CHAPTER 10: ACCIDENT ANALYSIS FOR ARRIVE ALIVE 1 USING MONTHLY DATA

10.1 INTRODUCTION

The purpose of this chapter is to investigate the use of trends and characteristics of monthly accident data on a national, provincial, metropolitan, intersection and route level to evaluate a road safety improvement intervention. Arrive Alive 1 is utilised to serve as an example.

10.2 METHODOLOGY

A number of population areas was selected for evaluation. Firstly the national level was selected as National government is setting goals for improving safety on an almost continuous basis. The provinces of Gauteng, KwaZulu-Natal and Western Cape were selected based on the fact that Arrive Alive 1 funding was concentrated in these areas and these areas should therefore show the most significant changes if any changes did occur as a result of the Arrive Alive 1 road safety campaign. The Durban Metropolitan area was selected based on the quality of the accident data. A selection was made of a number of intersections and a number of routes to assess whether changes occurred on elements in the network during the Arrive Alive 1 road safety campaign and to test whether changes (if statistically significant) on a metropolitan or provincial level correspond with the network level.

It should also be noted that the sample size of the selection of intersections and selection of major routes in the Durban Metro area is relatively small and therefore shows large variations in some cases.

The following data series were collected for each area and category:

- The various accident types, namely:
 - total accidents;
 - fixed object accidents;
 - head-on accidents;
 - left turn (same) accidents;
• overturning accidents;
• rear-end accidents;
• right angle (straight) accidents;
• right angle (turn) accidents;
• side-swipe (opp) accidents;
• side-swipe (same) accidents;
• right angled accidents;
• side-swipe accidents;
• right turn accidents
• pedestrian accidents.

and for each accident type, the following series:

• total number of accidents;
• total number of fatalities;
• total number of fatalities and severe injuries;
• total number of accidents per kilolitre fuel (the fuel used for this measure is the accepted fuel for measure of mobility on the road network, i.e. the total petrol sales, for diesel: 10% of agriculture, none for sea-fisheries, none for mining industry and 10% of construction);
• total number of fatalities and severe injuries per kilolitre fuel;
• degree of injury;
• percentage accidents on weekdays;
• percentage accidents on Saturdays;
• percentage accidents on Sundays;
• percentage accidents during daylight-visibility conditions.
• percentage accidents during night-time visibility conditions;
• percentage accidents during twilight visibility conditions;
• percentage accidents during AM peak time;
• percentage accidents during PM peak time;
• percentage accidents during the off-peak time.

In the analysis normalised data graphs were prepared for each of the different areas indicating data in terms of accidents, injuries, accident types, etc. A selection of the graphs are shown in Appendix C. The different graphs were prepared to establish whether statistically significant changes took place in terms of:

• number of accidents;
• severity of accidents (measured in number of fatalities, number of fatalities and severe injuries, degree of injury);
• travelling patterns — a road safety improvement intervention has the possibility of changing the day of travel, time of travel and also whether a driver is willing to drive in particular visibility conditions;
• shifts between accident types, i.e. whether the number of accident types that are associated with severe injuries reduced while other accident types increased.

Each data series was normalised by determining the average value of the data series from 1 January 1994 to the end of available data, the standard deviation of the series and then plotting the series using the following formula:

\[\text{Plotted value} = \frac{\text{value} - \text{average value}}{\text{standard deviation}} \]

An example of such a graph is shown in Figure 10-1.
The monthly average for the months October, November, December and January of each year in the series is also indicated on the graphs (Arrive Alive 1 took place from 1 October 1998 to 31 January 1999). The x-axis indicates the month and the y-axis shows units of standard deviation. Note that changes of two standard deviations can be attributed to random fluctuations alone. The graphs made a visual assessment possible as any changes greater than two standard deviation would have indicated that changes took place other than those that can be attributed to random fluctuations.

Data series for the involvement of the different age groups of drivers and passengers in the Durban Metropolitan area were also evaluated. The graphs are shown in Appendix D.
10.3 Accident Frequency

The total number of accidents is shown in Graph C.1 (Appendix C), the number of fatalities in Graph C.2 and the total number of fatalities and serious injuries in Graph C.3. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The same findings were made for the different accident types. Graphs C.4 to C.9 are included to illustrate typical graphs for the different accident types.

10.4 Population-based Accident Rates

Variations in the population of areas are not recorded on a month to month basis and can therefore not be utilised as a measure for monthly accident data.

10.5 Exposure-based Accident Rates

10.5.1 Introduction

In Chapter 9 the need to include a measure of exposure in the analysis of accident data was illustrated using national annual accident data.

10.5.2 Available data

Fuel sales (petrol and diesel) were obtained from the Department of Mineral and Energy Affairs for South Africa, Gauteng, KwaZulu-Natal and the Western Cape. Note that the data was categorised and it was possible to exclude fuel sales (e.g. to sea fisheries etc.) that were not utilised by transport using the road network.

10.5.3 The analysis

The total number of accidents per kilolitre fuel is shown in Graph C.10 (Appendix C) and the total number of fatalities and serious injuries per kilolitre fuel in Graph C.11. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative
periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The same findings were made for the different accident types. The changes in the data set are therefore not statistically significant. Graphs C.12 to C.33 are included to illustrate the graphs for the different accident types.

10.6 DEGREE OF INJURY

The degree of injury of the total number of accidents is shown in Graph C.34. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The same findings were made for the different accident types. The changes in the data sets are therefore not statistically significant. Graphs C.35 and C.36 are included to illustrate typical graphs for the different accident types.

10.7 INVOLVEMENT RATES AND ACCIDENT CHARACTERISTICS

10.7.1 Introduction

The data series were then evaluated to establish whether any conclusions could be drawn in terms of changes in driving behaviour. Graphs were prepared for the distribution of the different driver and passenger ages per vehicle type in the Durban Metropolitan area. Another set of graphs was prepared to establish whether the accident data showed any changes in terms of day of week travel, visibility conditions and time of day travel.

10.7.2 Driver ages per vehicle type

Graphs on pages D.1 to D.7 are shown in Appendix D. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. The changes in the data sets are therefore not statistically significant.
10.7.3 Passenger ages per vehicle type

Graphs on pages D.8 to D.14 are shown in Appendix D. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. The changes in the data set are therefore not statistically significant.

10.7.4 Day of week

The percentage weekday, Saturday and Sunday accidents for the total number of accidents are shown in Graphs C.37 to C.39. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The same findings were made for the day of week characteristics of the different accident types. The changes in the data sets are therefore not statistically significant.

10.7.5 Visibility conditions

The percentage daylight visibility, night-time visibility and twilight visibility accidents for the total number of accidents is shown in Graphs C.40 to C.42. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The same findings were made for the visibility conditions for the different accident types. The changes in the data sets are therefore not statistically significant.

A pattern was observed on an annual basis that correlates with the length of days (hours sunlight) during the various seasons in the year. This is, however, also within two standard deviations. The changes in the data sets are therefore not statistically significant.
10.7.6 Time of day

The percentage daylight visibility, night-time visibility and twilight visibility accidents for the total number of accidents are shown in Graphs C.40 to C.42. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. Assessment of the monthly average accident number over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The changes in the data sets are therefore not statistically significant. The same findings were made for the visibility conditions for the different accident types. The data showed a visual trend on an annual basis that coincides with the holiday periods when morning peak and afternoon peak hour travel decreases.

10.8 Accident Types

Graphs C.46 to C.61 shows the different accident types as a percentage of the total number of accidents. This evaluation was done to establish whether changes between the distribution of the different accident types took place. The assumption was made that if, for example, drivers reduced their speed, the occurrence of, for instance, overturning accidents as the perception exists that a reduction in speed will prevent some of these types of accidents. The series in the different areas showed large fluctuation around the mean of the data series but still within two standard deviations from the mean. The changes in the data sets are therefore not statistically significant. Assessment of the monthly average percentage over the comparative periods in 1994/95, 1995/96, 1996/97 also indicated fluctuation around the mean within two standard deviations. The changes in the data sets are therefore not statistically significant.
10.9 Trends and ARIMA Analysis

ARIMA analyses were carried out for the total number of accidents in South Africa and the total number of accidents in the Durban Metro area. The analyses were performed using the SAS program and the data analyses was done by the University of Pretoria. Both data series showed a non-stationary character and AR(1) models were fitted to both series up to September 1997 (Arrive Alive 1 started on 1 October 1997). The models were able to make predictions but all the predictions were within the two standard deviations around the mean and longer term predictions tended to move to values closer to the mean, indicating the poor prediction value of the models.

10.10 Selection of Worst Locations and Worst Routes

In some cases the fluctuations of the graphs coincided with those observed in the metropolitan, provincial and national data. The small sample size in some categories of data series made the use of these results invalid.

10.11 Conclusions

Statistical analyses of macro-level accident data for South Africa, Gauteng, KwaZulu-Natal, Western Cape and the Durban Metropolitan area and selections of intersections and routes proved to be statistically non-significant. The use of alternative evaluation elements for road safety improvement interventions on a macro level is therefore necessary.
CHAPTER 11: HUMAN FACTORS RELATED TO ROAD SAFETY INTERVENTIONS - A LITERATURE SURVEY

11.1 INTRODUCTION

The purpose of this chapter is to provide background for the conceptual evaluation of the human factor in road traffic safety improvement interventions. It describes concepts to be tested and specific issues that should be considered when preparing survey questions or when evaluating media and communication-related issues. This chapter forms the theoretical basis of the qualitative indicators discussed in Chapter 12.

11.2 BACKGROUND

As a result of the limited use of statistical analysis of macro-level accident data as an indicator of the effectiveness of road traffic safety interventions and the statistical insignificance found in the data sets, the need developed to find alternative and complementary indicators to assess the interventions.

The use of law enforcement data as an indicator is not included as the relationship between traffic offences and accident data has not yet been established. It is however accepted that increased law enforcement may reduce speeds, etc. and some aspects of it are described in this chapter.

11.3 TESTING THE HUMAN FACTORS RELATED TO ROAD SAFETY INTERVENTIONS

In road traffic accidents, the human factor contributes on its own or in combination with the road user and vehicle to 95% of all accidents (AUSTROADS 1988). It is therefore essential that an evaluation of a road safety improvement intervention also includes the human factor. In the reduction of accidents, fatalities or severity, psychology offers, among others, five elements that can be related to the human factor in road traffic accidents, namely: behaviour, motivation, attitude, risk and skills.
All of these elements are interrelated and can have a significant impact on the methodology and outcome of assessment of the human factor and road safety improvement interventions.

Glendon and McKenna (1995) stress that road safety professionals need to win the hearts and minds of the road users to enable them to carry out their functions and tasks. This means that safety and risk professionals need to have a basic understanding of the nature of attitudes, attitude change and how these concepts relate to and in some cases do not relate to behaviour (Glendon and McKenna 1995). This includes an appreciation of the complexity of the attitude-behaviour relationship and the need to be equipped with the theories around this relationship that will be practical to use in their work.

In the following sections, these elements and their relationship to one another will be discussed.

11.4 BEHAVIOUR AND MOTIVATION

11.4.1 The relationship between behaviour and motivation

Motivation forms the basis of almost all behaviour. Motives strongly govern actions except where behaviour is the result of instinctive responses (e.g. when reacting to intense pain or avoiding imminent danger). The relationship between motives and behaviour in road safety should therefore be considered when evaluating a road safety campaign. The theory of the relationship between behaviour and motivation developed in four stages, namely: the mechanistic approach, the behaviourist approach, the cognitive approach and the applied approach (Glendon and McKenna 1995).

The mechanistic approach states that motivational states are inborn and that the individual is a victim of uncontrollable inner forces and urges.

The behaviourist approach states that behaviour is motivated by drive reduction and that individual motivation is fuelled by tension to reduce drives and hence to satisfy basic needs. The behaviourist approach includes concepts such as habit, reinforcement, punishment, need satisfaction and reward.

The cognitive approach states that human behaviour is a purpose and that the main human desire is to control the environment rather than be controlled by it. It is also concerned with predicting future actions and thereby confirming that the individual has some control over important events.
The applied approach focuses on specific cases of motivational behaviour, e.g. the work environment, consumer behaviour and some training applications. The applied approach also deals with risk-taking, change and influence.

The human being has, among others, one real basic instinct: to avoid those things that can harm him/her – fear is thus one of the most basic motivators. Fear can be induced by the media – written and/or visual and/or auditory. Fear motivates the individual to find a way of reducing the arousal, e.g. typical discomfort, dissonance or stress.

This can be achieved by any of the following:

- reduce the arousal by changing behaviour, i.e. act more safely;
- change attitude rather than changing behaviour, e.g. if the information is very threatening it can be rejected altogether because thinking about it makes one feel uncomfortable, alternatively the individual may decide that the information is not applicable on him/herself (rather for other people), or he/she may seek to justify or rationalise his/her behaviour in some or other way;
- to accept the fact that the behaviour is not in accordance with attitude, i.e. that the behaviour is unsafe but that it is not changed;
- although road safety professionals strive for a change in behaviour as to improve road safety, it is of utmost importance that the alternative that exists for behaviour change, namely attitude change be considered and measures implemented with the aim of attitude change. This means that the aim of campaigns should be to keep the attitude and behaviour constant relative to each other, i.e. the safe behaviour should be reinforced with reminders that will direct attitudes in the same direction. An example would be reinforcing the idea that this is what intelligent people do, or that it was developed by experienced people, etc.
11.4.2 How fear influences motivation and behaviour

Glendon and McKenna (1995) warns that the use of fear is only effective as a motivator if the individual feels that he/she is in control of the behaviour change that is sought. Fear is thus effective to strengthen already held beliefs. Alternatively, the fear will induce rejection of the information. In some cases it will even strengthen the dangerous behaviour. Glendon and McKenna recommend that the information should give straightforward and simple information on what the individual should do (e.g. 'go for a health check'). Figure 11.1 shows the basic model that describes the role of fear in safety motivation.

![Diagram of the relationship between fear, motivation and road safety](image-url)

Figure 11.1: The relationship between fear, motivation and road safety (Glendon and McKenna 1995)
11.4.3 The character of motivation in road safety management

Motivation in road safety management is situation specific. If behaviour change is not supported (e.g. by continued extrinsic motivators like company standards or legislation) or sustained by intristic beliefs and as long as people perceive that they have some control over the risk, people will be motivated to take risks and to avoid risk (Glendon, in press).

In the assessment of the likely behaviour of people it is important to take the respective costs and benefits of both relatively safe and unsafe behaviour into account. The main issue when motivating for safety is the low probability of a negative outcome (e.g. being involved in an accident or being caught etc.) set against the very high probability of benefit (reaching your destination sooner etc.) (refer to the Risk Homeostasis Theory in Section 11.9).

11.5 ATTITUDE

11.5.1 Introduction

Attitude forms an integral part of any road traffic safety campaign. It not only influences behaviour but also has significant implications for behaviour modification.

11.5.2 Defining attitude

Attitude can be defined as "a learned tendency to act in a consistent way to a particular object or situation" (Fishbein and Ajzen, 1975). This definition implies that attitudes:

- are learned "through social interactions and other influences" (i.e. are not innate);
- are "tendencies to act" but it does not guarantee that a person with a particular attitude will actually act in a particular way;
- have elements of consistency as individuals tend to have clusters of attitudes that are generally consistent with one another;
- are situation or object specific, i.e. they are not generalizable to other situations or objects.
11.5.3 Attitudes and Behaviour Modification

If the assumption that some thought process always proceeds action is true, then attitudes have the potential to influence behaviour. Unfortunately, the relationship between attitude and behaviour is much more complicated.

The position of attitudes within the framework of motivation, behaviour and psychological values is shown in Figure 11.2.

![Figure 11.2: Psychological variables and influences](image)

Attitudes can be considered as being located between deep-seated beliefs and values that can remain unchanged over a lifetime and relatively superficial opinions and views that can change frequently (they will depend mainly on the information an individual were exposed to most recently). This implies that attitude can change but that it cannot be done too readily. It would thus require more than a newspaper article or a poster.

11.5.4 The components of attitudes

It is generally accepted that attitudes typically consist of three components, namely:

- affective – the affective component of attitude refers to the attitude aspects related to the feelings and emotions; e.g. a person who witnessed a serious accident will feel more strongly about safety than a person who did not. This is the direct result of the powerful impact of the memory of the feelings when seeing the accident. It is this factor that is utilised in road safety advertising where a shocking accident scene is shown to the viewer. It is, however,
important to note that emphasising the affective dimension is not desirable or practical when teaching people about safety;

- cognitive – the thinking aspect of an attitude; e.g. having the attitude of whether or not something is dangerous or not. It can be influenced in a wide variety of possible ways such as reading an article, seeing a TV documentary on risk-related topics and an anecdote related by a friend. The cognitive component also refers to risk cognition and risk perception. As the process of considering whether something is dangerous or not proceeds, so does the process of implicitly ranking different risks. The individual refers to that ranking when considering whether the perceived benefits of the activity more than compensate for the perceived risk that is involved (refer to section 11.8 dealing with the risk homeostasis theory);

- behavioural intention – the tendency to act; this is the one component on which the utility of the attitude concept succeeds or fails: If attitudes can predict behaviour, then this behavioural intention has utility value (Glendon 1995). It is an important component of some of the attitude-behavioural models. It refers to specific items, for example: if considering doing a job that is dangerous, then you will intend to acquire further training or intend not to engage in a dangerous activity at all.

The three components can thus be summarised with the following example: if you imagine a snake in your presence and it is believed to be harmless (cognitive component), on the basis of verbal statements only, it might be presumed that you would not be afraid of it (fear being the relevant affective component in this case) and that you would be prepared to handle it (behavioural component). However, when actually confronted with a live snake, even a benign one, different reactions may be seen – i.e. heart rate increases, indicating increased arousal, probably fear or apprehension in this case and avoidance of the snake rather than handling it. Thus, it may be concluded that merely asking people to imagine what their reactions would be in a situation involving threat, is not a valid predictor of their actual behaviour or of their feelings in respect of the threat. Thus, the power of the actual situation in governing behaviour (and attitude) is paramount (Rosenberg and Hovland 1960; Glendon 1995).
11.5.5 The Characteristics of Attitudes

The characteristics of attitudes (Glendon and McKenna 1995):

- **Valence** - The degree of positive or negative feeling, the way in which the object of an attitude is evaluated.

- **Multiplexity** – The degree to which an attitude can be differentiated from other attitudes (e.g. the difference between the attitudes about safety and attitudes about health).

- **Breadth** – The object of the attitude is characterised by a number of attitudes, varying from being very narrow (e.g. a particular brand of ear defender) to very broad (e.g. health and safety in the workplace).

- **Intensity** – The strength of the feelings about an object (e.g. an accident that was witnessed).

- **Stability** – The extent of the resistance to change.

- **Centrality** – The extent to which the person feels that the attitude reflects their identity or the extent of the attitude being part of an individual's self-concept (e.g. a safety professional feeling that holding safe attitudes is part of his/her self-concept).

- **Salience** – The degree to which the attitude occupies the awareness of an individual, e.g. a road safety professional might be considering safety issues all the time while driving, while other people would not be.

- **Interrelatedness** – The relation of the attitude with other attitudes (e.g. to form a consistent cluster of attitudes towards safety issues).

- **Behavioural expression** – The extent to which the attitude is acted upon.

- **Verifiability** – The degree to which an attitude can be tested against evidence (e.g. attitudes towards seatbelt use verified by observing actual use).
11.5.6 The Functions of Attitudes

Katz (1960) listed five functions of attitudes:

- instrumental function - it serves certain ends and it enables the individual to obtain reinforcement of his/her requirements and desires;

- ego defensive function - it permits the individual to express defence mechanisms (e.g. to protect him/herself from harsh realities such as that he/she is pursuing behaviour that presents a risk to him/her);

- value expressive function - it allows the individual to express the concept he/she has of him/herself;

- knowledge function - it serves as the prime means for an individual to order his/her environment and through which he/she can make sense of or react consistently and meaningfully to the world around him/her;

- instrumental function - by adopting a new attitude for an ulterior motive such as making a good impression on his/her boss/client or to develop a relationship with someone whom he/she values.

11.5.7 Attitude Change

There are certain circumstances under which attitudes are most likely to change. They include:

- attitudes loosing function - attitudes can change when an individual finds that his/her attitude is no longer functional in dealing with the situation he/she finds him/herself in. He/she will question existing attitudes and as a result bring his/her attitudes more in line with reality (Glendon and McKenna, 1995);

- the audience - to change attitudes, the message should be on the audience's "homeground": that they have an existing network of interconnected attitudes and that consideration be given to the self-esteem and ego involvement of the members of the audience. Attitude change can be promoted through addressing the motives and needs that are important to the individual's self-esteem and in which they are highly involved;

- the persuader: The persuader should have credibility in the eyes of the audience (i.e. be trustworthy and seen as an expert) and should be seen as
gaining little or no personal advantage from influencing others other than changing their attitudes. The characteristics of the persuader should preferably be similar to or at least be acceptable to the audience. He/she should further express views that are congruent with those of the audience. The message should aim to have an immediate impact to ensure that the audience remembers it. It has also been found that if the persuader asks for extreme change in an attitude, then it is likely that the audience will reciprocate by going some way in the direction of change:

- personality factors - individuals differ in liability to attitude change. Research seems to indicate that more intelligent people are more open to attitude change. Other factors include individual cognitive styles and needs. Individuals who are very self-defensive may hold attitudes that will be difficult to change. Group affiliations are also important, as people will discuss their views within peer groups before changing their own attitudes on a topic;

- presentation of issues - it is essential that both sides of an argument are presented unless positive attitudes exist on the issue already. There are two effects in communication that need attention: primacy and recency. The primacy effect refers to the first material that is more likely to be remembered - this effect is generally the stronger one and the recency effect refers to the last presented material that is likely to be remembered. It is also important to spell out the main findings and issues. The nature of the message and the desired change will determine whether the material should be presented in an emotional or a factual way. The use of threats or an appeal to fear is the most extreme form of emotional appeal in a safety message;

- persistence of change - active participation in the delivery of the message aids persistence of change. Repetition to reinforce the attitude change has also proven successful. A message can also have a "sleeper effect", i.e. the message is received and the processing takes somewhat longer, resulting in changes taking place later.

11.5.8 The Levels of Attitudes

Kelman (1958) identified three levels at which attitudes can be formed, namely: compliance, identification and internalisation.
At the level of compliance a person accepts the influence of another individual because he/she seeks favourable influence from them, e.g. avoiding punishment or to attaining certain rewards. An example of compliance in road safety would be the use of a seatbelt because of the presence of a traffic law enforcement vehicle alongside the freeway. The attitude-behavioural link is not strong because there is the possibility that once the reason for compliance is removed the behaviour will tend to lapse because of the weak link: the behaviour is the result of external pressures and not from internal beliefs.

The second level of attitude expression is identification. At the identification level the individual adopts a behaviour derived from another as a direct result of the relationship with that party. An example of identification is the operation of group norms where a person displays a behaviour because the other group members do and because the individual values his/her relationship with the group members. The behaviour is thus likely to continue as long as the individual stays part of the group. Should the individual join another group with different norms, then the behaviour is likely to change in response to the changed circumstances. The behavioural-attitude link is again dependant on external factors staying the same (in this case social in nature).

Internalisation is the third and final level of attitude expression. During internalisation, an individual adopts a particular behaviour because it corresponds to his/her existing belief system or because of its functional value. The behavioural-attitude link is the strongest at the internalisation level because, whatever the external factors, the individual will engage in the behaviour because he/she believes it is correct.

The different levels of attitude expression provide guidance to the road safety professional to address the behavioural-attitude challenge. It needs first be ensured that the individual believes that the desired behaviour is correct – the behavioural-attitude link is thus internalised and independent of external factors. If this individual is part of a group supporting the same norms and values, this will reinforce the individually held attitude. Regulations and laws will further serve to reinforce the correctness of the particular behaviour and attitude. The use of regulations and penalties without changing attitudes will thus be less successful.
11.6 Behaviour and Attitude

11.6.1 Introduction

Glendon and McKenna (1995) found that long-term positive changes in road traffic safety can only be secured by change in attitude and behaviour. Attitude change is a necessary but not a sufficient condition for behaviour change.

There are four general theories relating to the relationship between attitude and behaviour:

- attitudes influence behaviour - by knowing a person's attitude towards something, the behaviour towards it can be predicted;
- behaviour influences attitudes - if attitude change is needed, then it can be achieved by obliging a person to behave in a particular way (e.g. legislation or making a rule and enforcing the rule);
- attitudes and behaviour mutually reinforce each other - if either one is changed, it is likely to lead to a change in the other;
- attitudes and behaviour are likely to be mutually consistent but should both be addressed independently.

11.6.2 Attitudes influence behaviour

The first theory holds that attitudes predict or influence behaviour as shown in Figure 1-3a. This implies that if the attitude of an individual about something is known, then the behaviour of the individual about the same thing can be predicted with a reasonable degree of certainty. It also implies that changing a person's attitude about something can influence and change the relevant behaviour. It has been shown, however, that the mere expression of positive attitudes about safety practices is not sufficient to change the behaviour of individuals, i.e. to make them engage in safe behaviour. There are however, conditions under which attitudes are likely to change behaviour. Ajzen and Fishbein (1977) listed four factors that are particularly important: action, target, situation and time frame, i.e. the closer the relationship between the particular factor (object of the attitude) and the behaviour, the greater the likelihood that the behaviour will be influenced by the attitude.
They found that it is possible to predict behaviour if attitudes are known, provided that the attitude is highly specific to the particular behaviour. To achieve behavioural change, it is therefore necessary to address the attitudes that are directly and specifically related to that particular behaviour.

11.6.3 Behaviour influences attitudes

The second theory assumes that if behaviour can be changed by certain methods, then the attitudes will change to correspond to that behaviour as shown in Figure 11-3b.

This theory provides the basis for certain types of legislation relating to health and safety. In the case of legislation, an attempt to change behaviour directly is made, e.g. by providing an agency charged specifically with enforcement and a system of penalties for breaching the legislative requirements. Over time, behaviour may change - partially because of such legislation. According to the cognitive consistency theory, if an individual are obliged by legislation to behave in a certain way, whatever his/her initial attitude towards the particular behaviour, then to remain consistent, he/she changes his/her attitude to correspond with the newly required behaviour. It is difficult to prove that any given legislation will change or influence a person's attitude, but it is likely to be among the factors that form attitudes.

An alternative interpretation of this theory is that individuals often determine what their attitudes are by observing their own behaviour, i.e. self-perception. By repeatedly taking various safety precautions, an individual may conclude that he/she possesses positive safety attitudes. The self-perception theory holds that a person forms attitudes by observing his/her own behaviour. This also implies that attitude and behaviour is kept constant to each other - refer to the fourth option of handling fear as discussed in Section 11.4.2 (last paragraph on page 11-3).

Training is another example of methods aimed at behavioural change. The Commission of the European Communities (1990) emphasises the attitude-training link in safety by maintaining that training is the bedrock of an active attitude to prevention. They state three objectives for safety training. The strong attitudinal component of safety training is emphasised by the first and the last objective. The objectives are as follows: a) develop a sense of safety, b) learn to control the risks and c) promote awareness of the rules of safety.
11.6.4 Mutual influence

The third theory states that attitude and behaviour mutually influence each other. This is an improvement on the first two theories and is characterized by the notion of consistency between behaviour and attitudes. The basis of this theory is that people strive to have attitudes that are consistent with their behaviour and behaviour that is consistent with their attitudes, i.e. cognitive dissonance.

11.6.5 Influence by other factors

The fourth theory holds that, although there may be consistency between behaviours and attitudes, the possibility of additional factors that could influence both behaviours and attitudes is considered. It supports the fact that, to effect change in behaviour, it is necessary to address both cognitions (e.g. attitudes, perception, motivation) and behaviour directly in order to make progress.

11.6.6 Theory of Reasoned Action

Fishbein and Ajzen (1975) first described the theory of reasoned action. The theory states that more complex processes are involved in the route from attitudes to behaviour. This theory holds that behaviour can be predicted if the following is known:

- the person’s attitude to the particular behaviour;
- the person’s intention to perform that behaviour;
- the person’s belief of the consequences of performing the behaviour;
- the social norms of the person or the phenomenon that socially acceptable behaviour governs that behaviour;

It is, however, not so easy to predict or change behaviour as a person may engage in safe practices in response to pressure from social norms, i.e. friends or colleagues expecting them to behave safely, rather than having a positive attitude towards safe practices or because they have an intention to engage in safe practices.

A study on attitudes towards seat belts (Knapper et al., 1976) showed that the use of seat belts was not about having a positive or a negative attitude towards it but it was governed by the habit of using a seat belt. Habits that are based upon
previous behaviour seem to be more durable – a possible focus for future road safety campaigns. Health related behaviour like smoking is frequently at odds with attitudes: in spite of the fact that the activity is damaging to a person’s health, he/she continue to engage in the behaviour. The reason for this can be the fact that the behaviour is physically determined (i.e. nicotine addiction) or that it is functional in releasing stress.

The theory of reasoned action does not make provision for the emotional factors that can influence the attitude-behavioural link. The Health Belief Model, however, takes account of this factor. The relationship between behaviour and attitude is shown in Figure 11.3.

11.6.7 Health Belief Model (HBM)

The fifth model, the HBM addresses human perception and experience as part of behaviour modification. The model states that two factors influence preventative behaviour to improve health: firstly, consideration of the perceived benefits and costs of taking the action and secondly, the view of the threat that is posed. The assessment of the perceived costs and benefits is influenced by the individual’s personal experience and education, whereas the perceived threat is influenced by cues to action (e.g. posters, articles, comments by colleagues) and past experience.

The HBM model states that, for any campaign to be successful, the following needs to be addressed:

- the perceived benefits of the action should be greater than the perceived costs (barriers), i.e. the positive aspects should be highlighted and the costs should be attended to (i.e. addressing uncomfortable safety devices, improving user-friendliness of safety devices etc.);

- the campaign should show that the target audience is susceptible and this should be demonstrated. The severity of the long-term condition (threat) should also be emphasised and the avoidance of the threat should also be covered;

- appropriate cues for action should be provided (e.g. posters, supervisors providing reminders) to demonstrate that the person has control over the situation and that he/she can take responsibility for his/her safety.
The HBM model includes a control component that is influenced by the person's evaluation of factors that is likely to inhibit or facilitate their performance of the behaviour – analogous to the costs and benefits in the HBM (Glendon and McKenna, 1995). Figure 11.4 shows the HBM model diagrammatically.

Figure 11.3a: Behaviour influencing Attitudes

Figure 11.3b: Mutual influence model

Figure 11.3c: Influence of other factors

Figure 11.3: The first three theories regarding attitudes and behaviour (Glendon and McKenna, 1995)
11.6.8 The Protection Motivation Theory

The Protection Motivation Theory (PMT) (Beck, 1994; van der Velde and van der Plight, 1991) states that health related behaviours are affected by:

- the perceived severity of the outcomes;
- the probability of the outcome;
- the effect of the behaviour;
- the expectation that the person will be able to carry out the behaviour.

The first two factors relate to the individual's perceived risk and the last two factors refer to the perceived control (i.e. the likely effectiveness of any individual intervention). The PMT introduces the concept that attitudes and perceptions are linked to behaviour through motivational processes.
Table 11.1 summarises the various concepts included in attitude-behavioural models as described by Glendon and McKenna (1995).

Table 11.1: Concepts in attitude-behavioural models (Glendon and McKenna, 1995)

<table>
<thead>
<tr>
<th>CONCEPT</th>
<th>QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behaviour only</td>
<td>• What is the social context (e.g. norms) for the behaviour?</td>
</tr>
<tr>
<td></td>
<td>• What are the person’s habits in respect of the behaviour? (past behaviour is a good guide to future behaviour)</td>
</tr>
<tr>
<td>Attitude and behaviour</td>
<td>• What is the nature of any social pressure in respect of the behaviour?</td>
</tr>
<tr>
<td></td>
<td>• What factors are likely to inhibit or facilitate the behaviour?</td>
</tr>
<tr>
<td>Attitude only</td>
<td>• What is the person’s attitude towards the behaviour?</td>
</tr>
<tr>
<td>Attitude and perception</td>
<td>What are the costs and benefits of taking a given set of actions?</td>
</tr>
<tr>
<td></td>
<td>What do relevant others think about the behaviour?</td>
</tr>
<tr>
<td>Perception only</td>
<td>What are the various outcomes possible?</td>
</tr>
<tr>
<td></td>
<td>How severe are the respective outcomes?</td>
</tr>
<tr>
<td></td>
<td>How likely are various outcomes?</td>
</tr>
<tr>
<td></td>
<td>How much control does the individual have?</td>
</tr>
<tr>
<td></td>
<td>How effective is the individual’s behaviour likely to be?</td>
</tr>
<tr>
<td></td>
<td>What reminders are there?</td>
</tr>
<tr>
<td>Perception and motivation</td>
<td>Are there differences between long term vs short term benefits and costs?</td>
</tr>
<tr>
<td>Motivation only</td>
<td>What is the person’s intention in respect of the behaviour?</td>
</tr>
<tr>
<td></td>
<td>How important is this behaviour to the individual?</td>
</tr>
<tr>
<td></td>
<td>What is the person’s motivation to comply with social pressure?</td>
</tr>
<tr>
<td></td>
<td>What are the emotional reactions to the decision and subsequent behaviour?</td>
</tr>
<tr>
<td>Behaviour, attitude,</td>
<td>• What are the individual’s personal characteristics (e.g. age, gender, background and experience)?</td>
</tr>
<tr>
<td>perception and motivation</td>
<td></td>
</tr>
</tbody>
</table>
11.7 RISK

11.7.1 Introduction

Behavioural modification is the ultimate goal of any road safety intervention (if the risky behaviour can be changed to safer behaviour then the resulting accidents will decrease). Risk, risk acceptance, risk perception, etc. have significant impacts on behaviour and the ease of behaviour modification.

Risk was defined by the British Royal Society in 1983 as the probability that a particular adverse event occurs during a stated period of time, or results from a particular challenge (British Royal Society 1983 in Adams 1995).

11.7.2 Risk and behaviour

Nääätänen and Summala (1976) list a number of factors that reduce the subjective danger of road traffic for road users, i.e. increasing the level of risk that the individual is willing to take:

- misleading perceptual/cognitive processes: e.g. speed adaptation, the underestimation of speed or physical forces in an accident, failure to learn from others' accidents;
- *inappropriate* learning from the consequences of near misses: e.g. the illusion that the individual is in control of those situations;
- subjective feelings with regard to driving: e.g. that it is an easy task;
- the feeling of control in driving situations;
- driver expectancy – i.e. the poor estimation of involvement in accidents;
- lack of traffic supervision – i.e. the poor likelihood of being caught and prosecuted for traffic violations;
- the belief that norms and rules are applying to others and not to oneself leads to a perception of low vulnerability.
11.7.3 The Ability of the Individual to Estimate Risk

Rothschild (1978) stated that the individual is poor at estimating objective risk. Subjective risk refers to the perceived risk.

The individual is faced with a number of biases when estimating risk:

- availability, i.e. the tendency to judge an event as likely or frequent if it is easy to recall or to imagine. There is a tendency to overestimate dramatic causes of death or those recently encountered e.g. among friends or family and to underestimate less dramatic events that involve only one person at a time e.g. bronchitis or diabetes;

- overconfidence, i.e. overconfidence often compounds the availability bias because people tend to overestimate how much they know about a risk. This is typical of lay people and experts;

- desire for certainty, i.e. certainty is desired because anxiousness makes people feel uncomfortable. This results in risks being played down because the frequency of occurrence is not known. Individuals differ in their willingness to accept certain levels of uncertainty;

- anchoring bias, i.e. people tend to, partly as a result of a general desire for certainty, anchor attitudes and beliefs on information that might be quite inaccurate. Anchoring bias presents particular problems to the road safety professional as it can be remarkably resistant to cease – even if new and more convincing evidence is found on the issue.

11.7.4 Other Factors Affecting the Acceptance of Risk

Risks are accepted for a number of different reasons. They can be accepted subconsciously or in full knowledge of the potential consequences. People are also more likely to accept risks that they regard as voluntary. It is quite interesting that people also tend to accept a risk that they feel that they can control, i.e. in the debate on nuclear power, the risk issues were not so much the objective risk of an accident but the lack of control individuals feel they have over it. The management of risks therefore need to include the management of the objective and subjective risks.
Cox and Tait (1991) list four factors that influence risk, namely: psychological aspects, economic and technical benefits, socio-political implications and environmental and physical risks.

Psychological aspects refer to threats to mankind and lead to accidents that affects a large number of people at the same time. It is generally a risk the individual is exposed to without his/her consent and a risk that the individual can not control.

The economic and technical benefits refer to:

- The increase in standard of living
- The increase in economic development
- The provision of good economic value
- The increase in a nation's prestige
- New forms of industrial development.

The socio-political implications include:

- The implementation of rigorous physical security measures
- The production of noxious waste products
- The diffusion of knowledge that facilitates the production of weapons by additional countries
- The dependency on highly specialised experts or on small groups
- The transportation of dangerous substances.

Environmental and physical risks include:

- Exhaustion of natural resources
- The increase in occupational accidents
- Water and air pollution
- Economical dependence on other countries
- Long term modification in the climate.
11.7.5 Risk and the Media

Glendon and McKenna (1995) recommend that the media be utilised to play an important role in risk perception, e.g. by:

- providing information about consequences or risk (as in government or other health warnings which receive media coverage);
- translating expert views about the probability of risks (as in articles written by scientific correspondence);
- giving details of case histories of victims ('human interest' stories);
- informing the public of their own perceptions (as in opinion polls);
- acting as a medium of debate about risks (as in editorials and correspondence columns);
- giving warnings of impending disasters and what to do (e.g. of storms at sea or potential flooding);
- drawing differential attention to risks (e.g. in articles about safety).

11.7.6 Risky behaviour

Glendon and McKenna (1995) found that the use of labels such as motorway madness or allegations that drivers are careless or stupid do not address risky behaviour because drivers don't think that these labels apply to them personally – although they may see them as applying to other. They recommend that the approach should rather be to understand the underlying motives of the dangerous driving and to focus on them.
11.8 Risks, Attitudes and Behaviour

Studies by Lowrence (1990) on industrial risks suggest that individual perceptions of industrial risks mirror a number of attitudes and beliefs. This can easily be utilised in the road safety industry. They include:

- fundamentally, Western industrialised countries are conceived as risk-buffering societies, reflected in "compensation" schemes;
- individuals strongly prefer to choose their own risks. They resent involuntary and imposed risk and extend this voluntaries to others;
- individuals are willing to allow others to undertake risky actions if the consequences are internalised;
- individuals are willing to condone a risk-imposing activity if people are compensated;
- unspecified and undetermined consequences are not difficult to accept emotionally;
- catastrophic consequences are emotionally difficult to endure;
- individuals rate immediate consequences more highly than long-term ones;
- individuals have a need to delegate responsibility to both competent and trustworthy persons for assessing risks. If trust is lost it cannot easily be regained.
11.9 **The Risk Homeostasis Theory (Based on Wilde 1994)**

11.9.1 Introduction

In 1977, in the British State of Columbia, a road safety program targeted at drinking and driving took place. 30% of the total number of registered vehicles in the country was tested by several Blood (breath) Alcohol Testing units (the BATmobiles) that were deployed along numerous high volume traffic sites. The enforcement action was supported by prominent attention in the mass media. Studies showed a 18% reduction in alcohol-related road traffic fatalities. Overall, however, the accident fatalities increased by 19%.

Gerald Wilde (1994) explains this phenomenon as follows: If it is assumed that the programme was effective in reducing the BAC of drivers, then those who used to drink-and drive previously, refrained from this behaviour more often but, as their target risk was not reduced, they adapted their behaviour by having more passengers in the vehicle, driving more, driving faster, driving less attentive etc. The other drivers who had not previously engaged in drinking-and driving, were under the impression that the campaign was very successful in removing the drunk drivers from the roads, i.e. they were feeling more relaxed about travelling during the more risky hours or about **watching out for the other guy**.

He formulated the risk homeostasis theory that describes the various aspects and mechanisms that can influence the outcomes of a road safety campaign.

11.9.2 The risk homeostasis theory

The risk homeostasis theory maintains that, in any activity, people accept a certain level of subjectively estimated risk to their health, safety, and other things they value, in exchange for the benefits they hope to receive from that activity (transportation, work, eating, drinking, drug use, recreation, romance, sports or whatever) (Wilde 1994)

11.9.3 The target level of risk

There are a number of factors (Box 1 in Figure 11.6) that determine the extent of accident risk that different people are willing to take during any given time period, and that the same people are willing to take during different time periods (Wilde, 1994). The target level of risk will be high if the expected costs are
perceived to be relatively low and expected benefits of the risky behaviour are high. Note that the target level of risk refers to a value that varies like the set-point temperature on a thermostat varies.

There are four categories of motivation that determine the target level of accident risk:

- the expected advantages of comparatively risky behaviour alternatives
- the expected costs of comparatively risky behaviour alternatives
- the expected benefits of comparatively safe behaviour alternatives
- the expected costs of comparatively safe behaviour alternatives (Wilde, 1994).

The target level of risk will increase as the values of (a) and (b) increase while the level will reduce with an increase in the values of (c) and (d). Note that these values are selected intuitively rather than through a series of precise calculations of the expected benefits and costs.

The target level of risk of an individual can be defined as the level of subjective accident risk at which the difference between benefits and costs (including the perceived danger of accident) is believed to maximise (Wilde, 1994). A graphic representation of the optimisation process is shown in Figure 11.5.

Variations in the target level of risk can be long-lasting (e.g. as a result of cultural values, incentives for safe driving practice, level of education etc.) or shorter-term (e.g. specific trip purpose, the urgency of arriving on time, mood, etc.). Note that the target level of risk is not fixed and that the theory does not imply the conservation of accidents.

The selection of manner and amount of mobility will correspond to the level of associated subjective risk that will in turn correspond to the point at which the expected net benefit is maximised. Note that curve Y3 in Figure 11.5 is drawn in such a manner that each Y3 value will equal the corresponding Y1 value minus the corresponding Y2 value.
11.9.4 Perceived level of risk

The perceived extent of accident risk of an individual at a given time (Box b in Figure 11.6) is derived from three sources, namely:

- past experience in traffic (e.g. traffic conflicts, near-accidents, witnessing other people’s accidents, conversations about accidents, occasional statistics in the mass media);
- assessment of the immediate situation’s accident potential (e.g. the speed and direction of travel, the paths and speeds of other road users and road environment features like weather, signals, signs and geometry);
- the extent of confidence of the individual in possessing the required vehicle-handling and decision-making skill to cope with the situation (i.e. the risk will be relatively low if the person is confident about having the necessary skills to cope with the situation and high if the person doubts his/her abilities).
11.9.5 Objective level of risk

The objective level of risk refers to the amount of accident risk (probability times severity) that is associated with a particular behaviour by a particular driver on a particular road in the presence of other particular road users. It includes the risk implications of the driver's skill, his momentary perceptions, his mental alertness, the speed of the vehicle, the braking ability of the car, the likely actions of the other road users, and so forth. (Wilde 1994).

11.9.6 Adjustment action

As shown by the comparator in Figure 11.6, the perceived amount of accident risk will be monitored continuously by road users, they will compare this with their target level and attempt to reduce any difference between the two (whether positive or negative). They will ultimately try to reduce the discrepancy to the just-noticeable-difference level. These comparisons are made at an intuitive and moderately conscious level. The road user will not alter his or her behaviour if the difference between the target level of risk and the perceived level of risk is below the just-noticeable-difference and corrective action will only be taken if it exceeds the just-noticeable-difference. Typical corrective actions can have immediate effects only, while others are longer term. The short term effects on road safety include change of following distance, speed, pathway, signalling to other road users, buckling or unbuckling the seatbelt, turning lights on or off or increasing...
or decreasing mental effort or concentration on the driving task. Longer-term decisions include the choice of transportation mode or deciding whether to make a particular trip or not. The choice will depend only on what the individual believes will best serve the maximisation of his/her overall benefit.

11.9.7 The effect on the accident toll

Box d in Figure 11.6 represents the action that is performed after the choice has been made. This action has an objective likelihood of accident risk. The traffic accident loss in that jurisdiction in that year can be determined by the sum total of all the performed actions (with the objective risk of each, across all road users and over an extended period of time like one year). As a result, this loss, combined with the everyday experiences of accident risk (e.g. conversations about accidents, near-accidents, exposure to mass-media accident reports) will influence the level of risk as perceived by the surviving road users in the jurisdiction (those that were not killed in the road accidents) - represented by Box b in Figure 11.6. This means that, as long as the target level of risk (Box a) remains unchanged, the accident loss at one point in time (Box e) and the subsequent degree of caution (Box c) displayed by road-user behaviour are interrelated in a mutually compensatory process that develops over time.

This then implies that, if the past accident rate is lower than the level of risk that people are willing to accept, road users will subsequently adopt a riskier manner and/or level of mobility. It also implies that they will do the opposite if the past rate and personal experience that they associate with it, exceeds the target (preferred) level of risk.

This implication can provide an explanation for the changes in accident rates during a changeover from left-hand to right-hand traffic in Sweden and Iceland during the 1960's. The day the change was made, accident rate per head of population dropped immediately and considerably after the change-over but it subsequently returned to pre-existing trends. In Sweden it returned to the pre-existing trends within two years and in Iceland after 10 weeks. The difference in time can be explained by the fact that the time lag (symbol f in Figure 11.6), if it can be assumed that all other influencing factors are equal, will be longer to the extent that the population size is larger. Sweden's population size was approximately forty times larger than that of Iceland.

It is important to note that homeostasis takes place on individual level and accident loss is thus the sum of the separate consequences of individual actions.
11.9.8 The influence of skills on behaviour

Three types of skills can effect the level of risk perceived and the action performed, namely, perceptual, decision-making and vehicle-handling skills.

- **Perceptual skill** (box 4 in Figure 11.6) determines the extent to which the subjectively perceived risk of the road user (box b in Figure 11.6) corresponds with the objective risk. Perceptual skill includes the ability to correctly assess one's level of vehicle-handling and decision-making skills. This implies that a person with limited vehicle-handling skills and decision-making skills is, if he/she realises his/her limitations and acts accordingly, at no greater accident risk. If the more skilful therefore overestimate their level of skill (to a greater extent than the less skilful) they may be at greater risk of being in an accident. If the more skilful have higher target levels of risk, they will also be more likely to be involved in accidents than individuals with lower skill levels.

- **Decision-making skill** (Box 2) refers to the ability of the road user to decide what action he/she should take to produce the desired adjustment (Box c) to minimise the difference between the target and perceived level of risk (i.e. \(|a-b|\) equals about zero). The vehicle-handling skill (Box 3) will then determine how effectively he/she can carry out the decision.

It is important to note that the task of the road users - as they see and perform it - is not to minimise accident risk but to maintain the accident risk at a level that corresponds to their target or optimal level of risk. This target level of risk will be the level at which the overall benefit from the mode and manner of mobility can be achieved. Improvement of one's skill will enable one to make better choices about the actions that will agree with one's target level of risk. Because skills do not minimise risk but optimise it, the three types of skill are shown outside the closed loop in Figure 11.6. It can thus be concluded that raising the skill levels of a population can not be expected to lower the accident loss per head of population, although it may influence the likelihood of the individual to survive.

Individuals differ not only in terms of the accident risk they are willing to accept but also in perceptual, vehicle-handling and decision-making skills. A risk-underestimator will typically be the individual that will risk more than corresponds to their target level of risk as a result of their incorrect perceptions of the objective accident risk. Risk-overestimators, on the other hand, would take fewer risks if they were better informed. It is important to note that training in terms of more correct risk perception will not improve the target level of risk of the population. It will merely mean the
underestimators will have a better chance of surviving because of their improved estimation of objective risk, while others will be killed because they no longer overestimate objective risk.

Individuals agree reasonably well with one another in judging comparative accident risk when operating a vehicle on a number of different road sections. The collective perception of subjective risk also corresponds well with the objective accident risk per vehicle-km in each section (calculated from accident records).

If a group of drivers questioned on their rating as a driver, more than half will say that they are better than average at driving (Svenson O, 1981 and DeJoy DM, 1989). People tend to be more likely to be overconfident and unrealistically optimistic than unrealistically pessimistic. It is therefore possible to conclude that people will more often than not underestimate the road traffic accident risk they are exposing themselves to.

11.9.9 The risk homeostasis theory and individual accidents

The risk homeostasis theory attempts to explain the accident rate per head of population. It does not explain or try to explain specific individual accidents or the immediate causes like perception-, decision- or execution errors. If considering the accident rate per vehicle km travelled, it is interesting to note that an accident countermeasure1 can reduce the accident rate per km travelled but increasing the mobility by providing a facility that is perceived as being safer. This implies that the accident rate per head of population increases as mobility increases.

11.9.10 Application of the risk homeostasis theory to influence the human factor in road traffic accidents

Wilde (1994) states that it is possible to motivate people to adopt safer behaviour in real-life conditions – resulting in a significant reduction in accident rates per person. He divides the tactics into four categories, aiming to:

- tactic A: increase the perceived benefit of cautious behaviour;
- tactic B: decrease the perceived cost of cautious behaviour;
- tactic C: increase the perceived cost of risky behaviour;
tactic D: decrease the perceived benefit of risky behaviour.

Examples of tactic A would typically include:

- *instituting administrative awards for accident-free and violation-free driving through discounts in insurance premiums;*

- *free licence renewal;*

- *discounts in vehicle permits and medical insurance premiums;*

- *rewards for being healthy;*

- *discounts for people with appropriate health habits.*

Using Tactic B would include:

- *subsidies for public transportation;*

- *enhancing the efficiency and comfort of public transit;*

- *tax exemptions on safety equipment;*

- *making safety equipment easy to use.*

Examples of Tactic C would be:

- *enhancing the perceived cost of risky behaviours by actions like taxes on tobacco;*

- *increased penalties for traffic violations;*

- *building vehicles that become uncomfortable (noisy and vibrating) when driven at high speeds;*

- *manufacturing vehicles with frail exteriors and crashworthy interiors that would increase repair cost but reduce the severity of injury;*

1 The use of accident countermeasures is not criticised or challenged. The discussion is merely to create thought-provoking examples.
• reduction of the right to restitution for damages incurred by individuals who don’t wear a seatbelt.

Finally, Tactic D might be the rationale to:

• paying taxi drivers per time unit instead of per kilometre;

• making it mandatory that all employees involved in risky work be paid by the hour and not per unit of productivity.

Note that he warns that the above are not necessarily recommendations, only examples meant to illustrate. The examples may fail as each is directed at particular behaviours like speeding, drinking and driving etc. If alcohol is for instance taxed beyond people’s financial reach, it is likely that they will try to make it themselves – with the associated danger of poisoning.

11.9.11 Accident analysis and the Risk Homeostasis Theory

There are a number of basic characteristics that is associated with the Risk Homeostasis Theory:

• a successful road safety campaign will reduce the number of accidents during the campaign and the reduction effect will be maintained in the period after the campaign;

• a road safety campaign can fail to reduce the target risk by merely shifting risk, i.e. cause temporary changes in the distribution of accident types, degree of injuries, transportation modes, time of accidents, etc.;

• changes in the distribution of accident characteristics for a campaign will occur for the population but not for worst locations (intersections and routes).

A set of accident data can thus be evaluated for changes and if the changes are unsustainable or merely shifts that took place in the distribution, the risk homeostasis theory implies that, although significant changes took place during the campaign, the target level of risk of the population was not reduced and that the changes can be attributed to shifts in risk.
11.10 LAW ENFORCEMENT AND BEHAVIOUR

Shinar (1978) states that law enforcement is a negative reinforcer that produces avoidance behaviour, i.e. the threat of a negative reinforcer (a speeding ticket) should keep a person from committing certain behaviours (speeding). The law on the road is thus to prevent drivers from committing behaviours for which they know they will be punished. There is, however, a problem in the use of this method as the monitoring of the drivers by the police is not systematic and no feedback is provided. Feedback is required for learning to occur. Research by the Highway Safety Research Centre (Reinfurt, Levine, Johnson, 1973) indicated that the presence of this negative reinforcement can be effective. They observed that, when coupled with mass media campaigns and ticketing, the presence of the law enforcement vehicle led to the reduction in average speed from 38,7 mph to 35,5 mph, with an overall reduction of 21 percent in the number of speeding drivers. There was also an increase in driver detection of signage in the area of the parked vehicle. The effect of the speed reduction was much less in the absence of mass media campaigns. This confirms the importance of multiple approaches to safety. The effectiveness of law enforcement is also subject to the effectiveness of the court and legal system. This was confirmed by the lack of success of the implementation of automatic imprisonment and loss of driver license for a conviction for drunken driving in Scandinavian countries. Not even the rate of fatal accidents related to drunken driving showed any change (Shinar 1978).

11.11 CONCLUSIONS

The human factor forms an essential element of any road traffic safety improvement intervention. The mechanisms of attitude, behaviour, motivation, risk and skills should receive consideration in the evaluation of the human factor in the road traffic safety improvement interventions. The character of each, interaction with each other and the relation to the ultimate goal, behavioural change, play important roles in the evaluation of any road safety improvement intervention and will have a significant effect on the outcome of the intervention.
CHAPTER 12: HUMAN FACTORS RELATED TO ROAD SAFETY INTERVENTIONS - A LITERATURE SURVEY

12.1 INTRODUCTION

Chapter 11 described the five components of psychology, namely, behavioural change, attitude, risk, motivation and skills, that provide insight into the human factor in road traffic safety improvement interventions. Based on these sections, this chapter proposes a number of criteria to test the human factor in a road safety improvement intervention. Note that this evaluation should be carried out by human factor specialists. Only the concepts to be tested are stated and not, for example, the specific questions for a questionnaire.

This evaluation is tentative and preliminary. It is aimed at illustrating the urgent need for such an evaluation by specialists.

The purpose of this chapter is to discussed the proposed qualitative indicators for the human factor evaluation in road safety improvement interventions. A preliminary assessment of Arrive Alive 1 is also discussed.

12.2 CRITERIA AND EVALUATION ELEMENTS

The criteria and evaluation elements can be placed into two categories, namely: input related and outcome related issues. The input related category refers to the criteria and evaluation for the media, communication and other aspects that were presented to the public. The outcome related category refers to the criteria and evaluation of the public. Note that these elements are described as concepts only and that they can not be utilised directly as questions in a questionnaire or evaluation form.

12.3 INPUT-RELATED CRITERIA AND EVALUATION ELEMENTS

The concepts of the input-related criteria can be summarised in Table 12.1. The relevant references to Chapter 11 are also indicated. Note that these criteria are discussed in terms of concepts only and that human psychology specialists should prepare detailed questionnaires or evaluation forms based on these criteria to assess the human factor.
INPUT-CRITERIA FOR ROAD SAFETY IMPROVEMENT INTERVENTIONS:

<table>
<thead>
<tr>
<th>No.</th>
<th>Criteria</th>
<th>Reference in Chapter 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Provide reinforcement for the particular behaviour with reminders to change attitudes?</td>
<td>11.4.1</td>
</tr>
<tr>
<td>2.</td>
<td>Provide information on what the individual should do rather than what he/she should not do, i.e. provided cues to action?</td>
<td>11.4.2 and 11.6.7</td>
</tr>
<tr>
<td>3.</td>
<td>Use emotion to change attitudes and behaviour where a positive attitude did not already exist?</td>
<td>11.5.4</td>
</tr>
<tr>
<td>4.</td>
<td>Provide information with regard to the perceived benefits and costs of the unsafe behaviour and the perceived benefits and costs of safe behaviour?</td>
<td>11.5.4, 11.6.7, 11.9.4</td>
</tr>
<tr>
<td>5.</td>
<td>Make use of the instrumental function of attitudes?</td>
<td>11.5.6</td>
</tr>
<tr>
<td>6.</td>
<td>Make use of the value-expressive function of attitudes?</td>
<td>11.5.6</td>
</tr>
<tr>
<td>7.</td>
<td>Address the motives and needs important for the self-esteem of the individual and the things he/she is highly involved with?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>8.</td>
<td>Use similar characteristics of the target group(s) – e.g. was the persuader acceptable to the group, did the persuader express views congruent with the target group?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>9.</td>
<td>Use group affiliations to change attitudes and behaviour?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>10.</td>
<td>Present both sides of the argument unless the target group already held positive attitudes on the issues?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>11.</td>
<td>Present the desired behaviour in such a manner that the target group was able to believe that it is correct and that by engaging in the desired behaviour that he/she would remain part of the group that supports the same norms and values?</td>
<td>11.5.8</td>
</tr>
<tr>
<td>Input-Criteria for Road Safety Improvement Interventions: Did communications (including media and press releases, speeches by political figures etc.)..........</td>
<td>Reference in Chapter 11</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>12. Inform the target group of laws and regulations in place that will reinforce the desired behaviour?</td>
<td>11.6.7, 11.7.5 and 11.10</td>
<td></td>
</tr>
<tr>
<td>13. Aim at changing the desired behaviour into a habit?</td>
<td>11.6.6</td>
<td></td>
</tr>
<tr>
<td>14. Provide detailed information on the severity of the threat posed by the risky behaviour?</td>
<td>11.6.7</td>
<td></td>
</tr>
<tr>
<td>15. Take the social context of the behaviour into consideration?</td>
<td>11.6.7</td>
<td></td>
</tr>
<tr>
<td>16. Take the factors likely to inhibit or facilitate the behaviour into consideration?</td>
<td>11.6.7</td>
<td></td>
</tr>
<tr>
<td>17. Take the target group individual's personal characteristic like age, gender, background, experience etc. into consideration?</td>
<td>11.6.7</td>
<td></td>
</tr>
<tr>
<td>18. Provide the probability of the accident risk?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>19. Provide the consequences of the accident risk?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>20. Provide human interest stories around road traffic accidents?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>21. Inform the target group of their perceptions?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>22. Provide an opportunity for debate on the accident risk?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>23. Provide warnings on the accident risk?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>24. Provide occasional statistics?</td>
<td>11.7.5</td>
<td></td>
</tr>
<tr>
<td>25. Inform the target group that the penalties for traffic violations increased?</td>
<td>11.9.10</td>
<td></td>
</tr>
<tr>
<td>26. Label the individual or target groups with labels like criminal etc.?</td>
<td>11.7.6</td>
<td></td>
</tr>
<tr>
<td>27. Provide feedback on law enforcement actions?</td>
<td>11.10</td>
<td></td>
</tr>
</tbody>
</table>
The concepts of the output-related criteria can be summarised in Table 12.2. The relevant references to Chapter 11 are also indicted. Note that these criteria are discussed in terms of concepts only and that human psychology specialists should prepare detailed questionnaires or evaluation forms based on these criteria to assess the human factor.

Table 12.2 Output-criteria for road safety improvement interventions.

<table>
<thead>
<tr>
<th>OUTPUT-CRITERIA FOR ROAD SAFETY IMPROVEMENT INTERVENTIONS:</th>
<th>REFERENCE IN CHAPTER 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check for changes in the following:</td>
<td></td>
</tr>
<tr>
<td>1. The use of fear:</td>
<td></td>
</tr>
<tr>
<td>• Did it make the person act more safely?</td>
<td>11.4.1</td>
</tr>
<tr>
<td>• Did he/she reject it altogether or</td>
<td></td>
</tr>
<tr>
<td>• Did he/she believe it is unsafe but still did not</td>
<td></td>
</tr>
<tr>
<td>change to the safe behaviour?</td>
<td></td>
</tr>
<tr>
<td>2. How does the individual's attitude differ in terms of</td>
<td>11.5.3</td>
</tr>
<tr>
<td>situation or object specifics?</td>
<td></td>
</tr>
<tr>
<td>3. Is the attitude that the individual holds on the safe/</td>
<td>11.5.3</td>
</tr>
<tr>
<td>unsafe behaviour deep-seated beliefs or superficial</td>
<td></td>
</tr>
<tr>
<td>opinions?</td>
<td></td>
</tr>
<tr>
<td>4. Is the individual aware of the benefits & costs of both</td>
<td>11.5.4, 11.6.6,</td>
</tr>
<tr>
<td>the safe and unsafe behaviour?</td>
<td>11.6.7, 11.7.5,</td>
</tr>
<tr>
<td></td>
<td>11.9.3</td>
</tr>
<tr>
<td>5. Is the individual aware of the risk of his/her unsafe</td>
<td>11.5.4, 11.6.6,</td>
</tr>
<tr>
<td>behaviour?</td>
<td>11.6.7, 11.7.5,</td>
</tr>
<tr>
<td></td>
<td>11.9.3</td>
</tr>
<tr>
<td>6. What is the individual's behavioural intention?</td>
<td>11.5.4</td>
</tr>
<tr>
<td>7. How stable is the individual's attitude, i.e. what is the</td>
<td>11.5.5</td>
</tr>
<tr>
<td>extent of resistance to change?</td>
<td></td>
</tr>
<tr>
<td>8. Does the desired attitude allow the individual to</td>
<td>11.5.6</td>
</tr>
<tr>
<td>express the concept that he/she has of him/herself?</td>
<td></td>
</tr>
<tr>
<td>9. Will the individual be able to impress someone or</td>
<td>11.5.6</td>
</tr>
<tr>
<td>develop a desired relationship by adopting the desired</td>
<td></td>
</tr>
<tr>
<td>attitude?</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Reference</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>Will the attitude change address the individual’s motives and needs important to the individual’s self-esteem?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>Media: Could the individual associate with the persuader, i.e.:</td>
<td>11.5.7</td>
</tr>
<tr>
<td>• Being similar or acceptable to him/her?</td>
<td></td>
</tr>
<tr>
<td>• Expressing views congruent with his/her?</td>
<td></td>
</tr>
<tr>
<td>Media: Did the individual believe what was presented to him/her?</td>
<td>11.5.7</td>
</tr>
<tr>
<td>Does the individual have positive attitudes towards the desired behaviour and if not, what is his/her attitude?</td>
<td>11.5.7, 11.5.8, 11.6.6</td>
</tr>
<tr>
<td>Why would the individual engage in the safe behaviour: is it:</td>
<td>11.5.8</td>
</tr>
<tr>
<td>• to avoid punishment;</td>
<td></td>
</tr>
<tr>
<td>• to obtain certain rewards;</td>
<td></td>
</tr>
<tr>
<td>• because he/she believes it is correct?</td>
<td></td>
</tr>
<tr>
<td>What is the individual’s attitude towards the safe/unsafe behaviour?</td>
<td>11.6.6</td>
</tr>
<tr>
<td>What is the intention of the individual in terms of performing the safe/unsafe behaviour?</td>
<td>11.6.6</td>
</tr>
<tr>
<td>What is the individual’s belief of the consequences of performing the safe/unsafe behaviour?</td>
<td>11.5.4, 11.6.6, 11.6.7, 11.7.5, 11.9.3</td>
</tr>
<tr>
<td>Is the safe/unsafe behaviour a habit?</td>
<td>11.6.6</td>
</tr>
<tr>
<td>Does the individual know the costs and benefits of the safe and unsafe behaviours?</td>
<td>11.5.4, 11.6.6, 11.6.7, 11.7.5, 11.9.3</td>
</tr>
<tr>
<td>Does the individual experience any social pressure in terms of the safe and unsafe behaviours?</td>
<td>Table 11.1</td>
</tr>
<tr>
<td>What factors are likely (or did) inhibit or facilitate the safe and unsafe behaviour?</td>
<td>Table 11.1</td>
</tr>
<tr>
<td>What is the person’s personal characteristics, e.g. age, gender, background, experience?</td>
<td>Table 11.1</td>
</tr>
</tbody>
</table>
12.5 Preliminary Evaluation of the Input-Based Elements of A R R I V E - A L I V E 1

Criterion 1: Attitude change – The campaign focused on providing information on law enforcement actions and traffic offences and reported on road traffic accidents. Attitude change was indirectly sought through press releases referring to the words of Minister Maharaj: culture change in a press release dated 4 November 1997 and, Our aim in this short term campaign is not simply to punish people… This is part of the wider aim of beginning to fundamentally change people’s attitudes (NDoT website, 1997).

Criterion 2: Cues for action – The media just stated Speed kills, other statements from Minister Maharaj included: The carnage on our roads has to stop. The Asiphephe project, however, installed a sign on the N3 border to KwaZulu-Natal that states: Slow down, speed kills that did provide a cue for action.

Criterion 3: Emotion was used to a large extent in press releases and in speeches by the Minister. It is not clear whether positive attitudes already exist on, for example, driving within the speed limit etc.

Criterion 4: Information on the costs & benefits of both safe & unsafe behaviour – The public was only informed on the costs of unsafe behaviour, e.g. we are beginning with tough enforcement.
Criteria 5, 6, 7, 8, 9, 17 and 21: Focus on target group(s) - The Arrive Alive 1 campaign was targeted to the entire population of South Africa. The messages were therefore general (Don't fool yourself, Speed kills).

Criterion 10: Presenting both sides of the argument - Both sides of the argument of safe behaviour were not presented.

Criterion 11 - The desired behaviour was presented only in terms of the slogan Don't fool yourself, Speed kills. It is general and the issue of whether speed kills was debated among the public.

Criteria 12, 14, 25, 27: Law enforcement - The public was repeatedly informed on the extensive law enforcement actions that was planned, that took place and of the high penalties that would be paid for non-compliance with traffic laws.

Criterion 13: Habit - The communication effort did not urge the public to change the safe behaviour into habit, it merely stressed the fact that law enforcement would increase during the Arrive Alive 1 period.

Criterion 14: Severity of the threat - The severity of the threat, e.g. Speed kills was communicated to the public through the written media and with signs along the major routes.

Criterion 15: Social context of the behaviour - Attention was not focussed on the social context of the behaviour.

Criterion 16: Factors inhibiting or facilitating the behaviour - Attention was not focussed on the social context of the behaviour.

Criterion 18: Risk probability - Attention was not focussed on the risk probability, it was only stated that The statistic will be you, your wife or husband, son or daughter - killed or maimed for life, i.e. the possible threat.

Criterion 19: Consequence of the accident risk - Press releases included statements like: The statistic will be you, your wife or husband, son or daughter - killed or maimed for life.

Criterion 20: Human interest stories were reported on a weekly basis in the written media and on TV.

Criterion 22: The media provided some opportunity for debate on the accident risk.
Criterion 23: Warnings were provided on the accident risk.

Criterion 24: Occasional statistics were provided.

Criterion 25: Use of labels – Unfortunately statements like: *If you commit road traffic offences you’re a criminal (NDoT website, press release 1 October 1997), there is still a minority of drivers on the roads who behave like criminals, who have no regard for their lives, nor of lives for others* (NDoT website, press release 2 January 1998) were made.

12.6 **PRELIMINARY EVALUATION OF THE OUTPUT-BASED ELEMENTS OF ARRIVE ALIVE 1**

The output-based elements of Arrive Alive 1 can only be measured with questionnaires and interviews. It is therefore not tested for the purpose of this study.

12.7 **CONCLUSIONS**

Input and output-based criteria for the human factor in road traffic safety improvement interventions provide a means for the evaluation of these interventions.
CHAPTER 13: CONCLUSIONS AND RECOMMENDATIONS

13.1 CONCLUSIONS

The following conclusions were made based on the study:

- road traffic accidents place a burden on South Africa in terms of cost and emotional hardship;

- South Africa is implementing various measures and programs aimed at improving road traffic safety (e.g. the Road Traffic Management Strategy, Arrive Alive 1, etc.);

- there is a need to identify qualitative and quantitative key performance indicators that can be used to evaluate road safety improvement interventions to ensure that the intervention is economically viable;

- the macro-level evaluation of accident data with statistical methods to determine the significance of change during and after an intervention is problematic as the data shows no particular trends, only random fluctuations around the mean – a lack of measure for exposure makes the use of trend analysis to predict the expected number of accidents without the intervention impossible as even the use of fuel sales as a measure of exposure is not accurate enough;

- there is a need for the development of an indicator of exposure with a higher degree of correlation than fuel sales that can be used to express accident data in terms of exposure;

- the human factor is an essential element of road safety improvement interventions. The mechanisms of attitude, behaviour, motivation, risk and skills should be incorporated in the planning and evaluation of road traffic safety improvement interventions;

- input-based and output-based criteria for the human factor in road traffic safety interventions provide qualitative key indicators for the evaluation of these interventions.
13.2 RECOMMENDATIONS

It is recommended that:

- road safety interventions be evaluated using both quantitative (accident data related) and qualitative indicators (human factor related);

- a model or measure be developed that can be utilised to predict accident trends and volumes – exposure need to be an essential part of this model - this can then be utilised as a quantitative measure;

- the human factor be considered in the development and evaluation of road traffic safety improvement interventions;

- independent experts with knowledge of human behaviour with independent funding be contracted to evaluate all steps and measures that were introduced to address road safety and to evaluate road safety interventions like Arrive Alive 1 using both qualitative and quantitative indicators.