Noise-induced hearing loss: Prevalence, degree and impairment criteria in South African gold miners

by

SUSAN STRAUSS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE
D. PHIL. COMMUNICATION PATHOLOGY
IN THE
DEPARTMENT OF COMMUNICATION PATHOLOGY
FACULTY OF HUMANITIES
UNIVERSITY OF PRETORIA

PROMOTOR: Prof D C D Swanepoel
CO-PROMOTOR: Prof J W Hall III

June 2012

© University of Pretoria
Acknowledgements

My sincere gratitude goes to:

Prof DeWet Swanepoel, my promotor, for excellent and effective guidance. You guided with knowledge and wisdom, and your support was unfailing. You are a true mentor!

Dr Z Eloff, of Anglogold Ashanti, for trusting the data to me and for all the time spent talking through the study, also for two unforgettable journeys down the mine.

Prof Piet Becker, principle statistician at the Medical Research Council, for many, many hours spent making sense of this huge dataset. Your insight, patience and mathematical knowledge was invaluable to me.

Prof J W Hall for sharing your ideas and expert knowledge during your visits and also through email correspondence. It was a privilege to have you as a co-promotor.

Dr ACP Strauss for fast and effective language editing and constant encouragement.

Almero Strauss, for unfailing support, prayers and encouragement through tough times, and for many hours spent cleaning the data through your expert programming knowledge. Without you it would not have been possible!

My daughters Marianne, Annerine and Ameliè, your unconditional love and joy makes life an exciting and wonderful journey.

My parents for believing in me and encouraging me throughout my life.

My sister, Rachel Maritz, your daily reassurance and endless telephone calls inspired me.

Nico and Anita van der Merwe and my family at work; for trust, loyalty and support on many levels.

To Jesus Christ all the glory: Proverbs 2:6 : “For the Lord gives wisdom; from His mouth come knowledge and understanding.”
Abstract

Despite the preventability of noise-induced hearing loss (NIHL) a high prevalence is still reported in South African mines. The study aimed to describe the hearing of gold miners pertaining to the prevalence and degree of NIHL and effectiveness of current RSA impairment criteria to identify NIHL.

The audiological data, collected between 2001 and 2008, of 57 714 mine workers were investigated in this retrospective cohort study. Data was accessed through the mine’s electronic database and exported to Microsoft Excel 2007 worksheets. Participants were categorised in terms of noise exposure (level and working years), age, race and gender. Noise exposure levels were described in terms of a specific occupation and categorized into four groups based on dosimeter data received from the mine’s noise hygienist, namely: 1) Below surface (underground) noise exposure, ≥85 dB A, classified according to the South African regulations on the daily permissible dose of noise exposure, named Noise Group 1; 2) Surface noise exposure, ≥85 dB A, named Noise Group 2; 3) No known occupational noise exposure, named control group; and 4) Uncertain levels of noise exposure, e.g. students and trainees, named Noise Group 4. The control group was matched with participants of noise group 1 and 2 based on gender, race and age at the most recent audiogram test. Descriptive and inferential statistics were employed. Measures of central tendency and variability were used with analysis of covariance (ANCOVA) and pairwise comparisons according to Fisher’s Least Squares Differences Approach (F test).

Results indicated that noise exposed groups had significantly higher prevalence of high and low frequency hearing loss than the control group. High-frequency hearing loss was also present in the control group. The greatest differences in prevalence of hearing loss were observed at 3, 4 kHz and age group 36 to 45 years. Thresholds at 8 kHz were worse than expected and decline slowed down with age. High-frequency thresholds showed a non-linear growth pattern with age with a greater decline at 2 kHz with age in the noise-exposed population compared to the control group. Hearing deteriorated more across age groups with more noise-exposed years, and this deterioration was most visible after 10 to 15 working years and at 3 kHz. Females had better hearing than males across the frequency spectrum. Black males
had significantly better high-frequency hearing than white males but significantly worse low-frequency hearing than white male counterparts. PLH values showed poor correlation (through statistical analyses) with other well-accepted hearing impairment criteria.

To date this was the largest study conducted on the hearing of gold miners and the sample included a very large number of black males exposed to occupational noise (N=17,933). Values supplied in distribution table format are therefore unique and contribute greatly to the knowledge base.

Key terms:

Noise-induced hearing loss

Gold mines

Occupational noise

Percentage loss of hearing

Race

Gender

Age related hearing loss

Noise exposure

Prevalence

Degree of hearing loss

Notch
Table of contents

ACKNOWLEDGEMENTS .. II

ABSTRACT ... III

KEY TERMS: ... IV

TABLE OF CONTENTS .. V

TABLE OF FIGURES AND TABLES ... IX

LIST OF ACRONYMS .. XVI

CHAPTER ONE INTRODUCTION AND RATIONAL .. 1

 1.1. Introduction and study rational ... 1

CHAPTER TWO LITERATURE REVIEW .. 10

 2.1. Historical overview of noise-induced hearing loss (NIHL) ... 11

 2.2. Worldwide prevalence of NIHL ... 14

 2.3. Prevalence of NIHL in South African mining ... 16

 2.4. NIHL Mechanism of damage ... 18

 2.5. NIHL and the audiogram ... 27

 2.5.1. The notched audiogram ... 27

 2.6. Individual susceptibility and confounding factors in NIHL .. 32

 2.6.1. Age ... 33

 2.6.1.1. Age, smoking and NIHL .. 34

 2.6.1.2. Age, genes and NIHL .. 35

 2.6.1.3. Age correction and the NIHL audiogram ... 35

 2.6.2. Gender .. 37

 2.6.3. Race ... 39

 2.7. Summary ... 40

CHAPTER THREE LITERATURE REVIEW ... 41

 3.1. Defining noise hazard .. 42

 3.1.1. Historical overview of noise definitions and measurements 43

 3.1.2. Noise measurement scales ... 44

 3.2. Damage risk criteria: Levels and duration of noise exposure 46

 3.2.1. Level of noise exposure – where does the risk to human hearing begin? 46

 3.2.2. Duration of noise exposure - the time-intensity relationship 51

 3.3. Exposure limit ... 53
3.4. Compensation for hearing impairment ... 55
 3.4.1. Formulae and calculation of hearing impairment .. 57
 3.4.2. Contribution of age when calculating hearing impairment 62
 3.5. Summary and conclusion .. 63

CHAPTER FOUR METHODOLOGY ... 65
 4.1. Introduction ... 66
 4.2. Problem statement .. 67
 4.3. Aims .. 68
 4.4. Hypotheses ... 68
 4.5. Research Design ... 70
 4.6. Ethical considerations .. 71
 4.7. Sample .. 72
 4.7.1. Population .. 72
 4.7.2. Criteria for selection of participants ... 74
 4.7.2.1. Noise exposure ... 75
 4.7.2.2. Age, race and gender ... 76
 4.7.3. Description of research participants ... 76
 4.8. Data Collection .. 85
 4.8.1. Collection protocols and procedures .. 85
 4.8.2. Personnel requirements for data collection .. 88
 4.8.3. Requirements of the equipment and test procedures for data collection 88
 4.9. Data analysis procedure .. 89
 4.9.1. Data organisation ... 89
 4.9.2. Data cleaning .. . 91
 4.9.3. Statistical analyses .. 93
 4.10. Validity and reliability ... 95
 4.11. Chapter summary .. 97

CHAPTER FIVE RESULTS .. 98
 5.1. Introduction ... 99
 5.2. Sub aim one: Prevalence and degree of hearing loss 101
 5.2.1. Prevalence and degree of hearing loss by pure tone averages 101
 5.2.2. Prevalence and degree of hearing loss across individual frequencies 111
 5.3. Sub aim two: Prevalence and degree of hearing loss as a function of age, race
 and gender ... 114
5.3.1. Prevalence and degree of hearing loss as a function of age by pure tone averages .. 114
5.3.2. Prevalence and degree of hearing loss as a function of age across individual frequencies ... 117
5.3.3. Prevalence and degree of hearing loss as a function of race and gender across individual frequencies ... 120
5.3.4. Prevalence and degree of hearing loss as a function of race and gender by pure tone averages ... 124

5.4. Sub aim three: Prevalence and degree of hearing loss as a function of occupation / noise-exposure level .. 127
5.4.1. Prevalence and degree of hearing loss as a function of noise exposure time by age group and across individual frequencies ... 127
5.4.2. Prevalence and degree of hearing loss as a function of noise- exposure level for homogenous exposure groups across individual frequencies ... 132

5.5. Sub aim four: The combined effect of various biographical, environmental and work-related variables on hearing status .. 138

5.6. Sub aim five: To evaluate the effectiveness of the current impairment criteria to identify NIHL and compare it to other existing criteria ... 154

5.7. Chapter summary ... 157

CHAPTER SIX DISCUSSION .. 158

6.1. Introduction ... 159

6.2. Prevalence of NIHL in the cohort of gold miners ... 159
6.2.1. Considerations when describing prevalence of NIHL ... 159
6.2.2. Discussion of the prevalence of NIHL in the study population .. 163

6.3. Comparison of hearing thresholds in the gold miner cohorts ... 177

6.4. Effect of age on hearing in different noise exposure groups ... 181
6.4.1. Hearing loss increase with age and the effect of noise exposure time ... 182
6.4.2. Differential deterioration of hearing across frequency with increasing age ... 183

6.5. Effect of gender and race on hearing in different noise exposure groups ... 186

6.6. Effectiveness of PLH to identify NIHL ... 190

6.7. Summary ... 192

CHAPTER SEVEN CONCLUSION .. 193

7.1. Introduction ... 194

7.2. Overview of the literature study ... 194

7.3. Research objectives: Conclusion, implications and recommendations ... 197
Table of figures and tables

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>NIHL number and rate per commodity (Randera, 2007)</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1-2</td>
<td>Audiogram for a typical NIHL (values based on an illustration by Dobie (2001))</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2-1</td>
<td>Underreporting of occupational diseases. Source: Scott, Grayson, & Metz (2004)</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>(A) The ear and cochlea (B) Regions of the cochlea showing the sound conduction path. Source: Kurmis & Apps (2007)</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>Cross section of the basilar membrane showing sensory hair cells of the cochlea. Saunders, Dear, & Schneider (1985)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Scanning electron micrograph showing the normal organisation of the organ of Corti. View is of the apical membrane of the single row of IHCs (top) and 3 rows of OHC (bottom). Notice the orderly arrangement of stereocilia. Picture retrieved from http://www.d.umn.edu/~jfitzake/Lectures/DMED/InnerEar/IEPathology/StereociliaDamage.html</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Disruption of IHC stereocilia and loss of OHC in the basal turn of the cochlea following noise exposure (90 dB A noise for 8 hours) 6 months earlier. This damage produced a profound hearing loss. Picture retrieved from http://www.d.umn.edu/~jfitzake/Lectures/DMED/InnerEar/IEPathology/StereociliaDamage.html</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>A line drawing of the hair cells of the organ of Corti with a cross section view. Source: Saunders, Dear & Schneider (1985)</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>Different levels of damage to the organ of Corti. Source: Saunders, Dear & Schneider (1985)</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>Audiogram demonstrating the typical notch of NIHL. Source: Rabinowitz et al. (2006)</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>Median (50th percentile) and extreme (10th and 90th percentiles) NIPTS after 30 years of workplace exposure to 95 dB A. Source: ISO 1990:1999</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Aspects considered in damage risk criteria for occupational noise exposure</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Mathematical relationship demonstrating the equal energy rule</td>
<td>51</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Claims submitted to the Compensation Fund during 2001-2006 (Source: RSA Compensation Fund, 2006)</td>
<td>56</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Instruction 171, PLH calculation table for 0,5 kHz (Source: COIDA, 2001, complete document included as Appendix C)</td>
<td>60</td>
</tr>
</tbody>
</table>
Figure 3-5 Audiogram (left and right ears identical) with 0 dB HL, high frequency hearing loss, and low frequency hearing loss and associated PLH values............................... 61

Figure 4-1 Research Design .. 66

Figure 4-2 Number of participants categorised into the different Noise Groups (Ntotal = NNoise Group 1 + NNoise Group 2 + NNo Noise Group + NNoise Group 3 = 57713).......... 77

Figure 4-3 Number of participants in each age category for the Driller and Administration groups (NAdmin = 2211; NDriller = 4399)... 82

Figure 5-1 Sub aims of this study constituting the main aim .. 99

Figure 5-2 Median values for the HFA346 and the LFA512 for Noise Group 1 and No Noise Group (Noise Group 1: Underground occupational noise ≥85 dB A TWA (n= 33961); No Noise Group: No known occupational noise (n=6194)) .. 108

Figure 5-3 95th Percentile values for the HFA346 and the LFA512 for Noise Group 1 and No Noise Group (Noise Group 1: Underground occupational noise ≥85 dB A TWA n= 33961; No Noise Group: No known occupational noise n=6194) .. 109

Figure 5-4 Median and 95th Percentile values for the pure tone average (PTA512) and high frequency average (HFA346) of participants in Noise Group 1 and No Noise Group (Noise Group 1: Underground occupational noise ≥85 dB A TWA , n= 33961; No Noise Group: Occupational noise <85 dB A, n=6194) .. 110

Figure 5-5 Left ear, medians and 95th percentile threshold values (dB HL) per frequency (Noise Group 1: Underground occupational noise ≥85 dB A (TWA), n= 33961; No Noise Group: No known occupational noise, n=6194) .. 112

Figure 5-6 Right ear, medians and 95 percentile threshold values (dB HL) per frequency. Noise Group 1: Underground occupational noise ≥85 dB A TWA (n= 33961) No Noise Group: No known occupational noise (n=6194).. 113

Figure 5-7 Percentage of participants in Noise Group 1 and the No Noise Group per age group across the hearing-sensitivity category for the Low Frequency Averages (LFA512) 115

Figure 5-8 Percentage of participants in Noise Group 1 and the No Noise Group per age group per hearing sensitivity category for the High Frequency Averages (HFA512)......... 116

Figure 5-9 Median thresholds (in dB HL) per frequency for each age category for Noise Group 1 (N=33961)... 118

Figure 5-10 Median values for thresholds in dB HL per frequency for participants in Noise Group 1 categorised by race and gender (Black Male, n=35866; White Male, n=5374; Black Female, n=1698; White Female, n=434) .. 121

Figure 5-11 95th Percentile values for thresholds in dB HL per frequency for participants in Noise Group 1 categorised by race and gender (Black Male, n=17933; White Male, n=; Black Female, n=849; White Female, n=217) .. 122
Figure 5-12 Median and 95th percentile values of the high frequency average for thresholds at 3, 4, and 6 kHz, (HFA346) compared for the different race and gender groups within the different Noise Groups ... 125

Figure 5-13 Median and 95th percentile values of the low frequency average for thresholds at 0.5, 1, 2 kHz, (LFA512) compared for the different race and gender groups within the different Noise Groups frequency (Noise Group 1: Underground occupational noise ≥85 dB A TWA (n= 33961); No Noise Group: No known occupational noise (n=6194)) 126

Figure 5-14 Median thresholds per frequency for the age group 16 to 30 years categorised by their working years (Noise Group 1, occupational noise 85 dB TWA) 128

Figure 5-15 Median thresholds per frequency for the age group 31 to 40 years categorised by their working years (Noise Group 1, occupational noise 85 dB TWA) 129

Figure 5-16 Median thresholds per frequency for the age group 41 to 50 years categorised by their working years (Noise Group 1, occupational noise 85 dB TWA) 130

Figure 5-17 Median thresholds per frequency for the age group 51 to 60 years categorised by their working years (Noise Group 1, occupational noise 85 dB TWA) 131

Figure 5-18 Median thresholds per frequency for the age group 61 to 65 years categorised by their working years (Noise Group 1, occupational noise 85 dB TWA) 132

Figure 5-19 Number of participants for the administration group per race and gender and age category ... 133

Figure 5-20 Number of participants for the driller group per race and gender group 134

Figure 5-21 Median and 95 th Percentile values for thresholds (in dB HL) across the frequency range for homogenous exposure groups (HEGs); Drillers and Administration (Admin) ... 135

Figure 5-22 Median values for thresholds (in dB HL) across the frequency range for black, male participants in the Driller and Administration (admin) groups, for ages 31 to 40 years, 41 to 50 years, and 51 to 60 years .. 136

Figure 5-23 95th Percentile values for thresholds (in dB HL) across the frequency range for Black, Male participants in the Driller and Administration (admin) group, for ages 31 to 40 years, 41 to 50 years, and 51 to 60 years .. 137

Figure 5-24 Mean values for binaural hearing impairment calculated using the AMA formula for participants in the different PLH groups. PLH groups based on the PLH values in percentage calculated for all participants (N=57691) ... 155

Figure 5-25 Comparison of numbers of participants (total N=57713) who would have been compensated based on the hearing impairment comparing the PLH and AMA formulae of hearing impairment ... 156

Figure 6-1 Framework for discussion of study findings related to study aims 159
Figure 6-2 Different noise groups, and sub groups, the prevalence of NIHL compared to the control group and data used in analyses... 164
Figure 6-3 Estimated excess risk for hearing impairment at 41dB HL or greater, by age and duration of the exposure (Source: Nelson, Nelson, Concha-Barrientos, & Fingerhut, 2005) ... 167
Figure 6-4 Prevalence data of hearing loss greater than 40 dB HL for the general population in Great Britain (Source (Nelson, Nelson, Concha-Barrientos, & Fingerhut, 2005; Davis A. C., 1989) .. 168
Figure 6-5 Comparison between Girard et al. (2009) and the current study’s negative growth in prevalence of the normal hearing category with increase in age (shown as a difference in the percentage of participants with normal hearing between the subsequent age groups) 173
Figure 7-1 Main aspects reviewed in the literature study in Chapters 2 and 3 195
Figure 7-2 Summary of conclusions based on the results and discussion (chapter 5 and 6) of this study... 198
Figure 7-3 Two-step audiological process recommended for South African mines to identify NIHL and allocated compensation... 209

Table 1-1A comparison of the calculated “percentage of hearing impairment” using different criteria for the audiogram shown in figure 2... 8
Table 2-1 Compensation paid for NIHL in South African Mines... 18
Table 2-2 Noise-induced hearing loss: Area of the cochlea where damage occurs, description of the mechanism of damage and illustrations ... 23
Table 2-3: Notch criteria from Coles et al. (2000) and Niskar et al. (2001). Source: Rabinowitz et al. (2006) .. 30
Table 3-1 Comparison of models for estimating the excess risk of material hearing impairment at age 60 after a 40-year working lifetime exposure to occupational noise (8-hour TWA), by definition of material hearing impairment ... 49
Table 3-2 Some features of legislation in various countries (1997). Source: Johnson, Papadopoulos, Watka, & Takala, 2006 .. 55
Table 3-3 Summary of US states federal compensation agencies with regard to the formulas used to calculate hearing impairment caused by NIHL (Source: Stander & Sataloff, 2006). 58
Table 4-1 Number of participants for each occupation (labelled by the mine) constituting each Noise Group.. 78
Table 4-2 Number of participants categorised into different age categories per Noise Group (Total N=57713)... 81
Table 4-3 Number of participants categorised into different age categories and race groups (white and black) per Noise Group ... 83
Table 4-4 Number of participants in the Driller and Administration Groups in the different race groups (black and white) ... 84
Table 4-5 Number of participants in each Noise Group, categorised by race and gender ... 84
Table 4-6 Definition and requirements for audiometry as required by the gold mines under investigation, its application, purpose and procedural requirements (Franz & Phillips, 2001) ... 86
Table 4-7 Hearing threshold categories based on the degree of impairment proposed by Yantis (1994) and used by Picard (2008) and Girard (2009) ... 90
Table 4-8 Summary of data cleaning done, reasoning and amount of audiogram data disregarded (Data cleaning reduced dataset from 223 873 records to 171 441 records) 92
Table 5-1 Hearing threshold categories based on the degree of impairment proposed by Yantis (1994) and used by Picard (2008) and Girard (2009) ... 101
Table 5-2 Distribution of workers according to hearing sensitivity (bilateral HFA346 and LFA312) and noise-exposure levels (N0 − 15 + N15 − 30 + N31 − 40 + N41 − 50 + N51 +=N1/N3/N2) ... 102
Table 5-3 Distribution of workers according to hearing sensitivity (bilateral HFA346), noise-exposure levels and ISO 1990:1999 age categories ... 103
Table 5-4 The 95% confidence intervals (CI) for the difference of the population proportions between Noise Group 1 and No Noise Group (Table 5.4 a) and between Noise Group 2 and No Noise Group (Table 5.4 b) according to hearing sensitivity, for high frequency averages (HFA346) and low frequency averages (LFA512) ... 105
Table 5-5 Breakdown of numbers (n) of participants (with percentage of sample indicated) categorised in the different Noise Groups and different age categories used for calculations of proportion of the different hearing sensitivity categories (shown in figures 5.7 and 5.8) ... 114
Table 5-6 Median threshold values (in dB HL) per frequency for the No Noise Group categorised by age groups, Noise Group 1 values show where a difference exists between the values of the two groups (Noise Group 1: Underground occupational noise ≥ 85 dB A TWA, No Noise Group: No known occupational noise) ... 119
Table 5-7 Median and 95th percentile values for thresholds (in dB HL) across frequency for the No Noise Group according to gender and race. Noise Group 1 values were included when a difference existed between the two groups (Noise Group 1: Underground occupational noise ≥85 dB A TWA; the No Noise Group: No known occupational noise) ... 123
Table 5-8 Number of participants in each age group, categorised according to their working years (Noise Group 1: Underground occupational noise ≥85 dB A TWA) ... 128
Table 5-9 Number of participants of the study per age group (as defined by ISO 1990:1999)..139
Table 5-10 Hearing-threshold level (in dB HL) for the No Noise Group (no known occupational noise exposure) for men and female of different ages ... 140
Table 5-11 Hearing-threshold level (in dB HL) for Noise Group 1 (underground occupational noise exposure ≥ 85 dB A) for men and female of different ages .. 141
Table 5-12 Hearing-threshold level (in dB HL) for Administration Group (no known occupational noise exposure) for men and female of different ages .. 142
Table 5-13 Hearing-threshold level (in dB HL) for drillers (underground occupational noise exposure ≥ 90 dB (A)) for men and female of different ages .. 143
Table 5-14 Hearing thresholds (in dB HL) for men in the No Noise group (no known occupational noise exposure) for different race and age groups .. 144
Table 5-15 Hearing thresholds (in dB HL) for men in Noise Group 1 (underground noise exposure of ≥ 85 dB A) for different race and age groups .. 145
Table 5-16 Median threshold values across frequencies for male participants of the No Noise Group and Noise Group 1 categorised by age and compared to ISO 1990:1999 Annex B, as well as Hoffman, Dobie, Ko, Themann, & Murphy (2010)'s proposed new Annex B .. 146
Table 5-17 Median threshold values across frequencies for female participants of the No Noise Group and Noise Group 1 categorised by age and compared to ISO 1990:1999 Annex B, as well as Hoffman, Dobie, Ko, Themann, & Murphy (2010)'s proposed new Annex B .. 147
Table 5-18 Median threshold values across frequencies for male participants of the administration group (admin) and driller group categorised by age and compared to ISO 1990:1999 Annex B, as well as Hoffman, Dobie, Ko, Themann, & Murphy (2010)'s proposed new Annex B .. 148
Table 5-19 Median threshold values across frequencies for male participants of the administration group (admin) and driller group categorised by age and compared to ISO 1990:1999 Annex B, as well as Hoffman, Dobie, Ko, Themann, & Murphy (2010)'s proposed new Annex B .. 149
Table 5-20 Median values for binaural average thresholds across the frequency range for white male participants of Noise Group 1 and the No Noise Group, compared to ANSI S3.44 (1996) Annex C ... 150
Table 5-21 Median values for binaural average thresholds across the frequency range for black male participants of Noise Group 1 and the No Noise Group categorised by age compared to ANSI S3.44 (1996) Annex C ... 151
Table 5-22 Median values for binaural average thresholds across the frequency range for black male participants of the driller and administration groups (admin) categorised by age compared to ANSI S3.44 (1996) Annex C ... 152
Table 5-23 Median values for binaural average thresholds across the frequency range for white male participants of the administration (admin) and driller groups categorised by age compared to ANSI S3.44 (1996) Annex C ... 153

Table 6-1 Prevalence data from the current study compared to data from the Girard et al. (2009) study, categorised into ISO (1990) age categories and Yantis (1994) hearing loss categories, HFA346 used to define hearing loss ... 171

Table 6-2 Noise Group 1: Number and percentage of participants in each age group (ISO 1990) for each hearing loss category (Yantis, 1994), combined percentages for hearing loss greater than 30 dB HL and percentage values of Hessel & Sluis-Cremer (1987) participants with PTA512 values greater than 25 dB HL ... 175
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMA</td>
<td>American Medical Association</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards</td>
</tr>
<tr>
<td>ARHL</td>
<td>Age related hearing loss</td>
</tr>
<tr>
<td>ASHA</td>
<td>American Speech and Hearing Association</td>
</tr>
<tr>
<td>COIDA</td>
<td>Compensation for Occupational Injuries and Diseases Act, No. 130 of 1993, South Africa</td>
</tr>
<tr>
<td>dB A</td>
<td>Decibel A-weighted</td>
</tr>
<tr>
<td>dB HL</td>
<td>Decibel hearing level</td>
</tr>
<tr>
<td>dB SPL</td>
<td>Decibel sound pressure level</td>
</tr>
<tr>
<td>DPOAE</td>
<td>Distortion Product Otoacoustic Emission</td>
</tr>
<tr>
<td>HCP</td>
<td>Hearing conservation programme</td>
</tr>
<tr>
<td>HEG</td>
<td>Homogenous exposure group</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>kHz</td>
<td>Kilohertz</td>
</tr>
<tr>
<td>MHSC</td>
<td>Mine Health and Safety Council</td>
</tr>
<tr>
<td>NIHL</td>
<td>Noise-induced hearing loss</td>
</tr>
<tr>
<td>NIOSH</td>
<td>US National Institute for Occupational Safety and Health</td>
</tr>
<tr>
<td>OAE</td>
<td>Otoacoustic Emission</td>
</tr>
<tr>
<td>OEL</td>
<td>Occupational exposure level</td>
</tr>
<tr>
<td>OSHA</td>
<td>The United States Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PLH</td>
<td>Percentage loss of hearing</td>
</tr>
<tr>
<td>PTA346</td>
<td>Pure tone average of 3, 4 and 6 kHz</td>
</tr>
<tr>
<td>PTA512</td>
<td>Pure tone average of 0.5, 1 and 2 kHz</td>
</tr>
<tr>
<td>RSA</td>
<td>Republic of South Africa</td>
</tr>
<tr>
<td>SANS</td>
<td>South African National Standards</td>
</tr>
<tr>
<td>SANS 10083: 2007</td>
<td>SANS: The measurement and assessment of occupational noise for hearing conservation purposes</td>
</tr>
<tr>
<td>TWA</td>
<td>Time weighted average</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>