Social and Economic Factors Influencing
Under-Five Mortality in Zimbabwe During
1996-2005

by

Joshua Kembo

Submitted in fulfilment of the requirements for the degree

Philosophiae Doctor (PhD) Epidemiology

Supervisor: Professor Jeroen K. van Ginneken

School of Health Systems and Public Health
Faculty of Health Sciences
University of Pretoria

September 2009
ACKNOWLEDGEMENTS

It is gratifying and amazing to see the work of so many years coming to fruition. For this achievement, first and foremost, I acknowledge the valuable and timely input and support throughout all stages of this research process that I received from my Supervisor, Professor Jeroen K. van Ginneken of the School of Health Systems and Public Health (SHSPH), University of Pretoria and the Netherlands Interdisciplinary Demographic Institute in the Netherlands (NIDI). I thank Professor van Ginneken for the patience with which he dealt with my questions and his expert guidance throughout this challenging journey. Thank you Professor van Ginneken for teaching me how to write. I will forever cherish all the skills that you so patiently imparted to me during this long and challenging journey.

The head of the School of Health Systems and Public Health, Professor Kuku Voyi deserves special mention for the encouragement and advice given throughout my studies.

My doctoral study was funded by the Rockefeller Ford Foundation Doctoral Fellowship Programme housed in the Human Sciences Research Council of South Africa (HSRC) in Pretoria, and the University of Pretoria Doctoral Scholarship Programme. I wish to sincerely thank the Ford Foundation and the University of Pretoria for the kind financial support that they provided.

Gratitude also goes to my mentor in the Human Sciences Research Council, Dr. Khangelani Zuma for the advanced statistical advice and expert guidance that he gave throughout the study. I also thank Professor John Seager, Professor Leickness Simbayi, Dr. Temba
Masilela and Dr. Charles Hongoro of the Human Sciences Research Council for the guidance they provided during the Ford Foundation Doctoral Fellowship Programme.

I owe special gratitude to the Executive Director and Head of the Bureau of Market Research (BMR) at the University of South Africa (Unisa), Professor Deon Tustin for the consistent support and encouragement he gave. I thank my current mentor in the BMR, Professor Eric Udjo for the demographic and statistical advice and expert guidance given throughout the study. I further thank Professor Carel van Aardt for the great support and encouragement he constantly gave. Gratitude further goes to Professor Pierre Joubert for the encouragement given and for constantly checking on my progress from time to time. I also thank Professor Andre Ligthelm and the late Dr. Daan van Vuuren for the support and encouragement they gave. I owe gratitude to Mrs Marietjie Coetzee, the BMR Senior Computer Specialist, for the computing advice that she so kindly gave.

I sincerely thank Mrs Margie Nowak for the challenging task of formatting and editing this thesis. I also thank Ms Pamela De Jongh and Ms Madeleine Goetz for their advice in formatting different aspects of the thesis as well. I further thank Mr Andries Masenge, Senior Data Analyst in the BMR, for the statistical computing advice given. I also extend my special gratitude to Dr. Victor Andoseh from the School of Health Systems and Public Health for the computing advice with Stata that he so generously provided.

The research for this project would not have been a success were it not for the support that I received from my relatives and friends. I thank my wife, Moleen and lovely children, Nyashadzashe, Melisa and Monalisa for their support and encouragement. I also thank my friends and
colleagues, Arthur Risenga, Grace Tsheko, Hazel Makwela, Nnono Shai and Edward Masemola for the various levels of support and encouragement. I further thank Hazel for the marvellous work she did in editing the references to this thesis.

To Liz Wolvaardt and Samantha Hodgson – at the School of Health Systems and Public Health - I say thank you for the great support given throughout my studies. I thank fellow students in the School of Health Systems and Public Health for constructive criticism at various stages of the research.

Finally, I thank the Almighty God who made the completion of this doctoral thesis possible!
DECLARATION

I, Joshua Kembo, declare that the dissertation/thesis, which I have submitted for the degree of Philosophiae Doctor (PhD) Epidemiology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

_____________________ ________________________
Joshua Kembo Date

_____________________ ________________________
Commissioner of Oaths Date
DEDICATION

Dedicated To My Late Father, Mr. John Murima Kembo and My Mother
Mrs. Elizabeth Murima Kembo
ABSTRACT

This study addressed important issues on infant and child mortality in Zimbabwe. The broad objective of the study is to establish levels and trends of under-5 mortality and to determine the impact of maternal, socioeconomic and environmental contamination variables on infant and child mortality. Data from four DHS surveys conducted in Zimbabwe were used. It was found that mortality at all ages below 5 years old remained more or less constant from the period 1990-1994 to the period 1995-1999 and declined from the period 1995-1999 to 2001-2005. Mortality below 5 years old declined from 102 deaths per 1,000 live births during 1995-1999 to 82 deaths in 2001-2005. This decline was unexpected and it is argued that this decline is probably not genuine. Various types of evidence are provided to support the view that this decline in mortality probably did not take place. Analysis of ZDHS 2005-06 showed that births of order 6+ and short preceding interval (intervals of less than or equal to 18 months) had the highest infant mortality risk. Infants with these characteristics were significantly more likely (2.75 times) to die in infancy relative to births of order 2-5 and long preceding birth interval (p<0.001). The infant mortality risk associated with multiple births was 2.08 times more relative to singleton births (p<0.001). The results indicated that socioeconomic variables did not have a distinct impact on infant mortality. Determinants of child mortality were different in relative importance from those of infant mortality. The effect of maternal education, though not significant, implied a decline in child mortality with increasing maternal schooling. The provision of piped drinking water and flush toilets to the households had a stronger impact on child mortality than infant mortality. Including HIV prevalence in the models elevated the odds of dying in infancy and childhood stages by 10 percent and 63 percent, respectively. This suggests that HIV/AIDS directly and/or indirectly influences the current levels of under-5 mortality.
in Zimbabwe. This study supports health policy initiatives stimulating use of family planning methods to increase birth intervals. Family planning programmes should be aimed at educating women and men with low educational levels and those in rural areas about the potential benefits of long-term birth spacing. These and other results are expected to assist policy makers and programme managers in the child health sector to formulate appropriate strategies to improve the situation of under-5 children in Zimbabwe.
TABLE OF CONTENTS

Acknowledgements i
Declaration iv
Dedication v
Abstract vi
Table of Contents viii
List of Figures xv
List of Tables xx
List of Appendices xxvi

Chapter 1 Introduction 1
1.1 Background 1
1.2 Study Purpose 6
1.3 Population, Social Development and Political Economy of Zimbabwe 6
 1.3.1 Population 6
 1.3.2 Political Economy 6
 1.3.3 Social Setting 7
1.4 Rationale of Study 8
1.5 Objectives of the Study 9
1.6 Organisation of the Thesis 9

Chapter 2 Literature Review and Theoretical Framework 11
2.1 Introduction 11
2.2 Review of Literature 11
 2.2.1 Trends in Under-5 Mortality Including the Role of HIV/AIDS 11
2.2.2 Determinants of Childhood Mortality 17
 2.2.2.1 Introduction 17
 2.2.2.2 Mortality 17
Chapter 4 Levels and Trends in Infant and Child Mortality in Zimbabwe

4.1 Introduction 59

4.2 Analysis and Interpretation of Mortality Levels and Trends Using Direct Estimates

4.2.1 Neonatal and Postneonatal Mortality Levels and Trends 59

4.2.2 Infant, Child and Under-5 Mortality Levels and Trends 60

4.2.3 Comparison of Infant and Under-5 Mortality Rates for Periods 0-4 and 5-9 years Preceding four ZDHS Surveys 61

4.2.4 Mortality Differentials by Sex of Child

4.2.4.1 Neonatal and Postneonatal Mortality Differentials by Sex 62

4.2.4.2 Neonatal to Postneonatal Mortality Ratios 62

4.2.4.3 Infant Mortality Differentials by Sex 63

4.2.4.4 Child Mortality Differentials by Sex 64

4.2.4.5 Infant to Child Mortality Ratios 64

4.2.4.6 Under-5 Mortality Differentials by Sex 64

4.2.5 Mortality Differentials by Rural-Urban Residence

4.2.5.1 Infant Mortality Differentials by Rural-Urban Residence 65

4.2.5.2 Child Mortality Differentials by Rural-Urban Residence 65
4.2.5.3 Under-5 Mortality Differentials by Rural-Urban Residence

4.2.6 Mortality Differentials by Province

4.2.7 Regional Variations in Childhood Mortality

4.3 Direct and Indirect Childhood Mortality Estimates

4.4 Estimated Mortality Levels and Trends using Direct and Indirect Estimates and Multi-spline Regression

4.5 Trends in Adult Mortality

4.6 Trends in HIV Prevalence Rates

4.7 Concluding Remarks

Chapter 5 Results of the Bivariate Analysis

5.1 Introduction

5.2 Description of the Covariates

5.2.1 Maternal Variables

5.2.2 Socioeconomic Variables

5.2.3 Environmental Contamination Variables

5.2.4 Personal Illness Control Variables

5.3 Bivariate Proportional Hazards Regression Models

5.3.1 Impact of Maternal Covariates on Infant and Child Mortality

5.3.2 Impact of Socioeconomic Covariates on Infant and Child Mortality

5.3.3 Impact of Environmental Covariates on Infant and Child Mortality

5.3.4 Impact of Personal Illness Control Covariates on Child Mortality
5.4 Comparison of 2005-06 ZDHS with Two Other ZDHS surveys
5.5 Impact of HIV/AIDS on Infant and Child Mortality
5.6 Concluding Remarks

Chapter 6 Determinants of Infant and Child Mortality: Results of Multivariate Hazards Analysis
6.1 Introduction
6.2 Infant Mortality
 6.2.1 Impact of Maternal Variables on Infant Mortality
 6.2.2 Impact of Socioeconomic Variables on Infant Mortality
 6.2.3 Impact of Environmental Contamination Variables on Infant Mortality
 6.2.4 Impact of Maternal, Socioeconomic and Environmental Contamination Variables and HIV/AIDS on Infant Mortality
6.3 Child Mortality
 6.3.1 Impact of Maternal Variables on Child Mortality
 6.3.2 Impact of Socioeconomic Variables on Child Mortality
 6.3.3 Impact of Environmental Contamination Variables on Child Mortality
 6.3.4 Impact of Maternal, Socioeconomic and Environmental Contamination Variables and HIV/AIDS on Child Mortality
6.4 Concluding Remarks
Chapter 7 Determinants of Infant and Child Mortality: An Analysis Controlling for Family and Community Frailty Effects

7.1 Introduction 153
7.2 Measurement of the Family and Community Frailty Effect 153
7.3 Family and Community Frailty Models 155
 7.3.1 Infant Mortality 155
 7.3.1.1 Family Clustering Model 155
 7.3.1.2 Community Clustering Model 156
 7.3.2 Child Mortality 157
 7.3.2.1 Family Clustering Model 157
 7.3.2.2 Community Clustering Model 159
7.4 Concluding Remarks 160

Chapter 8 Discussion of Findings, Conclusions and Recommendations

8.1 Introduction 166
8.2 Summary and Discussion of Major Findings 166
 8.2.1 Levels and Trends of Infant and Child Mortality 166
 8.2.2 Determinants of Infant and Child Mortality 169
 8.2.2.1 Maternal Variables and Mortality 170
 8.2.2.2 Socioeconomic Variables and Mortality 171
 8.2.2.3 Environmental Contamination Variables and Mortality 173
 8.2.2.4 HIV/AIDS and Infant and Child Mortality 173
8.2.3 Frailty Hazard Models 175

8.3 Conclusions 177

8.4 Limitations 178

8.5 Recommendations 179

REFERENCES 183
LIST OF FIGURES

Figure 2.1 Summarised Mosley and Chen Framework 28
Figure 2.2 The Mosley and Chen (1984) Proximate Determinants Framework 29
Figure 3.1 Kaplan-Meier Survival Curve for Under-5 Children Born during the 1996-2005 Period, 2005-06 ZDHS Survey, Zimbabwe 51
Figure 3.2 Percentage Distribution of Women by Age (15-49) Interviewed during each of the 4 ZDHS surveys, Zimbabwe 53
Figure 3.3 Number of Children Ever Born by Age of the Mother, 1988 ZDHS, 1994 ZDHS, 1999 ZDHS and 2005-06 ZDHS 54
Figure 3.4 Kaplan-Meier Survival Curves Classified by Sex of Child for Under-5 Children born during 1996-2005, 2005-06 ZDHS, Zimbabwe 56
Figure 3.5 Kaplan-Meier Survival Curves Classified by Residence for Under-5 Children born during 1996-2005, 2005-06 ZDHS, Zimbabwe 57
Figure 3.6 Kaplan-Meier Survival Curves Classified by the Presence of Flush Toilet for Under-5 Children born during 1996-2005, 2005-06 ZDHS, Zimbabwe 58

Figure 4.5 Trends in the Ratio of Neonatal to Postneonatal Mortality by Sex for the Calendar Period 1985-1994 (ZDHS 1994), 1990-1999 (ZDHS 1999) and 1996-2005 (ZDHS 2005-06), Direct Estimates, Zimbabwe

Figure 4.13 Comparison of Trends in Infant Mortality in Selected Neighbouring Countries, sub-Saharan Africa, Less Developed Countries and Zimbabwe, 1980-1985 to 2000-2005

Figure 4.14 Direct and Indirect Infant Mortality Estimates, 1988 ZDHS, Zimbabwe

Figure 4.15 Direct and Indirect Infant Mortality Estimates, 1994 ZDHS, Zimbabwe

Figure 4.16 Direct and Indirect Infant Mortality Estimates, 1999 ZDHS, Zimbabwe

Figure 4.17 Direct and Indirect Infant Mortality Estimates, 1988 ZDHS, Zimbabwe
Figure 4.18 Infant Mortality Data and Estimated Trend, 1950-2005 (Direct and Indirect Estimates), Zimbabwe

Figure 4.19 Under-5 Mortality Data and Estimated Trend, 1950-2005 (Direct and Indirect Estimates), Zimbabwe
LIST OF TABLES

Table 3.1: Completeness of Age at Death Information for Under-5 Children born during the 1996-2005 Period, 2005-06 ZDHS survey, Zimbabwe

Table 3.2: Test of the Proportionality of the Hazard Assumption, 2005-06 ZDHS, Zimbabwe

Table 4.1: Selected Health Indicators, ZDHS 1994, ZDHS 1999 and ZDHS 2005-06, Zimbabwe

Table 4.2: Assessment of the Comparability of Infant and Under-5 Mortality Rates per 1,000 Live Births across the four ZDHS Surveys, Zimbabwe

Table 4.3: Trends in Infant, Child and Under-five Mortality per 1,000 Live Births by Province, for The Calendar Period 1990-1999 (ZDHS 1999) and 1996-2005 (ZDHS 2005-06) Direct Estimates, Zimbabwe

Table 4.4: Demographic and Health Survey 1988, Direct Estimates, Zimbabwe

Table 4.5: Demographic and Health Survey 1988, Indirect Estimates, North Model, Zimbabwe
Table 4.6: Demographic and Health Survey 1994, Direct Estimates, Zimbabwe

Table 4.7: Demographic and Health Survey 1994, Indirect Estimates, North Model, Zimbabwe

Table 4.8: Demographic and Health Survey 1999, Direct Estimates, Zimbabwe

Table 4.9: Demographic and Health Survey 1999, Indirect Estimates, North Model, Zimbabwe

Table 4.10: Demographic and Health Survey 2005-06, Direct Estimates, Zimbabwe

Table 4.11: Demographic and Health Survey 2005-06, Indirect Estimates, North Model, Zimbabwe

Table 4.12: Age-specific Mortality Rates for Women aged 15-49 years based on the Survivorship of Sisters of Survey Respondents, Zimbabwe

Table 4.13: HIV Prevalence Rates for Adults aged 15-44 years by Rural and Urban Area, 1996 – 2006, Zimbabwe
Table 5.1: Absolute and Percent Distribution of Under-5 Births and Deaths during 1996-2005, Maternal Covariates, 2005-06 ZDHS

Table 5.2: Absolute and Percent Distribution of Under-5 Births and Deaths during 1996-2005, Socioeconomic Covariates, 2005-06 ZDHS

Table 5.3: Absolute and Percent Distribution of Under-5 Births and Deaths during 1996-2005, Environmental Contamination Covariates, 2005-06 ZDHS

Table 5.4: Absolute and Percent Distribution of Under-5 Births and Deaths during 1996-2005, Personal Illness Control Covariates, 2005-06 ZDHS

Table 5.7: Impact of Environmental Contamination Variables on Infant and Child Mortality, Bivariate Analysis, 1996-2005, (2005-06 ZDHS)
Table 5.8: Impact of Personal Illness Control Variables on Infant and Child Mortality, Bivariate Analysis, 2001-2005, (2005-06 ZDHS)

Table 6.5: Impact of All Independent Variables on Infant Mortality, Hazard Model Estimates of Relative Risks (RR), 1996-2005 (2005-06 ZDHS)

Table 7.1: Impact of Maternal, Socioeconomic and Environmental Contamination Variables on Infant Mortality, Controlling for Family and Community Frailty, 1996-2005 (2005-06 ZDHS), Zimbabwe
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix 1:</th>
<th>The 2005-06 Zimbabwe Demographic and Health Survey Woman’s Questionnaire</th>
<th>192</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 2:</td>
<td>Letters of Approval for Thesis Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>University of Pretoria Ethics Committee Approval Letter</td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>University of Pretoria Approval of Change of Part of Topic Letter</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>Data Use Agreement Letter from Macro International, United States of America</td>
<td>261</td>
</tr>
<tr>
<td></td>
<td>Data Use Agreement Letter from Central Statistical Office, Zimbabwe</td>
<td>262</td>
</tr>
<tr>
<td>Appendix 3:</td>
<td>Proof of Article Acceptance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chapter 6</td>
<td>263</td>
</tr>
<tr>
<td>Appendix 4:</td>
<td>Curriculum Vitae and Summary of Purpose and Contents of Research</td>
<td>264</td>
</tr>
</tbody>
</table>