MAIZE PORRIDGE STARCH DIGESTIBILITY

BY

BELINDA VAN DER MERWE

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

MSc (Agric) Food Science and Technology

IN THE
DEPARTMENT OF FOOD SCIENCE
FACULTY OF NATURAL, AGRICULTURAL AND INFORMATION SCIENCES
UNIVERSITY OF PRETORIA
SOUTH AFRICA

DECEMBER 1999
DECLARATION

I declare that the dissertation herewith submitted for the degree MSc (Agric) Food Science and Technology at the University of Pretoria, has not previously been submitted by me for a degree at any other university or institution of higher education.

Bud Merwe
ABSTRACT

MAIZE PORRIDGE STARCH DIGESTIBILITY

by

Belinda van der Merwe

Study leader: Prof. J.R.N. Taylor
Co-leader: Mrs. C. Erasmus
Department: Food Science
Degree: M.Sc. (Agric) Food Science and Technology

The incidence of diabetes mellitus is very low in rural, traditionally living South African Black people, but higher in urbanised Black people. The carbohydrate staple of rural Black people is maize porridge, but with urbanisation maize porridge is often replaced by bread. This change in carbohydrate staple could have contributed to the higher incidence of diabetes in urban Black people.

An in vitro method involving pre-chewing of the food followed by digestion with pepsin and α-amylase in dialysis tubing was used to determine starch digestibility. The starch digestibility of traditional stiff maize porridge made from cultivars with different endosperm hardness was compared to white wheat bread. A hydrolysis index was calculated and used to predict the glycaemic index. The effect of different preparation parameters (particle size, cooking time, hotplate and microwave cooking) on the digestibility of maize porridge was determined, as well as the microstructures of the two food products and the starch digestibilities of maize, wheat and oat flour porridges.

Maize porridge had a lower rate (p < 0.001) and extent (p < 0.001) of in vitro starch digestibility than bread. Possible reasons for the difference are the dense microstructure of porridge with physically enclosed starch, and the high amylose content of South African maize. Wheat flour porridge was less digestible than bread (p < 0.001), which showed that the nature of the heat treatment process and the presence of other ingredients (e.g. fat) could have a great effect on starch digestibility.
Wheat flour porridge and oat flour porridge had lower starch digestibilities than maize flour porridge (p < 0.05), which indicated that there were intrinsic differences between the starch digestibility of the endosperm material from different cereals. These differences can possibly be attributed to other endosperm constituents, gluten in wheat and β-glucans in oats.

The starch digestibility of hotplate cooked porridge was positively correlated with endosperm hardness (p < 0.01). This phenomenon cannot be explained in terms of differences in composition or particle size. The composition of the endosperm from different cultivars was similar. The hard cultivars had more large particles than the soft cultivars, but it was shown that reducing the particle size of maize meal to maize flour did not have a significant effect on starch digestibility.

Interestingly, both decreasing and increasing the cooking time decreased the starch digestibility of maize porridge significantly. Cooking porridge shorter probably disrupted starch granules to a lesser extent while cooking longer probably solubilised more starch, which led to the formation of more retrograded amylose during cooling. The rate and extent of starch digestibility of microwave cooked maize porridge was similar to that of hotplate cooked porridge, but the differences between cultivars were not related to endosperm hardness. This difference between the effect of microwave and conventional cooking may be due to the faster heat transfer during microwave cooking.

The mean predicted glycaemic index for maize porridge (glucose standard) was 44, which implies that maize porridge is a slow carbohydrate release food that may be useful in the dietary management of diabetes. The fact that bread is digested faster than maize porridge could be a contributing factor in the increased prevalence of diabetes in the urban compared to the rural Black South Africans.
UITTREKSEL

MIELIEPAP STYSELVERTEERBAARHEID

deur
Belinda van der Merwe

Leier: Prof. J.R.N. Taylor
Mede-leier: Mrs. C. Erasmus
Departement: Voedselwetenskap
Graad: M.Sc. (Agric) Voedselwetenskap en -tegnologie

Die voorkoms van diabetes is baie laag onder plattelandse Suid-Afrikaanse Swartmense met ‘n tradisionele lewenswyse, maar hoër onder verstedelike Swartmense. Die koolhidraat stapelvoedsel van plattelandse Swartmense is mieliepap, maar met verstedeliking word mieliepap dikwels vervang met brood. Hierdie verandering in koolhidraat stapelvoedsel kon bygedra het tot die hoër voorkoms van diabetes onder verstedelike Swartmense.

Stysselverteerbaarheid is bepaal met ‘n in vitro metode wat begin met die kou van die monster gevolg deur vertering met pepsien en α-amilase in ‘n dialise buis. Die stysselverteerbaarheid van tradisionele stywe mieliepap gemaak van kultivars met verskillende endosperm hardheid is vergelyk met witbrood. ‘n Hidrolise indeks is bereken en gebruik om die glukemiese indeks te voorspel. Die effek van verskillende voorbereidingsparameters (partikelgrootte, kooktyd, stoofplaat en mikrogolf kook) op die verteerbaarheid van die pap is bepaal, asook die mikrostruktuur van die twee voedselprodukte en die stysselverteerbaarhede van koring- en hawermeeelpap.

Mieliepap het ‘n laer tempo (p < 0.001) en mate (p < 0.001) van in vitro stysselverteerbaarheid as brood. Moontlike redes vir die verskil is die digte mikrostruktuur van mieliepap met fisies ingeslote styssel, en die hoë amiloïse-inhoud van Suid-Afrikaanse mielies. Koringmeelpap was minder verteerbaar as brood (p < 0.001), wat aandui dat die aard van die hittebehandeling en die teenwoordigheid van
ander bestanddele (bv. vet) ‘n groot effek kan hê op styselverteerbaarheid. Koringmeelpap en hawermeeelpap was minder verteerbaar as mieliemeelpap \((p < 0.05)\) wat aandui dat daar intrinsieke verskille in verteerbaarheid tussen die endosperm materiaal van verschillende grane is. Hierdie verskille is moontlik veroorsaak deur wesentlike bestanddele van die endosperm, gluten in koring en \(\beta\)-glukane in hawer.

Daar was ‘n positiewe korrelasie \((p < 0.01)\) tussen die styselverteerbaarheid van stoofplaat gekookte mieliepap en endosperm hardheid. Hierdie verskynsel kan nie verklaar word deur verskille in samestelling of partikelgrootte nie. Die harde kultivars het meer groot parikels gehad as die sagte kultivars, maar daar is gewys dat ‘n verkleining van die partikelgrootte vanaf mielieemeel na mielieblom nie ‘n betekenisvolle effek op styselverteerbaarheid gehad het nie.

Interessant genoeg het beide ‘n verkorting en verlenging van die kooktyd die styselverteerbaarheid van die mieliepap betekenisvol verlaag. Om die pap korter te kook het waarskynlik die styselkorrels minder ontwrig, terwyl langer kook waarskynlik meer stysel in oplossing gebring het, wat geleë het tot meer geretrogradeerde stysel gedurende afkoeling. Die tempo en mate van styselverteerbaarheid van mikrogolf gekookte mieliepap was soortgelyk aan stoofplaat gekookte mieliepap, maar die verskille tussen kultivars was nie verwant aan endosperm hardheid nie. Hierdie verskil tussen die effek van mikrogolf- en konvensionele verhitting mag verwant wees aan die vinniger hitte-oordrag gedurende mikrogolfverhitting.

Die gemiddelde voorspelde glukemiese indeks vir mieliepap (glukose standaard) was 44, wat impliseer dat mieliepap ‘n kossoort is wat koolhidrate stadig vrystel. Dit kan nuttig wees in die dieetbehandeling van diabetes. Die feit dat brood vinniger verteer as mieliepap kon ‘n bydraende faktor wees in die hoë voorkoms van diabetes onder verstedelikte in vergelyking met plattelandse Swart Suid-Afrikaners.
ACKNOWLEDGEMENTS

I would like to sincerely thank the following people:

Prof. J.R.N. Taylor, my study leader, for guidance, advice and positive criticism throughout the project.

Mrs. C. Erasmus, my co-leader for her role in the planning of the project, the image analysis and milling of the maize, and for her critical review of my dissertation.

The Council for Scientific and Industrial Research (CSIR) and National Research Foundation (NRF) for funding the project.

Mr. C.F. van der Merwe and Mr. A.N. Hall from the Laboratory for Microscopy and Microanalysis, University of Pretoria for assistance with the light microscopy and scanning electron microscopy work.

Dr. M.J. van der Linde from the Department of Information Technology and Prof. H.T. Groeneveld from Department of Statistics, University of Pretoria for advice and assistance in statistical analysis of data.

Mr. P. Rankhumise and Mrs. R. Mathibe for their important roles in the development of my maize porridge recipes.

My best friend and husband, Jacobus, for his support and encouragement.
TABLE OF CONTENTS

LIST OF TABLES .. v
LIST OF FIGURES ... vi

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: LITERATURE REVIEW ... 3
2.1 DIABETES AND ITS INCIDENCE ... 3
 2.1.1 What is diabetes? ... 3
 2.1.2 Life-style factors associated with diabetes 4
 2.1.3 Diabetes in South Africa ... 5
 2.1.4 The effect and treatment of diabetes 6
2.2 MAIZE ... 8
 2.2.1 Production and consumption of maize in South Africa 8
 2.2.2 Maize kernel morphology and composition 9
 2.2.3 Maize endosperm vitreousness .. 10
2.3 STARCH ... 14
 2.3.1 Composition and structure of starch granules 14
 2.3.2 Starch gelatinisation ... 17
 2.3.3 Starch retrogradation ... 18
 2.3.4 Resistant starch ... 19
 2.3.4.1 The physiological role of resistant starch 20
 2.3.4.2 Measurement of resistant starch 22
 2.3.5 Damaged starch ... 23
2.4 GLYCAEMIC INDEX AND CARBOHYDRATE DIGESTIBILITY 24
 2.4.1 Definition and calculation of the glycaemic index 25
 2.4.2 The application and use of the glycaemic index 27
 2.4.3 Factors affecting the measured glycaemic index values 28
 2.4.3.1 Methodological variability 28
 2.4.3.2 Variability in the sample ... 28
 2.4.3.3 Physiological factors .. 29
 2.4.4 The GI of maize porridge ... 29
2.5 FACTORS AFFECTING THE RATE OF STARCH DIGESTION 31
2.5.1 Intrinsic factors affecting starch digestibility 31
2.5.1.1 Starch source .. 31
2.5.1.2 Amylose/amylpectin ratio 32
2.5.1.3 Starch granule size 32
2.5.1.4 Natural enzyme inhibitors 32
2.5.2 Extrinsic factors affecting starch digestibility 33
2.5.2.1 Physical form ... 33
2.5.2.2 Degree of gelatinisation 34
2.5.2.3 Formation of retrograded starch 34
2.5.2.4 The presence of other ingredients 35

2.6 DETERMINING STARCH DIGESTIBILITY IN VITRO 36
2.6.1 Sample preparation 39
2.6.2 Enzymes used to digest sample 40
2.6.3 Incubation conditions 40
2.6.4 Measurement of digestion end products 41

2.7 CONCLUSIONS ... 42

CHAPTER 3: RESEARCH OBJECTIVES 44

CHAPTER 4: EXPERIMENTAL 46
4.1 MATERIALS ... 46
4.1.1 Maize .. 46
4.1.2 Wheat .. 48
4.1.3 Oats ... 48
4.1.4 White bread ... 48

4.2 METHODS ... 50
4.2.1 Degerming maize 50
4.2.2 Milling to maize meal 51
4.2.3 Milling maize and oats to flour 52
4.2.4 Maize, wheat and oat porridge cooking procedure 52
4.2.4.1 Hotplate cooking 52
4.2.4.2 Microwave oven cooking 53
4.3 ANALYSES.. 53
 4.3.1 Hardness of maize kernels... 53
 4.3.2 Particle size distribution... 54
 4.3.3 Proximate analysis.. 54
 4.3.3.1 Ash.. 54
 4.3.3.2 Moisture.. 55
 4.3.3.3 Total starch.. 56
 4.3.3.4 Total protein.. 56
 4.3.3.5 Crude fat... 57
 4.3.4 Amylose/amyllopectin ratio... 57
 4.3.4.1 Isolation of starch... 57
 4.3.4.2 Amylose content of starch... 58
 4.3.5 Damaged starch.. 58
 4.3.6 In vitro starch digestibility... 59
 4.3.6.1 Preparation of dialysis tubing... 60
 4.3.6.2 Sample preparation... 60
 4.3.6.3 Chewing... 60
 4.3.6.4 Enzyme incubation.. 61
 4.3.6.5 Measurement of products of digestion....................................... 61
 4.3.6.6 Blanks and reference sample.. 62
 4.3.6.7 Calculation of hydrolysis index (HI) and predicted
 GI... 62
 4.3.7 Microscopy.. 63
 4.3.7.1 Light microscopy... 63
 4.3.7.2 Scanning electron microscopy.. 63
 4.3.8 Statistical analysis.. 63

CHAPTER 5: RESULTS.. 65
 5.1 PARTICLE SIZE DISTRIBUTION OF MAIZE MEAL MADE
 FROM DIFFERENT CULTIVARS.. 65
 5.2 DAMAGED STARCH... 67
 5.3 AMYLose CONTENT... 67
5.4 RESULTS FROM IN VITRO STARCH DIGESTIBILITY

EXPERIMENTS... 68
5.4.1 The effect of the volume ratio of sample dialysate to 3,5-dinitrosalicylic acid reagent... 68
5.4.2 Starch digestibility of white bread and porridge made from maize cultivars with different endosperm hardness.......... 70
5.4.3 Hydrolysis index and predicted GI of maize porridge............. 74
5.4.4 Effect of particle size... 75
5.4.5 Effect of cooking time... 77
5.4.6 Starch digestibilities of maize, wheat and oat flour porridges.. 79
5.4.7 Starch digestibility of microwave cooked maize porridge... 81

5.5 MICROSCOPY

5.5.1 White bread... 86
5.5.2 Maize porridge... 88

CHAPTER 6: DISCUSSION... 94

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS............114

CHAPTER 8: REFERENCES..117
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Influence of the major starch fraction on the properties of maize starch (Oates,1997)</td>
<td>16</td>
</tr>
<tr>
<td>Table 2</td>
<td>In vitro nutritional classification of starch (Englyst et al., 1992)</td>
<td>20</td>
</tr>
<tr>
<td>Table 3</td>
<td>Nutritional indexes related to the availability of starch in the gastrointestinal tract (Björck & Asp, 1994)</td>
<td>25</td>
</tr>
<tr>
<td>Table 4</td>
<td>Some examples of conditions used when determining starch digestibility in vitro</td>
<td>37</td>
</tr>
<tr>
<td>Table 5</td>
<td>Endosperm vitreousness (% translucency) of maize from selected cultivars compared to hard and soft standards</td>
<td>47</td>
</tr>
<tr>
<td>Table 6</td>
<td>Proximate composition of maize meal from different cultivars</td>
<td>49</td>
</tr>
<tr>
<td>Table 7</td>
<td>General composition of bread, wheat flour and oat flour</td>
<td>49</td>
</tr>
<tr>
<td>Table 8</td>
<td>Maize milling procedures in terms of the size of the gap between the rollers, the number of times milled and the aperture of the sieve used to sieve the meal after the milling step</td>
<td>51</td>
</tr>
<tr>
<td>Table 9</td>
<td>Amylose content of starch in maize meal from different cultivars</td>
<td>68</td>
</tr>
<tr>
<td>Table 10</td>
<td>Regression statistics of the linear models fitted to the data of digestibility over time for white bread and porridge made from maize cultivars with different endosperm hardness</td>
<td>72</td>
</tr>
<tr>
<td>Table 11</td>
<td>Regression statistics of the linear models fitted to the data of digestibility over time for microwave cooked porridge made from maize cultivars with different endosperm hardness</td>
<td>83</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 1: Traditional stiff maize porridge (left) and laboratory milled maize meal (right)...2

Figure 2: Self reported diabetes mellitus in South Africa (Data from unpublished preliminary report, Department of Health, South Africa, 1999)...5

Figure 3: Longitudinal section of a maize kernel (Hoseney, 1994) 9

Figure 4: Classification and nomenclature of maize protein (information from Esen, 1987; Hoseney, 1994; Mestres & Matencia, 1996)......11

Figure 5: The structures of amylose and amylopectin (Alais & Linden, 1991)...15

Figure 6: Diagrammatic representation of the arrangement of six parallel double helices in starches that give a A-type pattern and starches that give a B-type pattern. Water molecules replace the centre double helix in B-type starches (Whistler & BeMiller, 1997).......17

Figure 7: Structural changes in a starch granule during heating and subsequent cooling (Wong, 1989).................................19

Figure 8: Relationship between non-starch polysaccharides (NSP), total dietary fibre, and unavailable carbohydrates (Asp, 1995)..........21

Figure 9: Calculation of the glycaemic index (GI) of a food product (Björck & Asp, 1994; adapted)..26

Figure 10: Approximate ranges in glycaemic index (glucose standard) for some starchy food products eaten by South Africans (GI values obtained from Foster-Powell & Miller, 1995)...........................27

Figure 11: Flow diagram of the procedure used to determine the in vitro digestibility of porridge...59

Figure 12: Particle size distribution of maize meal from cultivars with different endosperm vitreousness represented per particle size category to show significant differences between cultivars within particle size categories...66

Figure 13: Standard curve of amylose in amylose:amylopectin plotting absorbance versus amylose content.......................................67
Figure 14: Effect of the ratio of dialysate to 3,5-dinitrosalicylic acid reagent (DNS) on the relationship between absorbancy at 540 nm and maltose (mg) DNS:dialysate 2:2 (●), 5:5 (○), 2:5 (◆) and 2:10 (△)..69

Figure 15: *In vitro* starch digestibility of six maize cultivars with different endosperm hardness compared to white bread, cultivar A (□), B (◇), C (△), D (●), E (■), F (◆) and White bread (○)................71

Figure 16: Fitted linear models of percentage starch digested over time in maize porridge made from cultivars with different endosperm hardness compared to white bread...73

Figure 17: Correlation between % starch digested in maize porridge after 180 min and maize kernel endosperm hardness..74

Figure 18: *In vitro* starch digestibility of maize meal (△) and maize flour (▲) hotplate cooked maize porridge made from cultivar C maize meal...76

Figure 19: *In vitro* starch digestibility of short (★), standard (△) and long (★) hotplate cooked maize porridge made from cultivar C maize meal (at each time, means not sharing the same letter are significantly (p < 0.05) different)..78

Figure 20: *In vitro* starch digestibility of standard hotplate cooked porridge made from cultivar C maize flour (▲), wheat flour (□) and oat flour (★) compared to white bread (○) (at each time, means not sharing the same letter are significantly (p < 0.05) different)..................80

Figure 21: The *in vitro* starch digestibility of microwave cooked porridge made from meal of different maize cultivars. Cultivar A (□), B (◇), C (△), D (●), E (■) and F (◆)...82

Figure 22: Fitted linear models of percentage starch digested over time in microwave cooked maize porridge made from cultivars with different endosperm hardness..84

Figure 23: Figure 23: Light micrographs of white bread before (a) and after (b,c) digestion with pepsin and α-amylase (c is a higher magnification of one of the non-cellular areas in b).................................87
Figure 24: Light micrographs of maize porridge before digestion (a, low magnification; b, higher magnification of cellular area; c, higher magnification of amorphous area). .. 89

Figure 25: SEM micrographs of maize porridge before digestion with pepsin and α-amylase (a, showing starch granules in cells; b, showing loose starch granules in the porridge matrix; c, showing two intact starch granules on the surface of the porridge particle; d, showing disrupted starch granules on the surface of the porridge matrix) 91

Figure 26: Light micrographs of maize porridge after digestion with pepsin and α-amylase (a, low magnification; b, magnification of cellular area; c, magnification of non-cellular area). 93

Figure 27: Relative percentage composition of the hydrolysate from maize starch treated with α-amylase. Glucose (●); maltose (○); maltotriose (▲); maltotetraose (▲). (Faulks & Baily, 1990) 96

Figure 28: Simplified schematic representation of a porridge lump showing porridge matrix and endosperm grit particles 98