Structuring of breeding objectives in the pork supply chain
in South Africa

by

Daniël Pieter Visser

Submitted in partial fulfilment of the requirements for the degree of:
Doctor of Philosophy in the Department of Agricultural Economics,
Extension and Rural Development
in the Faculty of Natural & Agricultural Science

University of Pretoria

Pretoria

July 2004
Professor Johann Kirsten, my promoter, for his encouragement, support, advice and vision during the last four years.

Dr Frans Kanfer, my co-promoter, for his continuous involvement and guidance especially on the estimation of genetic parameters.

The ARC – Animal Improvement Institute for granting me the opportunity to undertake this study. Professors Johan van Rooyen and Frans Swanepoel and Dr Japie van der Westhuizen, for the solid foundation during the first round of discussions.

My colleagues abroad – Professors Wim Verbeke, Eildert Groeneveld, Max Rothschild, Drs Nils Lundeheim and Marie Wolfova and Pat Barton Gade for their valuable inputs.

Dr Raymond Naudé, Dr Jan Hofmeyr and Dr Pierre Lombard for their guidance during the last decade.

My South African colleagues, involved in science and agriculture: Dr Stanley Janyk, Dr Peter Fischer, Dr Antoinette Kotze, Dr Siegie van der Walt, Dr Heinz Meissner, Dr Dragon Palic, Professor Hettie Schönfeld, Dr Hannes Viljoen, Dr Lourens Smit, Dr Tobias Doyer, Dr Gustav Klingbiel, Dr Michiel Scholtz, Dr Tom Spencer, Dr Gretha van der Merwe, Dr Siegfried Meyer, Dr Helena Theron, Dr Ferdie Mostert, Professors Gerrie Smith, Norman Casey, Piet Jooste, Francois Siebrits, Mrs Naomi Smith, Mrs Elsje Pieterse, Mr Dawie Malan, Mr Cuthbert Banga, Mrs Ina van Heerden, Mr Ephraim Matjuda, Mr Sarel Moore and Mr Keith Ramsay ~ Your support and encouragement is much appreciated.

The Pig Breeders Society of South Africa, especially Mr Peter Mockford, Mr Arthur Webber, Mr John Havenga, Mr Hennie Cronjé and Mrs Lettie Kruger.

The South African Pork Producers Organisation (J.P., Stoffèl and Darrol). A special word of thanks to Mr Simon Streicher for his valuable inputs.

Mr Frits Voordewind for his dedication, friendship and special inputs in preparing the database for the estimation of genetic parameters.
Dries Pretorius, Quinton Gray, Edgar Filter, Mike Benson and André Botha (for the sharp pencil) for their continuous support, humour and friendship.

Pierre and Joey Visser for their unique support, keen interest and continuous encouragement. André and Lana Scheepers who unknowingly triggered my interest and love for pigs.

Mr Andries Labuschagne for his valuable inputs in all the literature surveys and repeat searches.

Me Jaenine de Jager and Mrs Laenette de Jager for the meticulous preparation of the manuscript – thank you indeed.

Mrs Jill Aingworth and Dr Siegie van der Walt for an unselfish effort in proof reading this manuscript.

Liana Sturgeon, Cathy Barnard and Zuna Botha at the University of Pretoria for their kind administrative assistance.

My personnel who supported and enriched me during the last twelve years (Robbie, Freek, Henk, Chris, Rina, Elize, Magda, Rina and Eurika).

My parents, Gerrit and Rita Visser, and parents-in-law, Jan-Louis and Bets Venter, for their continuous support and love throughout the years.

It will almost be impossible to thank all my family and friends for their support and contributions. The small words: “Hoe vèr nog?”, were dualistic but motivational!!

My wife Elsabé for always believing in me. You have been wonderful, supportive, loving and inspirational despite the sacrifice.

And above all: God Almighty – my Heavenly Father for his enormous love and mercy and for giving me a special life to live…for perseverance, enthusiasm, insight and joy.
DEDICATION

This is dedicated to my son, Daniël Pieter Visser.

IN MEMORIUM

- Oupa DP Visser (18 August 1893 – 29 July 1977)
- Jan van Zyl (15 August 1958 – 22 February 1999)
DECLARATION

I, Daniël Pieter Visser, declare that this dissertation/thesis which I have compiled and submitted to the University of Pretoria for the PhD degree, represents my own work and has never been submitted to any other tertiary institution for any degree.

VERKLARING

Hiermee verklaar ek, Daniël Pieter Visser, dat hierdie werkstuk/thesis wat deur myself saamgestel en voorgelê is aan die Universiteit van Pretoria vir die graad PhD, nog nie van tevore by enige tersiëre inrigting voorgelê is ter verkryging van 'n akademiese kwalifikasie nie.

Structuring of breeding objectives in the pork supply chain
in South Africa

by

Daniël Pieter Visser

Promotor: Professor JF Kirsten
Co-promotor: Doctor FHJ Kanfer
Department: Agricultural Economics, Extension and Rural Development
Degree: PhD (Agricultural Economics)

ABSTRACT

Pig production is a techno-scientific internationalized business that is continuously exposed to change and risk. Changes in the Agri-Business are inter alia caused by changes in globalization, information technology, biotechnology and changes in consumer trends.

The consumer, within the framework of the pig supply chain, is fundamental to this study. Hence an in depth review of meat market surveys for the period 1970 – 2000 was undertaken. The central theme of the study is: "How to reconcile meat quality, genetics and the consumer with bio-economic pig production in the South African pig supply chain?" A detailed analysis of the South African pig supply chain was subsequently conducted in order to add value further down the supply chain. The inherent structure of the South African pig industry was researched with the emphasis on production statistics, the pig feed industry, genetic improvement and pig information systems, slaughter houses and also slaughtering statistics. The different industry institutions, industry organisations and computer programmes in support of the South African pork supply chain were also investigated.

Genetics is the hidden golden thread running through any livestock supply chain. If a substantial portion of consumer satisfaction and quality assurance can be resolved (guaranteed) at the genetic
level (thus conception), these guarantees will be conducive to quality assurance further down the supply chain. Carcass and meat quality have become increasingly important in modern day pig production, despite the fact that the emphasis has been too long on input efficiency and too short on output efficiency in South Africa.

This called unambiguously for the accurate estimation of genetic parameters of production and carcass traits through appropriate methodology and the right genetic technology. A high degree of accuracy will further optimize the estimation of breeding values, that of breeding objectives and also enhance the credibility of a national breeding scheme. Genetic parameters for five carcass traits were successfully estimated for the first time in the history of South African pig breeding. In future, breeding values for carcass traits, can now be determined more accurately for the Large White, Landrace and Duroc pig breeds. Extension of the present carcass evaluation analysis (Phase E of the National Pig Performance Testing Scheme) to incorporate the essential meat quality traits such as pH, marbling, tenderness and colour into future breeding goals should eventually satisfy the consumer.

In order to finally progress from an immature to a mature pig supply chain, pig producers must align themselves with value partners on both the input (raw materials) and output (end product and value added products) end of the supply chain. To embrace the concept of quality (a consumer demand principle) all levels in the production chain (at the genetic level through the breeding objectives, at the farm level through the entire production system, in transit and at the slaughterhouse and processing levels) should be integrated.
Strukturering van teeldoelwitte in die varkvoorsieningsketting
in Suid-Afrika

deur

Daniël Pieter Visser

Promotor: Professor Johann Kirsten
Mede-promotor: Doktor FHJ Kanfer
Departement: Landbou-Ekonomie, Voorligting en Landelike Ontwikkeling
Graad: PhD (Landbou-Ekonomie)

SAMEVATTING

Moderne varkproduksie is tegnologies wetenskaplik van aard, geïnternasionaliseer en word voortdurend blootgestel aan veranderinge en risiko. Verandering in die Agri-Besigheid word veroorsaak onder andere, deur veranderinge in globalisering, inligtingstegnologie, biotegnologie en verbruikerstendense.

Die verbruiker, binne die kader van die varkvoorsieningsketting, is fundamenteel tot die studie. ’n In diepe oorsig rakende vleis markstudies vanaf 1970 - 2000 is uitgevoer in die verband. Die sentrale tema van die studie is: “Hoe word vleiskwaliteit, genetika en die verbruiker in ooreenstemming gebring teen die agtergrond van bio-ekonomiese varkproduksie binne die varkvoorsieningsketting in Suid Afrika?” ’n Omvattende analise rakende die Suid-Afrikaanse varkvoorsieningsketting is gevolgliken uitgevoer. Die inherente wese van die Suid-Afrikaanse varkindustrie is nagevors met die klem op produksie statistieke, die varkvoerindustrie, genetiese verbetering en varkinligtingstelsels, abbatoirs en statistieke oor slagtings. Die verskillende instellings en organisasies binne die varkindustrie, asook rekenaarprogramme wat as onderbou vir die varkvoorsieningsketting dien, is ondersoek.
Genetika is die onsigbare goue draad wat deur enige voorsieningsketting in die veebedryf loop. Indien 'n beduidende komponent van die verbruiker se behoefte en ook kwaliteitsversekering op die genetiese vlak (tydens konsepsie) aangespreek (gewaarborg) kan word, sal hierdie waarborg bevorderlik wees tot kwaliteitsversekering in die ander skakels in die voorsieningsketting. Karkas-en vleiskwaliteit word toenemend belangrik in moderne varkproduksie. Insgelyks was die klem te lank op insetdoeltreffendheid met betrekking tot varkproduksie in Suid-Afrika.

Hierdie aksie het onteenseglik gelei tot 'n behoefte aan akkurate berekening van genetiese parameters van produksie- en karkaseienskappe deur middel van toepaslike metodologie en die regte (genetiese) tegnologie. Hierdie hoë vlak van akkuraatheid sal verder die berekening van teelwaardes, die opstel van teeldoelwitte en die geloofwaardigheid van 'n nasionale teelskema verseker. Vir die eerste keer in die geskiedenis van varkteling in Suid-Afrika, is genetiese parameters vir vyf karkas eienskappe suksesvol bereken. Teelwaardes vir karkas eienskappe kan voortaan meer akkuraat vir die Groot Wit, Landras en Duroc varkrasse bepaal word. Ten einde die eindverbruiker te bevredig, moet die huidige karkas evaluasie (Fase E van die Nasionale Varkprestasietoetsskema) uitgebrei word om die noodsaaklikste vleiskwaliteitseienskappe soos pH₅, marmering, sagtheid en kleur in toekomstige teeltdoelwitte te inkorporeer.

Om uiteindelike vooruitgang te bewerkstellig van 'n onvolwasse na 'n volwasse varkvoorsieningsketting, moet varkproduente hulself assosieer met voortreflike vennote aan beide die inset- (rou materiale) sowel as die uitsetkant (eindprodukte en waarde toegevoegde produkte) van die voorsieningsketting. Ten einde holisties gesproke die konsep van kwaliteit ('n wesenlike verbruikersbehoeftes) aan te spreek, moet alle vlakke in die voorsieningsketting (op genetiese vlak deur middel van die regte teeltdoelwitte, op producente vlak deur middel van die totale produksiestelsel, tydens vervoer en laastens die abattoirs en verwerkingsaanlegte) geïntegreerd wees.
CONTENTS

Acknowledgements ii
Dedication iv
Declaration v
Abstract vi
Samevatting viii
Contents x
List of Tables xvi
List of Figures xx
List of Annexures xxiii

CHAPTER I INTRODUCTION AND PROBLEM STATEMENT

1.1 INTRODUCTION 1
1.2 PROBLEM STATEMENT 1
1.3 OBJECTIVES OF THIS STUDY 7
 1.3.1 Overall Objective 7
 1.3.2 Specific Objectives 7
1.4 ANALYTICAL FRAMEWORK AND METHODOLOGY 7
1.5 THE OUTLINE OF THIS STUDY 8

CHAPTER II THE CHANGING AGRICULTURAL ENVIRONMENT – EXTENDING THE GENOTYPE A STEP FURTHER 9

2.1 INTRODUCTION 9
2.2 THE CHANGING MARKETING ENVIRONMENT 10
 2.2.1 Global Trends 11
 2.2.1.1 Globalization 11
 2.2.1.2 Information Technology 12
 2.2.1.3 Biotechnology 13
 2.2.1.4 Strategic International Re-orientation 17
 2.2.1.5 Welfare, Health and Environmental Awareness 18

2.2.1.6 Consumerism 19

2.3 CONSUMER TRENDS 20
2.3.1 Consumer Needs 21
2.3.2 Consumer Satisfaction and Market Share 22
2.3.3 Consumer Satisfaction and Health Matters 23

2.4 PORK – THE PRODUCT ITSELF 23
2.4.1 Product Quality 24
2.4.2 Meat Quality: Definition and Description 25
2.4.3 The Genetic Basis of Pork and Meat Quality 26
2.4.3.1 The Effect of Breed on Meat Quality 27
2.4.3.2 Genetic Correlations 28
2.4.3.2.1 The Halothane Paradox 29
2.4.3.2.2 The Marbling Paradox 29

2.5 POSITIONING AND ASCERTAINING THE ATTRIBUTES OF PORK
IN RELATION TO OTHER TYPES OF MEAT IN SOUTH AFRICA
DURING THE PERIOD 1970-2002 30
2.5.1 Historical Overview 30
2.5.1.1 The 1970 Market Survey 30
2.5.1.2 The 1987 Market Survey 32
2.5.1.2.1 The 1987 – All Race Meat Usage and Attitude Study 33
2.5.1.3 The 1996 Market Survey 34
2.5.1.3.1 Survey Coverage 34
2.5.1.3.2 Survey Findings 34
2.5.1.3.3 The Image of Brands 35
2.5.1.4 Consumer Reaction to Boar Taint 35
2.5.1.5 The 1998 Goat Commodity Market Survey 36
2.5.1.5.1 Sample Demographics 36
2.5.1.5.2 Survey Findings 36
2.5.1.6 The 2000 AC Nielsen/SAPPO Market Survey 37
2.5.1.6.1 Results and Survey Findings 39
2.5.1.6.2 Meat Purchasing Patterns:
Present and Future Observations 40

2.6 CONCLUSIONS TO CHAPTER II 41
CHAPTER III THE COMPONENTS OF THE PORK SUPPLY CHAIN
IN SOUTH AFRICA

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>INTRODUCTION TO SUPPLY CHAIN MANAGEMENT</td>
</tr>
<tr>
<td>3.2</td>
<td>SYNOPSIS OF THE MARKETING RELATIONS AND DIAGRAMMATIC EXPLANATION OF THE SOUTH AFRICAN PORK SUPPLY CHAIN</td>
</tr>
<tr>
<td>3.3</td>
<td>THE STRUCTURE OF THE SOUTH AFRICAN PIG INDUSTRY</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Production Statistics</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Pig Feed Industry</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.3.2.2</td>
<td>The Protein and Animal Feed Dilemma</td>
</tr>
<tr>
<td>3.3.2.3</td>
<td>Feed Production Levels</td>
</tr>
<tr>
<td>3.3.2.3.1</td>
<td>The Mineral and Premix Market</td>
</tr>
<tr>
<td>3.3.2.3.2</td>
<td>The Pharmaceutical Industry</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Vulnerabilities Pertaining to the South African Pig Industry</td>
</tr>
<tr>
<td>3.4</td>
<td>GENETIC IMPROVEMENT AND PIG INFORMATION SYSTEMS</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Genetic Improvement of Pigs</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Central Testing</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>On-farm Testing</td>
</tr>
<tr>
<td>3.4.2.3</td>
<td>PIG BLUP</td>
</tr>
<tr>
<td>3.4.2.4</td>
<td>Independent Selection Panel</td>
</tr>
<tr>
<td>3.4.2.5</td>
<td>Progress Through Consolidation: PIG GEN (pty) Ltd</td>
</tr>
<tr>
<td>3.4.3</td>
<td>The Implementation of an “Adapted Platform Independent Information System” for Pig Recording in South Africa</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Vulnerabilities Pertaining to Breeding and Genetic Improvement</td>
</tr>
<tr>
<td>3.5</td>
<td>SLAUGHTERHOUSE AND SLAUGHTERING STATISTICS</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Incidence of PSE Pork at South African Abattoirs</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Vulnerabilities Pertaining to Slaughterhouses and Pork Supply</td>
</tr>
<tr>
<td>3.6</td>
<td>INDUSTRY ORGANISATIONS, INSTITUTIONS AND PROGRAMMES IN SUPPORT OF THE PORK SUPPLY CHAIN</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>3.6.2</td>
<td>The South African Pork Producers’ Organisation</td>
</tr>
<tr>
<td>3.6.2.1</td>
<td>The South African Meat Industry Company</td>
</tr>
<tr>
<td>3.6.2.2</td>
<td>The Red Meat Research and Development Trust</td>
</tr>
</tbody>
</table>

xii
3.6.3 The South African Stud Book and Livestock Improvement Association (SASBLIA) 81

3.6.4 The Pig Breeders’ Society of South Africa 81

3.6.5 Animal Health, Product Safety and Welfare Organisations 83

3.6.5.1 Directorate of Veterinary Services 84

3.6.5.2 The Pig Veterinary Society of South Africa 85

3.6.5.3 The Livestock Welfare Co-ordinating Committee 86

3.6.6 Academic and Tertiary Institutions Actively Involved in the Promotion of Pig Development in South Africa 87

3.6.7 Application of Computer Programmes/Models in the South African Pig Industry to Enhance its Competitiveness 88

3.6.7.1 Introduction 88

3.6.7.2 International Competitiveness of the South African Pig Industry 89

3.6.7.3 Overview of Different Computer Programmes and their Application 91

3.7 CONCLUSIONS TO CHAPTER III 92

CHAPTER IV ESTIMATION OF GENETIC PARAMETERS FOR PRODUCTION AND CARCASS TRAITS IN SOUTH AFRICAN LARGE WHITE, LANDRACE AND Duroc BREEDS 94

4.1 INTRODUCTION 94

4.2 ESTIMATING GENETIC PARAMETERS FOR THE PRODUCTION TRAITS 95

4.2.1 Materials and Methods 95

4.2.1.1 Data Recording Procedures and Animals Involved 95

4.2.2 Statistical Analysis 101

4.2.3 Results and Discussions 103

4.3 ESTIMATION OF GENETIC PARAMETERS FOR THE CARCASS TRAITS 104

4.3.1 Materials and Methods 104

4.3.1.1 Data Recordings, Animals and Procedures 105

4.3.1.2 Traits Analysed: Procedures 105

4.3.2 Statistical Analysis 108

xiii
CHAPTER V
STRUCTURING OF DESIRED BREEDING OBJECTIVES
FOR THE PIG INDUSTRY

5.1 INTRODUCTION

5.2 BREEDING OBJECTIVES – GENERAL PERSPECTIVES
5.2.1 Economic Aspects of the Breeding Objective
5.2.2 Traits to be Included in the Breeding Objective
5.2.2.1 Reproductive Traits
5.2.2.2 Production Traits
5.2.2.3 Carcass Traits
5.2.2.4 Meat Quality Traits

5.3 GENETIC CORRELATIONS BETWEEN THE VARIOUS TRAITS LINKED TO PIG PRODUCTION
5.3.1 Reproduction
5.3.2 Production
5.3.3 Carcass Traits
5.3.4 Meat Quality Traits

5.4 POSSIBLE FUTURE SCENARIOS FOR PIG BREEDING IN SOUTH AFRICA
5.4.1 Present to Near Present (2003-2005)
5.4.2 Intermediate Advancements (2006-2009)
5.4.3 Progressive Advancements (2010 and beyond)
5.4.3.1 Molecular Techniques

5.5 CONCLUSIONS TO CHAPTER V

CHAPTER VI
CONCLUSIONS, PERSPECTIVES, DIRECTIVES AND RECOMMENDATIONS

6.1 INTRODUCTION

6.2 POSITIONING

6.3 THE QUALITY ROAD

6.4 CONSUMERISM

6.5 PRODUCT SAFETY
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6 MARKETING ASPECTS</td>
<td>151</td>
</tr>
<tr>
<td>6.7 BIOTECHNOLOGY AND TECHNOLOGICAL TRENDS</td>
<td>152</td>
</tr>
<tr>
<td>6.8 RELATED AND UNDERLYING FACTORS PERTAINING TO THE BREEDING OBJECTIVE</td>
<td>155</td>
</tr>
<tr>
<td>6.9 MARKET INTELLIGENCE SYSTEM(S)</td>
<td>159</td>
</tr>
<tr>
<td>6.10 VULNERABILITIES: FINAL ANECDOTES</td>
<td>159</td>
</tr>
<tr>
<td>6.11 A FUTURISTIC PERSPECTIVE: MIGRATING FROM AN IMMATURE TO A MATURE SUPPLY CHAIN</td>
<td>160</td>
</tr>
<tr>
<td>6.12 IMPLEMENTING A “BEST PRODUCTION AND VALUE SYSTEM”</td>
<td>161</td>
</tr>
<tr>
<td>FOR THE SOUTH AFRICAN PIG INDUSTRY</td>
<td></td>
</tr>
<tr>
<td>6.13 FUTURE RESEARCH DIRECTIVES</td>
<td>163</td>
</tr>
<tr>
<td>6.14 FINAL RECOMMENDATIONS</td>
<td>164</td>
</tr>
</tbody>
</table>

REFERENCE LIST

ANNEXURES

xv
LIST OF TABLES

Table 2.1	Factors that will govern the acceptance of biotechnology in society	15
Table 2.2	The current status of the genome maps in the different species	16
Table 2.3	Different biotechnologies and application levels thereof in the pig breeding industry	17
Table 2.4	Categorical differences between the current EU legislation and the Dutch legislation on pig housing and welfare	19
Table 2.5	The approximate heritability estimates of the sensory attributes of meat quality	27
Table 2.6	Geographical coverage and sample size related to the various cultural groups	33
Table 2.7	Demographic breakdown of the respondence that were involved in the 2000 AC Nielsen Meat Multibus	38
Table 2.8	The profile of pork consumers based on age and language	39
Table 2.9	Short and long term solutions to minimize the consumer experienced pork repellors	42
Table 3.1	A summary of SAPPO membership, sows registered at SAPPO and average herd size per province	51
Table 3.2	A summary and percentage allocation of the national animal (across species) feed production (metric tons) during 2000	54
Table 3.3	Analysis of annual feed consumption on raw material and percentage basis for the South African pig industry	54
Table 3.4	A summary of the animal health product sales during 1999	56
Table 3.5 A summary of the amounts of money spent on advertising by the former Meat Board and SAPPO from 1994-2003

Table 3.6 An overview of the trend of the MH-gene in the South African pig population from 1992-1999

Table 3.7 A summary of the weekly slaughtering capacity of the SAMIC registered abattoirs in the various provinces

Table 3.8 A summary of the pig abattoirs per slaughtering category, number and range within slaughtering category

Table 3.9 An overview of pig numbers, slaughters, auction prices on the hook, production and per capita consumption of pork

Table 3.10 Breed – Breeder Activity in The National Pig Performance and Progeny Testing Scheme during 1999/2000

Table 3.11 Institutions that are involved in pig development in South Africa through training and/or research

Table 3.12 Technical pork production and performance parameters for Denmark, South Africa, Taiwan and the USA

Table 3.13 An overview of different computer programmes/models and their application in the South African pig industry

Table 4.1 The total number of pigs performance tested per breed per year (at the three central test stations)

Table 4.2 The contribution (ratio) of males and females in the dataset of the three breeds

Table 4.3 The number of pigs of each breed that were performance tested at each testing centre
Table 4.4 A summary of the number of centrally tested pigs selected from within the different litter size range(s) for the Large White, Landrace and Duroc pig breeds during the period 1989-2002

Table 4.5 A summary of the different sires, dams and sire dam combinations involved in the dataset for the Large White, Landrace and Duroc breeds

Table 4.6 Description of the general data and statistical information of the covariants and four production traits for the three breeds

Table 4.7 The number of pigs that completed their tests in each of the 1 kg weight intervals between 86 and 98 kg for the three breeds respectively

Table 4.8 Fixed (F), random (R), additive (A) effects and the covariants (C) for the four production traits of the three breeds in the animal model

Table 4.9 Heritability estimates \((h^2) \) for the four production traits of the Large White, Landrace and Duroc pig breeds

Table 4.10 The composition of shoulder mass and drip loss (expressed as a percentage) for the three breeds

Table 4.11 Description of the general data and statistical information with regard to the five carcass traits for the three breeds

Table 4.12 Fixed (F), random (R) and additive (A) effects for the five carcass traits of the three breeds in the animal model

Table 4.13 Heritability estimates for the five carcass traits of the Large White, Landrace and Duroc pig breeds

Table 5.1 A summary of the different reproductive traits and their heritabilities \((h^2) \) to be included in the breeding objective

Table 5.2 Genetic correlations of certain meat quality traits with \(pH_1 \) and \(pH_u \)
Table 5.3	The effect of major genes, within and across different pig breeds, on meat quality	129
Table 5.4	The difference between NN and nn pigs with regard to meat quality	130
Table 5.5	The different tiers in the pig production chain that will incur expenses (-) and that will benefit (+) from the inclusion of meat quality in the breeding goal	132
Table 5.6	Meat quality traits, which are recommended to be included in future breeding objectives for the South African pig stud industry	133
Table 5.7	Implications when selecting for and against certain production traits	137
Table 5.8	The importance of profit and non-profit factors in meat demand	144
Table 6.1	Breeding objectives in pigs: past (1980’s), near past (1990’s) and the future (2000 and beyond)	158
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Changes in the Agri-Business Environment</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>The three pressure valves in the pork supply chain</td>
<td>6</td>
</tr>
<tr>
<td>2.1</td>
<td>The core concepts of marketing</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>The three major factors influencing the perception of food or consumer behaviour</td>
<td>22</td>
</tr>
<tr>
<td>2.3</td>
<td>The Grey Benefit Chain of Emotional Payoff</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>The frequency of serving different meat types every four weeks</td>
<td>32</td>
</tr>
<tr>
<td>3.1</td>
<td>Simplified structure of a general supply chain</td>
<td>45</td>
</tr>
<tr>
<td>3.2</td>
<td>Possibilities to improve production characteristics, consumer perception and acceptability of pork</td>
<td>46</td>
</tr>
<tr>
<td>3.3</td>
<td>The range of marketing relationships evolving into the supply chain concept</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Distribution of commercial pork producers on a per province basis</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Distribution of total pig numbers in the commercial areas on a per province basis</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Distribution of total pig numbers in the developing areas on a per province basis</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Organogram explaining the functionality of AVCASA and the role of various committees</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>A summary of the total number of pigs tested centrally (Phase B) in the National Pig Performance Testing Scheme from 1991-2001</td>
<td>62</td>
</tr>
</tbody>
</table>
Fig 3.9 A summary of the total number of pigs tested on-farm (Phase D) from 1991-2001 63

Fig 3.10 The proposed PIG GEN gene flow diagram 66

Fig 3.11 A histogram of the trend of the allele pair frequency of the MH-gene in the South African pig population from 1992-1999 70

Fig 3.12 Organogram of the structure of SAPPO as a national organization 77

Fig 3.13 Diagrammatic representation of the various sectors of the red meat industry on the board of SAMIC 79

Fig 3.14 The inter relationship between the structures of the Red Meat Research and Development Trust 80

Fig 3.15 Organogram of the structure of PBS 83

Fig 5.1 Attributes that a product should have, as perceived by the consumer 114

Fig 5.2 Science to guarantee eating quality 116

Fig 5.3 FIRE assisted selection to improve early feed intake and control late feed intake 118

Fig 5.4 Different production effects that can be expected when two different types of selection are compared with two different feeding types 125

Fig 5.5 Important factors that have an influence on meat quality 128

Fig 5.6 Explanation of the genetic correlations between different sets of traits within the pig, a breed or a population 134

Fig 5.7 Diagram, indicating how genetic evaluations of progressive stud herds will in future be complimented by marker information, QTL effects, probabilities and various other factors to achieve a better prediction of the total genetic merit of an animal 140
Fig 5.8 A diagrammatic explanation of the potential impact of future biotechnology on the breeding structure 141

Fig 6.1 Competing for the future in the agri-food channel 148

Fig 6.2 A schematic explanation of the components of animal breeding in the future 156

Fig 6.3 The interdependence between the producer, the product, triggers and the environment on the breeding objective 157
LIST OF ANNEXURES

ANNEXURE I Results for the traits measured centrally during the year 2000 for the different breeds and sexes

ANNEXURE II Consumer perception of the various types of meat

ANNEXURE III The shift in agriculture

ANNEXURE IV Explanation of the PORCUS classification system

ANNEXURE V The extent and scope of quality assurance schemes

ANNEXURE VI The relative importance of different reproduction and production traits in three different countries

ANNEXURE VII Meat quality traits to be included in future breeding objectives for the South African pig stud industry

ANNEXURE VIII A review of heritabilities and genetic correlations for pigs with \textit{ad libitum} or semi-\textit{ad libitum}** access to feed

ANNEXURE IX A review of heritabilities and genetic correlations for pigs with restricted feed intake

ANNEXURE X The expected transactional characteristics of pork producers in South Africa

ANNEXURE XI The number of stud herds* involved and number of pigs performance tested per stud herd for the three breeds during the period 1989-2002

ANNEXURE XII The extent to which fourteen of the largest pork producers in South Africa are vertically integrated

ANNEXURE XIII Compilation of the genetic groups based on year of birth and country of origin