronym /abbrevation

Explanation

Relevant chapters

CCM Coupled cluster method 1,3,5,6,8
CI Configuration—interaction 1,4,7
ECCM Extended coupled cluster method 1,35
JT Jahn-Teller 1,2,7,8
PJT Pseudo Jahn-Teller 1,2,7,8
LMG Lipkin-Meshkov-Glick 1,5
NCCM Normal coupled cluster method 1,3.5,6,8
PAV Projection after variation 4

PBV Projection before variation 4

RBIT Resonant pseudo Jahn—Teller 1,2,7,8
RWA Rotating—wave approximation 1,4
TIPT Time-independent perturbation theory | 1,4
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