AN ASYMMETRIC ECONOMETRIC MODEL OF THE SOUTH AFRICAN STOCK MARKET

by

HELENA CORNELIA MOOLMAN

Submitted in fulfillment of the requirements for the degree

PHD (ECONOMETRICS)

in the

FACULTY OF ECONOMICS AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA
AN ASYMMETRIC MODEL OF THE SOUTH AFRICAN STOCK MARKET

BY

HELENA CORNELIA MOOLMAN

PROMOTOR PROF. C.B. DU TOIT
DEPARTMENT ECONOMICS
DEGREE FOR WHICH THE THESIS
IS PRESENTED PHD (ECONOMETRICS)

Abstract

In this study a structural model of the South African stock market, the Johannesburg Stock Exchange (JSE), was developed and estimated econometrically. The study has made three important contributions to the literature. Firstly, a structural model of the South African stock market has been developed, which quantifies the relationships between the stock market and macroeconomic variables while analyzing the impact of foreign markets and phenomena such as contagion, policy changes and structural economic changes on the JSE. This will improve the economic agents’ understanding of the functioning of the stock market and potentially assist in forecasting the stock market.

Secondly, investors are generally assumed to be risk and/or loss averse. This study explains how this risk and/or loss aversion of investors can cause asymmetry in stock prices and the study evaluates different types of stock market asymmetry with advanced econometric techniques such as the threshold cointegration test of Siklos and Enders (2001) and a Markov switching regime model. The Markov switching regime model is used to model the South African business cycle and to construct an indicator for the state of the business cycle, which is in turn used to introduce cyclical asymmetry in the stock market model. The Markov switching regime model is in itself a substantial contribution to the literature since no Markov switching regime
model has been estimated for the South African business cycle yet. Apart from being used to capture cyclical asymmetry in the stock market, the Markov switching regime business cycle model can also be used to identify turning points in the South African economy and to model economic growth.

Finally, the forecasting performance of the stock market model developed in this study is compared to other stock market models. According to the results, this model is preferred to the other stock market models in terms of modelling and forecasting the level and direction of the JSE. This means that investors and policy makers can use this model to simulate the impact of changes in macroeconomic indicators on the future course of the stock market and use it to develop profitable trading rules.
CONTENTS

LIST OF TABLES

LIST OF FIGURES

1. INTRODUCTION AND BACKGROUND

1.1 Introduction 1
1.2 Objectives and methodology 3
1.3 Contributions of this study 5
1.4 Outline of the study 10

2. THE SOUTH AFRICAN STOCK MARKET AND THE ECONOMIC ENVIRONMENT

2.1 Introduction 13
2.2 The structure of the Johannesburg stock exchange 14
2.3 The role and functioning of the South African financial market and the Johannesburg stock exchange 18
 2.3.1 The role and functioning of the South African financial market 18
 2.3.2 The role and functioning of the Johannesburg stock exchange 20
2.4 The socio-economic environment 20
2.5 The institutional and policy setting 23
2.6 The impact of globalization and South Africa’s emerging market status on the JSE 26
 2.6.1 Globalization and global financial revolution 26
 2.6.2 The emerging market syndrome 28
2.7 Conclusion 29
3. STOCK MARKET THEORY

3.1 Introduction

3.2 The efficient market hypothesis and the present value model
 3.2.1 The efficient market hypothesis and implications for stock market modelling
 3.2.2 The present value model

3.3 Empirical implications of the present value model
 3.3.1 The discount rate
 3.3.2 Dividends and growth

3.4 Stock market asymmetry

3.5 Conclusion

4. A REVIEW ON EXISTING STOCK MARKET MODELS

4.1 Introduction

4.2 International studies
 4.2.1 Studies evaluating stock market efficiency
 4.2.2 Structural stock market models

4.3 South African studies
 4.3.1 Studies on the efficiency of the South African stock market
 4.3.2 Structural models of the South African stock market

4.4 Conclusion

5. A MARKOV SWITCHING REGIME MODEL OF THE SOUTH AFRICAN BUSINESS CYCLE

5.1 Introduction

5.2 The relationship between the business cycle and the yield spread

5.3 The econometric techniques
 5.3.1 The Markov switching regime model
 5.3.2 The logit model

5.4 Existing Markov switching regime business cycle models
5.4.1 Empirical Markov switching regime business cycle models with fixed transition probabilities 76
5.4.2 Empirical Markov switching regime business cycle models with time-varying transition probabilities 78
5.4.3 The yield spread as predictor of business cycles 81
5.5 Empirical analysis of the South African business cycle 82
5.5.1 Methodology 82
5.5.2 The estimated linear model 83
5.5.3 The estimated logit model 84
5.5.4 The estimated Markov switching regime model 85
5.6 Model selection 90
5.6.1 Comparing linear and Markov switching regime models 90
5.6.2 Comparing the estimated logit and Markov switching regime models 91
5.7 Conclusion 92

6. EMPIRICAL ESTIMATION OF THE SOUTH AFRICAN STOCK MARKET

6.1 Introduction 94
6.2 Data 95
6.3 Efficiency of the South African stock market 100
6.4 The cointegration equation 102
6.4.1 Stock market asymmetry conditional on characteristics of the error terms 103
6.4.2 Stock market asymmetry conditional on the state of the business cycle 107
6.5 The short-run dynamics: an error correction model 110
6.5.1 Evaluation and diagnostic testing of the ECM 117
6.5.2 Dynamic simulation 118
6.6 Policy implications 119
6.7 Conclusion 122
7. COMPARING MODELS AND FORECASTS OF THE LEVEL AND TURNING POINTS OF THE SOUTH AFRICAN STOCK MARKET

7.1 Introduction 124
7.2 Modelling the level of the stock market 125
 7.2.1 The stock market models 125
 7.2.2 Evaluating the stock market models 133
7.3 Modelling turning points in the stock market 141
 7.3.1 The turning point models 141
 7.3.2 Evaluating the turning point models 143
7.4 Conclusion 146

8. SUMMARY AND CONCLUSION

8.1 Introduction 149
8.2 Modelling approach 151

8.3 Contributions of this study 155
8.4 Results 155
 8.4.1 Structural model 155
 8.4.2 Comparative performance 156
 8.4.3 Profitability 157
8.5 Conclusion 158

REFERENCES 160

APPENDICES

1. Predicting turning points in the South African economy 177
2. Model evaluation for different loss functions 192
LIST OF TABLES

Table 2.1 Characteristics of the JSE 15
Table 2.2 African stock markets (ranked by turnover) 1998 17
Table 5.1 Business cycle phases according to SARB since 1978 83
Table 5.2 Linear autoregressive model 83
Table 5.3 Logit model 84
Table 5.4 Parameters of growth equation in Markov switching regime model 87
Table 5.5 Parameters of transition probability equation in Markov switching regime model 88
Table 5.6 Model selection criteria for the linear and Markov models 90
Table 5.7 Model selection criteria for the logit and MS models 91
Table 6.1 List of variables 97
Table 6.2 Augmented Dickey-Fuller and Phillips-Perron tests for non-stationarity, levels 98
Table 6.3 Augmented Dickey-Fuller and Phillips-Perron tests for non-stationarity, first differences 99
Table 6.4 Cointegration results, Case (I) TAR-Adjustment 106
Table 6.5 Cointegration results, Case (II) MTAR-Adjustment 107
Table 6.6 Test statistics and choice criteria for selecting the order of the VAR model 108
Table 6.7 Trace test for cointegration 108
Table 6.8 Eigenvalue test for cointegration 109
Table 6.9 Cointegration equation 110
Table 6.10 Error correction model 113
Table 6.11 Error correction model with instrumental variables 115
Table 6.12 Diagnostic tests 118
Table 7.1 List of variables 126
Table 7.2 Model selection criteria for individual AR models 128
Table 7.3 Results of the FM-VAR estimation 129
Table 7.4 Reparameterized results of the FM-VAR 130
Table 7.5 Evaluation of the in-sample performance of the models 136
Table 7.6 Equal accuracy tests for in-sample performance 139
Table 7.7 Evaluation of the forecasting performance of the models 139
Table 7.8 Equal accuracy tests for forecasting performance
Table 7.9 In-sample performance of different trading strategies
Table 7.10 Forecasting performance of different trading strategies
Table 7.11 Forecasting profitability including dividends
LIST OF FIGURES

Figure 2.1 Returns on the JSE and the South African social, economical, and political environment from 1960 25
Figure 5.1 Recession probabilities of the logit model 85
Figure 5.2 Markov switching regime model: time-varying transition probabilities 89
Figure 6.1 The JSE all-share index 96
Figure 6.2 Actual and fitted values of the stock market 119
Figure 7.1 Stock market models 131
Figure 7.2 The cointegration stock market model 131
Figure 7.3 The random walk stock market model 132
Figure 7.4 The FM-VAR stock market model 132
Figure 7.5 A moving-average model of the JSE 142