
RESOURCE SHARING IN 

DISTRIBUTED PEER-TO-PEER 


INTERNET APPLICATIONS 


by 

Theodor Louis Ferdinand Danzfuss 

submitted in partial fulfillment of the 
requirements for the degree of 

Magister Scientia 

in the Faculty of Engineering, Built 
Environment and Information 

Technology 

University of Pretoria 

2003 

© University of Pretoria 
 

 
 
 



University of Pretoria 
Abstract 

RESOURCE SHARING IN 

DISTRIBUTED PEER-TO-PEER 


INTERNET APPLICATIONS 


by Theodor Louis Ferdinand Danzfuss 


Chairperson of the Supervisoty Committee: 


Professor Judith Bishop 


Department of Computer Science 


Master of Science (Computer Science) 


A dissertation presented on distributed Peer-to-Peer (P2P) Internet 

applications, focusing on distributed resource sharing as a P2P application. 

The histoty of Internet applications is researched to point out the roots of 

P2P applications as well as the dependency between modem technology and 

legacy technology. P2P applications are compared with traditional 

client! server applications. A classification system for categorizing P2P 

applications according to functionality and computing model is devised. The 

classification system is used to group applications with similar attributes and 

behavior. Five main mechanisms utilized by all content sharing P2P 

applications are identified. These mechanisms are node discovety, content 

discovety, content retrieval, content publishing and content storage. Napster, 

Gnutella and Freenet are discussed in detail as examples of distributed P2P 

resource sharing applications which utilize these mechanisms. These 

applications are then compared to point out similarities and differences. 

Other P2P initiatives known to the author are briefly presented. Challenges 

that need to be overcome if P2P applications are to be widely adopted are 

identified and discussed. A typical content sharing P2P application is 

 
 
 



implemented for constraint mobile devices such as cell phones. The unique 

characteristics, possibilities and challenges of P2P on mobile devices are 

explored. 

Keywords: Peer-to-peer, P2P, distributed, resource sharing, Internet, Napster, 

Gnutella, Freenet, mobile, J2ME. 

 
 
 



TABLE OF CONTENTS 


1. Introduction .................................................................................................. 1 

1.1. Scope .................................................................................................... l 

1.2. P2P and the TCP/IP reference model ...................................................3 

1.3. Peer-to-peer purity ................................................................................4 

1.4. Resource sharing as an example of peer-to-peer applications ..................4 

1.6. Outline..................................................................................................5 


2. A Brief history of internet applications .......................................................... .7 

2.1. The importance of historical study.........................................................7 

2.2. Evolution of the Internet .......................................................................8 

2.3. Early Internet applications .....................................................................9 

2.4. Internet grorl ................................................................................... 18 


3. Client/Server vs. Peer-to-Peer ......................................................................21 

3.1. Introduction........................................................................................21 

3.1. Client/server model............................................................................. 21 

3.2. Peer-to-peer model. .............................................................................22 

3.3. Potential of the peer-to-peer model... ................................................... 23 

3.4. Contrasting characteristics ...................................................................25 


4. Classification................................................................................................ 29 

4.1. Introduction........................................................................................ 29 

4.2. Functional categories ........................................................................... 29 

4.3. Computing model categories ............................................................... 31 

4.4. Combined classification system............................................................ 32 

4.5. Applying the classification system ........................................................32 

4.6. P2P distributed processing vs. Grid computing ....................................35 


5. Mechanisms .................................................................................................37 

5.1. Introduction........................................................................................37 

5.2. Node discovery ...................................................................................37 

5.3. Content discovery ............................................................................... 39 

5.4. Content retrieval.................................................................................. 40 

5.5. Content publishing.............................................................................. 41 

5.6. Content storage ................................................................................... 41 


6. Napster........................................................................................................ 43 

6.1. Introduction........................................................................................43 

6.2. Node discovery ................................................................................... 45 

6.3. Content discovery ............................................................................... 46 

6.4. Content retrieval.................................................................................. 48 

6.5. Content publishing and storage............................................................ 48 

6.6. Discussion........................................................................................... 49 

6.7. The new Napster service .....................................................................49 


7. Gnutella.......................................................................................................51 

7.1. Introduction........................................................................................ 51 

7.2. Node discovery ................................................................................... 52 


 
 
 



7.3. Content discovery ............................................................................... 54 

7.4. Content retrievaL................................................................................. 55 

7.5. Content publishing and storage............................................................ 56 

7.6. Discussion........................................................................................... 56 


8. Freenet ........................................................................................................58 

8.1. Introduction........................................................................................58 

8.2. Node discovery ................................................................................... 59 

8.3. Content discovery ...............................................................................60 

8.4. Content retrieval.................................................................................. 61 

8.5. Content publishing .............................................................................. 63 

8.6. Content storage ................................................................................... 63 

8.7. Discussion........................................................................................... 64 


9. A comparison between Napster, Gnutella and Freenet .................................. 68 

9.1. Introduction........................................................................................ 68 

9.2. Content search criteria......................................................................... 68 

9.3. Connection search criteria ................................................................... 68 

9.4. Supported file types ............................................................................. 69 

9.5. Routing ............................................................................................... 69 

9.6. File download......................................................................................70 

9.7. Anonymity.......................................................................................... 70 

9.8. Source code.........................................................................................70 

9.9. Computing model ............................................................................... 71 

9.10. Summary........................................................................................... 71 


10. Other peer-to-peer 111ltlatlves ...................................................................... 73 

10.1. Introduction ......................................................................................73 

10.2. Project}XTA .................................................................................... 73 

10.3. OceanStore ....................................................................................... 75 

10.4. SETI@home.....................................................................................75 

10.5. Entropia............................................................................................76 

10.6. Gnougat............................................................................................76 


11. Challenges.................................................................................................. 78 

11.1. Introduction...................................................................................... 78 

11.2. Minimizing the distance between connected nodes .............................78 

11.3. Initial node discovery......................................................................... 80 

11.4. Sustainable participation .................................................................... 81 

11.5. High bandwidth demand ................................................................... 82 

11.6. Firewalls............................................................................................ 83 

11.7. Service guarantees.............................................................................. 84 

11.8. Political and social concems............................................................... 84 

11.9. Forward compatibility ........................................................................ 85 


12. Implenting P2P on constraint mobile devices.............................................. 86 

12.1. Introduction ...................................................................................... 86 

12.2. Motivation......................................................................................... 86 

12.3. Unique aspects of mobile P2P ........................................................... 87 

12.4. The P2P phonebook application ........................................................ 88 

12.5. Routing through phonebook entries................................................... 89 


II 

 
 
 



12.6. Platfonn and technology ....................................................................90 

12.7. Configuration and profIle...................................................................91 

12.8. Limitations of the CLOC / MIDP .....................................................92 

12.9. Iiardware .......................................................................................... 93 

12.10. Testing, debugging and emulators ....................................................93 

12.11. Source code ..................................................................................... 95 

12.12. P2P Phone book in action .............................................................. 110 


13. Conclusions ............................................................................................. 118 

13.1. I-listorical impact ............................................................................. 118 

13.2. Application model ........................................................................... 118 

13.3. Classification ................................................................................... 118 

13.4. Mechanisms .................................................................................... 118 

13.5. Napster, Gnutella and Freenet ......................................................... 119 

13.6. Research effons............................................................................... 119 

13.7. Challenges ....................................................................................... 119 

13.8. Mobile P2P ..................................................................................... 119 

13.9. Future work .................................................................................... 120 


... 
ill 

 
 
 



LIST OF FIGURES 


Page 

Figure 1: The TCP/IP reference modeL .......................................................... 3 

Figure 2: Internet growth ................................................................................19 

Figure 3: World Wide Web growth..................................................................20 

Figure 4: Client/Server model .........................................................................22 

Figure 5: Peer-to-peer modeL ..........................................................................23 

Figure 6: The Napster client performing a search.............................................43 

Figure 7: Napster content discovety mechanism ..............................................46 

Figure 8: Napster search mechanism ...............................................................47 

Figure 9: Napster content retrieval mechanism ................................................48 

Figure 10: Bearshare as an example of a Gnutella client ...................................51 

Figure 11: Gnutella initial node discovety mechanism ......................................52 

Figure 12: Gnutella automatic node discovety mechanism ...............................53 

Figure 13: Gnutella content discovety mechanism ...........................................54 

Figure 14: Gnutella content retrieval mechanism ............................................ .55 

Figure 15: Freenet initial node discovety mechanism .......................................59 

Figure 16: Freenet automatic node discovety mechanism.................................60 


: Freenet content retrieval mechanism...............................................61
Figure 17
Figure 18: Freenet content publishing mechanismure ......................................63 

Figure 19: Launching the P2PPhonebook. ..................................................... 111 

Figure 20: Rendering phonebook entries ....................................................... 112 

Figure 21: Rendering additional commands ................................................... 113 

Figure 22: Rendering entty details.................................................................. 114 

Figure 23: Adding new entries ....................................................................... 115 

Figure 24: Initiating distributed search ........................................................... 116 

Figure 25: Rendering search results ............................................................... 117 


IV 

 
 
 



ACRONYMS 


ADSL 
API 
ARPA 
ASP 
A1M 
CSD 
Q-IK 
aDC 
CRT 
DARPA 
DBMS 
DHCP 
DMZ 
DNS 
DoD 
DSL 
FfP 
GPRS 
GUI 
HIML 
HITP 
ICMP 
IDE 
IMP 
IP 
IRC 
J2ME 
JAD 
JAR 
JSP 
JVM 
]XME 
]XTA 
KSK 
KVM 
LCD 
MIDP 
MP3 
MPEG 
MSISDN 
MSN 

Asynchronous Digital Subscriber Line 
Application Programming Interface 
Advanced Research Projects Agency 
Active Server Pages 
Asynchronous Transfer Mode 
Circuit Switched Data 
Content Hash Key 
Connected Limited Device Configuration 
Cathode Ray Tube 
Defense Advanced Research Projects Agency 
Database Management System 
Dynamic Host Configuration Protocol 
Demilitarized zone 
Domain Name System 
Department of Defense 
Digital Subscriber Line 
File Transfer Protocol 
General Packet Radio Service 
Graphical User Interface 
Hyper Text Markup Language 
Hyper Text Transfer Protocol 
Internet Control Message Protocol 
Integrated Development Environment 
Interface Message Protocol 
Internet Protocol 
Internet Relay Chat 
Java 2 Micro Edition 
Java Application Descriptor 
Java Archive 
Java Server Pages 
Java Virtual Machine 
Juxtapose for J2ME 
Juxtapose 
Keyword Signed Key 
Kilo Virtual Machine 
Liquid Crystal Display 
Mobile Information Device Profile 
MPEG 1 Audio Layer 3 
Moving Pictures Experts Group 
Mobile Integrated Services Digital Network (cell phone number) 
Microsoft Network 

v 

 
 
 



NAP 
NAT 
NCP 
NNfP 
OS 
OS1 
P2P 
PDA 
PPP 
RF 
RFC 
RMS 
ROM 
SAT 
SETI 
SIM 
SMTP 
SOAP 
Sonet 
SSK 
TCP 
Telnet 
TLC 
TIL 
UDP 
URL 
VM 
WMA 
WWW 
XML 

Napster audio file 
Network Address Translation 
Network Control Protocol 
NetwOIk News Transfer Protocol 
Operating System 
Open Systems Interconnection 
Peer to peer 
Personal Digital Assistant 
Point-to-point Protocol 
Radio Frequency 
Request For Comment 
Record Management System 
Read Only Memoty 
SIM Application Toolkit 
Search for Extraterrestrial Intelligence 
Subscriber Identity Module 
Simple Mail Transfer Protocol 
Simple Object Access Protocol 
Synchronous Optical NetwOIk 
Signed Subspace Key 
Transmission Control Protocol 
Telecommunication network 
Tender Loving Care 
Time to live 
User Datagram Protocol 
Universal Resource Locator 
Virtual Machine 
Wmdows Media Audio 
World Wide Web 
Extensible Markup Language 

VI 

 
 
 



I 'lJXJU!d like to express sina:re apprexiatim to Prrfossor Bishop for kr assisfdn(E in tf.e 

preparatim ofthis dissertatioo. Special thanks to my wife Dulciefor kr 011f}Jing patima:, 

supJXTrt and TLC 

Vll 

 
 
 



Chapter 1 

1. INTRODUCTION 

1.1. Scope 

Consider the title of this dissertation: "Resource sharing in distributed peer­

to-peer Internet applications". The title can be divided into the following 

concepts: Distributed systems, Internet applications, peer-to-peer and 

resource sharing. These concepts indicate the scope and interest of our 

research. 

1.1.1. Dist:ributIdsySflms 

Distributed systems refer to applications which are divided into multiple 

functional components, executing on multiple hosts. The application is 

therefore distributed across multiple hosts. The hosts depend on each other in 

order to provide a complete system. 

1.1.2. Internet applications 

The various distributed components of the application needs to communicate 

to each other through a communications network. This study is limited to 

distributed applications that utilize the Internet as communication medium. 

The Internet is the largest, and in many regards the ultimate, communications 

network that allows communication between peers across the globe. 

1.1.3. Peer-to-[X£r 

Peer-to-peer (p2P), for the purpose and scope of this dissertation, refers to an 

application model for distributed systems. 

 
 
 



The conventional model is a client! server model where the distributed system 

is divided into client and server components. In such a model a large number 

of client components communicate with a small number of server 

components. The server provides all of the application services to the client. 

There is no distinction between client and server roles in a peer-to-peer 

model. Each host performs the tasks of both client and server components. 

The hosts that participate in a P2P system has equal capabilities and are 

therefore referred to as peers. Peers communicate directly with each other and 

can provide all the required application services among themselves, without 

dependence on a central server. 

1.1.4. Resource sharing 

Many types of peer-to-peer applications exist and they can be categorized 

according to our classification system (discussed in chapter 4). Resource 

sharing refers to one of the functional categories of peer-to-peer applications. 

P2P resource sharing applications refers to applications that allow peers to 

share resources such as storage space, CPU cycles and content. Resource 

sharing, and more specifically content sharing, is discussed in much detail as 

an example of peer-to-peer application. 

2 


 
 
 



1.2. P2P and the TCPlIP reference model 

Figure 1: The TCP/IP reference model 

Networked computing applications can be discussed on various levels or 

layers in terms of the well-known OSI and TCPliP reference models, which 

are presented in detail by [Tanenbaum 1994]. The TCP/IP reference model 

[figure 1] is more relevant to distributed Internet applications. 

The network layer (aSI model) or internet layer (fCP/IP mode~ facilitates 

peer-to-peer communications between hosts by ensuring that hosts can reach 

each other via the routing process. Internet traffic is broken up into packets. 

Each packet contains a source and destination address. Neither the transport 

layer, nor the network layer imposes any restrictions on the source or 

destination addresses of the packets. All nodes are treated as equal peers. And 

3 


 
 
 



there is no distinction between client and server nodes. The Internet is 

therefore inherently capable of peer-to-peer communications. 

The peer-to-peer model, which is referred to in this dissertation, is however 

not the peer-to-peer communications which is inherent to the low-level 

network layers. The study is rather concerned with the models utilized in the 

high-level application layer. 

1.3. Peer-to-peer purity 

It is difficult to confine the exact scope of peer-to-peer applications. The 

purest form of P2P applications is a completely decentralized system. 

However, many centralized systems also expose some propenies related to 

P2P applications. It is therefore helpful to refer to P2P applications as being 

pure or less pure. Pure P2P applications are also referred to as true P2P 

applications. 

1.4. Resource sharing as an example of peer-to-peer applications 

One possible (and currently popular) application of peer-to-peer networking 

is resource sharing. In chapter 6, 7 and 8 the author will present an in-depth 

study of three such systems: Napster, Gnu:te1la and Freenet. 

• 	 Napster is a vel)' controversial peer-to-peer application, which 

made many people realize the potential of peer-to-peer 

applications and sparked off a lot of debate, discussion and 

research. 

• 	 Gnutella is a vel)' popular, open and widely used peer-to-peer 

protocol specification with many implementations. 

• 	 Freenet is a more complex but vel)' promising peer-to-peer 

system with vel)' unique properties such as anonymity and 

pnvacy. 

4 


 
 
 



The resources shared by the Napster, Gnutella and Freenet networks are 

computer files containing music, documents, images etc. These systems are 

therefore also referred to as content sharing or distributed file sharing 

applications. 

1.6. Outline 

This dissertation is divided into the following chapters: 

• 	 Chapter 1: Introduction - Defines the scope of our research and 

provides an introduction to peer-to-peer systems. 

• 	 Chapter 2: History - Discusses the history of Internet applications, as 

it led to the development of peer-to-peer applications. 

• 	 Chapter 3: Client! server vs. Peer-to-peer - Presents a comparison 

between the conventional client/server application model and the 

peer-to-peer model. 

• 	 Chapter 4: Classification Presents a classification system for peer-to­

peer systems. This allows applications with similar attributes and 

behavior to be grouped in order to study and refer to similar 

applications collectively. 

• 	 Chapter 5: Mechanisms - Presents five mechanisms which we have 

identified that can be used to describe the inner workings of peer-to­

peer applications. 

• 	 Chapter 6: Napster - Presents an in-depth study of the controversial 

Napster peer-to-peer system. 

• 	 Chapter 7: Gnutella - Presents an in-depth study of the open 

Gnutella peer-to-peer system. 

5 


 
 
 



• Chapter 8: Freenet - Presents an in-depth study of the promising 

Freenet peer-to-peer system. 

• Chapter 9: Comparison - Presents a companson between the 

Napster, Gnutella and Freenet peer-to-peer systems. The chapter 

discusses differences and similarities in terms of important attributes 

other than the five identified mechanisms. 

• Chapter 10: Other peer-to-peer initiatives - This chapter briefly 

mentions other peer-to-peer initiatives which the author is aware of. 

• Chapter 11: Challenges - This chapter identifies remaining challenges 

and unresolved issues in peer-to-peer networks. 

• Chapter 12: Implementing P2P on constraint mobile devices 

Discusses various aspects unique to mobile P2P applications. Presents 

an implementation of a P2P phonebook application for constraint 

mobile devices. 

• Chapter 13: Conclusion - This chapter concludes what the author has 

observed and learned through the study. 

6 


 
 
 



Chapter 2 

2. A BRIEF HISTORY OF INTERNET APPLICATIONS 

2.1. The importance of historical study 

It is essential to study the origins of Internet applications in order to better 

understand the current state-of-the-art. It will allow us to identify future 

trends and to predict possible developments. We can only understand where 

Internet applications are headed if we know where they have been. 

Modem Internet applications are influenced and constrained by their 

historical counterparts, due to the following factors: 

• 	 A common practice in software engineering is to design new software 

in such a way that it will be backwards compatible, supporting 

previous (historical) versions. 

• 	 New software is rarely designed from scratch. Most software IS 

designed to leverage existing technology. 

• 	 Software frequently evolves by developing new layers of abstraction 

on top of existing components. 

We therefore conclude that new software is frequently constrained by the 

functionality and mechanisms imposed by legacy systems. This is especially 

evident in Internet applications, which relies on the underlying protocols and 

infrastructure. 

7 


 
 
 



2.2. Evolution of the Internet 

2.2.1. Past to present 

The Internet started with the development of the ARPANET, whose original 

goal was to create a u.s. military command and control network that would 

be able to survive a nuclear war (this is considered to be a myth by some 

sources [InetDef]). The first four nodes of the ARPANET were connected in 

1969. Institutions with ARPA (Advanced Research Projects Agency) research 

contracts were subsequently connected to the ARPANET. Other networks 

were also developed later. 

The first ARPANET protocols (IMP-IMP and NCP) lacked the ability to 

connect different networks to each other. TCP lIP was specifically designed 

to handle communication between different interconnected networks. More 

and more networks started to use TCPlIP, including the ARPANET. 

In 1984 the NSF (U.S. National Science Foundation) began developing a 

backbone network that would allow researchers from all universities to 

connect to it, regardless of DoD contracts. The NSFNET was the first 

network that used TCPlIP right from the start. It also had connections to the 

ARPANET and other networks. The NSFNET were operational in 1986. 

The TCP lIP protocol allowed many networks all over the world to be 

connected to each other, eventually creating a global interconnected network, 

today known as the Internet. 

2.2.2. Thefoture 

Current research effons are underway to develop the next generatlon 

Internet, known as the Internet2 or NGI (Next Generation Internet). The 

Imernet2 already connects networks in various countries (although not yet in 

South Africa). 

8 


 
 
 



One of the key benefits of the Internet2 is that it will provide a significant 

increase in bandwidth by utilizing fiber optic cables and optical routers. The 

Internet2 backbone operates at gigabit speeds (currently 2.5Gbps). 

The current Internet uses the IP version 4 protocol (IPv4). IPv6, also known 

as IPng (IP next generation), became the official protocol of the Internet2 in 

2000. The most notable enhancements of IPv6 are the following: 

• Provides a much larger IP address space 

• Provides Quality of Service (QoS) guarantees. 

• Simpler automatic configuration of address. 

• Expanded routing and addressing facilities. 

• Improved efficiency. 

• Improved security features. 

2.3. Early Internet applications 

Along with the development of hardware and infrastructure came the 

development of software applications to leverage these new technologies. In 

this section we discuss the origins of the most important Internet 

applications. 

2.3.1. E-mail 

Email can be seen as the lowest common denominator service on the 

Internet. Almost all persons with some form of Internet access will at least 

have an email facility. Email can be used on any Internet-enabled device, 

whether it is a full desktop computer or a portable wireless palmtop or cell 

phone. 

9 


 
 
 



In the early 1960s, before the ARPANET, computer scientists have devised 

ways of exchanging electronic messages within a time-sharing system. Ray 

Tomlinson invented an email program to send messages across the 

ARPANET in 1972. The mail program consisted of two pans: SNDMSG to 

send a message and READ~ to read messages. The original intent of the 

program was only to handle mail locally on a time-sharing machine. 

Tomlinson later realized that he could use it in combination with his 

experimental file transfer protocol (called CPYNET) to carry a mail message 

from one machine and drop it into a file on another. In August 1972, Abhay 

Bhushan described in [RFC 385] how email could ride piggyback on the 

ARPANET ftle transfer protocol. 

Tomlinson also became known for the @ sign used in email addresses. He 

needed a character that would not be found in any user's name, to separate 

the user name from the computer that the user was on. His selection of the 

@ sign later led to great debate. There was disagreement over what should go 

on the left hand side of the sign and what should go on the right. Tomlinson 

used a T enex computer system. He did not realize that on the Multics 

computer system the @ character was used to send a "line kill" command 

An ARPA study showed that by the end of 1973 email messages accounted 

for 75% of the ARPANET traffic. In those days it was easy to send email, but 

reading and responding was difficult. When you read mail, all the messages 

you've ever received showed up and they were not separated. You could not 

respond to a message, you had to start from scratch, and the text editing tools 

were primitive. Larry Roberts subsequently wrote the first email management 

program RD (stands for READ), which was able to list, selectively read, file, 

fOlWard and respond to messages. 

Many variations and improvements to the first email programs followed 

Different email programs started using different header formats. Messages 

sent from one mail program could not be handled by another, because the 

10 


 
 
 



headers could not be parsed. These compatibility issues led to some 

standardization efforts. A new list of standard headers was published in April 

1975 in [RFC 680]. 

John Vinal developed MSG in 1975. MSG was by far the most popular all­

inclusive email program for the ARPANET, providing replying, forwarding 

and filing capabilities. A new revised email specification [RFC 733] was 

published in 1977. The MSG program was incompatible with the [RFC 733] 

headers, even though Vinal had helped to write the RFC. The headers and 

protocols used by the popular MSG program eventually became the standard, 

not those specified in the RFC. 

One of the first ARPANET mailing lists, MsgGroup, was created in 1975. 

Messages received from postings were manually re-mailed to everyone on the 

list. The process was later automated. 

In 1980 there were about 400,000 electronic mailboxes and by 1990 the figure 

had risen to more than 12 million. 

2.3.2. Teleamrnuni.catia netuxrrk (felnet) 

T eInet allows a user to control another computer remotely. The user is 

provided with a console, which reflects a console on a remote computer. 

Keystrokes are sent to the remote computer where the commands are 

executed. 

T eInet was the first application demonstrated on the four node IMP 

(Interface Message Processor) ARPA network installed by the end of 1969 

[Khare 1998b]. The first RFC related to TeInet was [RFC 97], "First cut at a 

proposed T eInet Protocol", and was published in 1971. The protocol was 

developed over the next 12 years and described in various RFCs. The T eInet 

protocol finally became the 8th official Internet standard in 1983. The TeInet 

standard suite is described in [RFC 854 to RFC 861]. Various other T eInet­

11 


 
 
 



related RFCs (such as [RFC 1080] and [RFC 2066] have been published after 

1983, introducing extensions and clarifying existing issues. 

The original spectrum of computers connected to the ARPANET varied 

significantly in aspects such as character sets, display sizes, line lengths, time­

sharing mechanisms etc. Developing a protocol that would allow these 

disparate systems to interoperate was no easy task. The T elnet specification 

therefore land marked the design of the first sophisticated application-layer 

protocol. 

In 1994 T elnet was the second most popular Internet application, based on 

Internet traffic. 

Telnet is still used today, especially in Unix environments. Microsoft recently 

added a T elnet server to their Windows 2000 operating system. T elnet is great 

for remotely executing command-line utilities, but not GUI based 

applications. This led to the development of various remote desktop and 

remote control applications, such as X Server on Unix systems and Terminal 

Services on Windows systems. 

2.3.3. File Tnmsfer ProtaJJl (FTP) 

The File Transfer Protocol allows a user to copy files over the Internet. 

Copying files over the Internet might seem a trivial task when you consider 

that the bits of a file need to be transferred over the network from one host 

to another. That is in fact what the Trivial File Transfer Protocol (fFTI.>, 

Internet standard 33 discussed in [RFC 1350] is all about. The complete FIP 

protocol however includes other functionalities such as authentication and 

file-system operations across various platforms [Khare 1998a]. 

When FIP first emerged it was the de facto transfer protocol. FIP was used 

to transfer printer spool files, email messages and public documents. Even 

though FIP connections were synchronous one-to-one connections, other 

12 


 
 
 



applications, such as the first email applications [RFC 385, RFC 751], were 

developed on top of FIP to simulate asynchronous many-to-many 

connections. 

To date there is 44 RFCs published related to FIP. The first FIP RFCs were 

published in 1971 [RFC 163, RFC 172, and RFC 265]. The File Transfer 

Protocol was eventually approved as Internet standard 9 in 1985 [RFC 959]. 

Today FIP is losing ground to HTTP file transfers. The following aspects 

might indicate some of the reasons: 

• 	 Web browsers have become the preferred user interface for the 

Internet. Some web browsers support FIP downloads, but not FIP 

uploads. 

• 	 FIP does not maintain as much rue meta-data as HTTP does. 

Information such as file creation date, original location and 

application data type is not available through FIP. 

• 	 FIP addressing structure is an opaque pathname at a host. HTTP 

uses URLs which has an internal path structure. This allows for easier 

mirroring and redirection mechanisms. 

• 	 FIP embarks a session-oriented state-full approach, which requires 

connection setup and management, while HTTP follows a much 

easier stateless request-response approach. 

• 	 The author also observed that in general file transfers are faster using 

HTTP than using FIP for the same file. However, we do not have 

any scientific theory or proof for this observation. 

13 


 
 
 



2.3.4. Usenet news 

Usenet provides a convenient method for people with similar interests to 

exchange messages. Different subjects are grouped into hierarchies of related 

topics. The name of each group is supposed to give some indication of the 

topic of the newsgroup. Users can post messages to newsgroups or read 

existing messages from newsgroups which they are interested in. 

The Unix User Network, or Usenet, was established in 1979. The first 

implementations of Usenet utilized the popular Unix-to-Unix Copy Protocol 

(UUCP). In 1986 the Network News Transfer Protocol (NNTP) was 

designed to enhance Usenet news performance over the Internet. A 

combination of interconnected UUCP and NNTP hosts was used to 

distribute news messages until the UUCP backbone eventually died in 1988 

[Usenet]. 

Usenet started with just two newsgroup hierarchies; mod.'!- and net.*. The 

mod.* hierarchy contained groups that were moderated, while the net.* 

hierarchy contained all other groups. The fa.* (For ARP ANE1) hierarchy as 

well as other hierarchies with limited local distribution were also added in the 

early days. A complete archive of early newsgroup postings (1981) is available 

from "The Usenet OldNews Archive" [OldNews]. 

The Usenet backbone was created to dedicate resources towards the timely 

distribution of U senet news. The "Backbone Cabal" was a group of backbone 

administrators who controlled the newsgroups. Since the Cabal owned the 

backbone, they decided on issues such as which groups get created and which 

groups get distributed. 

A process known as "The Great Renaming" happened between July 1986 and 

March 1987. Seven main hierarchies were created (comp.*, misc.*, news.'", 

rec.*, soc."", talk.*). All existing newsgroups were renamed to fit the new 

structure, according to the taste of the Cabal. This led to much unhappiness 

14 


 
 
 



and a subsequent flame war. The reasons for the renammg were the 

following: 

• 	 The increased number of groups made it difficult to organize the 

current structure. 

• 	 Controversial groups would all be added to talk.*, which would make 

it easy for administrators to drop them from distribution lists. 

The Backbone Cabal refused to create groups such as rec.sex and rec.drugs 

on the backbone machines. This has led to the creation of the alt.'~ 

(alternative) hierarchy. These groups were distributed via alternative routes, 

which avoided the U senet backbone and therefore could not be controlled by 

the Cabal. Brian Reid finally created the alt.sex, alt.dmgs and alt.rrx:k-n-ro/l group 

on April 3, 1988 [Hardy 1993]. 

Usenet news is still used today. Other news servIces have also been 

developed, most of which utilize a web interface. 

2.3.5. IntemetReltry C1Jat (IRe) 

Internet Relay Chat allows users to talk to each other and have a conversation 

over the Internet. Multiple users can join the same chat room. Users can send 

messages, which are then instantly displayed to all other users. 

The first computer-to-computer chat took place in 1972 at UCLA. The first 

IRC client and server were developed by Jarkko Oikarinen at the University 

of Oulu, Finland in 1988. The first IRC server was called "tolsun.oula.fi". 

Jarkko asked some of his friends at other universities to start hosting IRC 

servers when the number of users started increasing. By the middle of 1989 

there were about 40 IRC servers worldwide. 

15 


 
 
 

http:tolsun.oula.fi


The history of IRC is marked by various disagreements on how development 

of IRC should evolve, leading to the splitting of the IRC network (on various 

occasions) into many different networks, such as EFNet, ANet, Undernet, 

Dalnet, oz.org and IRCnet. 

In 1991, during the gulf war, more than 300 simultaneous users were 

experienced for the first time in a channel called "live reports". The first IRC 

RFC was published in 1993 [RFC 1459]. Other enhancements to the protocol 

were later published, such as [RFC 2810, RFC 2811, RFC 2812 and RFC 

2813]. 

Modem incarnations of IRC are still used extensively today. More advanced 

capabilities have been added. Numerous IRC networks exist, each developing 

its own customized version of the IRC protocol. 

2.3.6. GopIx:r 

Gopher is an infonnation retrieval service, which can deliver text, graphics, 

audio and other content to a client. Gopher content is linked together in a 

hierarchical fashion. The hypertext links are kept in a tree structure, separate 

from the content. 

Paul Lindner and Mark McCawhill from the University of Minnesota released 

Gopher in 1991, the same year in which the World Wide Web was released. 

Gopher was the first Internet application to provide point-and-click 

navigation and McCawhill therefore called it "the first Internet application my 

mom can use" [NetTimeline]. The software was freely distributed on the 

Internet. 

Both Gopher (fCP port 70) and the WWW (fCP port 80) were designed to 

provide an easier way to use the Internet than the Unix shell experience. 

Original implementations did nothing FTP did not already offer. In 1994 

there were 4,800 Gopher sites, 1,200 anonymous FTP sites and only 600 web 

16 


 
 
 



sites [RFC 1689]. Gopher was therefore more popular in the early days than 

the World Wide Web. Gopher maintained a master list of publicly accessible 

servers, which was indexed regularly by Veronica rye!)' Easy Rodent­

Oriented Net-wide Index to Computerized Archives), much like the Archie 

FfP index. 

HITP headers are considered to be the main reason why the WWW became 

the killer application, which killed Gopher [Khare 1999b]. Adding new HITP 

headers could easily extend the HITP protocol functionality. State was 

hacked back into this (stateless) protocol by using mechanisms such as 

cookies. 

Gopher sites still exist today. Few people are aware of the fact that even 

modem browsers such as Internet Explorer and Netscape can be used to 

access these Gopher sites (by typing gopher:! / gopher.browser.org in the 

browser). There is even a movement, called the "Bring Back Gopher 

Campaign" [Gopher Manifest], which is attempting to bring Gopher back to 

life. 

2.3.7. World Wuk Web 

The World Wide Web CIXfWW) is currently the most popular Internet 

application [Hobbes]. The WWW provides a global network of hypertext 

documents linked to each other. The Hyper Text Transfer Protocol (H1TP) 

specifies the rules for accessing and distributing these documents. The 

content and structure of the documents are described with the Hyper Text 

Markup Language (HIML). 

Tim Berners-Lee and other scientists at CERN designed the World Wide 

Web in 1989. His original goal was to provide a system that would make it 

easier to retrieve research documents. He developed a browser program a 

year later and called it the World Wide Web. The program was subsequently 

17 


 
 
 

http:gopher.browser.org


released in 1991 for free on an FTP site. He had no idea of the major success 

that his invention would have. 

The first web browsers were vety primitive. Only plain black on white text 

documents were supponed and images were published separately. By the end 

of 1992 there were only 50 web sites in the world The first significantly 

improved commercial browser was Mosaic X, launched in 1993. The browser 

was developed by Mark Anderson, who later founded Netscape. Mosaic was 

made available for free to the educational community. The browser became 

an instant hit and the number of web sites exploded. The ability to combine 

words, pictures, and sounds on Web pages excited many computer users who 

realized the potential for publishing information on the Internet. In 1995 the 

WWW surpassed FTP as the most popular Internet service. 

The World Wide Web is still evolving today and is used for much more than 

its original intent. Modern web sites are marked by their dynamic content, as 

opposed to the static nature of web sites a decade ago. HITP is used today 

for much more than what it was originally designed for and might just 

become the "Grand Unified Protocol" that is envisaged [Khare 1998a]. 

2.4. Internet growth 

Internet growth figures are presented here to demonstrate the popularity of 

the Internet as well as its future potential. The Internet statted growing at a 

phenomenal rate in the 1990s. The growth pattern of the Internet seems to be 

exponential, with no sign of a slowdown yet. 

There is currently a trend to connect not only computers, but also other types 

of devices (cell phones, PDAs, automobiles, toasters etc.) to the Internet. This 

might cause yet another host growth explosion. 

Figure 2 presents the number of hosts present on the Internet between the 

year 1970 and 2001. In 2001 there were more then 110 million hosts on the 

18 


 
 
 



Internet. The World Wide Web (WWW) is currently the most popular 

application on the Internet. Figure 3 presents the number of web sites on the 

Internet between July 1993 and July 2001. In 2001 there was more then 30 

million website present on the Internet. The graph of website growth seems 

to be logarithmic with evidence of slowdown. The values presented in the 

graphs were obtained from [Hobbes]. 

120,000,000 -,-------------------------------------------------------------------------] 

100,000,000 

80,000,000 
~ 
~ 

~ 60,000,000 
.8 
E 
::l 

Z 40,000,000 

20,000,000 r.. 
o~_~~-.~~~~~._~~~~~~~~~~~~,_-~---~ 

~\;) ~"v ~I:>. ~I"o ~'1:> 0.:.'1:>\;) 0.:.'1:>"v o.:.~ 0.:.'1:>1"0 0.:.'1:>'1:> o.:.o.:.\;) o.:.o.:."v o.:.~ 0.:.0.:.1"0 0.:.0.:.'1:> ~\;)\;) 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

Date 

Figure 2: Internet growth 

19 


 
 
 



2 

30,000,000 

25,000,000 

"iii 20,000,000 
'0 

1l
E 15,000,000 -
::l 
Z 

10,000,000 

0 
M M "'I" "'I" t.n t.n t.n W W W I'-- I'-- I'-- 00 00 00 0:> 0:> 0:> 0 
q> q> ~ g: 0:> q> 0:> 0:> q> 0:> q> q> q> q> 0 

> .!. ~ .!. ::. "- ~ .!. :; '"::. '" .!. > '" .!. ~ "­"3 ro ::l ro "3 ro "3 ro ro "3 ro "3 ro-, 0 -, 0 -, 0 -, 0 -, 0 -, 0 -, 0 
Z 	 :2 z :2 z :2 z :2 z :2 z :2 z :2 

Date 

Figure 3: World Wide Web growth 

It is becornillg increasingly difficult to count the number of hosts on the 

Internet. Early attempts were based on the number of registered IP addresses. 

Modem techniques such as Network Address Translation (NA1) and 

Dynamic Host Configuration Protocol (DHep) allow multiple hosts to share 

the same IF address space. Merely counting the number of registered IP 

addresses will therefore no longer yield the number of hosts on the Internet. 

Modem counting techniques are therefore based on statistics. 

0 
0 
0 09 9::. .!."3 ro "3-, 0 -,z :2 

20 


 
 
 



Chapter 3 

3. CLIENT/SERVER VS. PEER-TO-PEER 

3.1. Introduction 

It is only recently that much research effort had gone into developing and 

improving peer-to-peer application models that could provide numerous 

benefits over the client! server modeL In this section the conventional 

client/server application model is discussed and compared with an alternative 

peer-to-peer application model. 

3.1. ClientI server model 

The client! server application model is the conventional and well-known 

model mostly utilized for developing Internet-based applications. The highly 

successful World Wide Web (ylWW) service is based on the client/server 

model. Most Internet applications have traditionally been implemented with 

some form of a client! server model. 

In the client/server model [figure 4] the application is divided into client and 

server components. The client components execute on a large number of 

end-user hosts, while the server components execute on a small number of 

dedicated centralized server hosts. The server components provide 

application services to the clients. The server is therefore a critical element 

which the application cannot function without. 

Multi-tier architectures is an advanced form of the client/server model. The 

most common multi-tier architecture is the 3 tier architecture with a separate 

data, business and presentation tier. Each tier presents a logical part of the 

application, but the application is still distributed on hosts which perform 

21 

\ 1'1 3Lt ')...'1 \0<6 
6 \ b?>yi (..~~ 

 
 
 



-----

either a client or a server role. The data and business tier is usually distributed 

on server hosts, while the presentation tier is distributed on client hosts. 

Communication between clients and servers is facilitated by routers which 

detennine the communication path. Routing is however only perfonned on 

the low-level network layers and is completely transparent to the application 

leveL 

a4"~ 

~\i.\ , 
~ \\ 
~ \

Client -___________ \ 

Web server 

Database server 

Client 

Figure 4: Client/Server model 

3.2. Peer-to-peer model 

The distinction between client, server and router becomes blurred with the 

peer-to-peer model [Lee 2003]. Each host perfonns the tasks of both a client 

and a server. Routing is still perfonned on the network layer, but on top of 

that, it is also perfonned independently on the application layer to fonn an 

overlay netWork 

In a peer-to-peer application there is no distinction betWeen client and server 

hosts. Although the application may still be logically subdivided into client 

and server components, each host contains both components and perfonns 

22 


 
 
 



client, server and routing roles. Each peer has equal capabilities and the 

application does not rely on the existence of any specific host. 

The peers are linked to each other to fonn a peer-to-peer netwo:rk The peer­

to-peer network is sometimes referred to as an overlay network, because it is a 

logical network on top of the physical network (like the Internet). The overlay 

network has its own topology and routing algorithms, which is vel)' different 

from the topology and algorithms of the physical netwo:rk 

There is a moving trend towards developing applications that are based on a 

peer-to-peer model [figure 5] due to the possible advantages discussed in the 

next section. The World Wide Web, with its client/server model, took away 

users' attention from the peer-to-peer model for a while. 

Client 

Figure 5: Peer-to-peer model 

3.3. Potential of the peer-to-peer model 

The peer-to-peer model has the potential to succeed in many areas where the 

client/ server model failed In this section some of these areas are briefly 

23 


 
 
 



pointed out. Chapter 11 points out the challenges that remain for the peer-to­

peer model. 

3.3.1. /Jyndmic ap;rability 

Peer-to-peer applications can keep operating transparently even though hosts 

join and leave the netvv'ork frequently [Ripeanu et al 2002]. 

3.3.2. ScaidJility 

The extent to which the application can scale is not limited by the capacity of 

a server. Performance of the overall system is not affected by adding 

additional hosts. 

3.3.3. Nettmrkvalue 

An increase in the amount of users also increases the value of the application 

to the users. For example, in a flle-sharing P2P network more users mean a 

higher volume and availability of shared flles and a higher probability of 

search matches. 

3.3.4. Resourre sharing 

Clients in a peer-to-peer network can share resources such as files, storage 

space, bandwidth and processing power and therefore make more effective 

use of available resources. In a client/ server model idle/unused resources on 

client hosts are wasted. 

3.3.5. ColIaburatim 

Applications such as mstant messagmg, Internet telephony and remote 

desktop control enables peers to interact and collaborate with each other. 

3.3.6. Load bakmcing 

Netvv'orks can employ mechanisms to distribute load or resource usage 

amongst peers dynamically or to relocate content to high demand areas of the 

network. 

24 

 
 
 



3.3.7. Redundancy andfault to/er((fl(£ 

Information can be replicated among many peers, causing a high degree of 

redundancy. This, in tum, increases fault-tolerance and availability: The failure 

(or attack) of a single node does not influence the availability of services or 

content, because it is available from other nodes. There is no single point of 

failure. 

3.3.8. Content based addressing 

In the WWW model content is located mainly based on their location (lJRL). 

In peer-to-peer netwo:rks addressing can be perfonned based on content, 

making the actual location of the content transparent to the user. 

3.3.9. Dyrwnic indexing 

Traditional web search engines keep an index of content that it discovered the 

last time the site was evaluated This list is static because it does not reflect the 

current online status of the site. P2P netwo:rks can maintain a (possibly 

distributed) list of content that is currently available to the netwo:rk. 

3.3.10. lmprm:«isearching 

Searches in a peer-to-peer netwo:rk can be distributed and executed 

asynchronously and in parallel. Searches cannot only be used to discover 

resources, but also to discover users, allowing peer-to-peer collaboration 

independent of a service provider. 

3.3.11. J1~ 


Peer-to-peer netwo:rks have the potential to protect the anonymity of people 


providing, holding and consuming sensitive information [Cla:rke et al 2002]. 


3.4. Contrasting characteristics 

Both the client/server and peer-to-peer models have advantages and 

disadvantages. In this section we discuss the contrasting characteristics that 

were identified 

25 

 
 
 



3.4.1. Fault tolerance 

Server hosts are connected and available 24!7. The server hosts should be 

active in order to provide services required by the application. If the server 

host is down then the entire application cannot function even though a large 

number of client hosts might still be active. Client hosts leave and join the 

application at will. 

In P2P applications a large numbers of peers join and leave the network 

frequently [Ripeanu 2002]. The application does not rely on the presence of 

any specific host in order to function. The application is therefore more fault­

tolerant. 

3.4.2. HostruuneandIP address 

In the client! server model the server node usually has a static IP address with 

a friendly DNS name mapped to it. The client hosts usually have dynamic IP 

addresses assigned by a DHCP server and translated into public addresses on 

the network border via the NAT protocoL Client hosts also does not have 

permanent DNS host names registered 

In P2P applications peers have much the same characteristics as the client 

hosts in the client! server modeL Peers have dynamic IP address and do not 

have DNS names assigned to them. Peers are located behind firewalls and 

proxies and rely on NAT to communicate on the Internet. 

3.4.3. ServireguttrantfeS 

Client! server applications tend to be deterministic. The services and resources 

made available by the application are known and can be easily measured. The 

server has a limited and known set of resources to offer to the clients. 

Peer-to-peer applications tend to be more probabilistic. For example ill 

resource-sharing applications there are no guarantee that a specific resource 

(like a specific music ftle) will be available at a specific time. The availability of 

26 


 
 
 



resources depends on the nodes that are currently connected to the network 

Even though a node containing the required content is connected to the 

network, it might still be unavailable to the requesting node because of their 

distance (TIL can expire before node is reached). The challenge for peer-to­

peer networks is therefore to provide a sufficiently high probability that a 

resource will be available, without giving any service guarantees. 

3.4.4. Routing 

In the client/server model routing of data is handled in packets by the 

physical network layers and is transparent to the application layer. 

In the peer-to-peer model applications create their own overlay routing 

mechanism on top of the physical packet-routing network. The network 

topology of the application-level network is very different and unrelated to 

the physical-level network 

3.4.5. Scal4bility 

In the client/server model all application services are provided by the server 

host. A large number of clients connect to the server in order to consume 

these services. An upgrade of server hardware and resources is usually 

required in order to support more clients. The server hardware therefore 

seems to be the limiting factor for scalability. Other techniques such as load 

balancing can also be utilized to improve scalability, but the challenge remains 

on the server-side. 

P2P applications do not suffer from the central server bottleneck problem. 

With P2P applications the network bandwidth tends to be the main limiting 

factor for scalability. An increase in hosts leads to an increase in network and 

routing activity. The amount of hosts can only increase up to a point where 

the available bandwidth can no longer sustain the load. More research is 

required in this regard 

27 

 
 
 



3.4.6. Host role 

In the client/server model each host is either dedicated as a client or as a 

server. Client and server hosts perlorm different functions. The server hosts 

provides application services and the client hosts consume these services. 

In the peer-to-peer model each host perlorms client, server and routing 

functionality [Ripeanu 2002]. Each host has equal capabilities. 

3.4.7. NetlWrk locat:Wn 

In the client/server model the client hosts are located at the low bandwidth 

edges of the network and communicate with server hosts located within the 

high bandwidth core of the network. 

In the peer-to-peer model the peers are located at the low bandwidth edges of 

the network and communicate with other peers also located at the edges. P2P 

commurucatlon is therefore sometimes referred to as edge-to-edge 

communication. 

28 


 
 
 



Chapter 4 

4. CLASSIFICATION 


4.1. Introduction 

In this chapter we explore and devise methods to classify peer-to-peer 

applications. Our fIrst attempt [Danzfuss and Bishop 1999] was to classify 

web-based Internet applications. The classification presented in this chapter 

focus more specifically on peer-to-peer Internet applications. 

The purpose of classification is to group together applications with similar 

functionalities and computing models. This allows us to collectively study and 

refer to similar application types. 

4.2. Functional categories 

Peer-to-peer applications can be categorized according to their functional 

purpose. The author has identified the following generic functional categories: 

4.2.1. Resoura: sharing 

Resource sharing refers to applications that allow vanous computmg 

resources to be shared among peers. In this dissertation the author focuses on 

the resource sharing functional category of P2P applications, as is suggested 

by the title: "Resource Sharing in Distributed Peer-to-Peer Internet 

Applications" . 

Resource sharing applications can be sub-classified according to the type of 

resource that is shared. P2P applications can share one or more of the 

following resources: 

29 


 
 
 



4.2.1.1. Ornptting c;des 

The Internet has a large amount of connected hosts that are "idling" much of 

the time. These wasted CPU cycles can be combined to create a powerful 

"virtual supercomputer" [Lawton 2000]. The collective wisdom [Hayes 1998] 

of a huge amount of inexpensive computing devices results in computation 

power much greater than what can be provided by the world's best 

supercomputer. 

4.2.1.2. Storagp spare 

The storage space provided by a single computer is fairly limited. Peers in a 

P2P application can donate a percentage of available storage space to the P2P 

network for use by other peers. This results in an almost infinite amount of 

possible storage space. Storage sharing allows peers to store their content on 

storage space provided by another peer and vice versa. 

4.2.1.3. Content 

Content such as music files, videos, documents etc. can be shared by peers on 

the network. The Napster, Gnutella and Freenet networks encourage peers to 

share content on the network for free. This scheme works because each peer 

can access content from other peers for free. 

4.2.1.4. Bandwidth 

A single host has a fixed amount of network bandwidth. Each peer in the 

network benefits from combining the bandwidth of many peers participating 

in a P2P network. In theory, each new peer that joins the network effectively 

adds more bandwidth to the entire network. In practice however it seems to 

work the other way around and this point therefore needs more research and 

debate. 

4.2.2. OJUalxJration 

Collaborative applications are those that allow users to collaborate in various 

ways over a network, such as the Internet. This category includes applications 

30 


 
 
 



such as instant messaging, audio and visual communications, shared desktops, 

etc. 

4.2.3. DistributRdprocessing 

Distributed processing applications allow massive amounts of computation to 

be distributed among multiple computer nodes on the network. This categoty 

includes applications such as cycle sharing and computation. Multiple hosts 

can concurrently execute a computational task. 

4.3. Computing model categories 

The computing model refers to the degree of decentralization of the peer-to­

peer application. A completely decentralized P2P application is also referred 

to as a pure or a true P2P application. According to [parameswaran et al2001] 

peer-to-peer applications can be categorized into the following three 

computing models: 

4.3.1. Centralized 

Centralized P2P applications are characterized by a central server system 

facilitating inter-communication among peer clients. The P2P application 

depends on the services provided by the central server and cannot exist or 

survive without it. 

4.3.2. ~alized 

Decentralized P2P applications do not depend on centralized server or 

services. All communications traverse through the peers, which collaborate to 

fonn an independent virtual routable network. 

4.3.3. Hybrid 

A combination of centralized and decentralized topology is called a hybrid 

network. This type of P2P application is characterized by normal peers and 

powerful super peers, which act as ad hoc central servers when necessaty. The 

31 


 
 
 



P2P network can however exist and survive without these super peers. The 

super nodes only exist to enhance/improve the functionality of the system. 

4.4. Combined classification system 

It should now be clear that a combination of the computing model category 

and the functional category should be sufficient to classify P2P applications 

into distinctive groups. Examples of classifications are therefore a centrali:z«l 

resourre sharing P2P application or a cka.ntrali:z«lroI1aluratire P2P application. 

4.5. Applying the classification system 

The following table demonstrates how the classification system can be applied 

by classifying various P2P applications which we have studied. 

4.5.1. Napster 

The function of the Napster application is to provide users with the ability to 

share music ftles. Napster is therefore a resoura; sharing application. The type of 

resources shared is content. Napster is therefore more speciftcally a conI1?nt 

sharing P2P application. 

The Napster system is facilitated by the use of central services. The Napster 

clients connect to a central server to perform tasks such as searches. Napster 

is therefore a centraliZtdP2P application. 

Napster can be classified as a centraliZtd conI1?nt sharing P2P application by 

combining the functional and computing model categories. 

4.5.2. Gnutella 

The function of the Gnutella network is to allow users to share any type of 

computer flle. Gnutella is therefore also an example of a resoura; sharinglconI1?nt 

sharing application. 

The Gnutella system does not rely on the existence of central servers/services 

for its operation. Super nodes exist on the Gnutella network that can act as 

32 


 
 
 



servers to enhance aspects such as node discovety. The survival of the 

Gnutella network does not depend on the existence of super nodes. Super 

nodes is not pan of the Gnutella protocol specification and is therefore not 

considered for classification purposes. The Gnutella network is therefore an 

example of a damtralizaiP2P application. 

Gnutella can be classified as a damtralizai contmt sharing P2P application by 

combining the functional and computing model categories. 

4.5.3. Freenet 

The function of the Freenet network is to allow users to share any type of 

computer file, while ensuring privacy. Freenet is therefore another example of 

a resource sharing/contmt sharing application. 

The Freenet system does not rely on the existence of central servers/services 

for its operation. Freenet is however currently enhanced by central servers for 

services such as node discovety. The Freenet network is therefore an example 

of ahybridP2P application. 

Freenet can be classified as a hybrid contmt sharing P2P application by 

combining the functional and computing model categories. 

4.5.4. SETI@Hane 

The SETI@Home network allows users to panicipate in the search for extra­

terrestrial intelligence by allowing each peer to process a part of the vast 

amounts of radio frequency data captured by the project. SETI@Home is 

therefore an example of a distributedprocessing application. 

The SETI@Home system is coordinated by central servers/services. The 

system is therefore an example of a centralizai P2P application. 

SETI@Home can be classified as a centralized distributed J»rXESSing P2P 

application by combining the functional and computing model categories. 

33 


 
 
 



4.5.5. P2Pphaneimk 

The function of the P2P Phonebook application (presented in chapter 12) is 

to allow mobile users to share contact entries in their phonebooks. The P2P 

Phonebook application is therefore an example of a resourre sharing/antent 

sharing application. The content in this instance is the Phonebook entries. 

The P2P Phonebook system does not rely on the existence of central 

servers/ services for its operation. The P2P Phonebook is therefore an 

example of a cka:n:tralizai P2P application. In our simulation we made use of a 

central server to relay messages between peers, but this was only needed 

because server sockets is not yet supponed on most implementations of the 

J2ME platform. The central relay service should not be required in the "real­

world" scenario. 

The P2P Phonebook can be classified as a cka:n:traliZtd cmtmt sharing P2P 

application by combining the functional and computing model categories. 

4.5.6. Microsoft NetMeeting 

Microsoft NetMeeting allows users to do the following: 

• 	 Communicate to each other by sending instant text messages. 

• 	 Communicate to each other by means of voice (requires a headset) 

and!or video (requires a camera). 

• 	 Allow users to work together on applications by sharing their 

application screens and desktops. 

• 	 Send and receive any type of computer ftIe. 

34 


 
 
 



NetMeeting is therefore an example of an application that facilitates various 

forms of coIlaIxJrati£n among peers. 

NetMeeting relies on a central server for providing its servIces. Instant 

messages are relayed through the central server. Other collaborative tasks 

such as application sharing are coordinated and facilitated by a central server. 

The NetMeeting application is therefore an example of a centralized P2P 

application. 

Microsoft NetMeeting can be classified as a centralized coIlaIxJratiu: P2P 

application by combining the functional and computing model categories. 

4.6. P2P distributed processing vs. Grid computing 

One categoty that needs special mentioning is the distributed processing 

applications, also referred to as P2P cycle sharing applications. This field of 

study overlaps with the Grid computing study field. The distinction between 

Grid computing and P2P cycle sharing become blurred as these two 

disciplines evolve. 

Grid computing is a broad and active research field and is discussed in much 

detail by [Foster and Kesselman 1998]. Grid computing is a distributed 

system where a number of data centers (powerful servers) collaborate to 

provide a large-scale virtual super computer. The goal of many of the current 

Grid computing efforts is to develop standards that would enable various 

smaller Grids to interoperate and form a single international Grid The Grid is 

therefore analogous to The Internet, which was also formed by allowing various 

smaller networks to interoperate and form a single international network. 

Grid computing grabbed commercial attention in late 2003 with the launch of 

Orade 109 Database Sener. Theg in Orade 109 stands for "Grid". Oracle claims 

that this release is the world's first "grid-enabled" database management 

system. The self-managing features of Oracle 109 allows the database to 

35 


 
 
 



dynamically distribute processing across all available blade and clustered 

servers. 

36 


 
 
 



Chapter 5 

S. MECHANISMS 


5.1. Introduction 

The author has identified five main mechanisms which are utilized by all 

content-sharing P2P applications. All of the peer-ta-peer systems we studied 

will be described in terms of their naIe cliscawy, cmtent cliscawy, cmtent retrieml, 

ron:/l'nt publishing and ron:/l'nt storage mechanisms: In this chapter we present each 

of these mechanisms and discuss why they are important for content-sharing 

P2P applications. 

5.2. Node discovery 

The node discovery mechanism is concerned with how each node knows the 

names/addresses of other nodes that it can connect to. This mechanism can 

be further divided into initial naIe cliscawy, addit:imal naIe cliscawy and nak 

cading. 

5.2.1. Initial naIe cliscawy 

The initial node discovery mechanism determines how nodes initially joins (or 

attach themselves to) the network. A node needs to know the address of at 

least one other node in order to join the network. The simplest technique is 

for the user to supply a known node address, but this is not a transparent 

process and requires manual user intervention. More complex techniques are 

automated and transparent to the user and can even take attributes such as the 

distance between nodes into account. 

37 


 
 
 



5.2.2. Additionalnrxle disarary 

Node discovezy is an ongoing process and does not stop once the node is 

connected to the network. Each node actively tries to discover and connect to 

more nodes for the following reasons: 

• 	 Fault tolerance - If a connection between nodes is broken or a node 

leaves the network then the P2P network will be able to restore itself 

because affected nodes can connect (or is already connected to) other 

nodes which they are aware of. 

• 	 Improve performance - Search queries and other can be sent to 

multiple nodes in parallel for simultaneous processing. Results can 

then be discovered much faster. 

• 	 Increase reach - The amount of content! services available to a node 

depends on the amount of other nodes that it can reach. If a node is 

only connected to one single node, then it can only access resource 

which is available through that node. More paths exist when 

connected to multiple nodes. 

• 	 Reduce distance - Nodes can actively tty to discover other nodes 

which are closer or better then the nodes which they are currently 

connected to. Determining the distance between nodes is a difficult 

issue and is discussed in Chapter 11. 

A node can usually be configured to allow only a limited number of 

connections to it. This is necessazy to prevent unreasonable bandwidth 

demands on a node. 

5.2.3. Node cathing 

Node caching refers to the techniques utilized to store or remember addresses 

of nodes. Some systems uses node cache servers to keep a list of known 

38 


 
 
 



connected nodes. These servers can then be used by new peers to aid them in 

the node discovery process. 

5.3. Content discovery 

The content discovery mechanism determines how the client queries/searches 

the network to discover the required content. A centralized or distributed 

search algorithm is used, depending on the computing model involved. The 

process usually involves the following two messages: 

• 	 Sea:rd:J request - The message contains details about the content that the 

user is looking for. The request can also include performance related 

constraints, such as instructions to only return results from a host 

with a certain minimum connection speed. This message is also 

referred to as a query message. 

• 	 Sea:rd:J ~ - The message contains details about content that has 

been discovered according to the criteria specified in the search 

request message. This message can contain details such as the host 

address where the content can be found, file size, connection speed 

etc. This message is also referred to as a query hit message. 

Search algorithms utilized by current popular P2P networks (Napster and 

Gnutella) are very basic and inefficient. Much research is underway to 

improve content discovery mechanisms, especially in a true decentralized 

fashion. Interesting new search algorithms for P2P are discussed by [Aberer et 

al 2002] and [Balakrishnan et al 2003]. Project pITA utilizes a hybrid 

centralized! decentralized approach with the Query Routing Protocol 

[Waterhouse et al2002]. 

39 


 
 
 



5.4. Content retrieval 

The content retrieval mechanism detennines how content is transferred from 

its source to its destination once it has been discovered. We have identified 

four ways in which this can occur. 

5.4.1. Emkdded 

The results can be embedded within the search response message. This 

technique can only be used when the size of the content is small and the 

content is likely to be accepted by the user. The P2P Phonebook system 

which we have developed makes use of this technique. 

5.4.2. Dirrrt 

Content can be retrieved directly from the host on which it resides. The 

search response message contains the address of the node containing the 

content. Napster and Gnutella is examples of P2P systems that uses this 

technique. 

5.4.3. Parallel 

Content can be retrieved in parallel from multiple hosts. This is possible when 

the same content is available from multiple hosts or when pieces of content 

are distributed (striped) across multiple hosts. Certain implementations of the 

Gnutella client allow parallel downloads. 

5.4.4. Relayed 

Content can be relayed (or routed) from the ongmatmg host to the 

destination host through the P2P network topology. With this technique 

peers do not know the address of the originating host. The content is relayed 

through the P2P network in the same fashion as the query messages. Freenet 

is an example of a P2P system that uses this technique. 

40 


 
 
 



5.5. Content publishing 

The content publishing mechanism determines how new content is added to 

the network New content can be published in the following two ways: 

5.5.1. Sharing kx:al stare 

New content can be published on the P2P network by adding it to the local 

store or making a folder on the local file system available to the network 

(sharing). This technique is used by Napster and Gnutella. 

5.5.2. Publish to thenetwYrk 

Another method is to send the content with a content publish message into 

the network The content can therefore be stored on other nodes, depending 

on the mechanism utilized. This technique is used by Freenet and 

OceanStore. 

5.6. Content storage 

The content storage mechanism determines how and where published 

content is stored in the network and when they are deleted or replaced. 

Content can be stored in the following locations: 

5.6.1. Local stare 

Content can be stored in the local store on the node that has published it. The 

local store can be in the form of a file system, database, XML or some other 

specialized storage system provided by the P2P application. 

5.6.2. Replicated 

The published content can be replicated among multiple hosts to provide 

features such as improved availability and parallel downloads. 

5.6.3. StriJHl 

Content can be broken up into pieces (stripes) and these pieces can be stored 

on separate hosts. The pieces can also be replicated among hosts. OceanStore 

is an example of a system that utilizes this technique. 

41 

 
 
 



In some P2P systems, such as Freenet, the user is not even aware of the 

contents of his local store. Freenet encrypts the contents of the local store 

and does not provide the user with information about what is stored on his 

host. 

42 


 
 
 



 
 
 



At its peak, Napster had about 70 million registered users of whom 1.57 

million were accessing the service simultaneously [Lee 2003]. Another source 

[Stem 2000J reports that the Napster network was at some stage sharing 

approximately 10,000 music files per second and 100 users tried to connect 

per second 

:hlP3 files are audio (usually music) files that are compressed using the 

MPEG-l Audio Layer 3 lossy compression algorithm [Macedonia 2000J. This 

technique allows for high quality audio (44.1 KHz) to be encoded and stored 

in files that are compressed by a factor of 10, about 1MB per minute [Barkai 

2001J. This provides a significant reduction in file size, compared to WA V 

files and CDs, which in tum make it feasible to distribute these over the 

Internet. With the increased availability of even faster Internet connections 

for home users (like DSL, cable and satellite) and other technological 

advances, the next big thing might be the distribution of high quality full­

length movies (DVDs) over the Internet. 

Napster caused quite a stir in the music industry (and otherwise), because it 

can and was used to distribute a substantial amount of copyrighted material. 

This led to a contributory copyright infringement lawsuit against Napster, 

which raised numerous legal issues. Sony was excused from a charge of 

contributory copyright infringement a few years before on its supplying VCRs 

to members of the public who videotaped copyright-protected TV broadcasts 

[Graham 2000]. 

The technology and mechanisms utilized by Napster are by no means 

revolutionary, but their popularity and controversy highlighted the power and 

potential of peeNo-peer networking. To prove that the file-sharing idea is 

nothing new, Napster is frequently compared with NFS (Network File 

System) developed by Sun as early as 1980 [Fox 2001J. 

44 


 
 
 



Napster is not an Open Source project, which means that the source code, 

protocols etc. are not available for public study and scrutiny. 'Ibis study is 

therefore limited to infonnation that is made publicly available and to 

infonnation from other studies. This study focuses on the first incarnation of 

Napster, since the new Napster service was not yet completely available at the 

time of study. 

6.2. Node discovery 

Napster nodes do not connect to each other in an overlay network structure 

like other true peer-to-peer systems do. The node discovery mechanism of 

Napster is a client/server mechanism. Napster peers connect to the network 

by connecting to a knO'\Vl1 central server when the client starts up. The client 

software knows the n> address or URL of the central server. 

The central server is only a logical central server, because there is more than 

one physical server. Some sources [Graham 2000] record that there were in 

fact more than 150 physical servers. The large amount of physical servers was 

necessary to provide scalability and fault tolerance for the logical central 

server. 

45 


 
 
 



ilro,.s::: , 

~ 

6.3. Content discovery 

Central index of all shared 
files on all nodes. 

I \ 
( B ) C 
\ / 
~ 

Figure 7: Napster content discovery 
mechanism 

When nUl, the Napster client software connects to the central server and 

supplies the server with a list of MP3 ftles on the user's PC which the user is 

willing to share. The central server therefore has knowledge of all the available 

MP3 ftles on all the currently connected nodes. The user can then search for 

MP3 ftles by sending a detailed search request to the central server. The server 

will then respond with a list of matched entries as well as the nodes where 

each file resides. Content discovery is therefore also a centralized process. 

46 


 
 
 



Central index of all shared 

files on all nodes. 
 Napster server 

B C 

Figure 8: Napster search mechanism 

Napster only supports sharing of MP3 fUes. Because the Napster system is 

only concerned with music files, it is able to use a highly efficient search 

mechanism. Each MP3 file contains meta-data (an ID3 tag), which describes 

infonnation about the track, such as title, artist, album, production year, genre 

and comments. The ID3 tag is stored in the last 128 bytes of the MP3 fUe. 

The metadata descriptions of the content and the ability to centrally index and 

search the metadata make it easy for users to find exactly what they need. The 

added value of metadata for files lies at the heart of the Semantic Web, a 

vision of the W3C Web Consortium related to P2P [SymanticWeb]. 

47 


 
 
 



6.4. Content retrieval 

Central index of all shared 
files on all nodes. Napster server 

~ ~~ 
I ' /

\~.A~ )\ C ) ~ ~ / ~--/ 
Request file // 

File transfer ~ 
Figure 9: Napster content retrieval mechanism 

The search results from the content discovery mechanism can contain 

multiple entries. Each entry contains the meta-data as well as the location (IP 

address) of the node where the content is located. Napster can also perform 

ping requests for each retrieved node in order to determine latency to each 

node. The user can then select the node from which he wants to retrieve the 

content. The file will then be downloaded directly from the node containing 

the content. Communication betWeen the two nodes happens without server 

intervention and is therefore peer-to-peer. The server does not have any 

knowledge about the file exchange that is taking place. 

6.5. Content publishing and storage 

Users usually copy music from CDs (which is called ripping) and then encode 

them into compressed MP3 files. The files are then stored on the user's local 

hard drive in the same way that any other file would be stored. The user then 

48 


 
 
 



chooses to share MP3 files in cenam directories on his PC with other Napster 

users. 

When the user downloaded a file from another PC via the Napster network, it 

is by default saved in a folder that is shared with other users. This has the 

effect of content that gets replicated throughout the network. The user is 

however in control of this process and a node is not obliged to re-share 

content which he downloaded. 

Napster does not host the MP3 files on its servers; it is rather hosted on the 

hard drives of the individual nodes. N apster only provides the ability for 

clients to locate the files they want easily. There is no special compression or 

encryption applied to these flies. The user has the ability to specifY which flies 

or folders he wants to share. These files are indexed according to their 

metadata and only this index infonnation is sent to the central server. In this 

regard Napster can be compared to a web search engine such as [Google], 

which maintains a central index of resources. 

6.6. Discussion 

Perhaps the biggest disadvantage of the Napster system is its reliance on a 

central server for operation. This is why it was possible for a court order to 

shut down the entire system. 

Napster can be classified as a centralized antent sharing peer-to-peer network. 

The N apster system survival relies on the availability of the central server to 

provide its clients with node and content discoveJY services. This makes the 

system vulnerable to many attacks such as legal attacks (closing down the 

Napster servers) and denial-of-service attacks. 

6.7. The new Napster service 

Since Napster was eventually forced to dose its free music sharing service, it 

constructed a new service. The new service requires subscribers to pay a small 

49 


 
 
 



monthly fee. Napster is in tum buying licenses from record companies that 

will allow them to share copyrighted material legally on the network. 

Napster invented a new secure file format (NAP) that allows them to control 

the usage of downloaded files. With this file format a user can replay 

downloaded music files only on a specific computer. The more recent 

Microsoft Windows Media Audio (WMA) file format has similar copy 

protection features. 

[Lee 2003] estimates that after the downfall of the original (free) Napster 

service, more then 50 other systems has taken its place. 

50 


 
 
 



 
 
 



 
 
 



It seems that there is currently no effective mechanism for automatically 

discovering the initial address of an existing node on a peer-to-peer netwOlk. 

TIlls process is also known as the bootstrap mechanism. An effective 

bootstrap mechanism should not rely on the client having to know the 

address of a cache or other server. The mechanism should also not rely on a 

centralized approach. Further research in this regard is needed 

Once the address of another node on the network is known, a CONNECT 

request message is sent to the node. The node replies with an ACCEPT or 

REJECT message. The connection can be rejected for a variety of reasons 

such as: the maximum number of allowed connections is exceeded or the 

node uses a different, incompatible protocol version. 

----. PING 

• PONG 

Figure 12; Gnutella automatic node discovery 
mechanism 

Once the node successfully attached to another node it can continue the node 

discovery mechanism by sending PING messages to its attached nodes. Each 

node receiving the PING message will reply with a PONG message and 

forward the PING message to all of its attached nodes. The PING message 

(like all other messages) has a TIL (time to live), which is decremented at 

each node and therefore prevents endless loops. 

53 

 
 
 



A PONG message is sent in response to a PING message. The PONG 

message contains the address of a connected node as well as the amoWlt of 

data shared by that node. Multiple PONG messages can be sent in response 

to a single PING message, which allows a node to send cached node address 

information. 

7.3. Content discovery 

X ------Jo> QUERY 

f " 'e! ............ ~ QUERYHIT 


~~ 
Figure 13: Gnutella content discovery 

mechanism 

The Gnutella netwom can share any file type. Content is discovered by 

utilizing a distributed search algorithm. A node starts the search process by 

sending a QUERY message to its attached nodes. The QUERY message 

contains a minimum SfXHl and a searrh oiteria field The query message 

propagates through the netwom in the same way as the PING messages, Wltil 

the TIL field expires. 

Upon receiving a QUERY message, each node searches its local store to 

determine whether it contains a matching flle. The process by which the sean:h 

criteria field is matched with files in the local store is not specified by the 

protocoL Most client implementations search for file names that closely 

match the search criteria fields, while others also search meta-data such as the 

ID3 tags of MP3 files. If a match is foWld, the node responds with a 

QUERYl-ITT message. A node should only respond with a QUERYl-ITT 

54 


 
 
 



message if its bandwidth is greater than the minimum sfX:Hl field dictated in the 

QUERY message. QUERYHIT messages are routed along the same path 

that it was received by. 

7.4. Content retrieval 

The QUERYHIT message contains: the address of the node that hosts the 

content, a unique ID, the file size and the file name of the matching file. Files 

are downloaded via the I-ITTI> protocol. The node sends an HTTP GET 

request directly to the node containing the file. Downloads therefore occur 

directly between the sending and receiving nodes and are not routed through 

the network as is the case with the other messages. 

o 

HTTPGET 

---- Connected nodes 

File Transfer 

Figure 14: Gnutella content retrieval 
mechanism 

The Gnutella protocol also entails a mechanism that allows for firewalled 

nodes to participate in file exchanges. Nodes behind a fIrewall cannot usually 

accept incoming HTTP connections (port 80) from outside; they can only 

initiate HTTP connections to the outside world Gnutella nodes that want to 

retrieve files from a firewalled node can send a PUSH message to a firewalled 

node. The PUSH message includes the file ID and the address of the node 

that wants to "pull" data. The firewalled node can then initiate a direct HTTP 

connection with the sender of the PUSH message from within the fIrewall. 

55 


 
 
 



7.5. Content publishing and storage 

Any user can publish content in the Gnutella network by placing it inside a 

directOIy that is shared for the network. Each user has control over the 

content on his drive and has full knowledge of what is stored on his node. 

Files are saved in the usual way in the file system. Files are not specially 

encrypted or compressed for the Gnutella network. 

Because there is no inherent use of meta-data to ease content discovety, the 

Gnutella network relies on the use of descriptive filenames. 

7.6. Discussion 

Many people believe that peer-to-peer networks like Gnutella cannot be 

stopped, because they do not rely on a central server. The Gnutella network is 

however not vety tolerant towards misbehaving nodes. A misbehaving node 

can be specifically crafted to disrupt the network. Misbehaving nodes can be 

introduced by organizations concerned with the distribution of spurious 

content, such as copyrighted material and otherwise objective content. Such 

an attack has been suggested by [M:ediaDefender], which also launched similar 

attacks against the Napster network. 

Unlike Napster, the Gnutella network does not rely on a single server for its 

operation and survival. The initial node discovety mechanism is 

complemented by a centralized approach, but the survival of the network 

does not depend on it. Gnutella is an example of a true decentralized peer-to­

peer network. This makes the network highly fault tolerant, scalable and 

survivable. 

A virus called "W32/Gnuman Wonn" (also known as Mandragore) has been 

reported [Edwards 2001] which specifically targeted users of the Gnutella 

network. This is the first malicious code known to the author to specifically 

target peer-to-peer networks. Fortunately the Gnuman wonn did not include 

a destructive payload. The Gnuman wonn points out the vulnerability of 

56 


 
 
 



existing peer-to-peer systems and the importance of security in peer-to-peer 

system design. 

The Gnutella network is a very active and dynamic network. Studies [Ripeanu 

et al 2002] have shown that 40% of all nodes leave the network within four 

hours and only 25% of the nodes remain active for more than 24 hours. In a 

period of seven months the network has grown 25 fold 

The Gnutella network has been criticized for the large amounts of network 

traffic that it generates. Research done by [Ripeanu et al 2002] estimate that 

the Gnutel1a network generated 330 terra-bytes of traffic (excluding file 

transfers) in December 2000. This would account for 1.7% of all traffic over 

the U.S. Internet backbone during this period. 

There is no security and anonymity built mto the Gnutel1a network. 

Researchers [Ripeanu et al 2002] were easily able to extract topology and 

other information from the Gnutella network by developing a simple network 

crawler. This further demonstrated that the Gnutel1a network is extremely 

vulnerable to various attacks. 

57 


 
 
 



Chapter 8 

8.FREENET 

8.1. Introduction 

Freenet is another example of a true decentralized peer-to-peer network and it 

is a very promising system. It provides a global distributed storage system 

with very unique properties, such as anonymity, authenticity and integrity. In 

practice, however, the current design and reference implementation does not 

perform very well and is not as useful as other systems, such as Napster and 

Gnutella. 

Ian Clarke fIrst invented Freenet in 1999, while still an undergraduate student 

at the University of Edinburgh. Freenet is further developed and maintained 

by the "Freenet Project Inc" [FreenetProject], an open source initiative. 

Freenet is a work in progress that is still in its early beta stages of 

implementation. This study focuses on the version that was available and 

stable at the time of study, which is version 0.3. 

The Freenet system was designed with the following goals in mind; 

• 	 The system should have no element of centralized control or 

administration. 

• 	 To protect the privacy and anonymity of information producers, 

consumers and holders. 

• 	 To provide global data storage that can survIve many potential 

threats. 

58 

 
 
 



 
 
 



then discover additional nodes by sending node discovery requests to the 

connected node. The node can then reply with details of other nodes that 

were previously discovered. 

~..--... Connected nodes 

Figure 16: Freenet automatic node discovery 
mechanism 

To ease the process of the initial node discovery, the verSion 0.3 

implementation keeps a central list of available nodes. When a node starts up, 

it sends its details to the (known) server and in exchange receives the details 

of another node from the server. 

8.3. Content discovery 

All content on the Freenet network is identified by unique keys. The user 

needs to know the key of the content he wishes to retrieve. The key must be 

found by means such as word-of-mouth, email, web sites and news groups. 

There is currently no content search mechanism built into the system, which 

means that the user cannot search for content keys. 

There are currently two main types of keys defmed 

• 	 Ontent Hash Key (CHK) - Each document contains a CHK. The CHK 

is a low-level data storage key, which is generated by performing a 

hash function over the contents of the file. This mechanism has the 

60 

 
 
 



advantage that similar documents put into the network by different 

users will be automatically coalesced, since each user will calculate the 

same key. Another advantage is that the integrity of a file can be easily 

verified against its CHK. The user can therefore be certain that the 

file will contain the intended content and that it has not been 

tampered with. The hashing function used is SHA-1 secure hashes. 

SHA-1 collisions are considered nearly impossible. Therefore it can be 

assumed that each unique document will have a unique CHK key. 

• 	 Signal S~ Keys (SSK) - These keys are used to set up a personal 

namespace that anyone can read but only the owner can write to. This 

is achieved by utilizing public/private key cryptography and user­

readable names. The SSK is generated by first hashing the private key 

and friendly description independently. The results are then hashed 

together. SSKs are typically used to store indirect files, which contain 

pointers to CHKs, rather than storing the data itself. The advantage 

of SSKs is that they facilitate trust by guaranteeing that the same 

pseudonymous person created all flies in the subspace. 

8.4. Content retrieval 

/~ .., CHK request 

CHK request ~ B 'J.------- r \ 
/'" ~ '\" J ~,-j I/ "-~/. 	 D \ 

/~~ ,/', \,,-J 
( 	 A J File transfer 
\~... File transfer 

---- Connected nodes 

Figure 17: Freenet content retrieval 
mechanism 

61 


 
 
 



When the user wants to retrieve content, he first looks up the key in his local 

data store. Unlike Gnutella, a Freenet node does not blindly forward requests 

to all of its connected nodes. If the key does not exist locally, he sends a 

request to the neighboring peer who is most likely to have the content. This is 

determined by examining the nodes' routing table for a node with the closest 

matching key. Upon receiving the request each node in tum looks for the key 

in its own data store and forwards the request to its most likely neighbor if it 

does not exist in the local store, until the content is discovered at a node. 

Each message has a unique ID (randomly generated by the initiating node) 

and each node keeps track of the message ID together with where the 

message originated from and whereto the message was sent. This information 

is used to prevent message loops. If a node discovers a loop (receives a 

message it already forwarded), it will initiate a backtrack message and 

subsequent nodes will try to forward the message to the second-best node 

that is likely to have the content. 

Once the content is found at a node it is sent back via the same route that the 

original request came from. Each node sends the response back to the node 

where it received the request, updating its routing table with the ID of the 

content holder. When a node receives the response he might also save a copy 

of the data in its local data store. This allows for the data to be moved and 

replicated through the network. 

An important property of this mechanism is that no node is aware of who the 

original initiator was. There is no way for a node to figure out if the 

requesting node is the originator or just merely relaying the request on behalf 

of another node. All communications between nodes are also encrypted using 

publici private key cryptography. 

62 


 
 
 



8.5. Content publishing 

Insert request 
File transfer Insert request 

File transfer 

D 

~--~--~~ Connected nodes 

Figure 18: Freenet content publishing 
mechanismure 

All nodes have the ability to add content to the network The node first 

generates a hash key (CHK) of the content he would like to add to the 

network Optionally a friendlier descriptive key (KSK or SSK) can be 

generated. An insert request with a small 1TL value is then sent to 

neighboring nodes. The insert request propagates through the netwOIk the 

same way in which a retrieval request would., until the 1TL expires. The data 

is then sent and stored in multiple nodes along this path. Content with near­

similar keys will therefore be clustered at the same nodes and the routing 

algorithm can therefore determine where content are likely to be located. 

There is no way for a node to figure out if the request was received from the 

originator or from a node that was merely relaying it on behalf of another 

node. This property gives the content publisher the same anonymity as the 

content consumer. 

8.6. Content storage 

There is no central storage location. The content is distributed among 

different nodes. Each node can decide how much disk space it would like to 

contribute to the network 

63 

 
 
 



The storage is called a data store and is organized as a finite stack. New data is 

pushed on top of the stack. When the stack gets full, the least used data 

(detennined by the number of requests) gets deleted from the stack to make 

space for the new data. Unlike other systems, such as OceanStore [Rhea et al 

2001], Freenet does not explicitly tty to guarantee permanent data storage. 

Because disk space is finite, a tradeoff exists between publishing new 

documents and preserving old ones. It is however anticipated [Clarke et al 

2002] that Freenet will eventually attract sufficient resources from participants 

to preserve most files indefinitely. 

'This mechanism has the effect of tending to move data across the network to 

locations where there is a greater demand for it. Content in high demand will 

also be replicated more frequently across the network, causing an inherent 

load balancing mechanism. 

Freenet makes it hard to discover exactly which node stores which files. A 

node does not have any knowledge of what is stored in its data store. This is 

achieved by encrypting the data store. The encryption keys can be distributed 

along with the CHK keys. The owner of the node could therefore not be 

held responsible for the content saved in his data store. 

8.7. Discussion 

The current initial node discovery mechanism needs further investigation. It 

would be helpful if there could be an automated or transparent way of 

discovering the initial node. The temporary centralized solution is undesirable, 

because it introduces a central point of control, failure, administration or 

attack. 

Although systems like Napster and Gnutella do not explicitly replicate and 

move information throughout the network, the way they are used does have 

the same effect. When people download information from the network, they 

store it on their local hard drives and share it with other clients. Although 

64 


 
 
 



anonymity is not as good as in the Freenet network, Napster and Gnutella 

also has the property that makes it difficult to figure out who originally put 

the content onto the network 

The efficiency of current peer-to-peer networks, especially the Freenet 

network, depends on the network having sufficient permanent nodes. 

Transient nodes (nodes that join and leave the network frequently) are not 

vetywell supported by Freenet. 

The first implementations of Freenet relied on a manual (human) process for 

discovering an initial node. The address of a node needs to be discovered by 

word-of-mouth or from web sites, mailing lists etc. Version 0.4 includes a 

node announcement mechanism that allows nodes to find each other through 

a list of seed nodes. 

The network is non-deterministic. There is no guarantee that a user will be 

able to retrieve content that exists in the network This will depend on the 

proximity of the data relative to the requesting node. 

An interesting feature of the current reference implementation of Freenet is 

the existence of a web conduit called Fproxy. The Fproxy client provides the 

user with a familiar web-based user interface. The web interface is provided 

by a local web server (the conduit), which also implements the Freenet 

protocol and connects to the Freenet network. A similar conduit technique 

can possibly be used to extend Freenet to mobile devices in the future. 

Many of the claimed benefits that the Freenet design might have are based on 

the assumption that connected nodes are close to each other. For instance, 

the phenomenon that data moves to high demand areas assumes that these 

nodes are close to each other. With the current node discovety mechanism 

this is not the case. A node to connect to is randomly selected from the 

65 


 
 
 



advertising server, irrespective of its proximity to the requesting client. The 

word-of-mouth method has the same problem. 

The benefits of the distributed decentralized nature of the Freenet network 

surely came at a cost - bandwidth. The perceived perfonnance of the current 

Freenet implementation is vel)' poor for users connected via standard 

modems. This is due to the increased bandwidth requirements, which are 

imposed by the employed distributed algorithms. The increased availability of 

faster Internet connection like cable modems and DSL connections should 

partly solve this problem. The Internet2 project also promises to provide 

users with a significant bandwidth increase in the future. 

Disadvantages and challenges: 

• 	 Each node has to process and relay the requests of other nodes, 

which means that bandwidth and processing power are used on each 

node for data that it did not request. 

• 	 Each node has to save data on its hard drive which other nodes 

requested and which it is not interested in. 

• 	 Messages have to propagate through different nodes (hops) in the 

network before reaching its destination. In a system like Napster the 

client knows which peer contains the required infonnation and can 

directly connect to it. Simulations of the Freenet network done by 

[Clarke et al 2002] however suggested that on average, it would take 

only 2.7 hops to reach the destination node. 

• 	 There is currently no mechanism to control the amount of storage 

space consumed by the network on each node's hard drive. 

66 

 
 
 



• Freenet is not yet searchable. Content is only retrieved by means of a 

key. 

• The current implementation of Freenet does not take the size of 

docmnents into account. A single large file might displace multiple 

smaller files in the case of a full data store stack. Current 

implementation relies on external indexing and searching 

mechanisms, much like the way in which the web works. 

• Although SSK keys provide the potential for authors to update their 

files, it has not yet been implemented The challenge still remains to 

devise a mechanism to ensure that all old copies get replaced 

67 


 
 
 



Chapter 9 

9. A COMPARISON BETWEEN NAPSTER, GNUTELLA AND 
FREENET 

9.1. Introduction 

In the previous chapters the Napster, Gnutella and Freenet networks were 

discussed in terms of node discovery, content discovery, content retrieval, 

content publishing and content storage mechanisms. In this chapter these 

systems are compared by discussing some additional important differences. 

9.2. Content search criteria 

The search criteria mechanism makes it easy for the user to search for specific 

content that he is interested in. Napster is the only network with a good 

content search criteria mechanism. This is done through the metaclata ID3 

tags. 

Gnutella only allows the user to search on ftle names. This is not a good 

mechanism, because filenames do not reveal anything about the actual 

content. It does not work too badly in practice though, because users have 

learned to give their ftlenames descriptive names and include extra search 

keywords in the fIlename. 

Freenet, although superior to the other networks in many regards, does not 

(currently) even have a search mechanism. 

9.3. Connection search criteria 

The connection search criteria allow the user to fIlter the search results 

according to properties of the connection on which the content resides. 

68 


 
 
 



Napster allows the user to specify both connection speed/type and ping times 

as criteria. However, the connection speed/type is manually specified by each 

user when the Napster software is installed and can therefore be incorrect. 

For example: Many people with broadband connections (such as ADSL and 

cable modem) deliberately specify to the system that they only have a 33,6Kb 

dialup connection. This will reduce the amount of traffic to their nodes 

because no one wants to download files from slow connections. PING 

criteria are a better mechanism. PING messages are sent to the nodes listed in 

the search results and the user can take decisions depending on PING times. 

The Gnutella network provides much the same connection criteria as 

Napster. The Freenet network does not have any knowledge of connection 

speed All nodes are treated equally, regardless of connection speed. 

9.4. Supported ftle types 

The Napster service only allows for sharing of MP3 music files. Gnutella and 

Freenet allows for sharing any file type. None of the systems has any limit on 

the fIle sizes that can be shared (except for the usual OS file system limits). 

9.5. Routing 

There is no routing of messages in the Napster network. All communications 

are directly between a node and the server or between two nodes. There is no 

concept of forwarding or routing messages on behalf of other nodes. 

Gnutella has a logical routing network. All messages are forwarded to all 

connected nodes until the TIL of the message expires. Response messages 

are routed back the same path as the request. 

The routing mechanism of Freenet is more efficient than that of Gnutella, 

because messages are forwarded to the nodes that are most likely to satisfy the 

request. Response messages are routed back the same path as the request. 

69 


 
 
 



9.6. File download 

With Napster, files are downloaded directly from the node containing the file, 

using a proprietary port and protocol. With Gnutella, files are also 

downloaded directly from the node containing the fue, but the standard 

HITP port and protocol are used instead This makes it easier to 

communicate via proxy servers or firewalls. 

Freenet operates vel)'" differently: Files to be downloaded are routed back 

through the network along the path it was discovered. Each passing node 

might choose to cache the file. A proprietaty port and protocol are used. 

9.7. Anonymity 

The Napster and Gnutella networks cannot guarantee the anonymity for 

content publishers, subscribers and distributors. These networks do not even 

attempt to provide anonymity. With Freenet the identity of content 

producers, consumers and holders are kept anonymous. This is accomplished 

by ctyptographic and (interesting) routing techniques. 

9.8. Source code 

Napster is a commercial effort owned by a single company and the source 

code is therefore not available. Napster only runs on the Windows and 

Macintosh platform. 

Gnutella is an open protocol specification for which there are many 

implementations. Some implementations are open source and some are 

commercial and they are implemented in various languages and on various 

platforms. Detailed protocol specifications are therefore available as well as 

the source code for many different implementations. 

Freenet is an open source project which is coordinated by a single 

organization. It is implemented in Java and therefore runs on any platform 

70 


 
 
 



with a Java Vinua! Machine. The protocol specification and source code are 

therefore also available. 

9.9. Computing model 


Napster is a centralized system. The operation of the system depends entirely 


on the availability of the central services. Gnutella is a completely 


decentralized system. The netwOlk can survive and operate without any 


central services. Freenet is a hybrid network. It is essentially a decentralized 


system and can survive and operate without central services, but it is 


complemented by centralized services. 


9.10. Summary 


The following table summarizes the characteristics of the different peer-to­


peer networks that were studied. 


Characteristic Napster Gnutella Freenet 

Content search 
 Detailed search Filenames None. Only way to I 
criteria cntena on ID3 retrieve content is by : 

metadata, including its CHK, which can i 
artist, title, recording optionally be • 
bitrate and Iobtained from its 
frequency. SSK.I i 

• Connection search Connection speed None.Connection speed I 

I criteria . and ping times 

SU2POrted me types 
 MP3 music files only Any file type Any file type 

Routing 
 None. All messages are Messages are 

forwarded to all forwarded to the 
connected nodes nodes that are most 
until the TIL of the likely to satisfy the 
message expIres. request. Response 
Response messages messages are routed 
are routed back the back the same path 
same path as the as the request. 
request. 


File download 

I 

Files are Files are downloaded Files to be 
downloaded directly directly from the downloaded are 
from the node node containing the routed back through 
containing the file, file, usmg the network along the 
using a proprietary standard HITP port path it was 
port and protocol. and protocol discovered. Each 

passing node might 
choose to cache the 
file. A proprietary 
port and protocolI 

71 


 
 
 



are used. 
i Anonymity None None Identity of content 

producers, 
consumers and 
holders are kept 
anonymous. 

! Source code O:>mmercial. Open protocol Open protocol and 
specification. Many source code 
open source projects. developed by single 

. O:>mmercial clients : organization. 
also available. i 

i o:>mputing model Centralized Decentralized Hybrid 

72 


 
 
 



Chapter 10 

10. OrnER PEER-TO-PEER INITIATIVES 

10.1. Introduction 

This chapter briefly presents other peer-to-peer projects and initiatives known 

to the author. These projects are mentioned here to indicate the vast amount 

of research that is currently under way and the growing field of applications 

for peer-to-peer systems. 

10.2. Project JXTA 

The ]XfA Guxtapose) project is an Open Source initiative initiated and 

coordinated by Sun's chief scientist, Bill Joy. The aim is to create a framework 

that will ease the development of distributed service, which is interoperable 

and available to any peer on the expanded Web. The project is discussed in 

more detail by [Gong 2001]. 

Current peer-to-peer applications such as SETI, Napster, Gnutella and 

Freenet have the following shortcomings: 

• 	 Address a single function. Gnutella can only be used for file sharing 

and SETI can only be used to search for green men from other 

planets. 

• 	 Unable to share data between each other. There is no way that a 

Gnutella client can (seamlessly) integrate with a Freenet client, 

although both systems provide file-sharing services. 

73 


 
 
 



• 	 Systems are developed to function only on specific platfonns. Napster 

can only run on WinTel and Macs. There is no easy way for a Napster 

client to run on a 3G cell phone or a web-enabled toaster. 

Project ]XT A was born to address these and other issues. 

The project is generalizing peer-to-peer functionality and focuses on creating 

basic mechanisms, while leaving the policy choices to application developers. 

]XTA leverage existing technologies such as Java and X1v:1L. The framework 

only specifies communication protocols (in XML) and is therefore language 

independent. Currently there is both a Java and c++ implementation. 

The ]XTA core provides the following mechanisms, which can be used to 

provide peer-to-peer services and applications: 

• 	 Peer groups - ]XT A introduces the concept of peer groups, which 

allows users with similar interests to be grouped together. 

Mechanisms are defmed to create, delete, advertise, find, join and 

leave peer groups. 

• 	 Peer pip;s - Pipes provide communication channels among peers. 

Messages sent in pipes are structured with X1v:1L. A pipe is 

unidirectional, but two pipes can be used together to provide a bi­

directional communication channel. 

• 	 Peermmitoring - Enables control of the behavior and activity of peers. 

These mechanisms can be used for management and maintenance 

functions such as access controL prioritization and load balancing. 

Besides the core mechanisms, the framework also defines]XTA services that 

sit on top of the core. These include mechanisms for searching, indexing, 

sharing and caching. 

74 

 
 
 



Part of the ]XT A project is the development of a connnand line shell. The 

]XT A shell functions much the same way as a Unix shell. The shell can be 

used to access and experiment with the functionality provided by the core and 

other services. 

It should be possible to modify and implement current peer-to-peer networks 

like Napster, Gnutella and Freenet using the ]XTA framework. The 

advantage would be greater inter-operability among these networks, easier 

development and deployment across a greater variety of devices. 

Project]XTA also extends to wireless and mobile devices. JXME is a project 

aimed at providing ]XT A functionality on J2ME devices, such as cell phones 

and PDA's (CLOC/MIDP). These devices typically have very limited 

capabilities. The]XTA project overcomes these limitations by introducing a 

]XT A relay agent. The relay peer is the one that is actually participating in the 

P2P network on behalf of one or more mobile devices. 

10.3. OceanStore 

OceanStore is a very interesting content publishing system, which is part of 

the Globe project [Rhea et al200l]. Content is hashed and broken into small 

fragments, which are distributed among peer servers. Hashing gives it the 

ability to identify content uniquely and to reconstruct the original content 

from the fragments. Content are read-only once it is placed in the system. 

Subsequent updates are versioned. The idea is to have a persistent global 

archive of content. 

lOA. SETI@home 

SET! (Search for Extraterrestrial Intelligence) is a scientific effort seeking to 

detennine whether there is intelligent life outside Earth. SETI processes large 

amounts of data collected from a radio telescope, by utilizing donated CPU 

cycles on thousands of computers connected to the Internet. The project 

homepage can be found at [Seti]. 

75 


 
 
 



10.5. Entropia 

Entropia is a commercial system that rents out processing power to its clients. 

The processing power is obtained through a peer-to-peer netwOlk of hosts 

that contributes otherwise wasted CPU cycles. Some of the time is donated to 

research projects. The Entropia business model is questionable [Delaney 

2001] because there does not seem to be any real motivation for clients to 

donate CPU cycles to the network. The project homepage can be found at 

[Entropia]. 

10.6. Gnougat 

Gnougat is an experimental decentralized system for demand-based 

distribution of static content [Faybishenko and Kan 2002]. The goal of the 

project is to improve on the Gnutella protocol by providing a content­

centered approach, instead of a metadata centered approach. Gnougat 

improves performance by taking advantage of the uniqueness (using hashes) 

and fluidity (using chunks) properties of content. 

Content in the Gnougat system is identified by a hash of the content. This 

enables the system to identify equal content (similar content will produce the 

same hash results). The Gnougat project tries to prove that the system can do 

much more to optimize itself if the uniqueness of content is easily discemable. 

Unlike most other systems, Gnougat does not require the user to specify his 

connection speed or quality. Gnougat uses an application layer packetization 

mechanism to detect the quality of network connections. Lossy connections 

are dropped while lossless connections are maintained. 

Content is also broken up into manageable pieces, called chunks. Descriptor 

files contain the metadata describing the original file (name, description, 

keywords etc.) as well as the list of hash keys identifying all the chunks that 

can be used to reconstruct the original file. The chunk sizes are fixed in order 

76 


 
 
 



to ensure that different hosts calculate the same list of hashes for the same 

content. 

The routing and broadcasting in Gnougat are similar to Gnutella. Currently 

Gnougat does not have any bootstrap or auto discovery mechanism (such as 

PING in Gnutella). 

There are two kinds of query messages: text query (to discover content 

descriptors) and hash query (to discover content chunks). The amount of text 

query messages is reduced by aggressively caching descriptors based on 

demand (text query hits). Network traffic due to hash searches is also reduced 

by caching frequently requested chunks. Performance is further enhanced by 

downloading file chunks in parallel from multiple chunk providers. 

77 


 
 
 



Chapter 11 

11. CHALLENGES 


11.1. Introduction 

This chapter discusses the challenges that need to be overcome if peer-to-peer 

applications are to be widely adopted. 

11.2. Minimizing the distance between connected nodes 

The traditional client/server model usually involved communication between 

the low bandwidth edge of the Internet (where clients are located) and the 

high bandwidth core of the Internet (where servers are located). The peer-to­

peer model usually involves communication from edge to edge, since end user 

peers are usually located at the edge of the Internet. This can enhance or 

decrease performance, depending on the proximity of the connected peers. A 

challenge in the peer-to-peer model is therefore to minimize the distance 

between connected peers. 

Studies performed on the Gnutella network [Ripeanu et al 2002] have 

suggested that the current mechanisms that determine the Gnutella network 

topology are highly inefficient. The study demonstrated that the topology of 

the overlay Gnutella network does not match vel)'" well with the topology of 

the physical Internet. 

A big challenge is how to determine the distance between two nodes. The 

following are some possibilities: 

78 


 
 
 



11.2.1. Geagraphic Ia:at:Wn 

Geographic location indicates the physical distance (measured perhaps in 

miles) between the nodes. Nodes that are geographically close can prevent 

Internet backbone and cross-Adantic communications. However, geographic 

location might not give any indication of the performance Qatency and 

bandwidth) of the connection. Two geographically close nodes might be 

connected via a satellite connection, which incurs a large latency. A high 

bandwidth node (DSL connection) might be connected to a geographically 

close low bandwidth node (56K connection), effectively slowing down the 

high bandwidth node. 

11.2.2. Hop count 

The hop cOlmt indicates the number of hops (routers) which store and 

forward packets between the sending and receiving nodes. The hop count 

gives an indication of how many networks are between the two nodes. It 

might be intuitive to think that more networks will increase latency and 

decrease bandwidth and are therefore a good measure. This depends, 

however, on the infrastructure of the networks that is traversed. Networks in 

the core of the Internet are, for example, faster than networks at the edge. 

The same amount of hops in the core will be traversed with less latency and 

more bandwidth than the same amount of hops at the edge. 

11.2.3. Latency 

Latency is an indication of the delay (amount of milliseconds) that it takes for 

a packet to detour between two communicating nodes. The latency can be a 

good measure of distance. However, although the latency might be low 

between two nodes, the bandwidth might also be low and therefore not 

appropriate. 

11.2.4. Bandwidth 

This is the data transfer speed (throughput) between two communicating 

nodes, measured in Kbps. Although the bandwidth between two nodes might 

79 


 
 
 



be high, there might still be a large latency. The latency might not be 

appropriate for some applications such as Internet telephony. 

11.2.5. User interest 

If users with the same interests are connected together, it might improve the 

overall performance of the network. Search matches will be resolved faster 

and will have to traverse fewer hops. 

A common problem with all of these measures is that none of them are 

constant and that they tend to change dynamically. The geographic location 

of a mobile Internet device can change while connected, for example, a WAP 

enabled cell phone. The networks through which packets are routed, and 

therefore the hop count, changes dynamically as routers adapt to changing 

network conditions. The latency and bandwidth depends on the ever-available 

network traffic along the routed path, which is characterized by a Poison 

distribution. 

It seems that the ultimate method of determining the distance between two 

nodes would be to take all five of the mentioned factors into account. 

Furthermore, this process should be dynamic to adapt to the dynamic change 

in distance. Peer-to-peer networks should actively tty to discover closer 

nodes, but this process should by itself not incur too much overhead. 

11.3. Initial node discovery 

The biggest challenge for P2P systems according to [Clark 2001] is to enable 

devices to find one another in a computing model that lacks a central server. 

An ideal initial node discovery mechanism should be able to satisfy the 

following properties: 

80 


 
 
 



• 	 Discover the initial node without any human intervention. The user 

should not be required to supply the system with the address of a 

node manually. 

• 	 The client should not rely on the existence of a specific server. The IF 

address of a node cache server should therefore not be hard coded 

into the system. The system should therefore be able to SurvIve 

without reliance on any specific server. 

Current systems can only satisfy one of the above criteri~ but not both at the 

same time. It seems that the only way to satisfy both criteria would be to use 

some sort of broadcast discovery mechanism. 

Broadcast protocols are currently not very practical for use on the Internet. 

The Internet is a very large-scale network and it is impractical to broadcast 

discovery requests to every node on the Internet. Current routing protocols 

do not forward broadcast requests to its connected networks. Broadcast 

requests are only confmed to the network where they originated from. 

Internet multicast might be an alternative to explore, although it seems that 

multicast messages would require the node to know a specific multicast 

address, which defeats the purpose. 

11.4. Sustainable participation 

Another challenge is to motivate users to join the peer-to-peer network and 

use it over a long period of time. The usability of most P2P networks 

increases with the amount of active users/peers. It is therefore crucial that a 

P2P application attracts as many peers as possible and to sustain a large 

amount of users. 

The following types of participation can be distinguished: 

81 


 
 
 



• 	 Voluntary participation - The users of the P2P application decide if 

and when they want to join and leave the network. The sustainability 

of the P2P application depends on the willingness of the peers to 

patticipate in the network 

• 	 Enforced patticipation - The user is forced to patticipate in a P2P 

network, or the user is unaware of the fact that he is patticipating in a 

network. This type of scenario might be found in future operating 

system services/daemons: background processes that perfonn tasks 

by utilizing a P2P network which is transparent to the user. 

Sustainability is therefore enforced by the system. 

P2P applications require peers to donate some of their resources, such as 

bandwidth, content, storage capacity and computing cycles, towards the P2P 

network Users are typically reluctant to share their precious resources, unless 

they receive some benefit or incentive for their effort. In content sharing 

applications the benefit is that a user has access to a much greater repositOlY 

of content (usually for free) than what would be available to him without 

patticipating in the network 

11.5. High bandwidth demand 

Decentralized P2P applications place a high demand on bandwidth resources 

due to the overlay routing architecture. Each host acts as a router and is 

required to relay/forward messages and content on behalf of other hosts. If 

we assume that there is a cost associated with bandwidth usage, then a user 

will be paying for a lot of bandwidth usage which is none of his concern. The 

bandwidth is therefore said to be "donated" to the P2P network 

Bandwidth is not the only resource donated to the network Other resources 

such as storage space and CPU cycles are also donated as mentioned in the 

previous section. Bandwidth is, however, a special concern to any Intemet­

based application, because of its general shortage and cost. 

82 


 
 
 



Simple decentraIized search algorithms, such as those used in the Gnutella 

network can be extremely bandwidth intensive. Search request messages are 

typically forwarded to all connected nodes at each peer. An interesting 

decentraIized algorithm that resolves this problem is discussed by [Aberer et 

al2002]. The algorithm is based on a P-Grid approach and is implemented in 

a Gnutella-style P2P system called Gridella. Simulations done on Gridella 

show that P2P performance can be significantly improved by the use of 

proper search methods. 

11.6. Firewalls 

A firewall is a hardware device or a software program that protects an 

organizations intemal network from security threats on the Internet [Schneier 

2000]. This task is usually performed by restricting packets that go in and out 

of the organization's network. Most firewalls today are configured by closing 

all ports by default and only open up ports for essential Internet services such 

as World Wide Web (HITP protocol on TCP port 80) and email (SMfP 

protocol on TCP port 23). 

Peer-to-peer applications are Internet based and therefore peers communicate 

to each other through a TCP port. Firewalls cause a problem because most 

organizations block all ports other than email and web traffic. New Internet 

services, such as peer-to-peer applications, require a new application-level 

communication protocol and therefore a new TCP or UDP port. 

One way to solve this problem is to require firewall administrators to 

configure their frrewalls to allow traffic on a new port. There is currently no 

standard peer-to-peer communications protocol. Each P2P application 

utilizes its own protocols and therefore requires its own ports. Project]XTA 

aims to alleviate this problem by defining a generic framework and protocols. 

But you still have to convince all frrewall administrators to open the required 

port, which will not happen unless the P2P service becomes widely adopted. 

83 


 
 
 



Another solution is to tunnel the P2P communications over HffP, which is 

(almost) never blocked New technologies such as Xl\1L-based SOAP (Simple 

Object Access Protoco~ provide a convenient API for distributed 

communication via HffP and therefore through current firewall 

configurations. 

11.7. Service guarantees 

Peer-to-peer systems are not as deterministic as client/server systems. Peer­

to-peer systems can rather be described as probabilistic. The availability and 

quantity of resources and services depends on the current state of the 

network. Usually the value of the network and the service it provides 

increases as the amount of connected peers increases. This is because each 

peer donates additional resources to the network. The availability of any 

specific resource can therefore not be guaranteed 

The solution could be to design P2P systems in such a way that they provide a 

statistical guarantee, in other words that the probability of a resource being 

present is high enough to be acceptable to the user. Research in this regard 

has been conducted for the OceanStore system [Kubiatowicz 2003]. 

11.8. Political and social concerns 

The challenges faced by peer-to-peer systems are not always just technical 

issues. VariOllS political and social concerns are pointed out by [Agre 2003]. 

P2P systems like Freenet aim to be immune against censorship, monopoly, 

regulation and other instances of centralized authority. Although these goals 

might be technically possible the question remains if it would be politically 

and socially acceptable. The use of technology for committing crime is always 

a big concern to authorities and they would tty to prevent such use or at least 

ensure that they will be able to control it. 

84 


 
 
 



11.9. Forward compatibility 

Backward compatibility is easy to achieve, because you just need to ensure 

that the new version of your software still works with the old data fonnat. 

FOf'W'ard compatibility is more challenging, because you have to ensure that 

your current software will work with the future data formats which are 

currently unknown. 

One interesting aspect of the World Wide Web that was pointed out by 

[Connolly 1998] is that web browsers are fairly fOf'W'ard-compatible. New 

I-ITMLweb pages will still work with old browsers. You might not experience 

all the bells and whistles of the new pages, but the basics will still be viewable. 

It is for example even possible to view some modem XML-based web pages 

in an old Netscape 1.1 browser. The W3C specifically designed HfML to be 

backward and fOf'W'ard compatible because they do not have control over the 

browser versions that is used by the clients. You cannot instantaneously 

upgrade all the browsers on the Internet to the latest version when a website 

with new I-ITML features is released. 

This compatibility problem also anses with differences in browser 

implementation and platfonns (Netscape on Linux vs. Internet Explorer on 

Wmdows) even though they claim to support the same HTML standards. We 

proposed a few solutions to this problem in [Danzfuss and Bishop 1999]. 

The same principle is valid for large scale P2P systems. Users will participate 

in a P2P system with various versions of the P2P client software. P2P 

protocols should therefore be designed in such a way that they are expandable 

and that they will still work in the future. 

85 


 
 
 



Chapter 12 

12. IMPLENTING P2P ON CONSTRAINT MOBILE DEVICES 

12.1. Introduction 

In this chapter the author will attempt to implement a typical peer-to-peer 

application on mobile devices with limited capabilities. The unique challenges, 

attributes and possibilities of P2P on mobile devices are explored 

Most current research efforts have focused on peer-to-peer applications for 

desktop computers, therefore eliminating server infrastructure. The author 

attempts to take P2P to the next level by also eliminating desktop computers. 

This is believed to be a natural evolution of P2P which is in line with market 

trends. In the near furure there might be more mobile computing devices 

than desktop computers (most probably in the form of cell phones). 

12.2. Motivation 

The following points summarize the motivation for implementing a mobile 

P2P application: 

• 	 In the near future there might be more mobile devices than 

computing devices, due to the evolution and increased capabilities of 

devices such as cell phones. 

• 	 Mobile computing devices are less expenSIve than a full-blown 

desktop computer and are therefore accessible to a wider audience. 

• 	 Not much research has been done in the field of mobile peer-to-peer 

computIng. 

86 


 
 
 



• 	 A mobile device is more "personal" than a Personal Computer (PC), 

because the user can easily cany it and always have it with him. This is 

ideal for P2P applications that facilitate collaboration, because the 

P2P application is more readily available to the end user. 

Research efforts by [Lienhart et al 2002] extend media service delivery to 

mobile PDA devices via a P2P network by utilizing intennediate desktop PCs 

to process the media stream into a fonnat acceptable to the mobile device. 

Project ]XIA utilizes the same intennediate technique to deliver P2P services 

to mobile devices. Our approach is to eliminate the desktop computers 

entirely so that the mobile device becomes a true independent peer. 

12.3. Unique aspects of mobile P2P 

This section discusses some of the unique challenges, attributes and 

possibilities of mobile P2P applications that were discovered: 

12.3.1. Limi1f.dcapabilities 

The capabilities of mobile devices are much constrained. Aspects such as 

processing power, storage capacity, communication and II0 abilities are very 

limited. 

12.3.2. Platfonn cliw'sity 

There are a great variety of mobile platforms and devices with various 

capabilities. This makes it difficult to develop P2P applications that will run 

on a great variety of devices. 

12.3.3. Omrnunication reliability 

Mobile roaming devices join and leave the network more often than desktop 

devices. This is partly due to wireless communication technology which is less 

reliable and stable than wired communication. 

87 


 
 
 



12.3.4. Testing anddebwti!)ng 

Testing and debugging can be difficult. Applications for mobile devices are 

usually developed and compiled on desktop computers, because the mobile 

device itself does not have sufficient resources in order to develop on the 

device itself. Tills makes it difficult to debug and test, because you are dealing 

with a variety of devices. 

12.3.5. Mobility 

Minimizing the distance between connected nodes has already been identified 

in chapter 11 as a challenge for P2P applications. The mobility of mobile 

devices makes this aspect even more challenging, because the physical 

distance between connected nodes are constantly changing as devices move 

around. A possible solution to this problem could be the utilization of 

location-based services (LBS) to determine the approximate distance between 

nodes dynamically and to adjust connections between nodes according to 

location information. 

12.3.6. Bandwidth 

Connected mobile devices are constrained by low netwOlk bandwidth (slow 

connections). This is because mobile communication is performed by wireless 

radio frequency (RF) technology. High speed communication technologies, 

such as fiber optics, are only available for wired devices. 

12.4. The P2P phonebook application 

The application that the author decided to implement is a peer-to-peer 

phonebook application. Most mobile devices already contain some sort of 

phonebook. The phonebook allows the user to store the names and numbers 

of his contacts. The user can then easily call up the number of a contact when 

it is required. 

88 

 
 
 



The phonebook problem can be solved with a traditional client/server 

approach. The phonebook entries from all the users would be consolidated 

into a single centralized list. The distributed peer-to-peer phonebook 

application would however, have the following unique characteristics: 

o 	 The user can search for numbers that are not only stored in his own 

phonebook, but also for numbers stored in the phonebook of another 

user. The user can therefore perfonn a distributed search. All 

participating users benefit from this, because they now have a much 

larger set of phonebook infonnation to their disposal. 

o 	 The actual location of the phonebook information is transparent to 

the user. The user can do a search for "Jimmy" and the system will 

return his telephone number, without disclosing where it got that 

information from. 

o 	 The phonebook is more fault-tolerant. Chances are that the same 

infonnation is available from the phone books on multiple devices. If 

one of the devices fails, the infonnation can still be discovered from 

another. 

12.5. Routing through phonebook entries 

Mobile devices such as cell phones usually contain a phonebook list. Cell 

phone numbers (MSISDN) stored in the phonebook can be used to identify 

and address nodes on the network. This presents a unique opportunity for 

our mobile P2P application: The phonebook entries can be used to represent 

the routing topology for the P2P network. There is no need for an additional 

node discovery mechanism, because the entries in the phonebook of each 

device already serve as a list of connected nodes. Routing is perfonned by 

forwarding messages to all the nodes listed in the phonebook. 

89 


 
 
 



In practice it is currently difficult to utilize the built-in phonebook for routing 

purposes because the phonebook entries are not available to Java clients. 

Phonebook entries can be stored in both the phone memory and the SIM 

card. The SIM Application Toolkit (SA1) interface can be used to get 

phonebook entries stored on the SIM card, but not entries stored in the 

phone memory. There is also no interface between SAT and Java clients. 

For our simulation we just used the phonebook entries created via our 

P2PPhonebook application for routing purposes and assume that these 

entries will eventually be obtained from the built-in phonebook list. 

12.6. Platfonn and technology 

The author has decided to implement the P2P application on the Java 2 Micro 

Edition a2ME) platform. The reasons are the following: 

• 	 The Java programming language is well-known and accepted, 

especially in the academic community. 

• 	 The J2ME platfonn is currently supported on a rapidly expanding 

variety of mobile devices, such as cell phones and PDAs. This allows 

the author to present the concept theoretically as well as 

experimentally by implementing and evaluating it on real-world 

devices. 

• 	 J2ME provides a platfonn for nmning applications on devices with 

very limited capabilities. 

• 	 The promise of "write-once-run-anywhere" is expanded into the 

mobile arena with J2ME. Applications can therefore run on a variety 

of mobile peers and can interoperate seamlessly. 

90 


 
 
 



We made use of the following development tools: 

• 	 Borland JBuilder 7 Personal Integrated Development Environment 

(illE) - Assists with development, compiling, debugging and testing 

of Java code 

• 	 JBuilder MobileSet 3 - Extends the JBuilder environment to allow 

support for J2ME libraries. 

• 	 Nokia Developer Suite 1.1 for J2ME - Includes J2ME libraries, 

documentation and an emulator for Nokia phones. 

• 	 SWl Microsystems Wireless Toolkit 1.04 - Allows documentation 

compilation, packaging and deployment for J2ME development. 

• 	 PalmOS Emulator - Allows emulation of applications on PalmOS 

devices, such as the PalmY. The author installed the PalmOS 3.5 

ROM image and the KVM. 

12.7. Configuration and profile 

Various different mobile devices are known to expose a great variety of 

incompatible capabilities and features. This makes it difficult to develop Java­

style applications that will rWI on all of them. To alleviate this problem, the 

J2ME platform groups devices into ronfiguratims and profiles. Applications are 

therefore developed for a specific group of devices. The device ronfiguratim is 

a broad classification, containing the more detailed device prrfile classifications. 

For the purpose of implementation the author has selected the following 

J2ME configuration and profile: 

• 	 Connected Limited Device Configuration (CLDC) These are devices 

with very limited memory and processing capabilities. However, these 

devices do have some form of network connection capable of 

91 


 
 
 



participating in a TCP lIP netwOlk. This is the second least capable 

group of devices. The only group that is more limited is the Limited 

Device Configuration (LDC), which contains devices that do not even 

have networking capabilities. LDC is clearly not an option for peer-to­

peer networks. 

• 	 Mobile Information Device Profile (MIDP) - This is the least capable 

profile in the CLDC class of devices. Devices such as cell phones 

would typically fit this profile. 

12.8. Limitations of the CLDC I MIDP 


CLDCiMIDP devices typically have the following critical constraints: 


• 	 Applicat:i.m size - Current cell phones have a total limit of about 123K 

for storing all MIDlets. Some phones currently limit each MIDlet to 

be no more than SOK. 

• 	 Persistent stor~ on cell phones can be as little as 8K which is shared by 

all the MIDlets. 

• 	 Runtimeklp is of the order of 32K - 64K 

• 	 Bandwidth can be vety limited and latency is high with connections 

such as CSD (Circuit Switched Data) and GPRS (General Packet 

Radio Service). These connections are also not vety stable and can be 

dropped unexpectedly as reception and network load conditions vaty. 

• 	 CPUp;rfo;rnana? is vety limited - around 20:MHz. 

• 	 Limitailibrark5whichMIDP-1.0 has: 

o 	 No built-in XML parser. An XML parser would be useful for 

communicating via standard protocols such as SOAP. XML 

92 


 
 
 



parsers designed specifically for MIDP are available, such as 

[Kxml], but they add significantly to the footprint of the 

application. 

o 	 Limited NetlWrking Only outgoing HTTP is required to be 

implemented on MIDP 1.0 devices. Socket and datagram 

connections are optional. MIDP 1.0 devices can therefore 

only act as clients (initiating requests) and not as servers 

(listening for requests). 

12.9. Hardware 

The author tested the mobile P2P implementation on the following devices: 

• 	 Nokia 6310i cell phone - This is a typical J2ME capable cell phone 

with a monochrome screen. 

• 	 Nokia 6610 cell phone - This is a J2ME capable phone with a full 

color display. 

• 	 3COM Palm V - This is a typical enuy-Ievel Personal Digital 

Assistant (PDA) with very limited capabilities. This device runs the 

PalmOS operating system and does not have a J2ME virtual machine 

installed by default. The author installed the KVM for PalmOS, 

provided by Sun Microsystems. This device does not have wireless 

network connectivity, so the author had to connect it to the network 

via its cradle. Other devices, such as the Palm VII, are equipped with 

wireless networking. 

12.10. Testing, debugging and emulators 

Testing and debugging applications for mobile devices can be troublesome. 

The following difficulties were encountered: 

93 


 
 
 



• 	 The application is developed on a PC and then needs to be compiled 

and installed onto the mobile device. The mobile device has very 

different capabilities than the PC on which it was developed. 

• 	 Compiling and installing the application on the mobile device is a 

cumbersome process, especially if one just wants to test small code 

modifications quickly. To make matters even worse - each mobile 

device has its own installation and packaging procedure. In some 

cases (non-Java platforms, such as PocketPC) one even has to 

compile the application separately for each supporting target device. 

• 	 In many instances it is impractical to obtain all the various target 

mobile devices in order to test the application on each one of them. 

However, testing applications on all the supporting devices is vital for 

quality assurance due to the variety of operating systems and 

capabilities of these devices. Mobile devices are expensive and some 

of them might not be readily available. 

• 	 How does one debug applications in the conventional fashion (with 

break points, watches, etc.) when the application cannot even run on 

the development machine? 

Clearly there must be a better way. The solution is to make use of emulators. 

An emulator allows one to execute the mobile application code on the 

development PC. The emulator is capable of closely resembling the 

characteristics of the target mobile device. Luckily emulators exist for most 

mobile devices and they are designed with software developers in mind. Most 

emulators include debugging functionality, which allows the developer to 

hook up with the running code (on the device) from an IDE (on the PC) and 

to debug the code in the conventional fashion. 

94 


 
 
 



It is, however, still advisable to test the final product on the real device before 

releasing it. Emulators are not perfect. Sometimes the emulators themselves 

contain bugs. The application might also perform better in the emulator than 

on the real device. 

Usability should be assessed on the target device itself, because usability 

depends on the input! output characteristics of the device. The actual mobile 

device might use handwriting recognition instead of a keyboard, a pen and 

touchpad instead of a mouse and a 3" monochrome screen instead of a full­

color 15" CRT screen. 

12.11. Source code 

This section describes the functions of the various classes and utility files that 

entail the phone book application, and includes the full source code listing. 

Note that some comments were removed to reduce the size of the code 

listing. The source code is also available electronically on request. 

12.11.1. PhoneIxxJk.jad 
MIDlet-Name: P2P 
MIDlet-Version: 0.0.1 
MIDlet-Vendor: MYCompany 
MIDlet-Jar-URL: Phonebook.jar 
MIDlet-Jar-Size: 7075 
MIDlet-1: Phonebook, • p2p.phonebook.PhonebookMIDlet 
App-LocalNumber "27823219751"; 
App-RelayURL ''http://localhost/p2p/relay.asp''; 
App-Listenlnterval 10000; 
App-TTL ~ 5; 

The Java Application Descriptor GAD) file is required by each J2ME 

application. The classes are compiled and then packed into a Java Archive 

GAR) file. The JAD fIle describes the location of the JAR file as well as some 

other information relevant to the application. It can also include user defmed 

settings specific to a distribution or installation of the application. In this case 

the author includes the following settings: 

95 


 
 
 

http://localhost/p2p/relay.asp


o App-Loca1Number - The MSISDN (cell phone) number for the 

device on which the application is installed. 

o App-RelayURL - The URL of the web application that serves as a 

message relay. The relay is required due to communication restrictions 

in current MIDP devices. 

o App-Listeninterval - The interval (in milliseconds) at which the 

MIDlet should check for new messages with the relay. 

o App-TIL - The time to live period for messages routed via the peer­

to-peer network The TIL value determines how many times a 

message can be forwarded through the network before It gets 

discarded. This prevents endless loops and puts a limit on the 

network reach from each node. 

12.11.2. SearrhResultsLzst.jam 
package p2p.phonebook; 

import javax.microedition.lcdui.*; 
import java.util.*; 

public class SearchResultsList extends List implements CommandListener ( 

private static Vector results = null; 

private static SearchResultsList instance null; 


1**Construct the displayable*1 
public SearchResultsList() ( 


super("Search Results", List.IMPLICIT); 

instance = this; 

try { 


jbInit () ; 

catch(Exception e) { 

e.printStackTrace(); 


1**Component initialization*1 
private void jbInit() throws Exception 


II set up this to listen to command events 

setCommandListener 

1/ add the Exit command 

addCommand(new Command("Save", Command. SCREEN, 1»; 

addCommand(new Command ("Clear" , Command. SCREEN, 1»; 

addCommand(new Command("Close", Command. BACK, 1»; 

updateList(); 


96 


 
 
 



public void updateList() { 

//first clear the current list 

for(int c=O;c<=this.size() ;c++) 


this.delete(c) ; 

Iinow add all the entries 
for(int c=O;c<=results.size(J ;c++) 


String[] entry = (String[])results.elementAt(c); 

String entryLine = entry[O] + ": " + entry [1] ; 

append (entryLine, null); 


public void clearList() { 

results.removeAIIElements() ; 

updateList () ; 


public static void addResult(String name, String number) ( 

//check if entry already exist 

boolean exist false; 

for(int c=O;c<=results.size() ;c++) 


String[] entry = (String[])results.elementAt(c); 
if«entry[O] == name) && (entry [1] == number» exist true; 

//add entry 
H(!exist) { 


String[] entry = (name, number); 

results.addElement(entry) ; 


//update displayed list 

if(instance != null) ( 


instance.updateList() ; 


public static SearchResultsList getlnstance() ( 

return (instance) ; 


/**Handle command events*/ 
public void commandAction(Command command, Displayable displayable) 

Display disp = Display.getDisplay(PhonebookMIDlet.getlnstance(»; 
String cmdLabel command.getLabel(); 
if (cmdLabel "Save") { 

String name = 
((String[]lresults.elementAt(this.getSelectedlndex(») [0]; 

String number = 
«String[])results.elementAt(this.getSelectedlndex{») [1]; 

ContentStore. saveEntry (name, number); 
Alert alert new Alert ("Saved" , name + " has been saved.", null, 

AlertType.INFO); 
disp.setcurrent(alert, this); 

else if(cmdLabel == "Clear") ( 

clearList(); 


else if (cmdLabel "Close") ( 

disp.setCurrent(PBEntriesForm.getlnstance(» ; 


97 


 
 
 



This class represents a visual display of the search results. The list displays the 

names and numbers that were found as a result of a peer-to-peer search. The 

results are updated as they come in, meaning that the list can grow over time 

as more results are discovered 

12.11.3. SearrhFmmjava 

package p2p.phonebook; 

import javax.microedition.lcdui.*; 
import javax.microedition.rms.*; 
import java.io.*; 

public class SearchForm extends Form implements CommandListener { 
private TextField txtName; 
1**Construct the displayable*1 
public SearchForm() { 

super ("Search") ; 

try { 


jblnit() ; 


catch(Exception e) { 

e.printStackTrace() ; 


I**component initialization*1 
private void jblnit() throws Exception 


II set up this Displayable to listen to command events 

txtName; new TextField('''', "", 15,TextField.ANY); 

txtName. setLabel ( "Name") ; 

setCommandListener(this) ; 


II add commands 

addCommand(new Command("OK", Command. OK, 1»; 

addCommand(new Command("Cancel", Command. CANCEL, 1»; 


this.append(txtName) ; 

1**Handle command events*1 
public void commandAction(Command command, Displayable displayable) { 

String cmdLabel = command.getLabel(); 
if(cmdLabel == "OK") { 

search (PhonebookMIDlet.TTL, PhonebookMIDlet.LOCAL_NUMBER, 
PhonebookMIDlet.getNextMsgID(), txtName.getString(»; 

Display dpl Display.getDisplay(PhonebookMIDlet.getInstance(»; 
dpl.setCurrent(SearchResultsList.getInstance(»; 

else if(cmdLabel "Cancel") { 
Display dpl = Display.getDisplay(PhonebookMIDlet.getInstance(»; 
PBEntriesForm entries = PBEntriesForm. getInstance () ; 
dpl.setCurrent(entries) ; 

public static void search(int ttl, String from, long msgId, String name) 

Ilfirst search the local store 

ContentItem[] entries; ContentStore.getEntries(); 


98 


 
 
 



for(int 	c=O;c<=entries.length,c++) { 
if(entries[c] .NAME == name) { 

//send response 
String command "SEARCH_RESPONSE I" + ttl + "I" + from + "I" + 

msgld + 	 "I" + name + "I" + entries [c] .NUMBER; 
MsgListener.send(from, command); 

//now forward request to all attached nodes 

Contentltem[] nodes = ContentStore.getEntries(); 

for(int c=O;c<=nodes.length;c++) { 


String command = "SEARCH_REQUEST I " + ttl + "I" + from + "i" + msgld 
+ "I" + 	 name; 

MsgListener.send(nodes[c] .NUMBER, command); 

This class provides an input form for specifying search criteria. In this case 

the user only needs to supply the name of the user whose number he wants to 

search for. Clicking on the search button will kick off the peer-to-peer search 

process. 

12.11.4. RouteTabIe.java 
package 	p2p.phonebook; 

import java.util.*; 

public class RouteTable 

private 	static Vector items = null; 

public static void add(Routeltem item) 

items.addElement(item) ; 


public static boolean alreadyReceived(String from, long id) { 

boolean match false; 

for(int c = O;c<=items.size() ;c++) { 


Routeltem item (Routeltem)items.elementAt(c); 

if«item.FROM == from) && (item.MSGID == id» { 


match = true; 


return (match) ; 

This class keeps a list of messages received and forwarded by this node. The 

list is needed to prevent the same message from being processed twice. The 

list contains a collection of RouteItem objects. 

99 


 
 
 



12.11. 5. Routeltfmjava 
package p2p.phonebook; 

public class Routeltem 

public static String FROM null; 

public static long MSGID 0; 

//public static String TO = null; 


public Routeltem() { 

//provide empty constructor 


public Routeltem(String from, long msgid) { 

FROM ; from; 

MSGID ; msgid; 


This class defmes the routing entries that are stored in the RoutingTable 

object. Each entty contains the following fields: 

o From - the MSISDN (cell phone) number of the node from which 

the message was received. 

o MsgID - A number which uniquely identifies the message sent by the 

originating node. Each message sent from an originating node is given 

a sequential ID unique to that node. Therefore the combination of 

MsgID and Fran address is always unique. 

12.11.6. PBNewEntryFmmjava 
package p2p.phonebook; 

import java.io.*; 
import javax.microedition.rms.*; 
import javax.microedition.lcdui.*; 

public class PBNewEntryForm extends Form implements CommandListener { 

public PBNewEntryForm() { 
super ("New entry") ; 
TextField fldName new TextField("Name", null, 30, TextField.ANY); 
TextField fldNumber = new TextField("Number", null, 30, 

TextField.PHONENUMBER) ; 
append (fldName) ; 
append (fldNumber) ; 

Command cmdAdd = new Command ( "OK", Command. OK, 1); 

Command cmdCancel new Command("Cancel", Command. CANCEL, 1); 

addCommand(cmdAdd) ; 


100 

 
 
 



addCommand(cmdCancel); 

setCommandListener(this) ; 


public void commandAction(Command cmd, Displayable disp) ( 

String cmdLabel cmd.getLabel(); 

if (cmdLabel "OK") ( 


TextField nameField (TextField)this.get(O); 

TextField numberField (TextField)this.get(l); 

String name ~ nameField.getString(); 

String number ~ numberField.getString(); 

ContentStore. saveEntry (name , number) ; 

Alert alert new Alert ("Saved", name + ": " + number,null,null); 

alert.setTimeout(Alert.FOREVER) ; 

Display dpl Display.getDisplay(PhonebookMIDlet.getInstance(»; 

dpl.setCurrent(alert, disp); 


//alwyas go back to EntriesList screen 

PBEntriesForm entries PBEntriesForm.getInstance(); 

entries new PBEntriesForm(); //this will clear the list 

l/entries.loadEntries() ; 

Display dpl = Display.getDisplay(PhonebookMIDlet.getInstance(»; 

dpl.setCurrent(entries); 


This class represents an input fonn for the user to allow him to add a new 

entry to the local phonebook store. 

12.11.7. PBEntryDetailForm.java 
package p2p.phonebook; 

import javax.microedition.lcdui.*; 
import javax.microedition.rms.*; 
import java.io.*; 

public class PBEntryDetailForm extends Form implements CommandListener, 
RecordFilter ( 

String filterName ~ null; 

/**Construct the displayable*/ 
public PBEntryDetailForm(String name) ( 


super (name) ; 

filterName name; 

addCommand(new Command(nBack", Command. BACK, 1); 


addCommand (new Command ( "Delete", Command. SCREEN, 1»; 

setCommandListener(this) ; 


showDetail () ; 

public boolean matches(byte[] candidate) ( 

if(filterName ~= null) ( 


return (true) ; 


name ~ null; 
String number nUll; 
ByteArrayInputStream bais new ByteArrayInputStream(candidate) ; 
DataInputStream dis ~ new DatalnputStream(bais) ; 

101 

 
 
 



try ( 

name dis.readUTF(); 

number; dis.readUTF() ; 


J 

catch(Exception e) ( 


e.printStackTrace() ; 

} 
//String sTest name + H: " + number; 

return(this.filterName.equals(name» ; 


/**Handle command events*/ 
public void commandAction(Command command, Displayable displayable) ( 

String cmdLabel command.getLabel(); 
if(cmdLabel ;; "Back") ( 

Display dpl = Display.getDisplay(PhonebookMIDlet.getlnstance(»; 
PBEntriesForm entries = PBEntriesForm.getlnstance(); 
dpl.setCUrrent(entries) ; 

else if(cmdLabel "Delete") 
deleteEntry(); 
Display dpl = Display.getDisplay(PhonebookMIDlet.getlnstance(»; 
PBEntriesForm entries = PBEntriesForm.getlnstance(); 
entries new PBEntriesForm() ; 
dpl.setCUrrent(entries) ; 

private void deleteEntry() { 
try ( 

RecordStore rs ; RecordStore.openRecordStore("phonebook", false); 
RecordEnumeration re ; rS.enumerateRecords(this,null,false); 
rs.deleteRecord(re.nextRecordld(» ; 

} 
catch(Exception e) ( 


e.printStackTrace() ; 


private void showDetail() { 
try { 

RecordStore rs RecordStore. openRecordStore ("phonebook", false); 
RecordEnumeration re rs.enumerateRecords(this,null,false); 

ByteArraylnputStream bais = new 
ByteArraylnputStream(re.nextRecord(» ; 

DatalnputStream dis = new DatalnputStream(bais) ; 

String name dis.readUTF(); 

String number = dis.readUTF() ; 


Stringltem nameltem new Stringltem("Name: " name); 
Stringltem numberltem new Stringltem ("Number: ", number); 

this.append(nameltem); 
this.append(numberltem) ; 


} 

catch(Exception e) ( 


e.printStackTrace() ; 

102 


 
 
 



TIlls class provides a visual representation for displaying the details of a 

phonebook entty. 

12.11.8. PBEntriesFonnjaa:l 
package p2p.phonebook; 

import javax.microedition.lcdui.*; 
import javax.microedition.midlet.*; 

public class PBEntriesForm extends List implements CommandListener { 

private static PBEntriesForm instance = nUll; 

public PBEntriesForm() { 

super ("Entries", List. EXCLUSIVE) ; 

instance this; 


ContentItem[] entries = ContentStore.getEntries(); 
for(int c=O;c<=entries.length;c++) { 


String entry = entries[c] .NAME + ": " + entries[c] .NUMBER; 

append (entry, null); 


addCommand(new Command("Detail", Command. SCREEN, 1»; 

addCommand (new Command ("New", Command. SCREEN, 1»; 

addCommand (new Command ( "Search", Command. SCREEN, 1»; 

addCommand(new Command ("Exit" , Command. EXIT, 1»; 

setCommandListener(this) ; 


public void commandAction(Command cmd, Displayable disp) ( 

Display dpl = Display.getDisplay(PhonebookMIDlet.getInstance(»; 
String cmdLabel cmd.getLabel(); 

if(cmdLabel == "New") { 

PBNewEntryForm form new PBNewEntryForm() ; 

dpl.setCurrent(form) ; 


} 
else if(cmdLabel "Detail") ( 

if (getSelectedIndex() == -1) { 
Alert alert new Alert ("Error", "No entry selected!", null, 

AlertType.ERROR) ; 
dpl.setCurrent(alert) ; 


} 

else ( 


String strSelected = getString(getSelectedIndex(»; 
PBEntryDetailForm detailForm = new PBEntryDetailForm(strSelected) ; 
dpl.setCurrent(detailForm); 

else if (cmdLabel == "Search") 

SearchForm searchForm = new SearchForm(); 

dpl.setCurrent(searchForm) ; 


} 
else if(cmdLabel == "Exit") ( 


PhonebookMIDlet.quitApp(); 


public static PBEntriesForm getInstance() { 

return(instance) ; 


103 

 
 
 



This form displays a list of all the phonebook entries in the local store. 

12.11.9. MsgListener.jaru 
package p2p.phonebook; 

import javax.microedition.io.*; 
import java.io.*; 

public class MsgListener implements Runnable { 

public static boolean running true; 

private int count; 0; 


public MsgListener() 

} 


public void runt) { 

Thread instance PhonebookMIDlet.getMsgListener(); 


while (running) ( 

receiveMsg() ; 

try ( 


instance.sleep(PhonebookMIDlet.LISTEN_INTERVAL) ; 

catch{InterruptedException e) { 

lido nothing 


private void receiveMsg() ( 
HttpConnection con null; 
OutputStream os = nUll; 
InputStream is = null; 
int Chi 
int pos; 
String line null; 
String urI; null; 
count +; 1; 
System.out.println("Receive attempt" + count); 
urI = PhonebookMIDlet.RELAY URL + "?command;receive&number=" + 

PhonebookMIDlet.LOCAL NUMBER; 
try { -

StringBuffer buffer new StringBuffer{) ; 
con (HttpConnection)Connector.open{url) ; 
os con. openOutputStream () ; 

os.flush() ; 


is = con.openDatalnputStream(); 

while ( (ch = is.read() ! -1) buffer. append ( (char) (ch»; 

String resultString buffer.toString(); 


while { (pos resultString. indexOf (H\n"» ! = -1) { 
line = resultString.substring(O, pos); 
if (line. trim () ! " ") process (line) ; 
resultString resultString. substring (pos+1, 

resultString.length(» ; 
} 

if(is != null) is.close(); 

if(os !; null) os.close(); 


104 

 
 
 

http:javax.microedition.io


if(con != null) con.close(); 

} 

catch(Exception e) ( 


e.printStackTrace() ; 

} 

finally { 

} 

System.out.println() ; 


private void process (String message) ( 

Messageltem msg = parseMessage(message) ; 

//decrement TTL. Discard when we reach 0 

msg.TTL -= 1; 

if (msg.TTL>O) ( 


if (msg. COMMAND == "SEARCH_REQUEST") ( 
SearchForm. search(msg. TTL, msg.FROM, msg.MSGID, msg.PARAMS); 
RouteTable.add(new Routeltem(msg.FROM,msg.MSGID»; 

else if(msg.COMMAND == "SEARCH_RESPONSE") 

private Messageltem parseMessage(String message) 

Messageltem result = new Messageltem() ; 

int pos 0; 

pos = message.indexOf(nl"); 

result.COMMAND = message.substring(O, pos); 

message = message.substring(pos +1); 


pos = message.indexOf(nlnl; 

result.TTL Integer.parselnt(message.substring(O, pos»; 

message = message.substring(pos +1); 


pos = message.indexOf{nln); 

result.FROM = message. substring (0, pos); 

message message.substring{pos +1); 


pos message.indexOf{"ln); 

result.MSGID = Long.parseLong(message.substring(O, pos»; 

message = message.substring(pos +1); 


pos message.indexOf(nln); 

result.PARAMS message.substring(O, pos); 

message = message.substring(pos +1); 


return (result) ; 

public static void send(String to, String message) ( 

String url = PhonebookMIDlet.RELAY_URL + n?command=send&number=" + to 
+ 	 "&message=" + message; 

try 	( 

HttpConnection con = (HttpConnection)Connector.open(url); 

OutputStream os = con.openOutputStream(); 

os.flush() ; 


105 


 
 
 



os. close () ; 

con. close () ; 


catch(Exception e) { 

e.printStackTrace() ; 


'This class handles all communications between nodes. The class is a thread 

that implements a listener that listens for incoming messages. The messages 

are then parsed and appropriate action is taken. 

12.11.10. Messageltem.java 
package p2p.phonebook; 

public class Messageltem 
public String COMMAND = null; 
public int TTL = 0; 
public String FROM = null; 
public long MSGID = 0; 
public String PARAMS null; 

Instances of this class represent the messages that are routed through the 

peer-to-peer network. 

12.10.11. ContentStore.java 
package p2p.phonebook; 

import java.io.*; 
import javax.microedition.rms.*; 

public class ContentStore 

public ContentStore() { 

} 


public static Contentltem[] getEntries() 

Contentltem[] entries = null; 

try { 
RecordStore rs = RecordStore.openRecordStore("phonebook", true); 
RecordEnumeration re = rs.enumerateRecords(null, null, false); 

int iRows re.numRecords(); 

entries new Contentltem[iRows] ; 

int count = 0; 


while(re.hasNextElement(» 
ByteArraylnputStream bin new 

ByteArraylnputStream(re.nextRecord(» ; 

106 

 
 
 

http:12.10.11
http:12.11.10


DataInputStream din new DataInputStream(bin) ; 

String name = din. readUTF () ; 

String number din.readUTF() ; 

entries [count] = new ContentItem(); 

entries [count] .NAME name; 

entries [count] .NUMBER = number; 

count++; 


catch(Exception e) { 

e.printStackTrace() ; 


return (entries) ; 

public static void saveEntry(String name, String number) { 
try { 

RecordStore rs RecordStore.openRecordStore("phonebook", true); 
ByteArrayOutputStream bout = new ByteArrayOutputStream() ; 
DataOUtputStream dout = new DataOUtputStream(bout) ; 
dout.writeUTF(name) ; 
dout.writeUTF(number) ; 
byte[] b bout.toByteArray(); 
rS.addRecord(b, 0, b.length); 

} 
catch(Exception e) { 


e.printStackTrace() ; 


public static String searchForNumber(String name) { 

String number = null; 

ContentItem[] entries = getEntries(); 

for(int c=O;c<=entries.length;c++) { 


if(entries[c] .NAME name) { 

number = entries[c] .NUMBER; 


return (number) ; 

This class handles all content storage functionality and represents the local 

store. Content storage in :MIDP devices is handled through the special Record 

Management System (RMS). The RMS is the only way to provide persistent 

storage on :MIDP devices. The RMS is something between a lightweight 

DBMS and a raw binary fIle and is a unique concept to MIDP. 

12.11.12. ContentIt£m.java 
package p2p.phonebook; 

public class Content Item 

public String NAME = null; 

public String NUMBER null; 


107 

 
 
 

http:12.11.12


public ContentItem() { 

} 


This class represents a single phonebook entry that IS stored ill the 

RecordStore. 

12.11.13.J>~kA411)ktj~ 

package p2p.phonebook; 

import javax.microedition.midlet.MIDlet; 
import javax.microedition.lcdui.*; 

public class PhonebookMIDlet extends MIDlet ( 

//default values for system settings. Overwrite this in JAD file 

public static String LOCAL_NUMBER "27823219751"; 

public static String RELAY_URL ''http://localhost/p2p/relay.asp''; 

public static long LISTEN_INTERVAL = 10000; 

public static int TTL 5; 


private static PhonebookMIDlet instance = nUll; 

private static Thread msgListener null; 

private static long msgID 0; 


public PhonebookMIDlet() 

instance = this; 


protected void startApp() ( 

getSettings () ; 

msgListener = new Thread(new MsgListener(»; 

msgListener.start() ; 

//initialize search results list 

new SearchResultsList(); 

PBEntriesForm entries new PBEntriesForm(); 

//Ticker ticker = new Ticker("Select one of the phonebook entries 


below. Select the appropriate command button."); 
//entries.setTicker(ticker); 
Display.getDisplay(this) . setCurrent (entries) ; 

private void getsettings() ( 

String temp = null; 

temp = getAppProperty("App-LocalNumber"); 

if (temp 1=null) ( 


LOCAL NUMBER = temp; 

temp = getAppProperty("App-RelayURL"); 

if (templ=null) { 


RELAY URL = temp; 


temp = getAppProperty("App-Listenlnterval"); 

if (templ=null) { 


LISTEN INTERVAL = Long.parseLong(temp); 


temp = getAppProperty("App-TTL"); 

if (temp 1=null) ( 


TTL = Integer.parseInt(temp); 


108 


 
 
 

http://localhost/p2p/relay.asp


public static long getNextMsgID() ( 

msgID +=1; 

return (msgID) ; 


protected void pauseApp() 

protected void destroyApp(boolean unconditional) ( 

protected static MIDlet getInstance() ( 

return (instance) ; 


protected static Thread getMsgListener() ( 

return(msgListener) : 


/** Quit the MIDlet */ 
public static void quitApp() 


MsgListener.running = false: 

msgListener.yield(); 

msgListener = null; 

instance.destroyApp(true) ; 

instance.notifyDestroyed() ; 

instance = nUll; 


This is the main class from where program execution takes place. This class 

extends the MIDlet class, which is the parent class of all J2ME applications. 

This class reads the system settings from the JAD file and starts up the initial 

screen. 

12.11.14. ReIay.asp 
<% option explicit %> 

dim sCommand, sMessage, sNumber 

dim arr 

dim c 


sCommand = Reques t ( .. command" ) 
sMessage = Request ("message") 
sNumber = Request ( .. number" ) 

select case sCommand 
case "send" 

arr Application (sNumber) 
if isArray(arr) then 

c = (ubound(arr) + 1) 
redim preserve arr(c) 

109 

 
 
 

http:12.11.14


arr(c) sMessage 
else 

c = 0 
redim arr(c) 
arr(c) sMessage 

end if 
Application (sNumber) arr 

case "receive lt 

arr = Application (sNumber) 
if isArray(arr) then 

for c lbound(arr)to ubound(arr) 
sMessage = arr(c) 
Response.Write sMessage & 

vbcrlf 
next 
Application (sNumber) = Empty 

end if 
case else 

Response.Write "Invalid command!" 
end select 

%> 

1bis is the ASP page which is used for relaying messages between the various 

peers. The relaying mechanism is used to simulate peer-to-peer UDP 

connections. 1bis is needed because the current J2ME specification only 

allows for client sockets and not server sockets. True peer-to-peer 

communication is therefore not possible without polling and relaying 

mechanisms such as the one that we used. It is however anticipated that 

server sockets will be available to MIDP devices in the near future, therefore 

eliminating the need for a relay agent. 

12.12. P2P Phonebook in action 

1bis section presents some screen shots to demonstrate the P2P Phone book 

application in action. The demonstration shows the same Java application 

running in the emulators for two different devices: the Motorola i85s cell 

phone and the 3Com Palm V device. These two devices have different 

input/output capabilities, such as different screen sizes and a tap screen 

(palm) versus soft keys (cell phone) for input.1bis section demonstrates how 

the exact same Java application can run on both devices. 

110 


 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



 
 
 



Chapter 13 

13. CONCLUSIONS 

This chapter summarizes the lessons leamed from our research. 

13.1. Historical impact 


New applications can only be studied in context of its historical origin. Peer­


to-peer applications are a new breed of Internet applications, but they are 


constraint by the Internet infrastructure which was designed decades ago. 


This has a significant impact on the way these new applications are designed 


and implemented. 


13.2. Application model 


The peer-to-peer application model is very different from the conventional 


client/ server model. With a peer-to-peer model each host performs both the 


tasks of a conventional client and server host. The peer-to-peer model also 


introduces an application-level routing infrastructure. 


13.3. Classification 


Peer-to-peer applications can be grouped according to the functionality that 


they provide and according to the computing model (degree of 


centralization). A combination of these two criteria is sufficient to provide a 


classification system. The classification system can be applied to describe and 


study P2P applications with similar attributes and behavior. 


13.4. Mechanisms 


The author has identified five main mechanisms that can be used to describe 


a distributed content-sharing P2P application. These mechanisms are node 


118 


 
 
 



discovety, content discovety, content retrieval, content publishing and 

content storage. The author perfonned a case study of the Napster, Gnutella 

and Freenet systems and demonstrated that these mechanisms can be applied 

to describe the inner wOlkings of P2P systems. 

13.5. Napster, Gnutella and Freenet 


We presented a case study of the Napster, Gnutella and Freenet P2P systems. 


All three of these systems have the same goal: to provide distributed content­


sharing abilities, but each of them achieves this goal vety differently. 


13.6. Research efforts 


We indicated that various research effons and projects are underway to tty to 


further study and improve the peer-to-peer application model. Projects such 


as JXTA aim at providing a generic P2P framework and protocols. 


13.7. Challenges 


We have identified many challenges that need to be overcome if peer-to-peer 


applications are to become widely adopted These challenges are to minimize 


the distance between connected nodes, invent better mechanisms for initial 


node discovety, establish sustainable participation, reduce the bandwidth 


demand, alleviate firewall problems, provide service guarantees, address 


political and social concerns and provide forward compatibility. We provided 


some hints on how some of these issues might be resolved These challenges 


also indicate direction for future research efforts. 


13.8. Mobile P2P 


It might be possible to implement true peer-to-peer applications on mobile 


devices with vety limited capabilities, such as cell phones. We implemented 


and simulated a P2P phonebook application for mobile devices. We realized 


that there is still a lot of challenges to implement true mobile P2P with 


current technologies presented some ideas on how this might be overcome in 


the near future. 


119 

 
 
 



Mobile P2P eliminates the necessity for server and desktop infrastructure all 

together and allows the end-user to enjoy the benefits of peer-to-peer 

applications from an inexpensive mobile device and from a greater variety of 

locations. 

13.9. Future work 

The section indicates some direction for future research work: 

• 	 Perform tests on the various categories of peer-to-peer networks to 

compare attributes such as performance, bandwidth consumption, 

scalability and security. 

• 	 Devise new peer-to-peer protocols and mechanisms that would solve 

issues such as initial node discovery and high bandwidth 

consumption. 

• 	 Keep track of new peer-to-peer initiatives as they evolve. Determine 

the unique characteristics of each network and critically evaluate 

them. 

• 	 More research is required to better understand the behavior and 

design constraints of peer-to-peer on mobile devices. 

120 


 
 
 



BIBLIOGRAPHY 


Articles and books 
1. 	 Aberer K, Punceva M, Hauswirth M, Schmidt R, "Improving Data 

Access in P2P Systems", IEEE Internet Computing, 6 (1) 58-67, Jan/Feb 
2002 

2. 	 Agre P E, "P2P and the promise of internet equality", Communications 
of the ACM, 46 (2) 39-42, February 2003 

3. 	 Balakrishnan H, Kaashoek M F, Karger D, Morris R, Stoica I, "Looking 
up data in P2P systems", Communications of the ACM, 46 (2) 43-48, 
February 2003 

4. 	 Barkai D, "Technologies for Sharing and Collaborating on the Net", 
Peer-to-PeerComputing 2001, 13-28 

5. 	 Clark D, "Face-to-Face with Peer-to-Peer Networking", IEEE Computer, 
34 (1) 18-21,Jan 2001 

6. 	 Clarke I, Miller S G, Hong T W, Sandberg 0, Wiley B, "Protecting Free 
Expression Online with Freenet", IEEE Internet Computing, 6 (1) 40-49, 
Jan/Feb 2002 

7. 	 Connolly D, "On the Architecture of the Web: Let a Thousand Flowers 
Bloom (Interview).", IEEE Internet Computing, 2 (2) 22-31, 
March/ April 1998 

8. 	 Danzfuss F, Bishop J, "Lessons Leamed from Building a Web-Based 
Spatial Data Discovery Facility", FTDCS 1999,267-272 

9. 	 Delaney B, "The Power of P2P" , IEEE MultiMedia, 8 (2) 100-103, April 
2001 

10. Edwards J, "Next-Generation Viruses Present New Challenges", IEEE 
Computer,34 (5) 16-18, May 2001 

11. Faybishenko Y, Kan G, "Introduction to Gnougat", Peer-to-Peer 
Computing 2001,4-12 

12. Foster I, Kesselman C, The GRID: Blueprint for a new computing 
infrastructure, Morgan Kaufmann Publishers, San Francisco, 1998 

13. Fox G, "Peer-to-Peer Networks", IEEE Computing in Science & 
Engineering, 3 (3) 75-77, May/June 2001 

14. Gong L, "JXTA: A Network Programming Environment", IEEE 
Internet Computing, 5 (3) 88-95, May/June 2001 

15. 	Graham L, "The Legal Tortoise and the Technology Hare", IEEE 
Software, 17 (5) 18-19, Sept/Oct 2000 

121 


 
 
 



16. Hayes B, "Collective Wisdom", American Scientist, 86 (2) 118-122, 
March/ April 1998 

17. Khare R, "I Want My FIP: Bits on Demand", IEEE Internet 
Computing, 2 (4) 88-91, July/August 1998a 

18. Khare R, "Telnet: The Mother of All (Application) Protocols", IEEE 
Internet Computing, 2 (3) 88-91, May/June 1998b 

19. Khare R, "Building the Perfect Beast: Dreams of a Grand Unified 
Protocol", IEEE Internet Computing, 3 (2) 89-93, March/ April 1999a 

20. 	Khare R, "Who Killed Gopher? An Extensible Murder Mystery", IEEE 
Internet Computing, 3 (1) 81-84,Jan/Feb 1999b 

21. Kubiatowicz J, "Extracting guarantees from chaos", Communications of 
the ACM, 46 (2) 33-38, February 2003 

22. Lawton G, "Distributed Net Applications Create Virtual 
Supercomputers", IEEE Computer,33 (6) 16-20, June 2000 

23. Lee J, «An end-user perspective on ftle-sharing systems", 
Communications of the ACM, 46 (2) 49-53, February 2003 

24. Lienhart R, Holliman M J, Chen Y, Kozintsev I, Yeung M M: "Improving 
Media Services on P2P Networks", IEEE Internet Computing, 6 (1) 73­
77, Jan/Feb 2002 

25. Macedonia M R, "Distributed File Sharing: Barbarians at the Gates?", 
IEEE Computer, 33 (8) 99-101, August 2000 

26. Parameswaran M, Susarla A, Whinston A B, "P2P Networking: An 
Information-Sharing Alternative", IEEE Computer, 34 (7) 31-38,July 
2001 

27. 	Rhea S, Wells C, Eaton P R, Geels D, Zhao BY, Weatherspoon H, 
KubiatowiczJ, "Maintenance-Free Global Data Storage", IEEE Internet 
Computing, 5 (5) 40-49, Sept/Oct 2001 

28. 	Ripeanu M, Iamnitchi A, Foster I T, "Mapping the Gnutella Network", 
IEEE Internet Computing, 6 (1) 50-57, Jan/Feb 2002 

29. Schneier B, Secrets & Lies. Digital Security in a Networked World, 
WIley Computer Publishing, New Yolk, 2000 

30. 	Stem R, "Napster: A Walking Copyright Infringement?", IEEE Micro, 20 
(6) 4-5, Nov/Dec 2000 

31. 	Tanenbaum A, Computer Networks, Prentice Hall, New Jersey, 1994 

32. Waterhouse S R, Doolin D M, Kan G, Faybishenko Y, "Distributed 
Search in P2P Networks", IEEE Internet Computing, 6 (1) 68-72, 
Jan/Feb 2002 

122 


 
 
 



Web references 
33. Bearshare: "Bearshare Gnutella client", http://www.bearshare.com. 2002 

34. Entropia: "Entropia", http://www.entropia.com. 2002 

35. FreenetProject: "The Freenet Project", www.freenetproject.org 

36. Gnutella: "The Gnutella Protocol Specification vOA", 

http://www.clip2.com 


37. Google: "Google", http://www.google.com. 2003 

38. GopherManifest: Karger B, "The Bring Back Gopher Campaign", Nov 
2000, http://www.scn.orgl - bkargerl gopher-manifesto 

39. Hobbes: Zakon R, "Hobbes' Internet Timeline v5A», 

http://www.zakon.org/robert/internet/timeline, 2001 


40. InetDef: "Internet definition", 

http://www.faqs.org/ docs/jargon/I/Internet.html, 2003 


41. JTella: "JTell, Java API for Gnutella", http://jtella.sourceforge.net, 2002 

42. Kxml: "XML parser for the KVM", http://www.kxml.org, 2002 

43. LimeWire: "LimeWire Gnutella client", http://www.limewire.com. 2002 

44. MediaDefender: "The Media Defender", www.mediadefender.com 

45. 	NetTimeline: "Life of the Internet: Net Timeline", 

http://www.pbs.org/internet/timeline. 


46. OldNew, "The Usenet OldNews Archive", 

gopher./ /gopher.quux.orglll Archives/usenet-a-news, 2002 


47. Seti: "Search for Extraterrestrial Intelligence", 

http://setiathome.ssl.berkeley.edu, 2001 


48. SymanticWeb: Fox, "The Symantic Web", 2001, 

http://www.w3.org/2001/sw 


49. Usenet: "Histoty of U senet", http://www.vrx.net!usenet/histoty. 2002 

Request for comments (RFCs) 

0097. "First Cut at a Proposed Telnet Protocol". J.T. Melvin, RW.Watson. 
Feb-15-1971. 

0163. "Data transfer protocols". V.G. Cerf. May-19-1971. 

0172. "The File Transfer Protocol". A. Bhushan, B. Braden, W. Crowther, E. 
Harslem,J. Heafner, A. McKenzie,J. Melvin, B. Sundberg, D. Watson,J. 
White. Jun-23-1971. 

123 


 
 
 

http://www.vrx.net!usenet/histoty
http://www.w3.org/2001/sw
http:setiathome.ssl.berkeley.edu
http://www.pbs.org/internet
http:www.mediadefender.com
http:http://www.limewire.com
http:http://www.kxml.org
http:http://jtella.sourceforge.net
http:http://www.faqs.org
http://www.zakon.org/robert/internet/timeline
http://www.scn.orgl
http:http://www.google.com
http:http://www.clip2.com
http:www.freenetproject.org
http:http://www.entropia.com
http:http://www.bearshare.com


0265. "The File Transfer Protocol". A. Bhushan, B. Braden, W. Crowther, E. 
Harslem,]. Heafner, A. McKenzie,]. Melvin, B. Sundberg, D. Watson,]. 
White. Nov-17-1971. 

0385. "Comments on the File Transfer Protocol". AX. Bhushan. Aug-18-1972. 

0680. "Message Transmission Protocol". T H. Myer, DA. Henderson. Apr-30-
1975. 

0733. "Standard for the format of ARPA network text messages". D.Crocker,]. 
Vittal, K.T. Pogran, DA. Henderson. Nov-21-1977. 

0751. "SurveyofFTP mail andMLFL". P.D. Lebling. Dec-10-1978. 

0854. "Telnet Protocol Specification".]' Postel,].K. Reynolds. May-01-1983. 

0855. "Telnet Option Specifications".]' Postel,].K. Reynolds. May-01-1983. 

0856. "Telnet Binary Transmission". ]. Postel, J.K. Reynolds. May-01-1983. 

0857. "Telnet Echo Option".J. Postel,].K. Reynolds. May-01-1983. 

0858. "Telnet Suppress Go Ahead Option".]' Postel, ].K. Reynolds. May-01-
1983. 

0859. "Telnet Status Option".]' Postel,].K. Reynolds. May-01-1983. 

0860. "Telnet Timing Mark Option". ]. Postel, ].K. Reynolds. May-01-1983. 

0861. "Telnet Extended Options: List Option".]' Postel,].K. Reynolds. May-
01-1983. 

0959. "File Transfer Protocol".]. Postel, ].K. Reynolds. Oct-01-1985. 

1080. "Telnet remote flow control option". Cl. Hedrick. Nov-01-1988. 

1350. "The TFTPProtocol(Revision2)". K. Sollins.JuIy 1992. 

1459. "Internet Relay Chat Protocol".J. Oikarinen, D. Reed. May 1993. 

1689. "A Status Report on Networked Information Retrieval: Tools and 
Groups". J. Foster, Ed .. August 1994. 

2066. "TELNET CHARSET Option". R. Gellens. January 1997. 

2810. "Internet Relay Chat: Architecture". C. Kalt. April 2000. 

2811. "Internet Relay Chat: Channel Management". C. Kalt. April 2000. 

2812. "Internet Relay Chat: Client Protocol". C. Kalt. April 2000. 

2813. "Internet Relay Chat: Server Protocol". C. Kalt. April 2000. 

124 

 
 
 


