DETAIL 01

- 1200mm high mild steel backbone with anchoring welded to slab at P/E 140
- 22 x 75mm CCA treated weatherboard fixed to Lamin brik with screw and rubber washer
- P/E 120 parallel flange I-beam section welded to P/E 140 forming the main structure

DETAIL 02

- 1200mm high mild steel backbone with anchoring welded to slab at P/E 140
- 22 x 75mm CCA treated weatherboard fixed to Lamin brik with screw and rubber washer
- P/E 120 parallel flange I-beam section welded to P/E 140 forming the main structure

DETAIL 05

- New masonry arch, smooth plastered and finished with NO VOC paint
- 2700 x 1200 x 9mm high density flat sheet wall with 5mm Epdm gasket to avoid open joints
- Steel beam 30 x 170mm timber frame spaced at 600mm centres in horizontal and vertical planes. Placed pouted I-beam frame
- 16mm hycar HD floor boards, 2900 x 600mm with counterflush head, 30 x 4.5mm spaced at maximum 600 mm
- 50 x 50mm internal slab is faced with Dymac at 600mm centres fixed to 114 x 300mm timber sole plate
- New 23mm masonry and plaster slab for roof units
- 50 x 228mm timber bearing beam at 600mm centres
- Existing 120mm concrete roof

DETAIL 03

- 1200mm high mild steel backbone with anchoring welded to slab at P/E 140
- 22 x 75mm CCA treated weatherboard fixed to Lamin brik with screw and rubber washer
- P/E 120 parallel flange I-beam section welded to P/E 140 forming the main structure

DESIGN CONCLUSIONS + RECOMMENDATIONS

- Base condition of new roof units
 - Scale: 1:20

- Edge condition of hanging balconies
 - Scale: 1:20

- Connection between hanging balcony + existing slab
 - Scale: 1:20

- External corridor wall
 - Scale: 1:20

REFERENCES

- Design conclusions and recommendations
DETAIL 04

- 32 x 82mm galvanised steel LD rail support
- Under coated louvres screwed to aluminium sub frame and siliconed to door frame
- Side hanging naturally anodised aluminium door frame
- 22 x 75mm CCA treated timber section sanded and painted with linseed oil
- Naturally anodised aluminium hanging door frame forming sliding screen
- Existing 170mm concrete floor slab
- 32 x 82mm galvanised steel LD rail support rawl bolted to existing slab
- 30 x 32mm galvanised steel LD C-track rail positioned inside rail support
- 2mm thick galvanised steel sliding C-track carrier with sealed ball bearings

hanging sliding screen
scale 1:10
DETAIL 06

- Naturally anodised aluminium framed window with dpc below cill
- New 230mm masonry wall with plaster and NO VOC paint
- New 25mm pigmented screed on 54 x 2.0mm QC composite steel and concrete slab system with underside of ceiling painted with NO VOC paint.
- 16 x 2.0mm Uponor Pex-Xa underfloor heating and cooling system
- IPE 120 steel I-section frame with 50 x 50mm channel and screening element
- 120 x 55mm x 13.3kg/m steel channel fixed to ends of I-sections. Fire Protection: ensure surface is clean, dry and free of rust or grease. Prime surface with S-623 Epoxy Blast primer applied to a dry film thickness of 94 microns per coat, using high pressure spray equipment, roller or brush. Apply StonCor Fireproofing Nullfire S605 intumescent basecoat. Fire protection of up to 2 hours

edge condition of slab

scale 1:10
DETAIL 07

edge condition of slab at service corridor

scale 1:10

25mm pigmented screed with fall away from building

16 x 2.0mm Uponor Pex-Xa underfloor heating and cooling system

120 x 55mm x 13.3kg/m steel channel fixed to ends of I-sections.

38 x 114mm timber section spacer bolted to steel angles

Sisalation fixed to 30 x 70mm timber frame spaced at 600mm centres in horizontal and vertical plane. Pratiperl loose Insulation poured inside frame

2700 x 1200 x 9mm Nutec medium density flat sheet walls with 50mm EDPM gasket to seal open joints
The final model of the Woltemade building was constructed using two different colours of building material. The grey cardboard was used to demonstrate the context of surrounding buildings and the existing context on the Woltemade site. White elements (except the trees) are used to illustrate the location of the various new interventions.

The new interventions tend to be light and speak a different architectural language when compared to the original structure. This variation in colour and materials ensures that new elements are read differently.

New interventions delicately wrap themselves around the host building always being mindful to expose the edges.
Fig 007.6: The northern façade of the Woltemade building has undergone a number of changes, however they are of a sensitive nature and are [re]versible.
Fig 007.7: The southern façade of the building where Intervention II takes place. This intervention consists of hanging walkways with an extension of roofing material to define internal spaces.
Fig 007.8: Intervention C, on the east, consists of permanent concrete shuttering with light infill panels.

Fig 007.9: Roofs are used to accommodate additional programs and allow for planting.

Fig 007.10: The south east corner of the building where the majority of the new bulk is located.

Fig 007.11: Translucent material is used on the façade of the hanging structure to indicate the location of the glass gallery box. White and translucent glass panels are incorporated into balustrades along the walkways.
Fig 007.12: Intervention C + D are evident in this picture as is the glass gallery box. Intervention C (to the left) houses mixed-use activities. Intervention D, the platform on first floor, allows for a new public area without disturbing the existing services of the ground floor.

Fig 007.13: The southern façade depicts the wrapping of the various interventions around the host building. Edges of the existing are exposed.

Fig 007.14: The bottom edge of the building is left exposed below the wrapping structure of Intervention B.

Fig 007.15: The building as seen from Vermeulen Street.