Information, knowledge and learning:
Is the Web effective as a medium for Mathematics teaching?

by
Benjamin Alan Carr

submitted in partial fulfilment of the requirements for the degree

Doctor of Philosophy

in the
Department of Information Science

University of Pretoria

Supervisor: Prof. Dr. J.C. Cronjé
December 2002
Abstract

Candidate: Benjamin Alan Carr
Supervisor: Prof. Dr. J.C. Cronjé
Department: Information Science
Degree: D.Phil.
Title: Information, knowledge and learning: Is the Web effective for Mathematics teaching?

This document is a report on an experiment in which mathematical skills were taught to first year university students using the Web as a method of instructional delivery. Special attention was paid to the ability of students from disadvantaged backgrounds to cope with this method of delivery. Overall, the results obtained by students using this method were slightly better than that of students on the equivalent paper-based course. However, students from disadvantaged backgrounds fared marginally worse than those on the paper-based course. The results of these students allow extrapolation to a broader context where Web-based teaching of disadvantaged communities may be used.

Definitions for knowledge, information, learning and teaching were developed. These definitions were then used as the foundation for creating the Web pages used in the experiment.

Keywords Knowledge; information; learning; teaching; Web-based teaching; Web-based learning; technology-enhanced learning; mathematics skills; underprepared students; Logo.
Opsomming

Kandidaat: Benjamin Alan Carr
Promotor: Prof. Dr. J.C. Cronjé
Department: Inligtinkunde
Graad: D.Phil.
Titel: Inligting, kennis en leer: Is die Web effektief vir Wiskunde onderrig?

Hierdie tesis is ‘n omskrywing van ‘n ondersoek waarin wiskundige vaardighede aan eerstejaar universiteitsstudente oorgedra is deur middel van die Web as vervoermedium. In hierdie studie is voorsiening gemaak vir die moontlikheid dat studente van voorheen benadeelde groepe met hierdie vervoermedium nie sal byhou nie. In die algemeen, is die uitslae van studente wat hierdie metode gevolg het effens beter as die van studente wat die gelykstaande papier-gebaseerde kursus geloop het; maar studente van voorheen benadeelde groepe het effens slegter gevaar as studente op die papier-gebaseerde kursus. Die uitslag van hierdie oefening laat die uitbreiding toe tot ‘n wyer gebied waar Web-gebaseerde onderrig in voorheen benadeelde gemeeskappe gebruik mag word.

Definisies ten opsigte van kennis, inligting, leer en onderrig is ontwikkel. Hierdie definisies is gebruik as die fondament vir die skepping van die Web-blaaie wat in hierdie studie gebruik is.

Sleutelwoorde Kennis; inligting; leer; onderrig; Web-gebaseerde onderrig; Web-gebaseerde leer; tegnologie-versterkte leer; wiskundige vaardighede; ondervoorbereide studente; Logo.
Acknowledgements

Prof. Johannes Cronjé for accepting me as a student and being supportive especially during the final stages of writing this document.

Dolf Steyn and Lisa Thompson for giving up time to read this document and giving critical comments on it. A special thanks to Dolf for his effort in getting me to complete this report.

Prof. Johan van Staden for giving me plenty of free time for conducting interviews with students, analysing results and writing this report.

The more than 300 students of the Science Orientation course who were part of this experiment without knowing it.

The tutors on the Science Orientation course Jacquie Smith, Mariana Horak, Adri Pretorius, Gavin Hunter, Tessa Bandunis, Koos Kabini, Inge van Jaarsveld, Noelani van den Berg and Deshni Pillay without whose help I would not have been able to cope with the students.

René van Zyl for her help in setting up the Web server used for the Science Orientation course.

Tobia Steyn whose idea it was to use Logo in the Science Orientation course.

The many academics locally and abroad who communicated their ideas with me, especially At de Lange and Bob Gorman.

Zahn Nel for reading some of the chapters and discussing modern day language usage in academic reports.

Rudi Schwarzer for assistance in translating the abstract into Afrikaans.

The friends and colleagues who showed an interest in the progress of this report especially Mark Hultzer for his many calls from Durban.

Pat, Nyika and the cats...
Table of contents

List of figures ix
List of tables xi
Note to the reader xiii

Chapter 1 Introduction 1
1.1 Introduction 2
1.2 Historical overview of the World Wide Web 2
1.3 Major research questions 4
1.4 Historical overview of the Science Orientation Course 5
1.5 Research questions pertaining to this project 7
1.6 Limitations of this study 8
1.7 Other research 8
1.8 Data collection methods 10
1.9 Thesis outline 11
1.10 Summary 12

Chapter 2 Literature review 13
2.1 Information requirements 14
2.2 Creating knowledge from information 14
 2.2.A The Brookes equation 14
 2.2.B Assimilating and accommodating information: learning 16
 2.2.C Information and knowledge: synonymity 17
 2.2.D Information and knowledge in the computer industry 18
 2.2.E Philosophical views on information and knowledge 20
 2.2.F Working definitions of information and knowledge 22
2.3 Information requirements for Web-based teaching 23
 2.3.A The role of the teacher 23
 2.3.B The role of the learner 25
 2.3.C The role of the medium of delivery 26
2.4 Web-based teaching in disadvantaged communities 29
 2.4.A Cultural and language issues 29
 2.4.B Political and economic issues 30
 2.4.C The digital divide 30
 2.4.D South African issues 30
2.5 Conclusion 32
Chapter 3 Methodology

3.1 The research problem
 - 3.1.A The aim of the research
 - 3.1.B The objectives of the research
3.2 A description of the Problem Solving Skills module of the Science Orientation course
 - 3.2.A Target population
 - 3.2.B Aims and objectives of the module
 - 3.2.C Module content
 - 3.2.D Method
3.3 Web-based course development
 - 3.3.A The Web server
 - 3.3.B Web page design tools
 - 3.3.C Design and development of the Web pages
3.4 Web-based course evaluation
 - 3.4.A Evaluation of students’ assignments
 - 3.4.B Evaluation of students’ tests and examinations
 - 3.4.C Evaluation of students’ time management skills
 - 3.4.D Analysis and evaluation of Web server logs
 - 3.4.E Development and evaluation of a questionnaire
3.5 Questionnaire
 - 3.5.A Computer expertise
 - 3.5.B Students’ attitudes towards the Web-based course
 - 3.5.C Use of the supplementary pages
 - 3.5.D Time management
 - 3.5.E Administering the questionnaire
 - 3.5.F Evaluating the responses
3.6 Summary

Chapter 4 Results and discussion

4.1 Comparison of assessment results
 - 4.1.A Examinations
 - 4.1.B Assignments
 - 4.1.C Church project
 - 4.1.D Supplementary examinations
4.2 Analysis of student activity on the Web pages
 - 4.2.A Objectives
 - 4.2.B Naming of parts
 - 4.2.C Solutions
4.2.D Additional assignments 71
4.2.E Useful information 72
4.2.F The search for inspiration 73
4.3 Student assessment of the Web-based course 76
 4.3.A Computer literacy 76
 4.3.B Using the Web pages of the SCI 152 course 80
 4.3.C Could other courses be run from the Web? 84
 4.3.D Solution pages 85
 4.3.E Honesty in answering the questionnaire 87
4.4 Time management 88
 4.4.A 2000 88
 4.4.B 2001 89
 4.4.C Assistance with time management 89
 4.4.D Reading ahead 90
4.5 Off-task activities 90
4.6 Interaction 92

Chapter 5 Conclusions and recommendations 93
5.1 Course Design 94
 5.1.A Face-to-face contact 94
 5.1.B Assignment and solution pages 95
 5.1.C Time management 96
 5.1.D Study aid pages 96
 5.1.D.1 Objectives 96
 5.1.D.2 Useful information 97
 5.1.E Additional recommendations to course design 97
5.2 Web delivery as a means of course presentation 98
5.3 The digital divide 99
 5.3.A Computer expertise 99
 5.3.B Ability to complete a solo project 99
 5.3.C Open Internet access 100
5.4 The influence of students’ background 101
5.5 Web-delivery of academic material as an aid to alleviating the educational shortfall in disadvantaged communities 102
 5.5.A Scholars as Web learners 102
 5.5.B Teachers as Web learners 102
 5.5.B Schools as centres of Web-based learning 103
5.6 Knowledge and information 103
 5.6.A Teaching and learning 103
5.6.B World Wide Web 104
5.6.C The World Wide Web and teaching 104
5.7 Is the Web effective as a medium for teaching? 105
5.8 Summary 105

Chapter 6 Future work 107
6.1 Email 107
6.2 Web Access logs 107
6.3 JavaLogo 108

Bibliography 109

Appendices 119
A.1 Results at a glance 119
A.2 Questionnaire used to poll the opinions of the SCI 152 students 121
A.3 Email monograph: Information and knowledge by AM de Lange 125
List of figures

Figure 2.3.b.1 Hypothetical teacher learner control continuum 26
Figure 3.2.d.1 The layout of the Gold Fields Computer Centre 41
Figure 3.2.d.2 Photographs of students working in the Gold Fields Computer Centre 42
Figure 3.3.c.1 The Index page of the SCI 152 Web-based course 45
Figure 3.3.c.2 Part of the Assignment 3 page 47
Figure 3.3.c.3 Part of the solutions page for Assignment 3 48
Figure 4.1.a.1 The class averages for the examinations from 1997 to 2001 58
Figure 4.1.a.2 The frequency-distribution graph of the students’ examination marks. The class size has been normalized to 50 students 59
Figure 4.1.b.1 Class averages for each of the assignments 62
Figure 4.1.b.2 Class averages for Rd students 62
Figure 4.1.b.3 Class averages for Ra students 62
Figure 4.1.c.1 Class averages for the church project 64
Figure 4.1.c.2 A sample of churches produced by students on the paper-based and Web-based courses 66
Figure 4.2.d.1 One of the exercises from the Additional assignments page 72
Figure 4.2.f.1 Hits on the SCI 152 pages during the course of the 2000 examination 73
Figure 4.2.f.2 Paths followed by four students in moving through the SCI 152 pages during the 2000 examination 74
Figure 4.2.f.3 Hits on the SCI 152 pages during the course of the 2001 examination 75
Figure 4.2.f.4 Paths followed by four students in moving through the SCI 152 pages during the 2001 examination 76
Figure 4.3.a.1 Students’ own rating of their computer expertise 77
Figure 4.3.a.2 Students’ access to a computer at home 77
Figure 4.3.a.3 Word processor usage by the students 78
Figure 4.3.a.4 Internet usage by the students 78
Figure 4.3.a.5 Derived computer literacy levels 79
Figure 4.3.a.6 Average examination marks achieved by students who responded in the different categories in Figure 4.3.a.5 80
Figure 4.3.b.1 Did the students cope with the course without lectures? 81
Figure 4.3.b.2 Was there sufficient information in the Web pages to complete the assignments? 81
Figure 4.3.b.3 Would the students have liked to have had some lectures? 82
Figure 4.3.b.4 Could the students have completed the assignments without the lecturer and the tutors? 82
Figure 4.3.b.5 Students overall view of the Web-based course 83
Figure 4.3.b.6 Average examination marks achieved by students who responded as shown in the different categories in Figure 4.3.b.5 84
Figure 4.3.c.1 Students' views as to whether an of their other courses could be run from the Web 85
Figure 4.3.d.1 Students response to whether they had compared their answers to the solution pages 85
Figure 4.3.d.2 Students' response to which solution pages were inadequate 86
Figure 4.3.e.1 Students' response to whether they had read the Objectives page 87
Figure 4.4.c.1 Response to Question 22 of the questionnaire: "Do you think a Web page on 'how you could possibly manage your time on this course' would have helped you?" 89
Figure 4.4.d.1 Response to Question 18 of the questionnaire: "Did you, at any stage, read assignments that were not yet due?" 90
List of tables

Table 1.3.1 Major research questions 4
Table 1.4.1 Group definitions from Herselman (1999) 7
Table 1.4.2 Group definitions used in this study 7
Table 1.5.1 Project research questions 8
Table 1.7.1 Current, and recently completed, research on teaching and learning via the Internet 9
Table 1.8.1 Data collection matrix for the major research questions posed in Table 1.3.1 10
Table 1.8.2 Data collection matrix for the research questions posed in Table 1.5.1 11
Table 1.9.1 Thesis outline 11
Table 2.2.e.1 Data, information and knowledge (from Davenport, 1997:9) 21
Table 2.2.f.1 Working definitions 22
Table 2.3.a.1 A model for pedagogical reasoning and action (Shulman, 1987) 24
Table 2.3.c.1 Levels of Web use in education (after Harmon & Jones, 1999) 27
Table 2.3.c.2 Factors influencing the desirability of Web use in education (after Harmon & Jones, 1999) 28
Table 3.2.1 Study skills covered in the Science Orientation course 35
Table 3.2.c.1 SCI 152 assignments 39
Table 3.3.c.1 Factors influencing the SCI 152 course on Harmon and Jones Level 3 Web usage (after Harmon & Jones, 1999) 44
Table 4.1 Data collection matrix for the research questions posed in Table 1.5.1, showing the sections in this chapter in which the questions are answered 56
Table 4.1.a.1 The major differences between the Web-based course and the paper-based course 57
Table 4.1.a.2 The difference in examination results for the Web-based and the paper-based course 59
Table 4.1.a.3 The difference in pass rate for the Web-based and the paper-based courses 60
Table 4.1.a.4 The difference in pass rate for the Web-based and the paper-based courses without the results of the Financial Mathematics students 60
Table 4.1.b.1 SCI 152 assignments 62
Table 4.1.b.2 Average assignment results for the paper- and Web-based courses 63
Table 4.1.c.1 Average results for the church project for the paper- and Web-based courses 65
Table 4.2.1 Requests on http://goldilux.up.ac.za/sci152 68
Table 4.2.a.1 Time (in seconds) spent on the Objectives page in 2000 68
Table 4.2.a.2 Time (in seconds) spent on the Objectives page in 2001 68
Table 4.2.b.1 Hits on the page which discussed the PC Logo environment 70
Table 4.2.c.1 Hits on the solution pages 71
Table 4.2.d.1 Hits on the Additional Assignments page 71
Table 4.2.e.1 Hits on the Useful Information page 72
Table 4.2.f.1 Number of students accessing the SCI 152 pages during the course 73
of the examinations
Table 4.3.a.1 Weighting factors used in generating Figure 4.3.a.5 79
Table 4.3.b.1 Responses used in generating Figure 4.3.b.5 83
Table 4.3.e.1 A comparison of students’ views of the Web-based course between 87
the whole class and the "honest" students
Notes to the reader

Referencing books In this document, when a book is referenced, the page number is included as part of the reference in the body text. The reason for this being that anyone (including me) wishing to check on a book reference will know exactly where in the book the item under discussion was obtained without having to wade through the whole book.

Quotations Quotations in the body text are surrounded by quotation marks ("'). Where the quotation is a paragraph, an indented paragraph is used with the text in italics and no quotation marks.