Sequential-injection Analysis

Graham D. Marshall
Sequential-injection Analysis

by

Graham Dean Marshall

Submitted in partial fulfilment of the requirements for the degree, Doctor in Philosophy in the Faculty of Science, University of Pretoria, Pretoria.

May 1994
Sequential-injection Analysis

by

Graham Dean Marshall

Supervisor: Professor Jacobus F. van Staden
Department of Chemistry, University of Pretoria

Co-supervisor: Prof Jaromir Ruzicka
Department of Chemistry, University of Washington, USA

Degree: Doctor of Philosophy
Sequential-injection Analysis

by

Graham Dean Marshall

Supervisor: Prof Jacobus F van Staden

Department of Chemistry: University of Pretoria

Co-supervisor: Prof Jaromir Ruzicka

Department of Chemistry: University of Washington, USA

Degree: Doctor of Philosophy

Synopsis

Process Analytical Science (PAS) is a rapidly developing sub-discipline of Analytical Science. Tried and tested analytical principles are applied in modified instrumental architectures that enable the real-time monitoring of key process constituents. Process Analyzers are becoming vital and valuable components of sophisticated distributed control strategies. Their acceptance and usefulness is resulting in ever increasing demands on the process analysis researcher. Chemical sensors, first believed to be the ultimate solution for the process controller, have not enjoyed the wide spread application initially predicted. Their long term reliability has not materialized in all but a few cases. An intermediate or alternative approach is required which will incorporate the conceptual simplicity and size of sensors and the predictable and controlled environment of well established flow-based sample
manipulation procedures such as flow-injection analysis (FIA) and the various branches of chromatography.

This study describes the development of such a technique which has been called Sequential-injection Analysis (SIA). The theoretical basis on which the technique is founded is outlined together with the progression of thinking which lead to its conceptualisation. Its successful implementation depends entirely on microprocessor controlled flow programming. The development of a device control and data acquisition package was mandatory and is described. The study then focuses on establishing the operational parameters affecting the design of a SIA manifold.

Having established the manifold design principles, SIA is evaluated as an approach to sample manipulation. The wet chemical unit operation of trace enrichment is applied to SIA. Although the use of SIA for many traditional FIA applications is envisaged, the use of SIA principles with chemical sensors as the means of detection is seen as the ultimate application of this flow-based analytical technique. Some would be so bold as to claim that it is possibly the basis of successful implementation of chemical sensors. Its usefulness and advantages over FIA in such an application is demonstrated. The hardware requirements for the future optimum development of this approach to process analysis as well as some future areas of work conclude the study.
Sequential-injection Analysis

deur

Graham Dean Marshall

Promotor: Prof Jacobus F van Staden

Departement Chemie: Universiteit van Pretoria

Medepromotor: Prof Jaromir Ruzicka

Departement Chemie: Universiteit van Washington, VSA

Graad: Doktor van Filosofie

Samevatting

Die wetenskap van prosesanalise is 'n snelontwikkelende subdiissipline van die Analitiese Wetenskap. Beproefde analitiese beginsels word aangewend in gewysigde instrumentasie wat die monitering van hoof prosesbestanddele in reële tyd moontlik maak. Prosesanaliseerders word steeds belangriker en waardevoller komponente in gesofistikeerde verspreide-beheer strategieë. Hulle aanvaarding en nuttigheid bring eskalerende eise mee vir die prosesanalitiesenavorser. Chemiese sensors wat eers beskou is as die eindoplossing vir prosesbeheer, geniet nie die wydverspreide toepassing wat oorspronklik voorspel is nie omdat hulle langtermyn betroubaarheid net in 'n paar gevalle bewys is. 'n Tussentydse of alternatiewe benadering, wat die konseptuele eenvoud en grootte van die sensors kombineer met die voorspelbare en beheerde milieu van goed gevestigde vloeigebaseerde monsterhanteringsprosedures, soos vloei-inspuitanalise (VIA) en chromatografie, word benodig.
Hierdie studie beskryf die ontwikkeling van so 'n tegniek wat sekwensiële-inspuitanalyse (SIA) genoem word. Die teoretiese basis waarop die tegniek berus, word geskets saam met die vooruitgang in denke wat geleis het tot sy totstandkoming. Die suksesvolle implementering van die tegniek maak volkome staat op vloeibeheer deur middel van 'n mikroverwerker. Die ontwikkeling van 'n apparaatbeheer- en dataverkrygingsprogram was daarom noodsaaklik en word beskryf. Daarna fokus die studie op die bepaling van bedryfparameters wat die ontwerp van 'n SIA vloei-sisteme beïnvloed.

Nadat die ontwerpbeginsels vir die vloei-sisteme vasgestel is, word SIA geëvalueer as 'n benadering tot monster-manipulasie. Spoorverryking as eenheidsbewerking word aangewend ten opsigte van SIA. Al word die gebruik van SIA beoog vir sommige tradisionele VIA anwendings, word die gebruik van SIA beginsels met chemiese sensors as metingswyse beskou as die uiteindelike aanwending van hierdie vloei-gebaseerde analitiese tegniek. Sommige sal hulle verstout om te sê dat dit moontlik die basis vir die suksesvolle implementering van chemiese sensors is. Die nut en voordele bo VIA in so 'n aanwending word aangetoon. Die studie word afgesluit met die hardeware behoeftes vir die toekomstige optimum ontwikkeling van hierdie benadering tot prosesanalise, en 'n aantal toekomstige studievelde.
Table of Contents

Synopsis .. i

Acknowledgments ... xv

1 Evolution of Sequential-Injection Analysis 1

 1.1 Flow-based Analysis for Process Analysis 1

 1.2 Principles of Flow-based Analysis 4

 1.2.1 Birth of Flow-injection Analysis 4

 1.2.2 Non-equilibrium conditions 6

 1.2.3 Dispersion .. 9

 1.2.4 Manifold Design Criteria 12

 1.3 Hardware ... 13

 1.4 Flow-based Analysis for Process Analysis 15

 1.4.1 Automated Wet Chemical Analysis 15

 1.4.2 Advantages ... 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.3</td>
<td>Disadvantages</td>
<td>20</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Instrumentation</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Sampling system; Calibration; Pump; Valves; Detectors;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device Control and Data Acquisition; Data output;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Housing</td>
<td></td>
</tr>
<tr>
<td>1.4.5</td>
<td>Future of FIA in Process Analysis</td>
<td>28</td>
</tr>
<tr>
<td>1.5</td>
<td>Evolution of a new Flow-Based Analysis Technique</td>
<td>30</td>
</tr>
<tr>
<td>1.5.1</td>
<td>Flow Programming</td>
<td>33</td>
</tr>
<tr>
<td>1.5.2</td>
<td>The Random Walk Model</td>
<td>35</td>
</tr>
<tr>
<td>1.5.3</td>
<td>Sensor Injection</td>
<td>38</td>
</tr>
<tr>
<td>1.5.4</td>
<td>Instrumental Layout</td>
<td>39</td>
</tr>
<tr>
<td>1.6</td>
<td>Research Requirements for Sequential-Injection Analysis</td>
<td>40</td>
</tr>
<tr>
<td>1.6.1</td>
<td>Device Control and Data Acquisition</td>
<td>40</td>
</tr>
<tr>
<td>1.6.2</td>
<td>Manifold Design Principles</td>
<td>42</td>
</tr>
<tr>
<td>1.6.3</td>
<td>Application to Measurement Problems</td>
<td>43</td>
</tr>
<tr>
<td>1.6.4</td>
<td>Sensor Injection</td>
<td>43</td>
</tr>
<tr>
<td>1.6.5</td>
<td>Design Criteria for Instrumentation</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Pump; Selection Valve; Detectors</td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>References</td>
<td>47</td>
</tr>
<tr>
<td>2</td>
<td>Data Acquisition and Device Control</td>
<td>50</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>50</td>
</tr>
<tr>
<td>2.2</td>
<td>Instrumental Design</td>
<td>52</td>
</tr>
</tbody>
</table>

vi
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Computer</td>
<td>53</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Interface board</td>
<td>53</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Distribution board</td>
<td>55</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Devices and detectors</td>
<td>56</td>
</tr>
<tr>
<td>2.3</td>
<td>Program Structure</td>
<td>57</td>
</tr>
<tr>
<td>2.4</td>
<td>Method Design and Development</td>
<td>65</td>
</tr>
<tr>
<td>2.5</td>
<td>Data Acquisition and Instrument Control</td>
<td>67</td>
</tr>
<tr>
<td>2.6</td>
<td>Control by Procedures</td>
<td>70</td>
</tr>
<tr>
<td>2.7</td>
<td>Calibration</td>
<td>71</td>
</tr>
<tr>
<td>2.8</td>
<td>Diagnostics using the History option</td>
<td>72</td>
</tr>
<tr>
<td>2.9</td>
<td>System Performance</td>
<td>73</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Study of fundamental parameters</td>
<td>73</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Method development</td>
<td>75</td>
</tr>
<tr>
<td>2.9.3</td>
<td>Flow-based analysis as a diagnostic research tool</td>
<td>75</td>
</tr>
<tr>
<td>2.9.4</td>
<td>Service analysis</td>
<td>76</td>
</tr>
<tr>
<td>2.10</td>
<td>Future developments</td>
<td>76</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Windows™ platform</td>
<td>76</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Sequential-injection analysis</td>
<td>77</td>
</tr>
<tr>
<td>2.10.3</td>
<td>System configuration</td>
<td>77</td>
</tr>
<tr>
<td>2.10.4</td>
<td>Multi-array detectors</td>
<td>78</td>
</tr>
<tr>
<td>2.10.5</td>
<td>Process monitoring and control</td>
<td>78</td>
</tr>
<tr>
<td>2.11</td>
<td>References</td>
<td>79</td>
</tr>
<tr>
<td>2.12</td>
<td>Glossary of terminology</td>
<td>80</td>
</tr>
</tbody>
</table>
SEQUENTIAL-INJECTION ANALYSIS

4.2 Comparison to Solvent Extraction .. 110
4.3 Experimental .. 113
 4.3.1 Apparatus .. 114
 4.3.2 Reagents ... 115
 4.3.3 Procedure ... 117
4.4 Results and Discussion .. 123
4.5 References ... 129

5 Sensor Injection ... 131
 5.1 What is a Sensor? .. 131
 5.2 Present state of the art .. 133
 5.3 The use of Sensors for Process monitoring 138
 5.4 Sensors and Flow-based Analysis 140
 5.5 Experimental ... 141
 5.5.1 Carrier stream ... 141
 5.5.2 Instrumentation .. 141
 5.5.3 Experimental Procedure ... 144
 5.6 Results and Discussion .. 145
 5.6.1 From FIA to SIA .. 145
 5.6.2 System Optimization ... 145
 5.6.3 Analytical Figures of Merit 151
 5.6.4 Use of SIA for sensor testing 151
 5.6.5 Process Monitoring ... 153
List of Figures

Figure 1: Development of automated sample manipulation procedures in wet chemistry. a. manual methods, b. conveyor belt, c. air segmented continuous flow methods ... 7

Figure 2: Dispersion of the sample zone into the carrier stream as it is propelled towards the detector under conditions of laminar flow. A continuum of ratios of sample to carrier concentration is achieved. 8

Figure 3: Application development flow diagram ... 17

Figure 4: Some variations in initial manifold arrangements. SP - Syringe Pump,
TP - Tecuria Pump, PP - Peristaltic pump, D - Detector, SV - Selection Valve ... 41

Figure 5: Manifolds and their relationship to computer hardware. a. Flow-injection manifold. b. Sequential-injection manifold. 55

Figure 6: External relay for devices without built-in TTL control. The PCB relay is equipped with a coil of 5V and 500 Ω. 57

Figure 7: Dendrogram of FlowTEK program showing the various menu options and program functions. .. 62

Figure 8: Typical flow-injection profile as depicted on the Main menu screen.
Note the device events are depicted schematically in the device display box. 63

Figure 9: Sequential-injection manifold. P - pump, HC - Holding coil,
RC - Reaction coil, SV - selection valve, D - detector. 86

Figure 10: Dispersion of the a) sample plug due to laminar flow just b) prior to, and c) after zone reversal. .. 91
Figure 11: Effect of tube diameter on zone penetration 97

Figure 12: Effect of reactor geometry on zone penetration. 99

Figure 13: The flow rate at different pump speeds. (The area under the curve
between particular cam positions gives the theoretical volume.) 101

Figure 14: Effect of pump speed on zone penetration. Pump setting of a) 10 and
b) 30. .. 101

Figure 15: Manifold dimensions for optimized SIA manifold using a sinusoidal
flow syringe pump. ... 104

Figure 16: Miniature column used for sorbent extraction. The polymeric support
is held in place by two small wads of glass wool. Two flangeless fittings
seal the column in the perspex holder. .. 115

Figure 17: Spectrum of Cu(DDTC)$_2$ complex. Cu$^{2+}$ concentration 5 mg.dm$^{-3}$ in
1:20 MeOH:H$_2$O mixture, pH=4. Peak maximum - 448 nm. 116

Figure 18: a) SIA manifold for sorbent extraction when using an aggressive
stripping solution, P - pump, SV - selection valve, D - detector, C - column.
b) Sequence of reagents in the SIA reaction coil (see text for details) 118

Figure 19: a) SIA manifold for sorbent extraction with pre-sample column
loading, P - pump, SV - selection valve, D - detector, C - column. b)
Sequence of reagents in the SIA reaction coil (referred to as Manifold A in
the text). .. 119

Figure 20: a) Optimized SIA manifold for sorbent extraction, P - pump, SV -
selection valve, D - detector, C - column. b) Sequence of reagents in the
SIA reaction coil (referred to as Manifold B in the text). 121
Figure 21: a) Response profile for the enrichment of Cu(DDTC)$_2$ using Manifold A.

b) Response profile for the enrichment of Cu(DDTC)$_2$ using Manifold B.

Figure 22: Effect of changing the relative ratio between complexing reagent drawn up and that dispensed to the pump. In each case, 33 mm3 was dispensed, different volumes were aspirated.

Figure 23: Effect of sample volume on response. ♦ - 2.5 mg.dm$^{-3}$ Cu, Manifold A, ■ - 2.5 mg.dm$^{-3}$ Cu, Manifold B, ▲ - 5.0 mg.dm$^{-3}$ Cu, Manifold A.

Figure 24: a. Sequential-injection manifold and b. equivalent flow-injection manifold for the determination of cyanide, P - pump, SV - selection valve, IV - injection valve, S - cyanide sensor in flow cell.

Figure 25: Cyanide ion selective electrode (ISE) mounted opposite a reference (Ref) electrode in a flow cell. Arrows indicate the flow path.

Figure 26: Response profiles for different volumes of sample. Volumes as per Table XIII corresponding to sample times of 1, 3, and 10 seconds.

Figure 27: Influence of cyanide in the carrier stream. a) no cyanide b) 10 mg.dm$^{-3}$ cyanide in the carrier stream.

Figure 28: Response profiles obtained for the replicate injection of cyanide solutions with the following concentrations a) 96 mg.dm$^{-3}$, b) 192 mg.dm$^{-3}$, and c) 288 mg.dm$^{-3}$.

Figure 29: Sensor testing manifold. P - Pump, SV - Multi-position selection valve, T - Test solution, S$_{1}$ to S$_{n}$ - Sensors to be tested.
SEQUENTIAL-INJECTION ANALYSIS

Figure 30: Cyanide monitoring using a sequential-injection analyzer in a simulated process environment. 155
Acknowledgments

Exodus 31:3 and I have filled him with the Spirit of God, with skill, ability and knowledge in all kinds of crafts-- What do we have that has not come from almighty God?

A work such as this is never the result of a single individual's efforts. Numerous people, by their encouragement, tolerance, motivating, and cooperation contribute beyond what they imagine. This work would not have been completed without the constant encouragement and interest by my wider family, Bible study group, friends, and colleagues.

First and foremost, this work was made possible by the permission and indulgence of Mintek’s management, specifically Tina Pohlandt-Watson, Ron Mallett, Mike Nicol, and Peter Jochens. Their encouragement and willingness to allow me to follow my head, as well as their readiness to listen and buy into some of my ideas, make my place of work also a place of enjoyment.

My colleagues and peers remain a constant source of inspiration. Sydwell Williams taught me all I know about electronics. Malcolm Taylor challenges me to apply the combined wisdom of the existing literature and to write in such a way as to maintain the reader's interest. Dick Groot challenges me to understand the "why" behind my
observations. Deon Barnes is a fitting fellow competitor, always challenging me to keep up with him and consider the unlikely option.

Prof Koos van Staden, my supervisor, also had a vital role to play. His constant enthusiasm, and interest in the work made the effort worthwhile. His understanding and patience when other responsibilities slowed progress is also gratefully acknowledged.

How do you compute the contribution from your family and even begin to express adequately due appreciation? They have tolerated hours of absence, countless outstanding chores, frequent outbursts and selfishness as the pressure mounted, and the hours of clickity-clack from the computer keyboard. This they have endured stoically and, often unknowingly, provide that vital support when it appears that the last straw is about to break the camels back.

Sharon, Andrew, Stephen, and Nicole, I have done this as much for YOU as for me!
Here I stand on the edge of an ocean of truth. I have picked up a few grains of sand, but the whole ocean lies beyond me, unknown.

– Isaac Newton