Information Communication Technology as a Cognitive Tool to Facilitate Higher-order Thinking

by

Gary Wayne Collins

Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor in Computer Integrated Education

in the

Department of Science, Mathematics and Technology Education

Faculty of Education

University of Pretoria

Supervisor: Professor Dr J G Knoetze

May 2012

© University of Pretoria
DECLARATION OF ORIGINALITY

Full names of student: Gary Wayne Collins
Student number: 29564272

Declaration

1. I understand what plagiarism is and am aware of the University's policy in this regard.

2. I declare that this thesis is my own original work. Where other people's work has been used (either from a printed source, Internet or any other source) it has been properly acknowledged and referenced in accordance with departmental requirements.

3. I have not used work previously produced by another student or any other person to hand in as my own.

4. I have not allowed, and will not allow, anyone to copy my work with the intention of passing it off as his or her own work.

SIGNATURE OF STUDENT ...

SIGNATURE OF SUPERVISOR ...

S 4722/09
Summary

Title: Information Communication Technology as a Cognitive Tool to Facilitate Higher-order Thinking

Candidate: Gary Wayne Collins

Supervisor: Prof. Dr J G Knoetze

Department: Science, Mathematics and Technology Education

Degree: Philosophiae Doctor in Computer Integrated Education

Digital educational technology is capable of contributing supplementary strategies that can be used to address various educational challenges faced by higher education. Foremost among these challenges is the widespread lack of academic preparedness of students who enter South African higher education institutions. The legacy of Apartheid, teachers' poor domain knowledge and command of the language of instruction, together with a lack of commitment to the cognitive development of learners are some of the reasons why students have not developed the cognitive skills required to engage in meaningful learning.

Meaningful learning requires a high level of conceptual engagement and development. To assist in the learning process, educators must focus on student learning rather than on the instructor and the technology used in the instruction. A powerful means of supporting meaningful learning is through a process of model building. Computer technology can effectively be used to facilitate the building of conceptual models. By encouraging students to use computer technology to build models that represent their personal understanding, the students are performing the role of designer and the technology is used as a cognitive tool. Using digital technology as a cognitive tool allows students to engage in critical thinking and higher-order learning.

An expert system shell is one way in which technology can be used as a cognitive tool. When students build expert systems they are required to demonstrate the reasoning of an expert and to exhibit an understanding of causal relationships and procedural knowledge. There is very little evidence of
research concerning the application of expert systems as a cognitive tool in education.

The primary aim of this study is to formulate design principles in the form of conjectures and principles related to a learning environment that uses technology as a cognitive tool in the form of an expert system shell to promote higher-order thinking skills.

The second aim of this study is to explore the experiences of students who are exposed to a learning environment based on the conjectures and principles formulated during the design phase of the research.

The conjectures and principles formulated during this study are expressed in terms of the characteristics, procedures and arguments associated with a learning environment that uses technology in the form of an expert system shell to facilitate higher-order thinking. These conjectures and principles were separated into seven interrelated clusters that can be summarised as follows:

- Initial exposure
- Guided discovery learning
- Designing the expert system on paper
- Creating domain awareness
- Linking conceptual understanding to a representation of that understanding
- Hands-on development
- Problem engagement

These conjectures and principles could guide similar endeavours undertaken by lecturers or instructional designers.
Keywords

Cognitive tools
Conceptual models
Constructivist learning
Critical thinking
Design principles
Educational technology
Expert system shell
Higher-order thinking
Modelling
Problem-solving
Acknowledgements

A number of people have made an indispensable contribution to my academic endeavours and this work in particular; I dedicate this thesis to them.

- My supervisor, Professor Dr Johan Knoetze, for providing me with superior guidance and engaging me in challenging intellectual debate.

- My late father, Clive Collins, for instilling in me an appreciation and respect for knowledge.

- My mother, Rosemary Collins, for her steadfast support.

- My newly born son, Wesley Collins, for being an inspiration.

- My partner, Jolize, for her tolerance.

- My editor, Professor Tinus Kühn, for his discerning eye and encouragement.
Table of contents

Declaration of originality ii
Summary iii
Acknowledgements vi
Table of contents vii
List of tables xv
List of figures xvi
List of addenda xvii
List of acronyms xviii

Chapter 1 Introduction to the research

1.1 Introduction 1
1.2 Definition of terms 2
1.2.1 Conceptual change 2
1.2.2 Models 3
1.2.3 Cognitive load theory 3
1.2.4 Cognitive tool 4
1.2.5 Expert system shell 4
1.2.6 Educational Design research 4
1.2.7 Embodied conjecture 4
1.2.8 Design principles 5
1.2.9 Higher order thinking 5
1.3 Background 5
1.3.1 Students are under-prepared for the demands of higher education 6
1.3.2 Poor schooling’s impact on learning and cognitive development 11
1.3.3 Synthesis of the reasons for South African students’ under-preparedness for the demands of higher learning institutions 11
1.3.4 The role of educational technology in addressing educational challenges 12
1.3.5 Metacognition and conceptual change 13
1.4 Aims of the research 13
1.5 Rationale and statement of the problem 14
1.6 Theoretical framework 16
1.7 Research questions 18
1.8 Research design 18
1.9 Delimiters of the study 19
1.9.1 View concerning design principles and conjectures 19
1.9.2 Exploring the experiences of students through a single case

1.10 Ethical considerations

1.11 Outline of chapters

Chapter 2 Literature study

2.1 Introduction

2.2 Learning theories applicable to educational computer technology

2.2.1 Behaviourism

2.2.1.1 Emphasis on observable behaviour

2.2.1.2 Instructional Systems Design

2.2.1.3 Behaviourist teaching and learning environments

2.2.1.4 The influence of behaviourism on computer-assisted learning and teaching

2.2.1.5 Critique of behaviourism

2.2 Cognitivism

2.2.2 Information processing approach to learning

2.2.2.1 Stages of information processing

2.2.2.1(a) Storing of information in the sensory register

2.2.2.1(b) Storage of information in the short-term memory

2.2.2.1(c) Storage of information in the long-term memory

2.2.2.2 Schema learning theory

2.2.2.3 Critique of the cognitive approach to computer-assisted instruction

2.2.3 Constructivism

2.2.3.1 Overview of constructivist assumptions

2.2.3.1.1 The subjective nature of knowledge

2.2.3.1.2 Active construction of knowledge

2.2.3.1.3 Context in which learning takes place

2.2.3.1.3(a) Situated learning theory and anchored instruction

2.2.3.1.4 Collaborative learning

2.2.3.1.5 Emphasis on autonomous learning

2.2.3.2 Different constructivist perspectives

2.2.3.2.1 Exogenous constructivism

2.2.3.2.2 Endogenous constructivism

2.2.3.2.3 Dialectical constructivism

2.2.3.3 Constructivism and the objective nature of knowledge

2.2.3.3.1 Cognitive constructivism

2.2.3.3.1(a) Cognitivism and cognitive constructivism
2.7.1.1 Focus group interviews
2.7.2 Coding in grounded theory
2.7.2.1 Open coding
2.7.2.1.1 Identifying categories
2.7.2.2 Axial coding
2.7.2.2.1 Coding paradigm
2.7.2.3 Selective coding
2.7.3 Memoing
2.8 Research paradigm
2.8.1 Positivism and interpretivism
2.8.2 Empiricism and rationalism
2.8.3 Qualitative and quantitative research
2.8.4 Social constructivist worldview
2.9 Synthesis
2.9.1 Behaviourism
2.9.2 Cognitivism
2.9.3 Constructivism
2.9.4 Computer technology as a cognitive tool
2.9.5 Higher-order thinking
2.9.6 Design-based research
2.9.6.1 Phases in the research into using technology as a cognitive tool
2.9.6.1.1 Phase 1: Preliminary investigation
2.9.6.1.2 Phase 2: Prototyping
2.9.6.1.3 Phase 3: Assessment
2.9.7 Grounded theory
2.9.7.1 Determining the research question
2.9.7.2 Data collection
2.9.7.3 Data analysis
2.10 Chapter summary

Chapter 3 Research design and research methods

3.1 Philosophical worldview applicable to this study
3.2 Strategy of inquiry
3.3 Design-based research
3.3.1 How this study employs educational design-based research
3.4 Sampling methods
3.4.1 Purposive sampling
3.4.2 Simple random sampling
3.5 Data collection
3.6 Data analysis 132
3.6.1 The use of Atlas.ti in preparing for data analysis 132
3.6.2 How the design team focus group transcripts were analysed 133
3.6.3 The process of analysing the student samples' focus group transcripts 136
3.6.3.1 Open coding 136
3.6.3.2 Axial coding 137
3.6.3.3 Selective coding 138
3.7 Trustworthiness of the research findings and analysis 139
3.7.1 Dependability 140
3.7.2 Confirmability 140
3.7.3 Transferability 141
3.7.4 Credibility 141
3.8 Ethical considerations 143
3.8.1 Informed consent 143
3.8.2 Voluntary participation 143
3.8.3 Avoidance of harm 144

Chapter 4
Data analysis and findings: Conjectures and principles associated with using computer technology as a cognitive tool to facilitate higher-order thinking

4.1 Introduction 145
4.2 Overview of the contact sessions held with the design team 146
4.3 Describing the learning environment 151
4.3.1 Setting the scene 151
4.3.2 Initial exposure to the learning environment 153
4.3.3 Presenting the ill structured problem 153
4.3.4 Explicating the expert system concept 154
4.3.5 Demonstrating a functional expert system 155
4.3.6 Explaining flow-diagram representation 156
4.3.7 Exploring the subject domain using an algorithmic flow-diagram 159
4.3.8 Modelling understanding by exploring the ill structured problem 160
4.4 What conjectures and principles are associated with an intervention that uses computer technology as an expert system shell to develop higher-order thinking skills in foundation students at TUT? 161
4.4.1 Design principles in the form of conjectures and principles 162
4.4.1.1 Initial exposure to the learning environment 165
4.1.1.1 Description of the conjectures and principles related to the students' initial exposure to the learning environment 169
4.4.1.2 Discovery learning 170
4.4.1.2.1 Foundational information 175
4.4.1.2.2 Manageable chunks 176
4.4.1.2.3 Struggle unaided 177
4.4.1.2.4 Interactive screen capture demonstration 177
4.4.1.2.5 Receiving assistance 178
4.4.1.2.6 Scaffolding 178
4.4.1.3 Designing the expert system 179
4.4.1.3.1 Planning the expert system using a flow-diagram 182
4.4.1.3.2 Formulation of questions 182
4.4.1.4 Creating subject (domain) awareness 182
4.4.1.4.1 Exploring current understanding 188
4.4.1.4.2 Paper-based exercises 188
4.4.1.4.3 Providing support 189
4.4.1.4.4 Incorporating video clips to facilitate discussion 189
4.4.1.5 Representing understanding (modelling) 186
4.4.1.5.1 Bridging the gap between conceptual understanding and a representation of this understanding 197
4.4.1.5.2 Formulating and representing scenarios 199
4.4.1.5.3 Question formulation 199
4.4.1.5.4 Using natural language (pseudo-code) to represent expert system logic 200
4.4.1.5.5 Formulating inferences 200
4.4.1.5.6 Modelling understanding through the development of a functional expert system 200
4.4.1.6 Development of a functional expert system 201
4.4.1.6.1 Students' initial exposure to developing an expert system 208
4.4.1.6.2 Group collaboration and reflection 208
4.4.1.6.3 Development of a functional expert system based on flow diagram design 209
4.4.1.6.4 Familiarity with the expert system shell 209
4.4.1.6.5 Active participation in the development process 210
4.4.1.6.6 Development must reflect expert system logic 210
4.4.1.7 Students' engagement with the problem statement 211
4.5 Chapter summary 217
<table>
<thead>
<tr>
<th>Chapter 5</th>
<th>Data analysis and findings: Exploring the experiences of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>5.2</td>
<td>How will foundation students experience a learning intervention that uses technology in the form of an expert system shell in order to develop higher-order thinking skills?</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Setting the scene</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Fragmenting the data into labels and formulating categories</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Exploring the relationships in the data</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Developing an analytical story - how did the students experience the learning environment?</td>
</tr>
<tr>
<td>5.3</td>
<td>Chapter summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Discussion and literature reflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>6.2</td>
<td>Students left to discover information on their own</td>
</tr>
<tr>
<td>6.3</td>
<td>Practical application of understanding</td>
</tr>
<tr>
<td>6.4</td>
<td>Making connections with existing knowledge</td>
</tr>
<tr>
<td>6.5</td>
<td>Collaborating in groups</td>
</tr>
<tr>
<td>6.6</td>
<td>Representing understanding and knowledge</td>
</tr>
<tr>
<td>6.7</td>
<td>Designing a functional expert system</td>
</tr>
<tr>
<td>6.8</td>
<td>Developing a functional application</td>
</tr>
<tr>
<td>6.9</td>
<td>Exploring an ill structured problem</td>
</tr>
<tr>
<td>6.10</td>
<td>Alleviating cognitive load</td>
</tr>
<tr>
<td>6.11</td>
<td>Chapter summary</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7</th>
<th>Summary, conclusion and recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Summary of the problem that gave rise to the research</td>
</tr>
<tr>
<td>7.2</td>
<td>Outlining the research design</td>
</tr>
<tr>
<td>7.3</td>
<td>Summary of the conjectures and principles</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Initial exposure</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Students discovering concepts for themselves</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Designing the expert system on paper</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Creating subject domain awareness</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Creating and awareness of the relationship between conceptual understanding and a representation of that understanding</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Students' development of a functional expert system</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Students' engagement with the problem statement</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>7.4</td>
<td>Summary of student experiences of a learning intervention based on conjectures and principles formulated to use computer technology in the form of an expert system shell in order to achieve higher-order thinking skills</td>
</tr>
<tr>
<td>7.5</td>
<td>Relevance of the study</td>
</tr>
<tr>
<td>7.6</td>
<td>Significance of the study</td>
</tr>
<tr>
<td>7.7</td>
<td>Suggestions for further research</td>
</tr>
<tr>
<td>7.8</td>
<td>Conclusion</td>
</tr>
</tbody>
</table>

Bibliography 268
List of tables

Table 1.1 Factors contributing to the under-preparedness of students for higher education
Table 4.1 An overview of the sessions held with the design team
Table 4.2 A portion of the table used in the category creation process
Table 4.3 Conjectures and principles related to the students’ initial exposure to the learning environment
Table 4.4 Conjectures and principles related to characteristics of discovery learning
Table 4.5 Conjectures and principles related to the design phase of the learning environment
Table 4.6 Conjectures and principles associated with domain awareness
Table 4.7 The representation of understanding
Table 4.8 The characteristics, procedures and arguments associated with the development of an expert system
Table 4.9 The characteristics, procedures and arguments associated with problem interaction
Table 5.9 Categories and their related codes formulated from analysis of focus group interviews held with students
Table 5.10 Axial coding - Student group
Table 5.11 Selective coding
Table 7.1 Summary of conjectures and principles concerning the students’ initial exposure to the learning environment
Table 7.2 Summary of design principles concerning the students’ discovering information on their own
Table 7.3 Summary of conjectures and principles concerning the students’ designing their expert systems on paper
Table 7.4 Summary of conjectures and principles concerning creating domain awareness
Table 7.5 Summary of conjectures and principles concerning the students’ representation of conceptual understanding
Table 7.6 Summary of design principles concerning the students’ development of a functional expert system
Table 7.7 Summary of conjectures and principles concerning the students’ engagement with the problem statement
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Stages of information processing according to the information processing approach to learning</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>A synthesis of behaviourist-based learning</td>
<td>107</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>A synthesis of cognitivist-based learning</td>
<td>109</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Synthesis of constructivism</td>
<td>111</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>A synthesis of higher-order thinking</td>
<td>117</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>A synthesis of critical thinking</td>
<td>118</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>A synthesis of problem-solving</td>
<td>119</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>A synthesis of higher-order thinking and social interaction</td>
<td>120</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>An example of a simple decision structure</td>
<td>156</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>A flow-diagram representing an invitation to a job interview decision structure</td>
<td>158</td>
</tr>
</tbody>
</table>
List of addenda

<table>
<thead>
<tr>
<th>Addendum</th>
<th>Content Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addendum A</td>
<td>Category creation table</td>
<td>280</td>
</tr>
<tr>
<td>Addendum B</td>
<td>Research participant information sheet - Student</td>
<td>332</td>
</tr>
<tr>
<td>Addendum C</td>
<td>Research participant information sheet - Design team</td>
<td>335</td>
</tr>
<tr>
<td>Addendum D</td>
<td>Informed consent</td>
<td>338</td>
</tr>
<tr>
<td>Addendum E</td>
<td>Decision structure - Selecting a suitable type of dog</td>
<td>341</td>
</tr>
<tr>
<td>Addendum F</td>
<td>Transcriptions of the focus group interviews held with the design team</td>
<td>342</td>
</tr>
<tr>
<td>Addendum G</td>
<td>Transcriptions of the focus group interviews held with the student sample</td>
<td>408</td>
</tr>
<tr>
<td>Addendum H</td>
<td>Getting to know flow-diagrams and IF THEN statements</td>
<td>447</td>
</tr>
<tr>
<td>Addendum I</td>
<td>Step by step guide to creating an expert system using CourseLab</td>
<td>452</td>
</tr>
<tr>
<td>Addendum J</td>
<td>Common errors encountered when building an expert system using CourseLab</td>
<td>463</td>
</tr>
<tr>
<td>Addendum K</td>
<td>Ethical clearance certificate</td>
<td>465</td>
</tr>
</tbody>
</table>
List of acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer Aided Design</td>
</tr>
<tr>
<td>CAQDAS</td>
<td>Computer Aided Qualitative Data Analysis Software</td>
</tr>
<tr>
<td>HOT</td>
<td>Higher Order Thinking</td>
</tr>
<tr>
<td>HOTS</td>
<td>Higher Order Thinking Skills</td>
</tr>
<tr>
<td>ISD</td>
<td>Instructional System Design</td>
</tr>
<tr>
<td>PBL</td>
<td>Problem Based Learning</td>
</tr>
<tr>
<td>TUT</td>
<td>Tshwane University of Technology</td>
</tr>
<tr>
<td>ZPD</td>
<td>Zone of Proximal Development</td>
</tr>
</tbody>
</table>