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CHAPTER 1 

Review of existing density determinations 

 

1.1 Introduction 

 

Modern developments in geophysics, geology and engineering have resulted in 

increasingly sophisticated techniques of analysis of problems in soil mechanics.  The 

reasons for this are threefold: 

 

• Better and more sophisticated technology are more readily available. 

• The need to determine parameters more accurately. 

• The need to decrease the cost of development projects. 

 

These improved methods have also highlighted the problems inherent to 

conventional sampling and laboratory testing procedures.  Frequently, these testing 

procedures cannot supply suitable accurate parameters for either sophisticated 

techniques of analysis (such as finite element analysis) or even for modern design 

calculations. 

 

Various authors have shown that the action of ‘sampling’ causes significant 

disturbance due to mechanical deformation and to the inevitable difference in stress 

history between a sampled element of subsurface and a similar element in the field 

(Davis and Poulos,1966).  This confirms the need to sample physical properties in-

situ (for example density and small movement elasticity modulus), in particular for 

the construction and engineering industry. 

  

Although tests like the Dynamic Cone Penetrometer Test and the consolidation test 

can give an indication of density variations in the subsurface, accurate in-situ density 

determinations could up to now, only be determined down to a shallow depth by 

using the neutron based Troxler equipment.  Variations in the moisture content can 

however influence these determinations.  If accurate density and other subsurface 

 
 
 



 

 

 
 2 

parameters are needed from greater depths, an undisturbed sample is needed. 

Physical properties derived from field geophysical techniques tend to be much larger 

than those obtained from conventional laboratory testing, for example stiffnesses 

derived from field seismics (Clayton C.R.I. and Heyman G., 2001).  A laser 

interferometry system was developed to evaluate the sensitivity and accuracy of 

displacement transducers (Heyman G., Clayton C.R.I., and Reed G.T., 1997) in 

order to investigate the extent of the linear-elastic range of geomaterials in triaxial 

stress space.   

 

This argument has led in the past to the belief that geophysical measurements are 

useful in design problems associated with large events like earthquakes where large 

movements occur, but could not be used in engineering calculations of small ground 

movements around foundations and structures.  This now raises the question:  Is it 

worth while to develop and apply any geophysical techniques for engineering 

applications? 

 

It was argued (Auld, 1977) that seismic methods are dynamic, giving negligible time 

for plastic or creep strains to occur and that the strains that it induces are very small. 

 It was only recently acknowledged that stresses and strains around tunnels are 

actually very small and allow geophysical techniques the capability to yield these 

parameters (Jardin et. al, 1986). 

 

It has been shown that the results of the very-small-strain stiffness measured in the 

laboratory by making use of a Fabry-Perot laser interferometer under high pressure 

(Clayton C.R.I. and Heyman G., 2001) were comparable with geophysical data from 

the same sites where the samples were taken.  The movements during the seismic 

experiments were measured using displacement transducers. 

 

This proves that the use of geophysical techniques is suitable in deriving in-situ 

engineering parameters and that the developments of such geophysical techniques 

are necessary and advisable.  
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1.2 Previous Work 

 

1.2.1 Geophysics Related work 

 

In order to emphasize the importance of accurate in-situ measurements on all the 

physical properties (including densities) vital to engineers, this section will 

concentrate on important issues from existing literature.  The Seismic Refraction 

method can be used to determine the densities of the subsurface (Griffiths and King, 

1969, Darracott, 1976).  The densities are obtained indirectly by measuring the 

velocities of the P-waves and S-waves. 

 

For a P-wave or pressure wave the particle movement is in the same direction as the 

wave propagation (longitudinal wave).  In the case of a S-wave or shear wave the 

particle movement is perpendicular to the wave propagation (transverse wave).  The 

basic equations describing these velocities are: 

 

ρ

Gk
Vp

3

4+
=      1. 

And  

ρ
G

Vs =      2. 

 

Where k is the elastic (Bulk) or incompressibility modulus, G is the shear or rigidity 

modulus and ρ is the density. 

 

In a solid with a larger density, the elastic modulus (k) and the shear modulus (G) 

are larger because it is harder to compress and it is thus more difficult to deform the 

medium, resulting in larger velocities.  It can thus be shown from the above 

equations, that larger densities are associated with higher velocities.  By using the 

seismic refraction method, the density is measured in-situ.  The density value is 
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however only an indication of the real value due to the large sampling volume, which 

is directly proportional to the size of the seismic spread (6,12,24 channel and 

geophone spacing). 

 

Engineers routinely use the ratio of Vp/Vs to get an indication of the density and 

“hardness” of the subsurface, and generally the following hold true (Darracott, 1976): 

 

• High Vp and a Vp/Vs ratio of approximately 3 indicates unweathered 

bedrock. 

• Low Vp and a Vp/Vs ratio of approximately 3 indicates sandy or gravel fill. 

• Low Vp and a high Vp/Vs ratio indicate clayey material, usually above the 

water table. 

• Vp velocity about 1500 m/s, high Vp/Vs ratio may indicate soft clay material, 

below the water table. 

 

It is impossible to distinguish between minor layers inside the weathered layer if the 

velocity contrasts are small.  For most rocks there is an empirical relationship 

between the Vp and the rock quality, namely the higher the velocity the better the 

rock quality (Brown and Robertshaw, 1953).  They determined the empirical 

relationship between Young’s modulus (E) and Vp: 

 
34.215.111

p
VE =    3. 

Where the unit for E is in Pa. 

 

Poisson’s ratios can be obtained from seismic velocities (Brown and Robertshaw, 

1953).  Poisson's ratio is the ratio of transverse contraction strain to longitudinal 

extension strain in the direction of the stretching force. Tensile deformation is 

considered positive and compressive deformation is considered negative. The 

definition of Poisson's ratio contains a minus sign so that the majority of materials 

have a positive ratio. 
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allongitudin

trans

ε
εν −

=     4. 

 

Where ε and ν are the symbols for deformation and Poisson’s ratio.  This 

relationship can be used to obtain: 

 

ν

ν

−

−=

2

1
1

s

p

V

V
    5. 

 

If the subsurface is compacted, it is found that the elastic modulus k and G increase 

more rapidly than does the density, which makes the determination of the density 

difficult (Griffiths and King, 1969).  An empirical relationship obtained from 

experimental results between velocity and density is shown in Figure 1.1,  

 

 

Figure 1.1:  Relationship between P-wave velocity and density (after Griffiths and 

King, 1969) 

 

Data from a particular rock type may fit the form of the graph well, but other 

variables (mineral composition, cementation, degree of fissuring) should be taken 
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into account if the velocity and hence density of the material is estimated.  This 

means that if, on the contrary, the velocity has been measured, and an estimate of 

these other variables is needed then the velocity is to be used to make an accurate 

estimate of density (Griffiths and King, 1969). 

 

It is difficult to assign a specific velocity and a density to a rock type, but it is  

possible to quote a range of velocities which would cover a certain lithology.  Table 1 

is an example: 

 

Lithology P-wave velocity (km/s) Density (g/cm3) 

Clastic rocks, unconsolidated 0.3-1.8 1.5-2.2 

Clastic rocks, consolidated and cemented 1.5-3.7 2.0-2.6 

Clastic rocks in orogenic belts 3.1-6.2 2.5-2.8 

Metamorphic rocks 4.6-6.2 2.7-3.0 

Limestone 3.1-6.2 2.4-2.7 

Igneous rocks 4.6-4.2 2.4-3.0 

Table1: P-wave velocities for certain rock types (after Griffith and King, 1969). 

 

Table 1 shows the general trend of increasing velocity with increasing density (i. e. 

decreasing porosity).  It also shows the extend to which rock types can be separated 

on the basis of seismic velocity. The large areas of overlap indicate the insensitivity 

of the seismic velocity to small variations in density.   

 

Materials of exceptionally low velocity are usually encountered near the surface 

(weathered layer) and are of considerable importance to the civil engineer.  

Properties such as its elasticity (especially the small movement elasticity modulus), 

plasticity, strength and density are the most important.  Young’s modulus can only 

be determined if the velocity, density and Poisson’s ratio are known. 

 

The seismic cone test (Heymann, 2003) is used to measure the in situ S and P 

waves of the soil.  The largest advantage of this test is that it allows for the 

measurement of the void ratio on undisturbed material at in situ stress conditions.  
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Heymann (2003) used the seismic cone test on a gold tailings dam and compared it 

with an undisturbed sample from the day wall (outside wall) of the same dam, 

indicating that the void ratio of the day wall is smaller.  According to Heymann (2003) 

the small strain stiffness and Poisson’s ratio can also be calculated from the velocity 

measurements where small movements occur. 

 

Shear waves provide a direct way of determining the dynamic shear modulus of the 

ground independent of Poisson’s ratio (Abbiss, 1981).  In this study two shear wave 

methods have been applied to determine in situ properties as a function of depth on 

three clay sites.  The first method was shear wave refraction and the second 

measured the velocity of Rayleigh waves generated by vibrators.  In addition 

pressure wave velocities were measured enabling the dynamic Poisson’s ratio to be 

calculated. 

 

Shear wave methods have the advantage that the shear modulus is directly related 

to the shear wave velocity (Equation 2, Abbiss, 1981).  This is not necessarily the 

case for the p-wave velocity where the modulus may depend to a large extent on 

Poisson’s ratio. 

 

The modulus of chalk at Munford was compared from a seismic survey and a large 

tank test (Abbiss, 1979).  A steel tank of 18.3m in diameter and approximately 20m 

high was filled with water to produce a pressure of 179kNm-2.  Displacements under 

the tank were measured in vertical shafts, by means of very accurate displacement 

transducers.  In this way strains were measured at various levels down to 16.3m 

below the tank, nearly to the water table. 

 

It was found that the dynamic Young’s moduli calculated from a seismic refraction 

survey of the chalk are proportional to the moduli determined from the full scale tank 

loading test.  It corresponds with the finite element analyses of the full scale tank 

loading test. The moduli showed a linear increase with depth. 
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The main problem of a shear wave refraction survey is to identify the s-wave arrivals 

between the p-waves.  The best way to remedy the situation is to use a source that 

is rich in s-waves in the direction of the survey (Abbiss, 1981).  The signal to noise 

ratio can also be improved by stacking the signal.  By reversing the connections of 

the S-wave geophone so that it is out of sequence with the polarity reversals of the 

source will assist in the stacking of S-wave but will zero the p-wave (Abbiss, 1981). 

 

The density and thickness of the overburden (Depth to bedrock) can also be 

determined by the gravity method.  Techniques and algorithms calculating the depth 

to basement (Thanassoulas, C. and Tsokas G.N., 1985) of which one was 

developed by Tsuboi (1983) exist. The smallest thickness (for a single layer) 500m 

was achieved by Thanassoulas,C. and Tsokas G.N.  This indicates that the method 

is not sensitive enough to distinguish between very thin layers inside a weathered 

layered profile. 

 

1.2.2 Engineering Geology Related Work 

 

A large variety of field and laboratory tests have been developed and used, of which 

the “density-in-place” tests are applicable to this study.  This test measures the in-

place density in a foundation, a borrow area, or a compacted embankment by 

excavating holes.  This is done by weighing the material that is excavated and the 

volume of the hole is determined by filling it with calibrated sand (Design of small 

dams, 1965). To obtain a dry density of the sample a water content determination of 

the excavated material is performed. 

 

Air-dry uniform sand passing through the no. 16 sieve and retained by the no. 30 

sieve has been found to be satisfactory. Clean blow sand or dune sand is the most 

suitable (Design of small dams, 1965).  When large test holes are used in gravel 

soils, coarse sand having rounded particles is recommended.  It should pass 

through the no. 4 sieve but should be retained by the no. 8 sieve.  The sand is 

calibrated by pouring it into a container of known volume of approximately the size 
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and shape of the type of excavation to be used, weighing it and calculating its unit 

weight. 

 

At the test location, all loose soil is removed from the area and a work platform is 

used to support the edges of the excavation (Figure 1.2).  This protects the area that 

is being measured from the weight of the operator, which may deform and change 

the dimensions of the hole (Design of small dams, 1965).  Care must thus be taken 

not to stand too close to the hole.  Although this method gives a good indication of 

the density, it is not as accurate as an in-situ measurement. 

 

 

Figure 1.2:  Determining density by replacement with sand of known density (After 

Design of small dams, 1965). 

 

It is sometimes necessary to obtain densities for deeper foundations, which usually 

penetrate different layers of the subsurface.  The following simple method has been 

used successfully to obtain in-place density in stages of depth in foundations and 

borrow areas (Design of small dams, 1965): 
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A platform and auger are used.  The platform is set up in such a way that the 

operator is 1m away from the hole, to prevent damage and compression of the soil 

around the hole.  The auger is used to drill the hole and the soil is saved.  The 

process is repeated until the second layer is reached.  The depth of the hole is 

measured up to the first interface and the removed soil is weighed.  The diameter of 

the hole is known (auger diameter) and the volume can be calculated. These 

parameters combined with the weight of the soil, enable the calculation of the 

density of the removed soil.  This process is repeated for every layer encountered. 

 

The density or specific gravity of undisturbed samples can also be measured in the 

laboratory.  The no. 4 fraction of the soil is commonly tested by the flask method 

(Design of small dams, 1965).  A 500ml long-necked flask is calibrated for volume at 

several temperatures.  One hundred grams of oven dried soil is washed into the 

flask with distilled water.  A vacuum is applied to the mixture to get rid of all air and 

the temperature of the mixture is recorded.  The weight of the flask with the mixture 

is then measured.  The volume of the 100g soil is calculated and the specific gravity 

is then computed. 

 

To determine the specific gravity of gravel and cobbles, the material remains 

immersed in water for 24 hours and is then blotted with a towel.  This is the surface-

dry condition.  It is then weighed and its water displacement is measured. 
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CHAPTER 2 

Theoretical study 

 

2.1 Introduction 

 

In order to obtain the density of the subsurface, without disturbance or damage, it is 

essential that we must be able to obtain the mass (M0) and the volume (V0) of the sample 

area (Figure 2.1).  The challenge lies herein to be able to obtain M0 and V0 from indirect 

sources of measurement, since the direct approaches like drilling is deemed undesirable 

in some cases. 

 

The method that is proposed tries to measure the mass and the volume of the sample to 

be investigated through the use of seismic waves, a bearing plate on the surface, a three 

component geophone and weights to be added to the bearing plate. 

 

Bearing Plate
Surface

Mass of subsurface
underneath bearing plate

Volume of subsurface
underneath bearing plate

M0

V0

 

 Figure 2.1:  Schematic representation of the problem. 
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In order to try and derive a mathematical model, we make the assumption that we can 

represent the system by using a very simple model; a mass on a spring that is equal to the 

mass of the subsurface underneath the bearing plate.  The other end of the spring is tied 

to an edifice (Figure 2.2).  

 

 

Figure 2.2:  Representation of the problem by using a weight on a spring. 

 

2.2 P-wave model 

 

2.2.1 Determination of the mass M0p 

 

From the above assumption we can write the following relation from Hooke’s law: 

ppp xkF −=       1 

Where pk is the spring constant and px is the displacement. 
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From Newton II: 

   00 =+ pppp xkxM &&      2 

 

We have further that ppp Mk 0
2
0ω=  and that the wave function for displacement is 

 

   )sin( 00 φω += txx ppp      3 

 

To obtain the mass M0p we have to plot the frequency of the vibration versus the 

increased mass (M0p+∆m).  From equation 2 we have: 

 

  0
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=+ p
p

p
p x

M

k
x&&       4 

And  

  
p

p
p M

k

0

2
0 =ω        5 

Thus 

k Mp p p= ω 0
2

0        6 

 

If we add a mass ∆m to the mass M0p and kp stays the same, the angular frequency 

changes to ω1p
2.  Equation 6 then changes to: 

 

k M mp p p= +ω1
2

0( )∆        7 

 

And because: 
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it implies that 
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14 

  

Equation 9 is a straight line and we also have two unknowns, kp and M0p.  If we rewrite 

equation 9 a bit we obtain: 

1

1
2

0

ω p

p

p p

M

k

m

k
= +

∆
     10 

 

Since M0p/kp is an unknown, it is also a constant, say yp. 

 

1

1
2ω p

p
p

y
m

k
= +

∆
     11 

or 

    
1 1

1
2ω p p

pk
m y= +∆      12 

 

If we now plot ∆m against 1/ ω1p
2, the slope of the line will be 1/kp.  M0p can be obtained 

from yp or by the extension of the line.  Where the line intersects with the ∆m axis, the 

absolute value of M0p can be read off.  These values are accurate since the line is straight 

(Figure.2.3). 

 

 

∆ m 

1/  ω 1p 
2 

1/kp=gradient 

Intercept=yp 
M 0p 

 

Figure 2.3:  Determination of the excited mass. 
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2.2.2 Determination of the volume V0p. 

 

If we assume that we are going to use a square base plate with side L, and that the 

diffusion angle from the plate is α, then the resulting area underneath the plate (Figure. 

2.4) is the following: 

 

L

L

F ro m  th e  to p

L

L

x x

α αα

F ro m  th e  s id e

h

 

Figure 2.4:  Influence of the excited wave underneath the base plate. 

 

The new length is L +2x and since tanα=x/h the new area is: 

 
2)tan2( αphLA +=      13 

 

The volume of the vibrating column V0p= A × hp.  The height of the vibrating volume is 

unknown.  The objective is to express the height of the volume in terms of elements that 

we can measure, like the wavelength or the velocity of seismic waves. 

 

During the excitation of the ground mass, the movement experiences attenuation.  The 

differential equation that expresses the system is at follows: 

 

ppppp xkvbF −=+       14 
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Where bp is the attenuation coefficient and vp is the velocity of the medium. 

 

If we assume that the attenuation factor is dependant on the velocity of the ground 

movement and that xp is the differential movement of a differential volume under the plate, 

then: 
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and 
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Where 
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p
p m

b

002

1

ω
ε =       19 

 

If we assume that the damping is not much, a solution to this differential equation is: 

 
t

pp
peAA 0

0)( εωε −=      20 

 

This is a harmonic oscillation that decays exponentially with time (Figure 2.5): 
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Figure 2.5:  An example of a Harmonic oscillator that decays exponentially with time. 

 

We can express εp in terms of the quality factor Qp: 

 

    
p

p Q2

1=ε      21 

 

Thus equation 20 changes to: 
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Where Qp (quality factor) is defined in terms of the fractional loss of energy per cycle of 

oscillation.  In other words: 
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The quality factor can also be expressed in terms of the logarithmic decrement: 

    
p

pQ
δ
π=      24 

 

If we now substitute equation 24 and the fact that t = x/v and ω = 2πf into equation 22 we 

get: 
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This transforms to 

 

p

pp x

pp eAA
λ

ψ

ε
−

= 0)(       26 

 

where fp/Vp = 1/λp and π/Qp = ψp.  Equation 26 expresses the decrease in amplitude of a 

wave due to attenuation as a function of distance travelled.  ψp is an attenuation constant 

that is frequency dependant.  High frequency waves will attenuate more quickly.  If we now 

want to express the decrease in amplitude as a function of depth hp, we get 

 

p

pp h
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λ

ψ

ε
−
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The depths that would be investigated will be quite small, and in the order of 3-10m.  We 

can thus assume that the velocity at a depth hp of the seismic wave is Vp .  If we assume 

that there is no frequency dispersion at these shallow depths (ωp = ω0p) , and ω0p is on the 

ground at (hp = 0), we can express the volume as: 
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The kinetic energy of the column will be equal to the energy of the source.  If we now 

attempt to calculate the kinetic energy of the vibrating column, we get: 

 

2
02

1
ppkp vmE =       29 

 

If we now examine the kinetic energy of a small volume at a depth hp, and that mp = ρp*Vp 

and that Volume (Vp) = Ap*hp  we get 
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2
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And if we substitute equations 13 and 29 into equation 30, 
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If we now integrate equation 32 to find the total kinetic energy of the vibrating column, we 

would also be able to find the total volume that has been energised.  So 
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In order to solve this integral, it should be divided into three separate equations: 
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The solution of equation 34a is 
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The part in brackets of the equation represents the volume.  Since volume can’t be 

negative, we must use the absolute value and the volume contribution of the first part of 

the integral is: 
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The solution of equation 34b is: 
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The volume in brackets if we substitute hp=λp/2ψp reduces to: 
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The solution of equation 34c is: 
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The volume in brackets if we substitute hp  = λp/2ψp reduces to: 
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The total volume V0p  = V1p + V2p + V3p.  This implies that 

 

α
ψ
λ

α
ψ
λ

ψ
λ

2

322

0 tan
2

5
tan2

2 












+














+=

p

p

p

p

p

p
p L

L
V    41 

 

2.2.3 Determination of the density 

 

In order to obtain the density of the vibrating volume it is then logical that we should divide 

M0 by equation 41: 
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If the diffusion angle of the waves from the edges of the square edifice α≅0, as we 

expected, equation 42 reduces to: 
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To obtain λp, we have to obtain the velocity of the medium.  This can be achieved by doing 

a small seismic refraction survey, employing a geophone spacing of 0.5m.  It is also 
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necessary to use the frequency fp of the vibrating volume V0p.  This can be obtained form 

the linear plot in Figure 2.3.  The angular frequency ωp of the vibrating volume V0p can be 

found where the line intercepts with the Y-axis. 

 

The attenuation constant ψp can be estimated by calculating the damping factor Qp from 

the seismic trace. 

 

2.3 S-wave model 

 

2.3.1 Determination of the mass M0s.  

 

In order to try and derive a mathematical model for the s-wave situation, we also assume 

a very simple mass on a spring model.  Since the mass on the spring that oscillates in the 

s-wave (lateral) direction has host rock on both sides, it can be visualised in Figure 2.6. 

 

    

Figure 2.6:  Schematic representation of the S-wave model as a mass between two 

springs. 

 

If we make the assumption that the lateral dimension of the volume we sample is so small 

that the values of the spring constants are the same, we will be able to write: 
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Thus from Newton II: 
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If we add a mass ∆m to the mass M0s and ks stays the same, the angular frequency 

changes to ω1s. Equation 47 can then be written as: 
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Similarly to equation 9, equation 49 is a straight line with two unknowns, ks and M0s.  We 

can thus transform equation 49 into: 
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Similarly, since M0s/2ks is an unknown, it is also constant, say ys. 
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If we now plot ∆m against 1/ ω2
1s, the slope of the line will be 1/ks.  M0H can be obtained 

from y or by the extension of the line.  Where the line intersects with the ∆m axis, the 

absolute value of M0s can be read off.  These values are accurate since the line is straight 

(Figure.2.7). 

 

 

∆ m 

½ ks = gradient 

Intercept =ys 

M 0s 
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Figure 2.7:  Determination of the excited mass by the Shear wave. 

 

2.3.2 Determination of the volume V0s . 

 

Similarly, if we assume that we are going to use a rectangular base plate with dimensions 

L, and if the diffusion angle from the plate isα, then the resulting area underneath the plate 

(Figure. 2.8) is the following: 
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Figure 2.8:  Area of influence under the base plate 

 

The new length is L +2x and since tanα=x/h the new area is: 
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The volume of the vibrating column V0s = A x hs.  The height of the vibrating volume is 

unknown.  The objective is to express the height of the volume in terms of elements that 

we can measure, like the wavelength or the velocity of seismic waves. 

 

During the excitation of the ground mass, the movement experiences attenuation.  The 

differential equation that expresses the system is at follows: 

 

sssssss xkxkVbF −=++       54 

 

Where bs is the attenuation coefficient and Vs is the velocity of the medium. 

 

If we assume that the attenuation factor is dependant on the velocity of the ground 

movement and that xs is the differential movement of a differential volume under the plate, 

then: 
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And if we substitute 2ks = κs  
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where  
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As previously, the solution to this differential equation is: 
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This is a harmonic oscillation that decays exponentially with time.  We can express ε in 

terms of the quality factor Qs: 
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Thus equation 59 changes to: 
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    ss Qt
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Q is defined in terms of the fractional loss of energy per cycle of oscillation.  In other 

words: 
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The quality factor can also be expressed in terms of the logarithmic decrement: 
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If we now substitute equation 62 and the fact that t=x/v and ω=2πf into equation 61 we get: 
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This transforms to 
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Where fs/Vs = 1/λs and π/Qs = ψs.  Equation 65 expresses the decrease in amplitude of a 

wave due to attenuation as a function of distance travelled.  ψs is an attenuation constant 

that is frequency dependant.  High frequency waves will attenuate more quickly.  If we now 

want to express the decrease in amplitude as a function of depth hs, we get 
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The depths that would be investigated will be quite small, and in the order of 3-10m.  We 

can thus assume that the velocity at a depth h of the seismic wave is Vs .  If we assume 
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that there is no frequency dispersion at these shallow depths (ωhs = ω0, and ω0 is on the 

ground at h = 0), we can write: 
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The kinetic energy of the column will be equal to the energy of the source.  If we now 

attempt to calculate the kinetic energy of the vibrating column, we get: 
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If we now look at the kinetic energy of a small volume at a depth hs, and that ms=ρs*Vs and 

that Volume (Vs) = A * hs we get 
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And if we substitute equations 13 and 29 
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If we now integrate equation 71 to find the total kinetic energy of the vibrating column, we 

would also be able to find the total volume that has been energised.  So 
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In order to solve this integral, it should be divided into three separate equations: 
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The solutions of equation 73a, 73b and 73c are the same as for the Z-component. 

 

 

The total volume V0s  = V1s  + V2s  + V3s.  This implies that: 
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2.3.3 Determination of the density 

 

In order to obtain the density of the vibrating volume it is then logical that we should divide 

Ms by equation 74: 
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If the diffusion angle of the waves from the edges of the square edifice α≅0, as we 

expected, equation 75 reduces to: 
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To obtain λs, we have to obtain the velocity of the medium.  This can be achieved by doing 

a small seismic refraction survey, employing a geophone spacing of 0.5m.  It is also 

necessary to use the frequency fs of the vibrating volume Vs.  This can be obtained form 

the linear plot in Figure 2.6.  The angular frequency ω0H of the vibrating volume V0s can be 

found where the line intercepts with the Y-axis. 

 

The attenuation constant ψs can be estimated by calculating the damping factor Qs from 

the seismic trace. 

 

2.4 The multi layered situation 

 

2.4.1 Introduction 

 

In almost all of the cases, a single layer only scenario will not be encountered.  Since this 

technique will almost always be used as an engineering application, the weathered layer 

will mostly be investigated.  The weathered layer is in exceptional cases only single layer.  

It is usually at least two layers and then the bedrock.  At the surface, it usually consists of 

a lower density soil cover, and then of higher density clays or semi weathered soils (Figure 

2.9).  

 

2.4.2 Multilayer mathematical approach 

 

During a density sounding the aim is to obtain the densities of the individual layers.  The 

objective is also the same with other geophysical methods, like the D.C. Resistivity 

method.  The total resistivity at the surface is obtained by summing the individual layer 

resistivities which are in series (Telford et al., 1986).  
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Figure 2.9: Schematic diagram of the layering in a weathered layer.  

 

 

Unfortunately, the densities of the different layers cannot be added together to get a total 

density, but the masses and the volumes of the different layers can be added.  So, 
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This translates back to layer thicknesses: 
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By obtaining different masses and different volumes separately, it is possible to obtain the 

densities for the different layering. 

 

2.4.3 Depth of penetration and layer thickness 

 

It has been shown that the penetration into and the return of high frequencies from the 

earth is affected and limited by attenuation and energy losses due to reverberation and 

transmission losses.  Changes in frequency content also occurs (Waters, 1981).  To a first 

approximation the loss of amplitude follows an exponential law: 
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where  α  is the attenuation constant. 

 

By following the same reasoning as in equations 14 to 28 and 54 to 67, the attenuation 

constant α can be written as: 
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Where f is the frequency, V is the velocity and Q is the quality factor. 

 

The 1/Q factor that is embedded into equation 83 is called the Specific dissipation 

constant (Griffiths and King, (1969), Waters, (1981), Kibble, (1985) and Sears et. al, 
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(1987)).  It is a measure of how vibrational energy is dissipated.   

 

It is thus true that α depends on the following factors: 

 

• It is frequency dependant.  Higher frequency results in higher attenuation. 

• High velocity, and thus high density, results in a slower attenuation 

 

This means that for layers in the weathered layer, the following scenarios may occur: 

 

• If the velocity and the density of the layer are low, higher frequencies will be 

attenuated quickly and will be removed from the signal. 

• If the velocity and the density of the layer are higher, the higher frequencies will 

be preserved. 

• The lower density layers are usually near the surface.  It thus filter out the higher 

frequencies (earth is acting as a low pass filter), and lower frequencies are 

associated with deeper layering. 
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CHAPTER 3 

Development of dedicated software 

 

3.1 Introduction 

 

After the theoretical development of the method was completed, data had to be 

collected in the field to test and evaluate the theory. Dedicated software to process 

the density sounding data did not exist. The approach was to first test the method on 

a homogeneous single layer situation of mafic rocks.  This was mainly to test the 

validity of the method, but also because it would be easier to process the single layer 

data by using different software. 

 

The data of the first two soundings at Leeuwfontein (Figure 4.5) was processed by 

using Seisan™.  This commercial software package is developed to process 

earthquake seismic data.  Seisan™ can calculate a Power-frequency spectrum of 

the trace, which forms the heart of the density sounding data processing. The data 

obtained from these single layer soundings proved to be encouraging and a single 

layer only situation was surveyed on a weathering profile. 

 

Previous knowledge of the geology at Donkerhoek (Figure 4.11) was the main 

decision for the second field test.   A detailed geophysical study was done at 

Donkerhoek to obtain the best position for the Core Library buildings (Craill et al, 

1993). It showed the areas where the weathering profile was more than 3m thick. 

This is theoretically thick enough to represent a single layer case.  

  

Changes were also made to the equipment for easier handling.  This forced the 

development of test software in Matlab™ and Scilab.  The software developed in 

Matlab™ proved to be a little easier to use than Sisan™.  The processing of the 

data was limited to computers that have a copy of Matlab™.  Dedicated software 

had to be developed for this method, using programming software capable of 

producing executables. 
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3.2 Development of dedicated software to process the density sounding data 

 

The software to process this data was developed in Visual Basic because it was: 

 

• Easy to develop, as basic is a fairly easy programming language 

• Easy to make changes  

• Cheap, as the visual basic package is not that expensive 

• Possible to create files that would install and run on any computer with 

windows, even if visual basic is not installed. 

• Created Data files are in files that are compatible with Excel, which makes 

it easy to access. 

• The determination of the frequency is the most important aspect, while 

processing this data.  The most important calculation that this program 

must perform, is to determine the power spectrum of the seismic trace. 

The determination of the excited mass, the small movement elasticity 

modulus and the depth of investigation depend on the accurate 

determination of the frequency.  Various methods were develop to make 

the Graphical User Interface (GUI) around this more user friendly. 

 

3.2.1 Using the software 

 

The developed processing software is called Seisrho.  The “New Project” tag is 

selected when the processing of a new sounding is started.  The “Open project” tag 

is selected when one works on a previously created or existing project.  If the “New 

Project” tag is selected it activates the rest of the tags.  A directory called “rawdata” 

and a directory called “segydata” are created during this process. 

 

Sounding data is gathered using a seismograph.  At this stage two seismographs 

are supported: - the 24 - channel Bison 8026 and the 24 - channel Geometrics 

Strataview.  The data is transferred from the seismographs to the computer using 
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Mirror – III in the case if the Bison seismograph and Laplink for the Geometrics 

seismograph.  The process is quite simple.  Download or Laplink the raw 

seismograph data of the density sounding into the created directory called “rawdata”. 

 

The data in the specific seismograph format is then imported into the Seisrho 

package using the “Import Data” tag under the “File” menu (Figure 3.1).  A single file 

can be imported, while the option for all data files to be imported also exists. (Figure 

3.2).  The program default is to look for the seismograph data in the directory 

“rawdata”.  The data is then imported and in the process it is converted into SEGY 

format, which is the industry standard for seismic related data.  During the import 

and conversion of the data, the data is stored in the created directory called 

“segydata”. 

 

 

Figure 3.1:  The main menu when the software package Seisrho is executed. 
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Figure 3.2:  Data import screen of the Seisrho package 

 

The data in the “segydata” directory is the data to be used for further for the 

processing.  Inside this directory, subdirectories called “layer1” up to “layer n” 

(depending on the chosen number of layers) will be created.  All the relevant 

processing information for each layer will be stored inside the specific directory.  

This will also include files that contain all the filtering and Q-factor information, which 

is used to calculate the density of each layer. 

 

The first step during the processing of the density sounding is to obtain the excited 

ground masses of the different layers present. This option can be selected from the 

main menu as “Pick Frequencies and Calculate Mass (Figure 3.3).  This is done for 

all three components, X, Y and Z.  The method on how the excited ground masses 

are calculated is explained in Fourie and Cole (CGS report 2004-0095) and involves 

a plot of 1/ω2 vs added mass to obtain a straight line. The excited ground mass is the 

position where this line intersects the Y-axis.  
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Figure 3.3:  Pick frequencies and calculate mass on the main menu 

 

All three components can be chosen for analysis by selecting the “X”, “Y” or “Z” 

option.  The excited ground mass of more than one layer can be determined by 

using this interface.  Figure 3.4 shows the main interface for mass calculation.  An 

extra layer is added by clicking on the F button.  A layer can be removed if the  

button is selected.  The display of the power spectrum in the top window can be 

customised by selecting the frequency window under the “Power Spectrum” option.  

Dominant frequencies are then selected by the ► or ◄ buttons and by moving the 

cursor towards the main peaks and press the mouse button to select the frequency.  

The next and previous shot records can be selected by pressing the � or  buttons. 

  

This chosen frequency is then used to automatically calculate a mass.  The bottom 

window displays the line that is fitted through the data.  A direct estimation of the 

mass and k-value is given on a continuous basis.   
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Figure 3.4:  Main mass calculation interface. 

 

The next step in the processing is to identify the different frequencies that are 

associated with the different layers of the weathered zone.  Each original trace is 

then filtered more than once to obtain these dominant frequencies, i.e. if there are 

three dominant frequencies, three different layers exist.  The filtering will then be 

performed three times to produce three different traces correlating with these 

frequencies.  These traces will be stored inside the “layer1” to “layer 3” directories 

hosted in the segydata directory.  This option can be chosen from the main menu as 

the “Filter SEG-Y data” option (Figure 3.5). 

 

Figure 3.6 shows the main interface where the filter parameters are chosen for the 

filter process.  The parameters of the traces of all three components can be chosen 

and filtered by using this window. The next and previous records can be selected by 

pressing the ► or ◄ buttons.  
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Figure 3.5:  Main menu to filter the segy data. 

 

 

Figure 3.6:  Window to filter the segy trace data.  The lower and higher frequencies 

can be selected by pressing the ← or → buttons.  The frequencies between the 

lines are kept.  
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Figure 3.7:  Main menu of Density and Volume Calculation. 

 

The last step in the processing sequence is to calculate the volume of the excited 

mass and then obviously the density.  This option can be selected from the main 

menu (Figure 3.7).  The window, in which the main volume and density calculations 

are performed, is shown in Figure 3.8.  This process has to be repeated for each 

frequency and each trace.  Each component is done within its own window. 

 

The top window displays the power spectrum of the filtered trace, as a guide.  The 

middle window displays the filtered trace while the bottom window shows the values 

of the Q-factor.  These Q-factors are calculated on a cycle to cycle basis and it is 

possible to remove a cycle from the equation if it does not fit in with the data, due to 

noise.  This is done to improve the accuracy and speed of the calculation. The next 

and previous records can be selected by pressing the ► or ◄ buttons.   The k- 

value (small movement elasticity modulus), the thickness of the layer and also the 

density of the layer are displayed at the bottom of this window. If the save button is 

pressed all the data is saved to a CSV file.  These files can easily be opened by 
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Excel.  Finally the main menu (Figure 3.9) is used to create a summary file of all the 

parameters, in a CSV format.  These are the final interpretation values of the 

density sounding.   

 

 

Figure 3.8: Main window to obtain volume and density. 

 

 

 Figure 3.9: Main menu to create summary interpretation file. 
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