APPENDIX 1

APPENDIX 1

University of Pretoria etd - Mathekga, A D M APPENDIX 1

CRYSTAL DATA AND DETAILS OF THE STRUCTURE

DETERMINATION.

2-Methyl-4-[2',4',6'-trihydroxy-3'-(2-methylpropanoyl) phenyl] but-2-enyl acetate.

1. **Crystal data**. Empirical formula $C_{17}H_{22}O_6$ Formula weight 322.35 Crystal system Monoclinic Space group C2/c (No. 15) a, b, c, [Angstrom] (a) 13.9411(9); (b) 17.4233 (11); (c) 15.6427 (10) alpha, beta, gamma [deg.] 90 112.9050 (10) 90 V [Ang^{**}3] 3500.0 (4) Z 8 D (obs), D (calc) [g/cm^{**}3] 0.000, 1.224 F (000) 1376 Mu (Moka) [/mm] 0.092 Crystal size 0.30 x 0.30 x 0.60

2. Collection data

Temperature (K) 296.2 Radiation [Angstrom] Moka 0.71073 Theta Min-Max [Deg] 5.92, 28.30 Scan, (Type and Range) [Deg] 0.00 + 0.35 Tan (Theta) Hor. and Vert. Aperture [mm] 0.00 and 0.00

University of Pretoria etd - Mathekga, A D M

3. **Reference Reflection(s)**

Dataset 18: 18:23:23; 20:20

Tot., Uniq. Data, R (int) 19052, 4294, 0.030 Observed data [I > 2.0 sigma (I)] 3063

4. Refinement

Nref, N par 0, 220 R, wR, S 0.0588, 0.1654, 1.053 w = 0.0961 Max. and Av. Shift/Error 0.05 0.00 Min. and Max resd. Dens. [e/Ang^{*}3]. 0.27, 0.40

Appendix 1 (Figure). The X-ray structure and molecular stereochemistry of the acylated phloroglucinol derivative, caespitate (C_{17} H₂₂ O₆), showing the numbering scheme employed.

5. Structure Solution

The structure was solved in the monoclinic space group C2/c with the direct methods program SHELXS-97 [1] as implemented by the crystallographic program OSCAIL [2]. The E-map lead to the location of all non-hydrogen atoms; these were refined anisotropically with the program SHELXL-97. A difference Fourier synthesis led to location of all methine, methylene, and methyl hydrogens. All were included as idealized contributors in the least-squares process with standard SHELXL-97 [1] idealization

parameters. No evidence (difference Fourier map) for the inclusion of solvent in the lattice could be found. The final refinement converged to values of: R1 = 0.0588 and wR2 = 0.1654 for the observed 3063 unique reflections [I > 2.0 sigma (I)] and R1 = 0.0823 and wR2 = 0.1829 for all 4294 unique reflections. The maximum and minimum electron densities on the final differences Fourier map were 0.40 and 0.27 e/A ^ 3, respectively. The final model was plotted using the program ORTEP [3].

Caespitate has a *cis*- double bond in the side chain (App.1. Figure). This is unusual stereochemistry in plant products and may be responsible for the observed activity of the compound (Drewes, personal communication).

REFERENCES

SHELXL-97 : G.M. SHELDRICK, University of Gottingen. (a) G.M.
SHELDRICK, *Acta Cryst.* 1990, A46, 467-473. (b) G.M. SHELDRICK, *Acta Cryst* 1993, D 49, 18-23. (c) G.M. SHELDRICK, T. R.CHNEIDER. In: *Methods in entomology*. Vol. 277. Macromolecular crystallography. Part B. Eds., C.W. Carter and R.M. Sweet. pp 319-343. 1997.

[2] OSCAIL Version 8. P. McARDLE. 1995. Crystallography Centre, chemistry Department, NUI Galway, Ireland. *Journal of Applied Crystallography* 28: 65-65.

[3] ORTEP 3 for Windows V1.01 beta : Louis, J. Farrugia. Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland. 1998. (b) ORTEP III. M. N. BURNETT and C. K. JOHNSON. Oak Ridge National Laboratory Report. ORNL-6895. 1996.