The evaluation of a new haematological cell counter, the CELL-DYN 3500, on canine leukocyte differential counts

by

T Prinsloo

Submitted to the Faculty of Veterinary Science, University of Pretoria, in partial fulfillment of the requirements for the degree M Med Vet (K.L.D.)

Pretoria, January 2001
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES v

LIST OF TABLES vii

SUMMARY viii

CHAPTER 1 INTRODUCTION 1
1.1 DIFFERENTIAL LEUKOCYTE COUNT 1
1.1.1 Introduction 1
1.1.2 Manual Differential Leukocyte Counting 2
1.1.3 Automated Methods for Differential Leukocyte Counting 5
1.2 THE CELL-DYN 3500 13
1.2.1 White Blood Cell Measurements 14
1.2.2 Data Flagging and Messages 20
1.3 INSTRUMENT EVALUATION 22
1.3.1 General Instrument Evaluation 22
1.3.2 Evaluation of Electronic Differential Leukocyte Counters 25

CHAPTER 2 PROBLEM 28

CHAPTER 3 OBJECTIVES 30

CHAPTER 4 MATERIALS AND METHODS 31
4.1 MATERIALS 31
4.1.1 Instruments Used in the Evaluation 31
4.1.2 Sample Collection 31
4.2 METHODS 32
4.2.1 Total White Blood Cell Count Evaluation 32
4.2.2 Five-Part Leukocyte Differential Count Determination 33
4.2.3 Linearity Studies 36
4.2.4 Carry-over Assessment 37
4.2.5 Precision 37

CHAPTER 5 RESULTS 38
5.1 COMPARISON OF THE TOTAL WHITE BLOOD CELL COUNTS 38
5.1.1 Total White Blood Cell Counts of the Cell-Dyn 3500 Compared to that of the Serono Baker System 9000 38
5.1.2 Total White Blood Cell Counts of the Cell-Dyn 3500 Compared to that of the Coulter Model FN 46
5.1.3 Comparison of the Total White Blood Cell Counts of the Cell-Dyn 3500,
Baker System 9000 and Coulter Model FN

5.2 DIFFERENTIAL LEUKOCYTE COUNT COMPARISONS
5.2.1 Comparison of the Differential Leukocyte Counts of the Cell-Dyn 3500 Against the 400 Manual Differential Count
5.2.2 Comparison of the Cell-Dyn 3500 Flags with the Comments Made by the Examiners

5.3 LINEARITY STUDIES
5.3.1 Total Cell Count Linearity
5.3.2 Neutrophil Count Linearity
5.3.3 Lymphocyte Count Linearity
5.3.4 Monocyte Count Linearity
5.3.5 Eosinophil Count Linearity
5.3.6 Basophil Count Linearity

5.4 CARRY-OVER ASSESSMENT

5.5 PRECISION STUDIES

CHAPTER 6 DISCUSSION AND CONCLUSION
6.1 COMPARISON OF THE TOTAL WHITE BLOOD CELL COUNTS
6.2 DIFFERENTIAL LEUKOCYTE COUNT COMPARISONS
6.2.1 Total Neutrophil Count of the Cell-Dyn 3500 Compared to the 400 Manual Cell Count
6.2.2 Total Lymphocyte Count of the Cell-Dyn 3500 Compared to the 400 Manual Cell Count
6.2.3 Total Monocyte Count of the Cell-Dyn 3500 Compared to the 400 Manual Cell Count
6.2.4 Total Eosinophil Count of the Cell-Dyn 3500 Compared to the 400 Manual Cell Count
6.2.5 Total Basophil Count of the Cell-Dyn 3500 Compared to the 400 Manual Cell Count
6.2.6 Comparison of the Cell-Dyn 3500 Flags with the Comments Made by the Examiners

6.3 LINEARITY STUDIES
6.4 CARRY-OVER ASSESSMENT
6.5 PRECISION STUDIES
6.6 CONCLUSION

REFERENCES
I would like to acknowledge the following people for their help and assistance with this project:

Prof. Fred Reyers, the project leader

Dr Mike van der Linde, for processing the data

Solly Millard for the statistical analysis

Dr Jenny Cullum for spending hours and hours doing differential counts

Elsbe Myburgh and Gertie Pretorius for all the help and support they gave to me

Abbott Diagnostic Division SA for the use of the Cell-Dyn 3500 and the reagents they donated

SA Scientific, SA for the reagents they donated for the Baker System 9000

Dr Linda Jacobson for her encouragement

Prof Remo Lobetti for his never ending support and encouragement, without which I might never have finished
Figure 1.1	Multi-Angle Polarised Scatter Separation technology on the Cell-Dyn 3500	17
Figure 1.2	Mononuclear-Polymorphonuclear Separation	18
Figure 1.3	Neutrophil-Eosinophil Separation	19
Figure 1.4	Mononuclear Separation	20
Figure 4.1	Method used for the differential cell counts	35
Figure 5.1	Total White Cell Count of the Cell-Dyn 3500 Compared with the Total White Cell Count of the Baker System 9000.	41
Figure 5.2	Total White Cell Count of the Cell-Dyn 3500 Compared with the Total White Cell Count of the Baker System 9000 after samples with "WBC Count Alert" and "WBC Diff Alert" Flags have been Omitted.	42
Figure 5.3	Total White Cell Count of the Cell-Dyn 3500 Compared with the Total White Cell Count of the Baker System 9000 after samples with "WBC Count Alert" Flags have been Omitted.	43
Figure 5.4	Total White Cell Count of the Cell-Dyn 3500 Compared with the Total White Cell Count of the Baker System 9000 after samples with "WBC Data Invalid" Flags have been Omitted.	44
Figure 5.5	Total White Cell Count of the Cell-Dyn 3500 Compared with the Total White Cell Count of the Baker System 9000 after samples with a Monocytosis have been omitted.	45
Figure 5.6	Total White Cell Count of the Cell-Dyn 3500 Compared to the Total White Cell Count of the Coulter Model FN.	47
Figure 5.7	Cell-Dyn 3500 Neutrophil Count Compared to the Manual Neutrophil Count.	51
Figure 5.8	Cell-Dyn 3500 Neutrophil Count Compared to the Manual Neutrophil Count after the samples with "WBC Diff Alert" and "WBC Count Alert" Flags have been omitted.	52
Figure 5.9	Cell-Dyn 3500 Lymphocyte Count Compared to the Manual Lymphocyte Count.	54
Figure 5.10	Cell-Dyn 3500 Lymphocyte Count Compared to the Manual Lymphocyte Count after the samples with "WBC Diff Alert" and "WBC Count Alert" Flags have been omitted.	55
Figure 5.11	Cell-Dyn 3500 Monocyte Count Compared to the Manual Monocyte Count.	57
Figure 5.12	Cell-Dyn 3500 Monocyte Count Compared to the Manual Monocyte Count after the samples with "WBC Diff Alert" and "WBC Count Alert" Flags have been omitted.	58
Figure 5.13	Cell-Dyn 3500 Eosinophil Count Compared to the Manual Eosinophil Count.	60
LIST OF TABLES

Table 5.1	Comparison of the Total White Blood Cell Counts measured on the Cell-Dyn 3500 and the Baker System 9000 and the Cell-Dyn 3500 and the Coulter Model FN compared by regression analysis and paired t-test	40
Table 5.2	Comparison of the Total White Blood Cell Counts measured on the Cell-Dyn 3500, the Baker System 9000 and the Coulter Model FN using the Friedman test	48
Table 5.3	Comparison of the Differential Leukocyte Counts Performed by the Cell-Dyn 3500 and the Examiners, compared by regression analysis and paired t-test, n = 361	50
Table 5.4	Calculated K-values for Carry-Over Assessment	77
SAMEVATTING

Die evaluering van 'n nuwe hematologie selteller, die Cell-Dyn 3500, op differensiële witseltellings van honde

PRINSLOO, T. Universiteit van Pretoria, 2000

Hierdie studie is onderneem om die Cell-Dyn 3500 se vermoe om differensiële witseltellings op honde bloedmonsters te doen, te evalueer. Alhoewel differensiële seltellings as deel van die meeste roetiene hematologiese ondersoeke gedoen word, is dit 'n baie tydrowende proses. Dit is dikwels 'n beperkende faktor in die aantal monsters wat daagliks deur 'n laboratorium geprosesseer kan word. Verskeie pogings is in die verlede gemaak om hierdie proses te outomatiseer. Hematologie analiseerders word egter ontwerp vir gebruik in die mediese veld en is dus nie altyd akkuraat as dit in die veterinêre veld aangewend word nie.

Die Cell-Dyn 3500 maak gebruik van laserlig weerkaatsingstegnologie om die differensiële witseltelling te outomatiseer. Die tegnologie bied 'n unieke metode van sel identifikasie en hou daarom die beloftie in dat dit 'n verskeie spesies aangewend kan word.

Bloedmonster van normale en siek honde is in die studie geëvalueer. Die monsters is gekies om 'n wye versameling van patologiese monsters in te sluit. Die differensiële witseltellings van die Cell-Dyn 3500 is vergelyk met 'n handmetode soos deur die "National Committee for Clinical Laboratory Standards" voorgeskryf.

Gevolgtrekkings wat uit die studie gemaak kan word is as volg:
Die totale witseltellings van die Cell-Dyn 3500 en die Baker System 9000 vergelyk gunstig, met 'n korrelasie koeffisient van 0.989.
Die neutrofiel tellings van die Cell-Dyn 3500 vergelyk gunstig met die neutrofiel tellings van die handmetode, met 'n korrelasie koeffisient van 0.981.
Die limfosit tellings van die Cell-Dyn 3500 het redelik, maar nie baie goed met die van die handmetode vergelyk nie (korrelasie koeffisient 0.782), alhoewel die resultate effens gunstiger is as waarop die vervaardigers aanspraak maak (korrelasie koeffisient >0.70).

Die monosiet telling van die Cell-Dyn 3500 het swak vergelyk met die monosiet tellings van die handmetode (korrelasie koeffisient 0.097), maar dit stem ooreen met die fiet dat die vervaardigers geen aanspraak maak op korrelasie nie.

Die eosinofiel tellings van die Cell-Dyn 3500 het baie swak vergelyk met die handmetode se tellings (korrelasie koeffisient 0.304), wat in teenstelling is met die aanspraak van die vervaardiger (korrelasie koeffisient >0.70).

Die basofieltelling van die Cell-Dyn 3500 het geen korrelasie met die van die handmetode getoon nie (korrelasie koeffisient 0.0000). Dit is in ooreenstemming met die vervaardiger se afwesigheid van 'n aanspraak op korrelasie.

Die waarskuwings gemaak deur die Cell-Dyn 3500 oor abnormale monsters het nie goed vergelyk met die opmerkings gemaak deur die ondersoekers nie, met die uitsondering van waarskuwings vir gekernde rooibloedselle, waar daar in 73.13% van gevalle ooreenstemming was. Die identifikasie van onvolwasse neutrofiele was ook redelik, met ooreenstemming in 57.44% van die gevalle.

Die Cell-Dyn 3500 het uitstekende liniariteit getoon vir die totale witseltelling, met 'n korrelasie koeffisient van 0.999.

Die Cell-Dyn 3500 het geen waarneembare oordrag tussen monsters getoon nie.
SUMMARY

The evaluation of a new haematological cell counter, the CELL-DYN 3500, on canine leukocyte differential counts

PRINSLOO, T. University of Pretoria, 2000

This study was undertaken to evaluate the Cell-Dyn 3500's ability to do differential white blood cell counts on canine blood samples. Although differential cell counts are done as part of most routine haematological evaluations, it is a very time consuming process, which is a limiting factor in the number of samples that a laboratory can process daily. Various attempts have been made in the past to automate this process. However, haematological analyzers are designed for use in the human medical field and are therefore not always accurate when applied in the veterinary field.

The Cell-Dyn 3500 makes use of laser light scatter technology to automate differential white cell counting. This technology provides a unique way of identifying cells and therefore has the promise that it can be applied to various species.

Blood samples from both normal and sick dogs were evaluated in this study. The samples were chosen to include as wide a range of pathological samples as possible. The differential white cell counts of the Cell-Dyn 3500 were compared to a manual differential white cell count method prescribed by the National Committee for Clinical Laboratory Standards.

Conclusions derived from the investigation are as follows:

The total white blood cell counts of the Cell-Dyn 3500 and that of the Baker System 9000 compared favourably, with a correlation coefficient of 0.989.

The neutrophil counts of the Cell-Dyn 3500 compared well to the manual neutrophil counts, with a correlation coefficient of 0.981.
The lymphocyte counts of the Cell-Dyn 3500 compared reasonably, but not very well to the manual lymphocyte counts (correlation coefficient 0.782), although the results in this study were slightly better than the manufacturer's claims for canine lymphocyte counts, which is >0.70.

The monocyte counts of the Cell-Dyn 3500 compared very poorly to the manual monocyte counts (correlation coefficient 0.097), which is in agreement with the manufacturer's absence of a claim for correlation.

The eosinophil counts of the Cell-Dyn 3500 compared very poorly to the manual eosinophil counts (correlation coefficient 0.304), which is in contradiction to the manufacturer's claim of >0.70.

The basophil counts of the Cell-Dyn 3500 showed no correlation with the manual basophil counts (correlation coefficient 0.0000), which is in line with the manufacturer's absence of a claim for correlation.

The flags given by the Cell-Dyn 3500 did not compare well with comments made by the examiners, with the exception of flags for nucleated red blood cells, where there was agreement in 73.13% of the cases. The identification of immature neutrophils was also reasonable, with a 57.44% agreement.

The Cell-Dyn 3500 showed excellent linearity for the total white cell count, with a correlation coefficient of 0.999.

The Cell-Dyn 3500 had no detectable carry-over between samples.