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Abstract  
For scientific or socio-economic reasons it is often necessary or desirable that 

biological material be identified. Given that there are an estimated 10 million living 

organisms on Earth, the identification of biological material can be problematic. 

Consequently the services of taxonomist specialists are often required. However, if 

such expertise is not readily available it is necessary to attempt an identification using 

an alternative method. Some of these alternative methods are unsatisfactory or can 

lead to a wrong identification. One of the most common problems encountered when 

identifying specimens is that important diagnostic features are often not easily 

observed, or may even be completely absent. A number of techniques can be used to 

try to overcome this problem, one of which, the Self Organizing Map (or SOM), is a 

particularly appealing technique because of its ability to handle missing data. This 

thesis explores the use of SOMs as a technique for the identification of indigenous 

trees of the Acacia species in KwaZulu-Natal, South Africa. The ability of the SOM 

technique to perform exploratory data analysis through data clustering is utilized and 

assessed, as is its usefulness for visualizing the results of the analysis of numerical, 

multivariate botanical data sets. The SOM’s ability to investigate, discover and 
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interpret relationships within these data sets is examined, and the technique’s ability to 

identify tree species successfully is tested. These data sets are also tested using the C5 

and CN2 classification techniques. Results from both these techniques are compared 

with the results obtained by using a SOM commercial package. These results indicate 

that the application of the SOM to the problem of biological identification could 

provide the start of the long-awaited breakthrough in computerized identification that 

biologists have eagerly been seeking. 

 

Keywords: Self-Organizing Map (SOM), Unsupervised Learning Algorithm, 
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Chapter 1 
Introduction 

 

 

As in all of the biological sciences, botany is extremely rich in information. In the last 

100 years knowledge about plants has expanded exponentially and access to much of 

this information is obtained through scientific plant names. Consequently, in order to 

utilize this information, field researchers, ecologists, conservationists, ethnobotanists, 

students, para-botanists and even interested laypersons need to know the names of the 

plants they encounter in the wild or in their gardens.  

The process by which plant names are obtained in the field is known as 

identification. Within this context, identification involves recognizing, selecting or 

associating closely the characteristics of an unknown object with another object of 

known identity. By far the greatest diagnostic information which a biologist uses 

when identifying biological specimens is based on gross morphology. This is because 

macromorphology is more practical to use than micromorphology or molecular data, 

especially when in the field [72, 160]. The macroscopic identification of a botanical 

tree is often done by taking material (leaf, bark, flowers, seed or root) from the 

unknown tree and comparing its characteristics with a list of correlated characteristics 

of known trees. In addition, the location, climatic conditions and general form of a 

tree should also be taken into consideration. Each tree Species (which consists of 

varied individuals) displays a range of characteristics which form a pattern specific to 

that species. Sometimes these species’ patterns are distinct, making identification 

easy, but sometimes they overlap, making identification difficult. In addition, 

biological recognition is an elementary but fundamental type of identification [174]. 

By far the best solution for identifying botanical material is to have an expert 

taxonomist who can perform the identification drawing on intuitive and sensory 

recognition as well as professional expertise. However, it is often the case that no 

expert is available and so alternative aids to identification have to be found. This 
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research thesis investigates the problems involved in identifying botanical samples 

and attempts to find a computerized solution which could increase a novice’s chance 

of performing a successful identification. Many techniques are available; the most 

sophisticated being those available through the fields of Artificial Intelligence (AI) 

[44, 154, 182] and DNA barcoding [61, 62, 81, 88, 89, 93, 94, 149].  

Section 1.1 discusses why it is thought that AI techniques and, in particular, the 

Self-organizing map (SOM) could prove useful in overcoming some of the difficulties 

experienced with biological identification. The objectives of this research are 

presented in Section 1.2, followed by the scope of the study in Section 1.3. The 

contributions of this work are discussed in Section 1.4 and finally this introduction 

concludes with Section 1.5 which outlines the organization of this thesis. 

 

1.1 Motivation 

Solving the biological identification problem requires finding a system or technique 

that can handle a multi-attribute data set which is often incomplete and sometimes 

very sparsely populated with values. It also requires that the system is able to mimic 

decisions of a human expert and is able to discriminate between data patterns that are 

often fuzzy and overlapping. Human experts often base identification on the ‘giss’ 

(general identification based on shape and size), or ‘gestalt’ of the object being 

identified, or on whether the identification ‘seems’ right. These types of decisions are 

typical of humans and are extremely difficult to represent when a machine is used to 

make the same sort of decisions. Humans also learn from their experience. What is 

needed is a system that is capable of mimicking the thinking of a human expert. 

Artificial neural networks (ANN) [67, 86, 91, 92, 177, 190, 258] are used for 

modelling biological neural systems and, in particular, their ability to learn from their 

environments. In addition, studies of the human cerebral cortex have shown that 

several areas of the brain are represented by topologically ordered maps [65, 92, 111, 

114]. These studies inspired Kohonen to develop the SOM [114] which is a form of a 

neural network that can provide an objective way of clustering data through self-

organizing networks of artificial neurons. 
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The typical application of SOMs is as a clustering and visualization tool for 

portraying the central and inter-dependencies or correlated relationships within data 

on a map [57, 105, 114, 157]. If the input data involve multi-attribute patterns, the use 

of clustering techniques is essential, while the projection of the input pattern onto a 

topology-preserving lower-dimensional grid provides the means for efficient and 

effective visualization of the projected data. Thus the SOM has features which will 

help group and organize multi-attribute biological data and at the same time represent 

data in a format that is easy to understand and analyse. 

Undoubtedly one of the main advantages of using the SOM for tackling biological 

identification is the SOM’s ability to produce results even if the data set is incomplete. 

This factor is very significant for samples where there is often an incomplete data set, 

as is the case with botanical tree identification.  

Given the nature of the input data, it is felt that utilizing a SOM could provide a 

novel and effective technique for plant identification, and at the same time might 

reveal previously hidden phenetic relationships (or correlations) between the data. 

Also, by using a SOM some of the problems associated with finding and defining the 

appropriate underlying reasoning of an expert disappear. 

Although DNA barcoding has recently grown rapidly worldwide and is fairly 

sophisticated, it is felt that it is important that one first gets a good understanding of 

the morphology of botanical material before progressing to DNA barcoding. The 

DNA results would make more sense once one has a good understand of the 

morphological details of plants. For this reason, for this research project it was 

preferred to proceed with AI techniques rather than DNA barcoding. However, the 

latter technique is discussed in detail in Section 2.3.  

1.2 Objectives 

The main objective of this thesis is to evaluate the applicability of the SOM for the 

problem of biological identification, as compared with other AI methods. In reaching 

this objective, the following sub-objectives are identified: 

 To provide an overview of existing biological identification tools and of some 

AI methods such as C5, CN2 and SOM. 
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 To compare the results obtained by using the SOM algorithm with the results 

obtained by using the C5 algorithm to build decision trees, and the CN2 rule 

induction algorithm. 

 To analyze the results produced by the SOM and to try to identify which 

characteristics are the principal components used in identifying tree samples; 

and to see if any previously unrecognized identification patterns can be 

detected. 

1.3 Scope 

Collection of data on biological material is a long and tedious process: the amount of 

material potentially available is overwhelmingly large and obtaining the data is 

extremely time-consuming. 

For this reason, the biological data used have been drawn from botany samples, 

and the data sources have been further restricted to data obtained from Acacia species 

found in KwaZulu-Natal (KZN), South Africa. This genus was chosen because in 

KZN it is a relatively small group of indigenous trees that provided a manageable data 

source that was relatively easy to obtain. Acacia are also a prominent component of 

the flora of this province. 

For the purposes of this study only macroscopic characteristics of data samples 

were considered. In the field, these are the characteristics that are most commonly 

employed for identification purposes. 

 

1.4 Contributions 

This thesis shows that the SOM technique is very useful for identifying biological 

samples, particularly because of its ability to provide results even when the data sets 

are incomplete. 

It also shows that the SOM technique can be used for predicting the likely identity 

of a sample even when the set of data presented contains attribute values that have not 

been presented in the training set. 

 
 
 



Chapter  1 : Introduction  

 

  

5

Finally this thesis shows that what is lacking in other algorithms used for 

biological identification can be provided by using neural network techniques that are 

capable of learning from previously presented data. 

 

1.5 Thesis Organization 

A brief outline of the difficulties of biological identification has been presented in this 

chapter. The remainder of the thesis is organized as follows: 

 Chapter 2: The biological identification process is examined, and an outline of 

the problems and requirements for easy identification of macroscopic botanical 

material is given. A literature review relating to the research objectives is 

given.  

 Chapter 3: Several algorithmic solutions to the problem are explored. 

 Chapter 4: The SOM algorithm is described. 

 Chapter 5: The methods used for collection, preparation and representation of 

the data are presented and the research methodology used for constructing the 

SOM models developed for this study is described. 

 Chapter 6: The SOM models are presented and are analyzed, and the results 

obtained from testing the data using the SOM models are examined. The data 

are also presented to the C5 decision tree algorithm, and to the CN2 rule 

extraction algorithm, and the results are discussed.  

 Chapter 7: A validation of the research is given by summarizing the main 

conclusions and the research goals of the thesis. Any shortcomings and 

possible improvements of the research are discussed and ideas for future work 

are suggested. 

 Bibliography is a list of publications consulted in the compilation of the 

present work. 

 Appendix A presents a list of acronyms, abbreviations and glossary of terms 

used in the thesis. 

 Appendix B presents a batch SOM algorithm. 
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Chapter 2 
Background to Biological Identification 

 

 

The understanding of biodiversity, in particular organismal diversity, is central to all 

biology and it is frequently necessary to identify organisms. It is important for 

scientific and economic reasons to identify and thus name organisms. Identification is 

important in conservation, environmental management and in jurisprudence. 

Accessing the name of an organism (identification) can unlock a wealth of 

information that has been gathered throughout history on that organism by giving 

access to the warehouse of collective botanical knowledge. Names of economically 

important plants (especially if one thinks of fields such as genetics, agriculture and 

biomedicine) are by association of economic significance. As Janzen writes [98], 

being able to access the name of any plant would be “to plants what the printing press 

was to stories, education, science, law, medicine and communication”. In addition, 

identification is more important now than in any other point of human history as 

biodiversity experiences global-wide extinction [10, 97, 129] and taxonomic expertise 

decreases [16, 21, 208, 243]. Of great concern is the fact that many groups, especially 

of animals, protists and fungi presently have no experts at all.  

Samples of biological specimens brought in for identification are often incomplete, 

or are poor examples of the source material from which they have been taken, or  are 

fragmentary (for example, museum specimens). This makes identification even more 

difficult. Although by far the best solution for identifying botanical material is to have 

an expert taxonomist who can perform the identification, these experts are often not 

available and due to the increasing shortage of these experts and/or cost of providing 

specialist expertise this option is often neither feasible nor possible. According to 

Hebert [93] 15,000 taxonomists will be required in perpetuity to identify life if 

reliance on just morphological diagnosis continues. Thus alternative aids to 

identification have to be found. This chapter discusses the problems involved in 

identifying botanical samples, and some of the techniques used historically and 

currently. 
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Section 2.1 introduces the problems involved in identification, and in Section 2.2 

the historical solutions are discussed. In particular, Section 2.2.1 describes some of 

the manual botanical methods that have been used in the past and are still used today. 

Section 2.2.2 discusses some state-of-the-art computerized systems. Future trends are 

discussed in Section 2.3 and the last section concludes the chapter. 

 

2.1 The Problem 

The greatest problem in identifying any biological specimens is that in nature species 

can exhibit great variation, known as polymorphism. Entities may be discrete, but 

conversely there may also be cases where no absolute boundaries are available to 

delimit taxa. The normal range of morphological variation for biological material can 

be affected by climatic, environmental and geographical conditions. All of these 

factors can have an affect on the growth of organisms and thus influence an entity’s 

attribute values and hence its identification pattern. The age of a plant can have a huge 

influence on some characteristics, for instance leaves are often larger on young plants, 

heavily shaded branches and coppice growth. Some trees even start off with simple 

leaves on the young plants and develop compound leaves as the tree matures. Also 

many leaf characteristics deteriorate in certain seasons with hairs falling off, latex 

drying up or smells fading. In addition, seldom are all possible characteristics present 

or observable on a specimen at any one time; for example flowers are often absent 

when seeds are present. 

It is estimated that biodiversity (excluding microbes) is 10 million species, and of 

these approximately 1.7 million are named species of animals and plants (i.e. form the 

known portion of biodiversity). The current methods of classification and 

identification of biodiversity are clearly not coping and there is great need for new 

and improved identification techniques. According to Weeks and Gaston [240]: 

 

“The single greatest impediment to biodiversity research is taxonomic. The 

resources available are inadequate to meet the demands for the discrimination, 

description and routine identification of specimens of most taxa in most areas of 

the world.”  
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With any identification system the descriptions of specimens depend on how the 

observer views the objects being described. This complicates the identification 

process when the descriptions depend on ‘fuzzy’ terms, such as ‘short’ or ‘pale’. What 

is meant by the term ‘short’ can be interpreted differently by each person involved 

and even differently at various times by the same person. 

An identification system needs to able to cope with missing data, multi-variable 

data and inexact descriptions and still be able to perform identification when 

previously unseen data are presented. Some of the identification aids that have been 

used in the past are discussed in the following section. 

 

2.2 Historical Solutions 

The identification of biological specimens is a fundamental human activity. For a 

botanist (layman or professional) identification usually means finding the name for a 

specimen of a plant. Irrespective of the type of material in question a specimen cannot 

be identified unless a classification of like-specimens already exists with which the 

new specimen can be compared. In this sense classification means a way of grouping 

specimens on the basis of some relationship between them. The groups formed are 

given names, and when a new specimen is examined and it is decided that it belongs 

to one of the existing groups it has then been identified. By far the greatest part of the 

information which a botanist uses when identifying specimens in the field is based on 

macromorphology: that is, the features that can be detected by human observation and 

interpreted with ease and speed. 

2.2.1 Manual Botanical Methods 

Traditional methods of identification include expert determination, recognition, 

comparison, and the use of keys and similar devices. As mentioned above, by far the 

best method of identification is the human expert, but such an individual is often not 

available when needed. When the expert’s input cannot be obtained, the problem 

becomes one of finding a good alternative for the expert’s knowledge, judgment, 

intuitive experience and reliability. 

When time is not an issue, a method of identification is to compare an unknown 

specimen with a stack of previously classified specimens, using any reliable available 
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records (such as textual descriptions, photographs, illustrations, etc.), until a likely 

“match” or identification is found. This method can be successful and result in a 

reliable identification; however, it is not always possible or feasible to sift through 

available data owing to time constraints and availability of suitable material for 

identification. In addition, some groups of organisms are more difficult to identify 

than others, and the lack of specific expertise on a group of organisms can also add to 

the problem. 

The most frequently used identification method is the diagnostic key. The use of a 

key for identification is several centuries old. In 1736 Linnaeus, often mistakenly 

referred to as the ‘father of modern taxonomy’, used a key which he called a clavis 

(Latin for key); however he never applied this to plants [160] and the key was not 

strictly dichotomous. According to Voss [237] it was not until 1778 that Lamarck, in 

his Flore Françoise, produced a dichotomous key as it is known today. 

Since the 18th century most manual macroscopic identification of a botanical nature 

has been done by means of sequential single-entry keys (e.g. dichotomous keys) in 

books and articles; such as is found in Leistner [131]. This method does depend to a 

certain extent on time, material and experience, but is generally the most successful 

method when an expert is not available. These keys are made up of contrasting, 

mutually exclusive characteristic statements (called couplets) that require the 

identifier to make a comparison with the specimen being keyed, and then choose the 

most appropriate statement from a recognized text [174, 210]. When using a key, each 

time a choice is made one or more taxa are eliminated by using deductive logic, and 

the number of possible results (taxa) remaining on the identification list is reduced.  

When designing a key macroscopic, morphological and non-variable characteristic 

states which are generally available to the user of the key are preferable; particularly 

if they are relatively easy to determine. 

Specialized tests on microscopic characteristics often cannot be carried out, 

especially in the field. Keys have certain formats (indented or bracketed) and 

conventions (statements started with the same word, as demonstrated in Table 2-1 

with the use of the word ‘Plant’; and statements started with the name of the plant 

part, as demonstrated in Table 2-1 with the use of the word ‘Spines’) are employed to 

make the use of the key simpler. 
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       Table 2-1 : Extract from Botanical Vegetative Key 

(Adapted from Key by Johnson in [168]) 

1.   Plant spinescent…………………………………………………………….2 

      Plant without spines…………………………………………………...….26 

2. Spines are sharply-tipped dwarf branches…………………………...….......3 

    Spines are separate structures, curved or straight.…………...….………......4 

…. 

4.   Spines (at least some of them) curved……………………………………..5 

      Spines straight……………………………………………....…………… 16 

5.   Spines scattered, or single in rows……………………………………..…..6 

      Spines in pairs or trios…………………………………………………….11 

6.   Spines randomly scattered………………………………………………....7 

      Spines in rows……………………………………………………………...9 

7.   Tendrils present on some stems……………….......Acacia kraussiana p132 

      Tendrils lacking…………………………………….....…………………...8 

…. 

16. Tree always small………………………………………………………...17  

      Not so.........................................................................................................19 

17. Bark corky; spines face towards branch tips....................Acacia davyi p128 

      Bark smooth; twigs sticky..........................................................................18 

18. Twigs blackish..............................................................Acacia borleae p124 

      Twigs pale................................................................... Acacia swazica p138 

.... 

 

If a key is well written, suitable specimens are available, and the person using the 

key is careful, a specimen can be successfully identified. However, keys do not 

necessarily group related species, and in fact the reverse is often the case. In addition, 

it sometimes happens that the use of specific characteristics is required, but these are 

not always evident on the specimen to be identified. Also, single access or sequential 

keys start at a certain point and this can result in their being unusable or difficult to 

use [100]. If a characteristic is absent or is misinterpreted the user cannot proceed or 

may end up identifying the specimen incorrectly.  
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Most of the botanical keys for the flora of southern Africa, besides being based on 

historical keys, are based on, or have similarities to, one originally developed by 

Phillips in the 1920s [164] and further developed by Dyer [60]. The key presented by 

Johnson [168] is also derived from these earlier keys. Table 2-1 gives an example of 

an adapted portion of Johnson’s key that was developed as an aid to identification of 

indigenous trees found in the former Zululand, Natal and Transkei areas.  

Statement numbers are given on the left side of Table 2-1 for each of the couplets 

presented. Each statement pair represents a choice available to the user. When the user 

selects one statement from a pair then the next statement pair to be considered is 

indicated by the number on the right side of the chosen statement. Using Table 2-1, 

the user reads the first statement pair then looks at the specimen to be identified and 

decides whether or not it has spines. If it is spinescent the next statement pair to be 

considered is 2. If it is not spinescent, the next statement pair to be considered would 

be 26. After considering statement pair 2 the user would go to statement pair 4 if the 

specimen has separate spine structures (all southern African Acacia species have 

thorns and not spine-tipped branches). Statement pair 4 requires the user to select 

whether the spines on the specimen are straight or hooked (recurved). If the spines are 

recurved the user goes to statement pair 5, if the spines are straight then the user 

jumps to statement pair 16. This process continues until an identification is made. The 

identification is indicated, on the right hand side of the table, by giving the name of 

the identified specimen and page number where the description and other information 

on the species can be found. An example of a successful identification is shown in the 

first statement in the 7th pair. 

Although keys may provide an answer to an expert, a layman cannot easily or 

conveniently apply the key successfully, and, on occasions, even trained botanists fail 

in their use of the keys. Many keys only start to ‘work properly’ when the user begins 

to understand the way in which the key’s compiler has defined any subjective 

characteristics involved. To use a key successfully, there is usually a need to know the 

terminology and concepts that are unique to a group or key. For example, “Twigs 

pale” can mean different things to different users and can lead to the choice of the 

wrong option in a key. It is because of this, and of the use of specialized terminology, 
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that the use of sequential keys is one of the main difficulties experienced by students 

and amateur botanists alike [210].  

Although frequent use of a key increases the likelihood of successful identification 

as the user begins to understand the idiosyncrasies of the key, if an incorrect step is 

taken along the path through the key (whether by error, misinterpretation, ambiguity 

or aberration of the specimen itself) the identification process is likely to fail. The 

chance of going wrong increases as the number of steps in the key increases. Also, the 

ease of use of a key can vary depending on the difficulty of the plant group involved, 

and on the whims of the compiler who developed the key. In addition, keys may 

contain errors due to poor construction. 

The strict sequential nature of these keys, working on a strict order of characteristic 

elimination, does not allow for easy backtracking or lateral progression. Nor does it 

allow for the free selection of a number of different starting points for 

identifying/retrieving data. With these types of key, options for identifying an 

unknown specimen are limited; and the keys make no allowance for ambiguous or 

atypical data, or for the absence of characteristics in the material being identified. 

In order to increase the chance of successful identification some sequential keys 

employ reticulations. Attempts have been made to produce multiple-entry access keys 

or polyclaves (e.g. punch or clip card keys and tabular keys) which allow the user, 

rather than the author of the key, to select the characteristics to be used in the 

identification process as well as the order in which the characteristics are used. This 

provides a great advantage especially when the material to be identified is 

fragmentary. In addition the route taken to identify a specimen may be different from 

one specimen to the next. Despite these variations, the general logic of identification 

using a polyclave is the same as that used in a dichotomous key. Although polyclaves 

increase the chance of a successful identification they are not infallible and can only 

handle small data sets. They do have a major advantage in that they allow the user 

freedom to choose any characteristic in any sequence, thus avoiding the rigid format 

of sequential keys [100] and allowing for the possible identification of incomplete 

specimens with missing data.  

Computerized polyclaves which employ characteristic elimination or probabilistic 

techniques have been developed, and some of these can list the taxa that have been 
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eliminated and the taxa that remain as possible identification candidates. Polyclaves 

and other computerized systems are discussed in Section 2.2.2. 

2.2.2 Computerized Systems 

More recently, computer keys have been produced which allow for identification and 

information retrieval; and several interactive systems have been used for plant 

identification. There have been several major approaches as far as computerized 

biological identification is concerned. These include computer-stored dichotomous 

keys, computer-constructed keys, simultaneous characteristic-set methods, and 

automated pattern recognition.  

Many of the applications of these approaches provide no real advantage over 

printed keys, or are so time consuming that they are only practical for application to 

groups of taxa which require specialized attention. In addition some of these 

approaches require specialized equipment.  

Despite this there can be several advantages of computerized keys over 

conventional keys which include the following: 

 provide a variable starting point, i.e. make it possible to start with almost any 

characteristic, in any order so that characteristics not present on the specimen 

may be avoided, 

 provide the means by which it is still possible to arrive at the correct 

identification even if an error is made by the user, 

 provide the means for easy backtracking if a mistake is made1, and 

 provide the means for easy updating and modification. 

 

Before data processing (for example, the formation of a key) can take place it is 

necessary to describe data in a systematic and unified manner, and some identification 

systems make use of keys generated in DELTA format Language for TAxonomy 

(DELTA) [47], or use keys that are at least compatible with the DELTA format. The 

DELTA format was first defined in 1973 by Dallwitz [48] and became the official 

international taxonomic standard, endorsed by the Taxonomic Data Working Group 

(TDWG), for defining taxonomic keys [25]. This has had the effect that many 
                                                      
1 Note: there is no backtracking in Self-organizing maps (SOM) 
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taxonomic identification systems developed are capable of interfacing with DELTA 

files (which are ASCII coded files). Other formats have been used, but until recently 

DELTA was the accepted standard. The TDWG is at present working on a new 

standard called Structure of Descriptive Data (SDD) [30, 216] which is an 

upgrade/replacement for DELTA, which is now over 30 years old. 

Several existing interactive identification programs have been investigated and 

compared [50, 55]. One of these is Intkey [49, 51, 52], which is a matrix-based 

interactive program for identifying a specimen by comparing its attributes with stored 

descriptions of taxa. Intkey, when used in combination with the DELTA system, 

offers the means to generate dichotomous, open access keys, identify unknown 

specimens and retrieve information.  

Linnaeus II [189] software was designed and built by the Expert Center for 

Taxonomic Identification, and can be used for identification allowing for output in the 

form of text, pictures, sound track or video.  

LucID [155] is another state-of-the-art computerized commercial and research 

system available for creation of dichotomous, open access keys and for identification 

of specimens and retrieval of information. It allows the developer to include text, 

sound and images in order to help the user to select taxonomic and diagnostic 

characteristics. As the user selects characteristic states, those taxa which do not 

possess the chosen characteristic states are excluded, thereby reducing the list of 

possible taxa. Once the specimen has been identified to a particular taxon, 

information, sub-keys, or links to web sites for further information can be obtained.  

These existing systems tend to be successful only in cases that provide a clear 

“either/or” alternative and do not really cater for overlapping or vague information. 

Few computer systems cater for cases that are not an exact fit to the stored data, i.e. 

fuzzy cases that do not fit exactly into a defined category. The major problem with all 

of these identification programs is that they do not utilize the full potential of the 

computer and in some cases are little more than a computerized polyclave. Another 

feature of these systems is that they sometimes offer the user many facilities which, 

after practice, can be used effectively and accurately by expert botanists who 

understand fully the terms and implications of the use/exclusion/modification of such 

facilities. Unfortunately, some of these same facilities are potentially undesirable 
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when the systems are used by less experienced users, and lead to incorrect 

identification. However, it is specifically for these inexperienced users that these 

systems should be catering. 

 

2.3 Current Research and Future Possibilities 

In 1977 Carl Woese [248-250] used sequence differences in ribosomal RNA (rRNA) 

to define a new domain of life, called Archaea which led to the redrawing of the 

evolutionary tree. Since this work by Woese, both DNA and RNA molecular studies 

have been used within the biological field, and in the past four to five years there has 

been a flurry of work and discussion about genomic approaches to taxon diagnosis.  

Both DNA arrays (micro and macro) and barcodes have been used for the species-

level identification of organisms. DNA microarrays are ordered, low density, samples 

of an organism’s DNA placed in high density on a solid support so that each sample 

represents a particular gene. This can then be analyzed for changes in the expression 

patterns of the representative genes after different treatments or conditions [88, 153]. 

The array-based approach has the requirement of prior knowledge of sequences in the 

target species, and this is a limitation of the approach [88].  

Most eukaryote cells contain mitochondria. In animals mitochondrial DNA 

(mtDNA) is characterized by a relatively fast mutation rate, which exhibits a 

significant inter-species variance but comparatively small intra-species variance. 

DNA barcoding utilizes this property of mtDNA to provide a taxonomic method of 

identification. In DNA barcoding a short standardized mtDNA sequence from an 

unknown organism is used to assign that organism to a known species and also to aid 

in the discovery of new species. In 2003 Hebert [93] proposed that a library of DNA 

barcodes should be compiled that would be linked to named specimens. The idea 

behind this is that the data bank of barcodes could then provide a means for 

identifying species. 

DNA barcoding appears to be a promising process if researchers are able to 

standardize the genetic sequence/s and method/s in order to provide ‘barcode’s for 

identifying species. There have been many reports of successful identification using 

barcodes [87, 89, 93-95, 212]. However the question remains: is a short sample of 

 
 
 



Chapter 2 : Background to Biological Identification 

 

  

16

genetic code from a reference gene specific enough on one species to distinguish it 

from every other species? It is claimed by some that this has been proved to be the 

case and that comparisons of sequence variations in that section of the gene used can 

reveal evolutionary relationships among species. There are avid supporters of DNA 

barcoding [215]. However, both the method and its applications are being questioned 

by others [58, 96, 244, 246, 247]. 

It has been argued by Whitworth et al. [244] that using mtDNA can lead to 

misleading results as it is possible for two different species to share mtDNA, or for 

one species to have more than one mtDNA sequence exhibited by different 

individuals. These authors claim that identification at the species level based on 

mitochondrial sequence may not be possible for all insects.  

It has also been suggested that for plants a multi-loci approach (rather than the 

mitochondrial cytochrome c oxidase I (COI) gene approach which has been widely 

used in animal barcoding) is necessary because plant mitochondrial genes do not 

differ sufficiently amongst closely related species [121, 122]. 

Barcodes do appear to have the potential to be an extremely useful tool for 

taxonomy, especially when it comes to the identification of organisms which are 

difficult to recognize from morphological characteristics. However, in the ‘plant 

world’ the debate over barcoding rages on and identification by traditional means still 

prevails. Better identification methods, therefore, still need to be developed.   

2.4 Conclusion 

Streamlining of procedures to identify organisms is obviously needed. At the moment 

it seems that taxonomists are loosing the battle to identify and name organisms as 

many species are becoming extinct faster than they can be named and classified. 

Despite the different opinions on the proposal of using DNA barcoders to barcode 

life, there has been a genomic revolution over the last 15 years. If the advantages of 

DNA sequencing can be integrated with the benefits of classical taxonomy then 

exciting new developments could take place. This seems unlikely to happen in the 

near future. Challenges have been made against the rationale, methodology and 

interpretation of results as used for DNA barcoding [247]. Many biologists feel that 

DNA barcoding should be used to augment taxonomic research rather than replacing 
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it. There is still a need for taxonomists who rely on morphological characteristics, and 

therefore the printed key and computerized biological identification systems are still 

necessary and will remain so for the foreseeable future. 

This chapter aimed to provide background information on existing biological 

identification techniques and systems. It established that there is a need for improving 

the identification methods in order to facilitate the ‘identification of life’. In the next 

chapter several algorithmic solutions which could be utilized are discussed. In 

particular, artificial intelligence approaches are investigated in order to determine 

whether any of these approaches could offer some solutions to the identification 

problem which other methods do not offer. 
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Chapter 3 

Algorithmic Solutions for Biological Identification 

 

 

Chapter 2 provided an insight into some of the problems which need to be addressed 

in biological identification, and reviewed some of the biological systems that are 

currently utilized for identifying biodiversity. In order to add a more ‘intelligent’ 

approach to identification in general, the employment of artificial intelligence 

techniques needs to be considered. This chapter aims to provide an overview of some 

artificial intelligence (AI) techniques and algorithms which have been or could be 

employed in biological identification. 

 

3.1 Introduction 

AI comprises methods, tools, and systems for solving problems that normally require 

the intelligence of humans. The name AI was coined in 1956 [44], and since its 

inception AI has undergone periods when it has been viewed with great expectations, 

interspersed with periods of disinterest. The main direction that the development of AI 

has taken in the past has been the development of methods and systems that model the 

way humans think or act, or by developing systems which think or act rationally 

[182]. Problem solving is a fundamental human activity, and humans use a lot of 

iteration and heuristics in their everyday life to solve problems. Heuristic methods are 

based on emotion, experience, intuition, rational ideas, consciousness and rules of 

thumb [65, 182]. One of the main objectives of AI has been to represent simple 

heuristics in a computer in order to get computers to ‘learn’ intuitive knowledge. This 

is exactly what is needed in biological identification: if one can reproduce heuristic 

learning in a computer and thereafter get a computer to implement instinctive 

decisions, then one can use a computer to help solve the identification problem. For 

example, a taxonomist looking at a tree knows what the identity of the observed tree 

or specimen could or could not be; this process seems to be instinctive or intuitive but 

in fact the taxonomist uses deductive reasoning to make the identification. The 
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taxonomist uses knowledge, past experiences and heuristic rules to direct the search 

for the identity of a specimen and place it into a likely group or class of specimens. 

The members of the chosen group should have similar characteristics to those of the 

specimen to be identified. This use of heuristic rules [102] may be represented as 

shown in Figure 3-1. 

 

 

 

A problem may be defined by assuming 

that a set of n independent input attributes, 

x1, x2, x3, …, xn, and a set of m variables of 

the solution y1, y2, y3, …, ym,  are defined. 

Then in the domain space D every possible 

combination of values for the input 

variables can be represented as a vector d = 

(a1, a2, a3,  …, an), and in the solution 

space S every possible value for the set of 

output variables can be represented as a 

vector s = (b1, b2, b3, …, bm). There is 

seldom a single formula for giving the 

optimal solution and so problem solving 

can be viewed as mapping D to S with 

heuristics providing the means of obtaining 

restricted projection of D to patches in S. 

In reality this is what an expert does.  

   s = b1,b2,b3,…,bn 

Training 

Figure 3-1 : Model Representing Use of Heuristics 
(Adapted from Kasabov [102, page 5]). 

 

Recent years have seen a revolution in AI with researchers realizing that different 

areas within AI are inter-related and that these areas should not be developed and 

utilized in isolation [182]: according to Russel et al. there are, and should be, 

symbiotic relationships between the different areas that comprise AI.  
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More recently a sub-branch of AI called Computational Intelligence (CI) has 

evolved in which each paradigm has its origins in naturally or biologically occurring 

systems [65, 163, 167]. It is generally accepted that the CI paradigms consist of neural 

networks, fuzzy systems, evolutionary computing, and Swarm Intelligence (SI) [46, 

65, 72, 163, 167]. Some of the paradigms which are reviewed in this study fall within 

CI, but in this document the more general and encompassing term AI will be used. 

This chapter presents the algorithms of some of the AI paradigms that influenced 

this study. Expert systems, fuzzy expert systems and neural networks all try to 

represent and mimic heuristics in computers: each includes the study of mechanisms 

that allow intelligent behaviour in complex environments. These topics are discussed 

in the following sections: Section 3.2 discusses expert systems and Section 3.3 

introduces fuzzy expert systems. Artificial Neural networks (ANNs) are introduced in 

Section 3.4 and two types of learning are discussed: supervised learning algorithms 

(Section 3.4.1) and unsupervised learning algorithms (Section 3.4.2). Self-organizing 

map (SOM) training, which is based on a competitive learning strategy, is introduced 

in Section 3.4.3 and in Section 3.4.4 biological applications of ANNs are discussed. 

Section 3.5 discusses other classification algorithms - the C5 decision tree algorithm 

is discussed in Section 3.5.1, and the CN2 rule induction method is discussed in 

Section 3.5.2. Other algorithmic solutions that have been used in biological 

identification are mentioned in Section 3.5.3. Finally, Section 3.6 concludes the 

chapter. 

 

3.2 Expert Systems 

Plant taxonomy is a complex, meticulous and information-heavy science which allows 

taxa to be identified by retrieving information contained on them in a classificatory 

system. Although there are various ways in which this identification may be 

performed, the most commonly used ones employ dichotomous keys. This process 

requires knowledge of botanical terminology and scientific knowledge of the organs 

of plants and, as the process is complex, botany-related activities are not particularly 

automated. For many taxa considerable experience, a large literature library and a 

comprehensive research collection are required for authoritative identifications. In 
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general, as an expert’s experience and expertise grow, and as the expert is better able 

to work on problems in classification and identification, so the expert’s skills become 

increasingly in demand. The expert cannot always meet this demand, therefore there 

is a very real need for more efficient devices for identification. Reducing the time, 

effort, and expertise required for identification will allow experts to concentrate on 

other issues such as the description of new species. Existing computerized biological 

identification systems are basically databases which store data on the specimens and 

find a name via a process of filtering. AI can offer a far more dynamic approach to 

identification. By using AI techniques it is possible for data to be analyzed in order to 

determine patterns and relationships which allow for the collection of information that 

was not stored explicitly in the database [43]. 

A technique that has been employed for biological identification is Expert Systems 

(ESs). These are computer programs that incorporate the knowledge of one or more 

human experts in a narrow, knowledge specific domain, and try to solve problems in 

that domain by matching the expert's level of performance. Durkin provides an 

overview of ESs: highlighting the major characteristics, comparing conventional 

programs with ESs, and reviewing several systems particularly developed for 

application in science [59].   

The reason that more widespread use of ESs has not occurred is that knowledge 

bases are often incomplete: the methods currently used to represent knowledge in ESs 

rarely capture subtleties, and sometimes fail to reflect major aspects of an expert's 

knowledge and understanding [63]. There are technical, psychological and 

sociological problems associated with ES development [66]. When developing an ES 

it is necessary to combine expertise derived from taxonomy, system design and 

uncertainty logic, but getting experts from each of these fields to understand each 

other and work together in a constructive and productive manner is extremely 

difficult. Once developed, the output of such a system would reflect the opinion of the 

humans involved rather than the inherent nature of the data and their inter-

relationships; hence such a system would be expert driven rather than data driven. 

Additionally, ESs are not generally successful when applied to broad, subjective 

problem-solving even though they can be applied successfully to specific, contained 

problems. 
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3.2.1 Early Expert Systems 

In the 1960s DENDRAL, which is a portmanteau of the term "Dendritic Algorithm", 

was one of the first influential pioneer projects in AI, and it included the production of 

an expert system. The primary aim of the ES was to automate the decision-making 

process and problem-solving behaviour of organic chemists in order to help with the 

identification of unknown organic molecules. DENDRAL did this identification by 

analyzing the mass spectra of chemicals and using a chemistry knowledge base as a 

lookup table. Development of the system was carried out at Stanford University by 

Edward Feigenbaum and other scientists [69, 130, 135]. DENDRAL consisted of two 

sub-programs, Heuristic DENDRAL and Meta-DENDRAL [68, 70, 135], and was 

written in the Lisp programming language. Many systems have been derived from 

DENDRAL, including MYCIN; and the true significance of DENDRAL was as the 

direct progenitor of MYCIN and today’s generation of ESs [135]. 

Developed in the 1970s, MYCIN was an important milestone in the development of 

ESs. It consisted of a computer program designed to function as a consultant on 

problems of medical diagnosis and therapy selection [27, 34, 35, 54, 68, 196-198, 

200-205, 252]. Its field of application was infectious diseases, and it was used fairly 

successfully in dealing with cases of bacteraemia and meningitis [199, 254, 255]. Yu 

et al. [254] found that MYCIN’s therapy recommendations met Stanford’s standards 

of acceptable practice 90.9% of the time, i.e. the system was tested by specialists in 

infectious diseases who judged and concurred with MYCIN’s final therapy 

recommendations, as well as MYCIN’s intermediate conclusions about the 

significance of the infection and the identity of the infecting organisms.  

MYCIN programs were further developed to produce other medical programs [34, 

35], and hence the original programs are sometimes referred to as the father of ESs. 

3.2.2 Biological Applications of Expert Systems 

Also within the biological environment, an ES called SYSTEX [251] (SYSTematics 

EXpert) was developed in the 1980s to test the application of ES technology to the 

general problem of taxonomic diagnosis. This system used a rule-based backward 

chaining system and was developed using a commercially available expert system 

shell (M1 ES development software package from Teknowledge Corporation). The 
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authors of SYSTEX [251] suggest that the ES approach is superior to the dichotomous 

key and other identification devices in terms of efficiency and ease of use, tolerance 

of missing data, explanatory capability, and the ability to provide meaningful output 

when an unambiguous identification is not possible. However, according to the 

authors, the ES does not provide new information, but rather acts as an integrator of 

knowledge-and-delivery devices for scarce expertise and training. The insect species 

group chosen for testing SYSTEX was the Signiphora aleyrodis-group. Diagnostic 

characteristics of the aleyrodis-group species were collected and processed and then 

used to test the ES. In Woolley and Stone [251] no statistics are presented on the 

success or failure of test results, nor are the test results compared with other systems. 

EXPERT KEY [12] is another expert system to aid in biological identification. The 

system employs the Dempster-Shafer theory of evidence [183, 194] (a generalization 

of probability theory used for inexact reasoning) to combine heuristic rules. Uncertain 

inference is also used to allow the user to express lack of certainty about the 

statements in the key. The use of heuristics results in the number of key couplets in 

the key being significantly reduced, which has the effect of reducing and simplifying 

the tasks to be performed by a non-expert. In Atkenson and Gammerman [12], 

EXPERT KEY was illustrated by using it to identify four different species of 

Umbelliferae (= Apiaceae)., The authors showed that the number of key couplets 

needed for correct identification by the system can be reduced by as much as 80% 

with the use of heuristics, thus making the use of the key much simpler for non-

experts.  

Contreras et al. [43] and Fajardo et al. [66] give a description of an ES, called 

GREEN, which was developed for identification of Iberian Gymnosperms (both 

indigenous and cultivated) and which allows online queries. The system was 

developed independently of the database on which it was employed, thus making it 

possible for the system to be adapted for identification of other species. However, for 

each new species the system would have to be modified.  

The group of Gymnosperms chosen for demonstrating GREEN consisted of 46 

taxa. Information for the knowledge base was taken from keys and used to produce a 

list of diagnostic characteristics or attributes. Information gathered was further 

compared by observing nature and consulting documents and experts. The important 
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taxonomic characteristics of Gymnosperms were divided into groups such as the 

general aspects of the taxon, characteristics of the branches, the leaves, the shoots, the 

fruit, the seeds and the ecology. 

After the data on the specimens to be identified is presented to it, the GREEN 

system gives the user a set of results ordered according to how well the result fits the 

query. Thus, as is the case with EXPERT KEY [12], a definitive identification is not 

necessarily obtained. Neither paper on GREEN [43, 66] presents statistics or 

comparisons of results for tests performed. However, the GREEN system was 

developed as part of the research for a doctorate written in Spanish, and in this 

dissertation the author reports an identification success rate of at least 83.33% [78]. 

Dallwitz [49] discusses ESs and matrix-based systems (for example, Intkey) for 

taxonomic identification and concludes there are advantages and disadvantages of 

both systems. However, the author does not include any results from an empirical 

comparison of the two types of systems. 

Despite the fact that biological data are frequently incomplete, an expert 

taxonomist is able to handle uncertainty and missing data and still come up with an 

answer. A successful identification system must be able to do the same under similar 

conditions. Usually the human thinking, reasoning and perception processes cannot be 

expressed precisely, and these types of experiences can rarely be expressed or 

measured using statistical or probability theory [4]. One way of dealing with these 

problems is to use fuzzy logic. 

 

3.3 Fuzzy Expert Systems 

Identification of botanical specimens demands an acceptance of uncertainty (for 

example, the use of fragmentary and subjective information) to reach an estimate of 

the true identification. The theoretical basis behind fuzzy techniques allows for the 

handling of uncertainty and imprecision, and for fuzzy reasoning schemes to be 

developed [132]. The theory of usuality [257] allows for the use of common sense in 

ESs by providing a method of representing knowledge about events or items that are 

often true. 
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Traditional ESs, which must use knowledge engineering to acquire all relevant 

rules from experts, are inherently “brittle”, failing catastrophically when presented 

with situations outside the domain for which their rules were developed. Programmers 

have tried to solve some of these problems by attempting to develop more flexible 

systems. Endeavours were made to reproduce human reasoning using imprecise, or 

fuzzy, linguistic terms embedded in fuzzy systems.  

3.3.1 Expert Systems Vs Fuzzy Expert Systems 

A Fuzzy Expert System (FES) is defined in the same way as an ordinary ES, but 

methods and philosophies of fuzzy logic are applied for the inference process. In 

addition to the standard rules implemented in an ordinary ES, a fuzzy ES may use 

fuzzy data, fuzzy rules, and fuzzy inference. Abraham [4] gives a good introduction to 

ESs and FESs. A FES can provide answers where systems demand reasoning that 

entails uncertainty and imprecision. Typically, FESs when compared to non-fuzzy 

ESs require fewer rules, need fewer variables, use a linguistic rather than a numerical 

description, and can relate output to input. Such a system would be closer to ‘human-

like’ thinking and would use fuzzy rules instead of exact rules; thus representing in a 

straightforward way ‘common sense’ knowledge and skills, or knowledge that is 

subjective, ambiguous, vague, or contradictory. This knowledge might come from 

many different sources, such as from long-term experience from many people over 

many years.  

3.3.2 Biological Applications of Fuzzy Expert Systems 

Tien et al. [217] describe a fuzzy rule base embedded into a triple-layered network 

structure for nonlinear modelling of a multivariable system, and used it to demonstrate 

two kinds of models: one to identify/predict lettuce growth, and the other to control 

greenhouse climate. The authors compared the FES prediction of results with actual 

readings of results and found that there was no scientifically or statistically significant 

difference in the compared results. Tien et al. hence conclude that data-driven 

modelling using neural networks and fuzzy modelling is a more suitable method for 

application to multivariate botanical data than mechanistic modelling procedures. 

They claim that the neuro-fuzzy approach is easier and faster, and that the fuzzy rules 

used are self-explanatory. The authors also claim that it is possible to incorporate 
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human knowledge and to deduce interpretable rules that describe the systems’ 

behaviour. 

Cheung et al. [31] used a FES to predict the vulnerability of marine fish to 

extinction resulting from fishing activities. Data from 159 marine fish species from 

the FishBase database [77] were used to test the system. Three independent data sets 

were used to examine the validity of intrinsic vulnerability to extinction, i.e. when the 

data sets were presented to the fuzzy system the results obtained were compared with 

the extinction risk of the sets which were already known (by other methods). When 

required biological data for a particular species were absent in the original data set, 

the data for that species were obtained from FishBase. Cheung et al. [31] used 

goodness-of-fit of test statistics as an indicator for reporting on the accuracy of 

extinction risk predictions. 

Cheung et al. also compared the results obtained using the FES with results 

obtained from testing the same data with an ES with classical logic sets. This ES had 

attributes and rules exactly the same as the fuzzy system, but classical sets were used 

instead of fuzzy sets. Comparisons of FES results with empirical population 

abundance trends showed that a fuzzy system could be used to predict intrinsic 

vulnerability of marine fish. The tests also suggested that the use of fuzzy logic in the 

ES provided a better predictor of intrinsic vulnerability than a system employing 

classical logic. The authors state that the fuzzy system could react to new information, 

and that the heuristic rules, fuzzy membership functions, and the values that defined 

them could be modified based on expert knowledge or newly available information. 

Thus the FES could be extended easily and further improved. The results obtained 

from testing the system were compared with results obtained from empirical studies. 

This comparison showed that the use of fuzzy logic provides a better predictor of 

intrinsic vulnerability than a system employing classical logic. However, the tests 

were also repeated using a reduced number of attributes, and the results from these 

tests showed that the performance of this FES relative to other methods decreases 

when data are scarce. 

Pappas [161] used fuzzy measures and classification rules to analyze shape groups 

of the diatom Asterionella and found that fuzzy decision-making analytical tools 

could be used to produce results (i.e. tables) that could then provide taxonomists with 
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a useful and meaningful way to undertake initial morphological identification in the 

field, i.e. the tables could be used for assigning an unknown specimen to a known 

group or class. The identification results obtained by using the FES concurred with 

experts’ identification in 46 out of 59 cases (with a crossover point of 0.75). The 

method was found to work even when information on the species and number of 

specimens was scant. Pappas showed that fuzzy logic, approximate reasoning and 

information collation are all used in taxonomy and species identification. Results of 

this study demonstrate that the FES could help with initial identification of the 

diatoms. The authors, however, do suggest that when making taxonomic decisions the 

tables should be supported with additional analyses. 

Such studies suggest that when analyzing the problems faced with identifying 

trees, the use of fuzzy logic to represent uncertain, overlapping and imprecise data 

seems very appealing. While an ES is a good tool to develop, it has some 

disadvantages. A major disadvantage of expert systems is that they fail whenever a 

situation occurs which their rules cannot handle. Other disadvantages include the 

essential process of collecting knowledge from domain experts, for the success of the 

ES will depend on the completeness or scope of the knowledge obtained from the 

expert. A domain expert’s knowledge is expressed in terms of one’s intuition and 

experience, and is very dependent on how one views a particular characteristic. All 

this implied knowledge has to be passed on to the system developer and then 

embedded into the system developed. When using a fuzzy ES, the task of designing 

the fuzzy membership functions will also require collaboration from the domain 

experts in order to find the most accurate or appropriate membership functions: a 

process which would be difficult to implement efficiently for optimal results. For 

these reasons it was considered worth looking at an AI model that was data-driven 

rather than knowledge-driven. 

 

3.4 Artificial Neural Networks 

The human brain is made up of approximately 1011 neurons [139] which are 

interconnected and which operate in parallel to process information. The neurons 

communicate across a network of axons and synapses and act as the computing 
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elements of the biological brain [258]. Figure 3-2 shows a simplified model of 

biological neural information flow. 

 

 
Figure 3-2 : Simplified Model of Neural (Biological) Information Flow   
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The objective of an Artificial Neural Network (ANN) is to simulate the activity of 

the human brain. It does this by an interconnection of neurons which mimic the 

structure and operating principles of the human brain. A simple model representing an 

artificial neural network is shown in Figure 3-3. In this figure, for clarity, only one 

neuron is shown, although in reality many neurons would be present. Every input set, 

X, is presented to each node (= processing neuron), each of which has an associated 

weight vector of values, W. The weights associated with the neurons are adjusted to 

better represent the input patterns, and when this process occurs the neurons are said 

to be learning. The pattern associations obtained through training may then be used to 
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classify appropriate test data into the correct classes. Thus an ANN can be used to 

model the pattern association ability of the human brain. 
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   Figure 3-3 : Simplified Artificial Neural Network Model 

Although ANNs are based on and attempt to mimic their biological counterparts in 

the human nervous system and can execute instructions at extremely fast speeds, 

human beings whose brains operate at much slower speeds still outperform computers 

at tasks such as biological identification.  

There are various learning algorithms that can be used by an ANN, and two of 

them are discussed next. 

3.4.1 Supervised Learning Algorithms 

With ANNs that use a supervised learning algorithm, an input pattern and a desired 

response are presented to the ANN. The ANN tries to learn the functional mapping 

between the input and desired response vectors. Thus the learning is achieved through 

example. Once the ANN is trained to recognize the matching input and output 

patterns it can be used to predict network output accurately when presented with the 

previously unseen inputs.  
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3.4.2 Unsupervised Learning Algorithms 

Unsupervised learning algorithms attempt to cluster a data set into homogeneous 

regions by correlating characteristics present in the data. In unsupervised learning the 

objective is to discover patterns or features in the input data with no help from a 

teacher, basically performing a clustering of the input space. 

Such a data-driven model would look for inter-relationships and regularities in the 

input data presented to it during the training procedure, and would then use the 

information gathered from these training sessions to classify the test input data.  

For a supervised network, the input and desired output need to be known in 

advance. However, in tree identification the exact input for each output is often not 

known: the input from one specimen need not be the same (and seldom is the same) as 

the data set of another input specimen even when the specimens belong to the same 

species. Therefore, an unsupervised network that seeks for input data relationships in 

order to predict the output is more likely to yield realistic results. Thus unsupervised 

ANN techniques are often used for classifying, organizing and visualizing data sets.  

The SOM technique, which uses an unsupervised learning algorithm, is discussed 

next.  

3.4.3 Self-Organizing Maps 

A Self-organizing map (SOM) is a form of an ANN that can provide an objective way 

of classifying data through self-organizing networks of artificial neurons. It is a feed-

forward ANN that uses an unsupervised training algorithm and can be trained to learn 

or find relationships between inputs, or can organize data so as to discover unknown 

patterns or structures. 

Teuvo Kohonen [111, 114], motivated by the self-organization characteristics of 

the human cerebral cortex, developed the self-organizing feature map. Studies of the 

cerebral cortex have shown that the motor cortex, somatosensory cortex, visual cortex 

and auditory cortex are represented by topologically ordered maps [65]. These 

topological maps are formed to represent the structures sensed in the sensory input 

signals. Similarly, during training the SOM effectively clusters the input vectors 

through a competitive learning process while maintaining the topological structure of 

the input space.  
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The basic SOM algorithm involves sequential training and is outlined next. A more 

detailed description of the SOM algorithm will be given in chapter 4.  

Each neuron in the ANN has a model (or codebook or reference) vector associated 

with it. This vector has the same dimension as the vectors in the input data set that are 

used as the training vectors. Once the codebook vectors are initialized with either 

random values or in some other way, the training data are presented to the 

unsupervised SOM algorithm. During training each input vector is assigned to the 

neuron with the most similar codebook vector or best-matching node (BMN). 

In essence, the learning process itself gradually updates the codebook vectors to 

match the input vectors and, at the same time, maintains the representation of the 

internal properties of the input data as faithfully as possible. Thus, the input vectors 

which are relatively close in the input space are mapped to nodes that are relatively 

close in the output space. 

The SOM algorithm contains elements of competitive and cooperative learning. 

Competitive learning is covered by selection of the BMN, the "winner", which has its 

vector values updated to the largest extent. Cooperative learning is applied by 

updating the most similar model vector as well as its closest neighbours. The closest 

neighbours have their associated vector values updated to a lesser extent than the 

winner, which results in the creation of similar areas on the output map. 

The SOM algorithm has been applied to a variety of real-world problems [105, 

157]. The main advantage of applying the algorithm comes from the easy 

visualization and interpretation of clusters formed by the map. One of the main 

reasons [114] for using a SOM for exploratory data analysis and data mining is that it 

is a numerical method and is therefore able to treat numerical statistical data naturally 

and to represent graded relationships. Other reasons for using the SOM algorithm are 

that it is a non-parametric method; no assumptions about the distribution of data need 

be made in advance; and it is a method that can detect unexpected pattern structures 

by learning without supervision. The SOM can be used deductively and is able to 

produce results even if the data set is incomplete, which is extremely important when 

dealing with biological material requiring identification. 

By using a SOM some of the problems associated with finding the appropriate 

underlying reasoning of an expert disappear. These problems include trying to co-
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ordinate the expertise of different specialists and getting them to agree on different 

issues involved in the identification process. In addition, the SOM method offers an 

easy way to visualize results. The typical applications of SOMs are as clustering and 

visualization tools for portraying process states by representing the central 

dependencies within the data on maps. The advantage of using a graphical 

representation is that a clear visualization of the output is given. For example, by 

using a SOM it is possible to ‘see’ the identity of a tree: by presenting an unidentified 

input pattern to a trained network and looking to see to which area of the map the 

input pattern has been allocated. 

Another of the advantages of the SOM is that it can provide a probability for each 

species of an unidentified biological specimen belonging to a particular species. At 

the same time the SOM can also be used to investigate the differences between 

clusters of species, and in the process it is possible that some new features that discern 

between the species might be revealed. The SOM can also be used to determine which 

features or characteristics are the most important or diagnostic ones to consider when 

discerning between given species. 

Given the nature of the input data it is felt that the SOM could provide a suitable 

technique for tree identification in southern Africa, and at the same time might reveal 

previously hidden relationships between the data items and between taxa.  

3.4.4 Biological Applications of Neural Networks 

ANNs were developed initially to model biological functions and have been shown to 

be flexible and universal function approximators for numerical data. They are 

powerful tools for modelling biological systems, especially when the underlying data 

relationships are unknown. Various types of ANNs have been used to do biological 

analysis, and some of these will now be reviewed briefly. 

Tan and Gilbert [214] performed an empirical comparison of supervised machine 

learning techniques to classify data from four biological data sets obtained from the 

UCI machine learning repository [11]. Comparisons were made between rule-based 

learning systems, statistical learning systems (including ANNs) and ensemble 

methods (stacking, bagging and boosting). Tan and Gilbert concluded that for the task 

of classifying biological data combined machine learning methods perform better than 
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individual ones. From their study the authors also concluded that accuracy (Acc), 

which is the proportion of correctly identified instances, is not enough of a measure 

on its own when comparing systems. The authors suggest that several additional 

measurements, based on the sensitivity, specificity and positive predictive value of the 

algorithms, should also be made. Positive predictive accuracy (PPV) is the reliability 

of the positive predictions. Sensitivity (Sn) measures the fraction of actual positives, 

and specificity (Sp) measures the fraction of actual negatives. The equations defining 

these measurements are given as: 

 

Acc    =          
TP + TN 

              

     TP + TN + FP + FN
Eq. 3-1 

 

PPV   =        
TP 

      
     TP + FP

 

Eq. 3-2 

 

Sp     =         
TN 

            
     TN + FP

Sn     =           
TP 

         
     TP + FN

Eq. 3-3 

 
 

Eq. 3-4 
 

     where  
   TP is the number of True Positives (correctly identified entities),  

     FP is the number of False Positives (incorrectly identified entities), 

   TN is the number of True Negatives (correctly identified entities), and  

   FN is the number of False Negatives (incorrectly identified entities). 

 

When comparing different systems Podgorelec et al. [166] recommend using 

sensitivity and specificity measures in addition to using accuracy measures. 

Clark and Warwick [36] used the multilayer perceptron (MLP) with the 

backpropagation (BP) algorithm [242] for botanical identification. The simple MLP 

was used with one input node for each characteristic, one layer of hidden nodes and 

one output node for each species to be identified. Using this ANN, the authors 

reported a 93.3% validation success rate when using the Iris data set [11], and an 

accuracy of 52.9% successful identification with a data set of specimens for Lithops, 
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(using 13 characteristic states for 34 species). In a separate paper, Clark [37] also 

reported using a supervised ANN to identify Lithops and a comparison was made with 

taxonomic keys generated by means of the DELTA system. The ANN was found to 

perform better than the DELTA key generator when the available data are limited and 

the species are relatively difficult to distinguish. 

A table published by Gaston and O’Neill [79: Table 2, p662], gives examples of  

semi-automated and automated species identification test results based on 

morphological characteristics. According to this table some excellent identification 

results have been achieved with small data sets of biological specimen’s material. For 

example, Gaston and O’Neill report that structures of Africanized and non-

Africanized honeybee wings have been identified with 100% success rate using Lucas 

continuous n-tuple nearest neighbour classifier methods [80]. These tests were 

performed on one species of bees with two sub-specific variants. Other tests using this 

method are also reported as having a high success rate for identifying small data sets 

of biological material [80, 239].  

Also reported in the table from [79] is an ANN application used to identify plant 

pollen (three species). This study reports an 83% successful identification rate [73]. 

The ANN used in this study was the Paradise (PAttern Recognition Architecture for 

Deformation Invariant Shape Encoding) which was designed for recognition of visual 

objects. Paradise used methods for feature extraction, pattern recognition and 

classification of image data sets. Although the techniques used were complicated, the 

authors reported they were able to create computer-based self-learning keys, 

ANNKEYs, which could be used for identification when an expert was unavailable. 

Although the studies reported on above appear to have had reasonable success, 

they have been conducted (for the most part) on relatively small sets of input data. 

They cannot identify previously unseen data, and misidentification or no identification 

is made when data are sparse. On the other hand the SOM is able to handle data sets 

which exhibit such characteristics [103, 114, 128, 185, 253]. A number of studies 

have been undertaken specifically using SOMs on biological data sets, and some of 

these studies are discussed below. Many of these studies did not report on specific 

accuracy levels obtained or how the comparisons between different methods were 

assessed. Hence it is difficult to judge the true value of these studies. 
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Laitinen et al. [123] use SOMs for the visualization of the size and shape of 

particles. This study used model image analysis of a series of particles to obtain shape 

and size particle parameters. These data were then used as input for the SOM 

algorithm and principal component analysis (PCA). The reported results obtained 

using PCA were not very good as the method was unable to separate some of the 

clusters. Although the SOM technique was able to separate the clusters of particles, 

the output still needed to be analyzed and interpreted by an expert. 

In another study, using a data set on the distribution of trees, Giraudel and Lek [82] 

compared SOM results with those obtained by using PCA, correspondence analysis 

(CoA), polar ordination (PO) and non-metric multidimensional scaling (NMDS). 

Traditional statistical methods confirmed the accuracy of the results obtained with the 

SOM, although the authors concluded that the comparison of methods is not a trivial 

task.  

Blayo and Demartines [20] also compared results obtained by applying the SOM 

algorithm with the results obtained by using PCA and the generalized Hebbian 

algorithm (GHA). These authors concluded that when comparing complex non-linear 

data a direct comparison of results on its own is not sufficient. 

Céréghino et al. [29] and Park et al. [162] applied the SOM algorithm to an 

environmental data set for predicting the species richness of aquatic insects in 

streams. The SOM was used to classify the stream sampling sites according to the 

environmental variables. The MLP was used in a second phase for predicting species 

richness. The authors found that these methods complemented each other and 

suggested that for ecological modelling the combination of methods could be the 

preferred procedure.  

Samsonova et al. [187] used an enhanced SOM to perform cluster analysis on a 

protein data set. The enhancement tools were used to determine cluster confidence 

levels and to visualize the results as a tree. The authors felt that visualizing results as a 

tree structure would facilitate comparison with existing hierarchical classifiers. 

Fernández et al. [71] used the SOM, the MLP and a network based on the adoptive 

resonance theory (ART) for animal science applications.  

Schreer et al. [192] applied various algorithms (including k-means and fuzzy c-

means clustering techniques, SOM and ART) to data sets of dive profiles for penguins 
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and seals. The authors found that although SOM, c-means and k-means performed as 

well as each other, the k-means technique provided results that were more logical and 

readable, and for dive profiles it was the method of choice. 

 Li [133] developed a remote login, interoperable SOM data mining system called 

iSOM (based on Kohonen’s SOM). The system was tested using the Iris data set [11] 

as well as air pollution data. The cost function, JMCR, for calculating the 

misidentification rate when using the Iris data set with nine clusters was reported by 

Li as 0.02 using the following formula: 

   ∑=
=

n

1i i
i

c

c

MCR n
m

n
1J         Eq. 3-5 

where  
nc  = number of clusters, 

   mi = number of patterns in cluster i misidentified, and 
      ni  = number of patterns in cluster i. 

 
The original Kohonen SOM network was extended by Kiang [106] to include a 

contiguity-constrained clustering method [150] to perform clustering based on the 

output map generated by the network. The results Kiang obtained with the Iris data set 

using the extended SOM method and a minimum variance criterion gave a 90.34% 

rate of correctness.  

More recently, SOMs have been used successfully for analyzing and visualizing 

massive gene expression data. Tamayo et al. [213] tested the SOM’s usefulness for 

analyzing yeast cell cycle data by developing a computer package called 

GENECLUSTER which used the SOM algorithm to cluster and display their data. 

These authors also tested their methods on data provided by Chu [33] and obtained 

results similar to those reported by Chu.  

Törönen et al. [219] used a tree-structured SOM algorithm [120] combined with 

Sammon’s mapping algorithm [186] to analyze published expression data from 6400 

yeast genes at 7 different time points during a growth phase. Sammon’s algorithm was 

applied so that the relationship between the individual neurons could be visualized 

more clearly. Törönen et al.’s results, as did Tamayo et al. [213], showed that the use 

of SOMs is useful for the organization and interpretation of mammalian gene 
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expression data. However, successful identification statistics were not directly 

reported in either paper. 

The SOM was also used by Nikkila et al. [153] for performing yeast gene 

expression analysis and visualization, and the results obtained were compared with 

those obtained by using multidimensional scaling (MDS) and hierarchical  clustering. 

The results obtained by using the SOM tool were consistent with existing knowledge 

of the functional classes of genes and were generally found to be more trustworthy 

than those obtained from using the other two clustering methods. 

A comparison between the SOM and PCA was done by Brosse et al. [23]. The data 

set used consisted of 710 samples and 15 species of European freshwater fish. The 

authors found that the SOM was able to visualize the entire fish assemblage in a 2-

dimensional space for both dominant and scarce species. They also reported that the 

PCA method provided irrelevant information for some scarce species. 

Walley and O’Connor [238] also used ecological data to compare a non-neural 

self-organizing map based on information theory and Kohonen’s SOM. The system 

developed for this work was called MIR-max (Mutual Information and Regression 

maximization). MIR-max separated the tasks of clustering and ordering into two 

different processes whereas Kohonen’s SOM integrates clustering and ordering into 

one process using Euclidean distances and a neighbourhood function. The authors 

report that on average the clustering results of MIR-max were 18% and 16% higher 

than those produced respectively by SOMs and the generative topographical map 

(GTM) [18]. These improved results were gained at the expense of the MIR-max 

clustering phase being computationally demanding and the system being more 

complex. An additional disadvantage of this method is that the results showed that the 

SOM and GTM performed better than MIR-max with respect to ordering. 

Shanmuganathan et al. [195] used the SOM algorithm to model environmental and 

economic systems.  

Bernatavičienė et al. [17] used the SOM algorithm, combined with MDS and with 

Sammon’s mapping, to visualize several biological data sets. These authors report that 

both the combined methods of SOM and MDS, and of SOM with Sammon’s mapping 

displayed similar efficiency for clustering and visualization of data.  
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Goodacre et al. [84] used pyrolysis mass spectrometry (PyMS) to obtain high 

dimensional biochemical fingerprints from 4 species of plant seeds. These data were 

used as input for the unsupervised methods of self-organizing feature maps (SOFMs) 

and auto-associative ANN (a fully interconnected feedforward MLP) and the results 

were compared with those obtained by applying the statistical methods of PCA and 

the supervised method of canonical variates analysis (CVA, also referred to as 

discriminant analysis). The authors used the BP algorithm to train the auto-associative 

ANN. The auto-associative ANN and the SOFMs were both able to separate out the 

seed species, and the resulting groups were less subjective. The PCA and CVA 

methods were not able to differentiate between two types of seed species, and the 

CVA approach also had the disadvantage of requiring a priori information as to which 

input spectra are replicates. 

Weller et al. [241] used SOMs to cluster images of dinoflagellate cysts, and the 

authors report accuracy rates up to 100% when the number of the principal  

characteristics presented to the SOM was increased. 

Mangiameli et al. [140] compared the performance of the SOM and seven 

hierarchical clustering methods using 252 “messy” data sets (non-biological) with 

various levels of imperfections (including data outliers, irrelevant variables, 

dispersion, and non-uniform cluster densities). The authors found that the SOM 

results demonstrated superior accuracy and robustness when compared with the 

results of other cluster methods. However, the performance of each technique was 

only measured by the accuracy percentage of data points assigned to the correct 

cluster, and not by any of the other criteria that have been suggested (for example) by 

Tan and Gilbert [214] and Podgorelec et al. [166]. 

SOFMs have been integrated successfully with a rule-based expert system [220-

222, 224]. Using a non-botanical data set, Ultsch and Vetter [223] also compared 

hierarchical clustering and k-means clustering with the SOFM using U-matrix 

techniques and found that SOFM performed better than the other two clustering 

techniques. 

From the above mentioned examples it can be appreciated that SOMs are suited to 

exploratory data analysis, allowing one to impose partial structure objectively on the 

clusters and facilitating easy visualization and interpretation. This is in contrast to the 
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rigid structure imposed by hierarchical clustering, the strong prior hypotheses used in 

Bayesian clustering, and the non-structure of k-means clustering [213].  

Also, it is felt that the nature of biological identification is such that unsupervised 

techniques are more suitable than supervised techniques as the data inter-relationships 

are important. Furthermore, it is possible that a data driven approach where a 

mathematically based system is left to determine the relationships might be more 

suited to the problem, and might even reveal new relationships previously not noticed. 

The SOM method has the added advantage that even when new, previously unseen 

data are tested against the trained map it is possible to get results without retraining 

the map. The SOM method is acknowledged as a method which can produce valid 

results even when sparse data sets are applied: in biology sparse data sets are often the 

norm. 

According to Lisboa [136], there are two statistical methods which could add value 

to results. The one improvement is to add the ability to map accurately the features of 

the data that are difficult or expensive to find in a conventional statistical manner (for 

example, by providing the means for visualizing complex interactions between 

particular variables or attributes). The second improvement is to add substantially to 

the power of exploratory data analysis (for example, by raising hypotheses about 

unsuspected non-linear components whose explicit modelling may improve the 

accuracy of standard statistical methods, or by providing direct visualization of 

complex high-dimensional data). It is felt that the SOM may be used to fulfil both of 

these improvements. 

In addition, even though combined methods have been shown to provide accurate 

and efficient results, it is felt that initially the extra complexity and time required for 

using combined methods might not be necessary. The SOM is simple to implement 

and needs to be applied on its own to the data set and tested thoroughly before 

applying a combined method. 

Although, Kohonen’s SOM has been applied successfully as a classification tool to 

various biological data sets, after a thorough investigation of the literature, as far as 

can be determined, the SOM’s potential as a tool for application to large botanical 

data sets with a wide range of morphological characteristic states remains relatively 

unresearched. Certainly this appears to be the case within southern Africa. 
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3.5 Other Algorithmic Solutions 

There is a great need for intelligent methods which can extract meaningful 

information from enormous amounts of data: as is found in biology. Many of the 

methods that have been developed have their origins in artificial intelligence and 

machine learning [144]. Machine learning is a diverse field linked by common goals 

and similar evaluation methods. The general aim of machine learning is to develop 

computational methods to improve the performance of a task by automating the 

acquisition of knowledge from experience. Since expertise requires extensive domain 

specific knowledge, the overall purpose of machine learning is to provide a means of 

releasing human experts from performing time-consuming activities which can be 

automated, thus leaving the experts to perform other tasks that cannot easily be 

performed by other persons and/or means. The general approach of machine learning 

involves using algorithms to find and exploit patterns in the input data. These 

algorithms have to be accurate and efficient. Many AI systems have been produced as 

potential substitutes for experts and are in regular use [125]. 

One of the paradigms for machine learning is rule induction (RI) which uses 

inductive inference to extract rules from a set of observations. The goal of inductive 

inference is to learn how to classify objects by analyzing a set of instances whose 

classes are known. Typically, instances are represented as attribute-value vectors, and 

learning input consists of a set of these vectors, each vector belonging to a known 

class. The output consists of a mapping from the attribute values to the classes, and by 

using this mapping one should be able to classify accurately both the given instances 

and any other unseen instances [165]. A decision tree is a formalism for expressing 

such mappings, and consists of test or attribute nodes linked to two or more sub-trees 

and leafs. A leaf is a decision node labelled with a class which is the decision [171].  

The Quinlan family of decision tree algorithms include the ID3, C4.5 and C5 

algorithms [169, 171-173] and form popular standards for RI. These algorithms will 

be discussed briefly in the following subsections. 
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3.5.1 C5 Decision Tree Algorithm 

For a description and examples of decision trees there are many references in the 

literature [169, 182, 184, 228, 256] (and many more), and only a brief outline is given 

here.  

Decision tree algorithms follow a top-down, divide-and-conquer induction process. 

The basic algorithm (based on the Quinlan model [169, 171-173]) for decision tree 

induction can be described as follows [85]: 

 Using an information gain measure [3, 171], select an attribute to place at 

the root of the tree and create a branch for each possible value of the 

attribute. The underlying data set is thereby split up into subsets, one for 

each value of the attribute being investigated. 

 This process is repeated recursively for each branch, using only those cases 

that actually reach that branch. The branches are connected by internal 

nodes that represent an attribute test; and each branch from that node 

represents an outcome of that test. 

 If all instances at a node have the same classification, development stops on 

that part of the tree and a leaf (= terminal) node is formed which names the 

class. 

Once induced, a decision tree can be used to classify target instances by starting at 

the root of the tree. If this node is a test, the outcome for the instance is determined 

and the process continues using the appropriate sub-tree. The branches of the sub-tree 

are investigated again until a node is found that is not a test. Such a node is called a 

leaf. The conditions of the leaf must match those of the target instance, and the label 

of the leaf gives the predicted class of the target instance. 

The most popular decision tree algorithm [64] was developed by Quinlan [169] and 

employed a greedy algorithm strategy. It was called the ID3. Changes to the ID3 

algorithm resulted in the development of the C4.5 algorithm [171]. This algorithm 

was later further developed and refined to form the C5 algorithm [172, 173]. C5 

assesses attributes and their values, and allows for tree simplification, pruning, 

bagging and boosting.  

The output of the C5 algorithm is a decision tree, but the algorithm is also 

accompanied by a program to convert the decision tree into an optimal set of rules. 
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This program first generates a rule for each leaf node, using all conditions in the path 

from the root to that leaf node. The C5 rule program then applies pruning methods to 

get the smallest possible set of rules with the same or higher accuracy as the decision 

tree [181]. According to Quinlin [170], when classifying unseen samples a final set of 

production rules is usually both simpler and more accurate than the decision tree from 

which it was obtained. In addition, production rules provide a way of combining 

different decision trees for the same classification domain. 

C5, or its variants, have been used frequently in medical informatics research [3, 

85, 134, 165, 166, 245] and in non-medical biological identification [24, 151, 152, 

188, 253], to cite a few references. 

According to Quinlan [169], decision tree results are categorical and thus do not 

convey potential uncertainties in classification. This is a serious disadvantage, for 

minor differences in attribute values of a sample being classified may result in 

incorrect changes to the assigned class. Samples with missing or imprecise 

information may not be classified at all. Despite these limitations Quinlan’s C5 

algorithm is still recognized as a state-of-the-art decision tree algorithm and will 

therefore be used to test the validity of the SOM results. 

The CN2 algorithm [22, 38-40] is another example of an algorithm that utilizes RI 

and will be discussed briefly in the next subsection. 

3.5.2 CN2 Rule Induction Algorithm 

The CN2 algorithm was designed by Clark and Niblett [39]. This algorithm 

inductively learns a set of propositional if...then... rules from a set of training 

examples [41]. In order to find rules the CN2 algorithm performs a general-to-specific 

beam search through the rule-space looking for the best rule and then removing the 

training examples covered by that rule. A control algorithm is used for re-executing 

this search until no more good rules can be found. The output from CN2 is thus a set 

of production rules and not a decision tree.  

The original CN2 algorithm [39] defined the best rule by using a combination of 

entropy and a significance test. Later the CN2 algorithm was improved and the 

evaluation function was replaced with the Laplace estimate [40]. In addition, the 

original algorithm produced rules as an ordered set. This means that the rule 
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classifying the most records in the training data set is given first while the rule 

classifying the least number of records in the training data set is given last. However, 

the newer version of the CN2 algorithm has been improved and is able to induce 

unordered rule sets as well as ordered rule lists. 

The original CN2 algorithm and its later versions have been used frequently for 

biological classification, identification and diagnosis. These references include [126, 

127, 156, 206], to cite just a few. 

A disadvantage of the standard CN2 algorithm [126] is that in order to allow for 

handling imperfect data, the algorithm may construct a set of rules which is imprecise 

and therefore does not classify all examples in the training set correctly. In addition, 

some of the induced rules are not natural as a lot of information needed for 

classification/identification is missing in the induced rules, making the interpretation 

of induced rules difficult. Also, with the CN2 algorithm, if none of the rules fire, a 

default rule which predicts the majority class of the uncovered training instances is 

invoked. This can give incorrect results and, in the context of this thesis, this means 

misidentification. 

According to Lavrac et al. [127] the standard CN2 algorithm needs adjustments to 

improve the number of induced rules, the rule coverage and the rule significance. 

These authors also maintain that in the classical covering algorithm only the first few 

induced rules are of interest as subgroup descriptors with sufficient coverage. The 

authors state that subsequent induced rules are induced from biased example subsets 

which only include positive examples not already covered by a rule. Lavrac et al. 

claim that this bias makes it unlikely that new subgroups will be discovered. This 

would be a disadvantage in the current study as this thesis aims to try to discover 

interesting properties of subgroups of the data set. 

Despite these disadvantages CN2 is a popular rule induction algorithm and will be 

used (along with the C5 algorithm as mentioned earlier) for comparison and 

confirmation of the results obtained by applying the SOM.  

3.5.3 Other Techniques used for Biological Identification 

It has been argued that sound statistical principles are essential if the evidence base 

built with any data-based methodology, including an ANN, is to be trusted. It is 
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argued further that these methods are best justified where they provide additional 

functionality to the performance of well-established statistical models [136, 193]. 

However, it is not within the scope of this thesis to investigate all the methods that 

have been tested in order to try to solve the problem of biological identification. Many 

of the methods investigated recently have concentrated on gene analysis. Some of the 

research that has come to the writer’s attention includes: Ultsch’s PUL information 

retrieval algorithm [227], Madeira’s work on biclustering [138], Au et al.’s work on 

attribute clustering [14], and Eisen and Spellman’s hierarchical clustering [61, 209]. 

It has been reported that phylogenetic trees impose strict hierarchical structure and 

are best suited to data that tend to have this structure naturally [213]. The tree data 

used for this research do not have natural hierarchical structures, and therefore any 

method that imposes a hierarchical structure should not be used for tree identification. 

Hierarchical clustering modelling methods do not show the multiple distinct ways in 

which the data can be similar, and this certainly would be a disadvantage when 

seeking relationships between different species of trees. On the other hand, SOM 

output results can clearly demonstrate the inter-relationships between the data even 

for massive and complex data sets. Hierarchical clustering has been noted [213] to 

suffer from lack of robustness, non-uniqueness and inversion problems that make 

interpreting the results difficult. In addition, hierarchical clustering may group data 

based on local decisions and does not allow for re-evaluation of the decisions used for 

performing the clustering [213]. This may result in misidentification.  

Bayesian clustering is a highly structured approach requiring strong prior 

hypotheses, while K-means clustering is a completely unstructured approach which 

proceeds in a local fashion and results in an unorganized collection of clusters that is 

difficult to visualize and interpret [213]. The SOM imposes partial structure and 

therefore treads a middle path between these two extremes. 

 

3.6 Conclusion 

This chapter presented an overview of the different AI paradigms that were applied or 

were considered for implementation of the experimental work in this study. A brief 

outline of some of the AI techniques that were considered, namely expert systems and 

fuzzy expert systems, was given. Next, the structure of a neural network and relevant 
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training approaches were defined, followed by a broad overview of self-organizing 

maps. Thereafter, some RI techniques were described, and in particular two machine 

learning algorithms, the C5 decision tree algorithm and the CN2 rule extraction 

algorithm, were outlined.  

The overall objective of this chapter was to identify advanced AI techniques that 

could potentially aid in the problem of botanical identification. After studying these 

techniques the decision was made to use the SOM algorithm for application to the 

problem of identifying tree data.  

The results obtained from applying the SOM algorithm to the tree data set will be 

compared to those obtained by applying the C5 and CN2 algorithms to the same data 

set and analyzing the results. It is felt that the decision to use the CN2 and C5 

algorithms is justified because both these algorithms are popular bona fide computer 

techniques and are state-of-the-art methods from different classes of algorithms. If 

either (or both) of these techniques produces meaningful results it will be possible to 

compare the results with those obtained from the application of the SOM. On the 

other hand, should the CN2 and/or C5 algorithms fail to perform adequately, the 

anticipated superiority of the SOM for biological identification would be highlighted. 

Some of the papers discussed in this chapter report work that has been performed 

with neural networks using small historical data sets (for example, the Iris data set) 

and comparing different systems using accuracy measures only. It has been argued by 

some that accuracy measures on their own are not sufficient when comparing different 

systems. In this research, evaluation of results obtained from the application of the 

SOM will also be done using accuracy, sensitivity and specificity measures. In 

addition, multi-class and cluster confusion matrices will be presented. Finally ROC 

space graphs will be drawn to help evaluate the models. 

In the next chapter the SOM technique is discussed in detail. 
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Chapter 4 
The Self-Organizing Map: The SOM 

 

 

The previous chapter discussed different artificial intelligence approaches to the 

problem of biological identification. It was concluded that self-organizing maps 

(SOMs) were likely to be a useful method for application to this problem. The SOM 

algorithm will be described in detail in this chapter. 

The origins of the SOM are discussed in Section 4.1. Section 4.2 describes how the 

SOM works: first the original SOM algorithm is presented in Section 4.2.1, next the 

batch algorithm is described in Section 4.2.2, and some variants and related 

algorithms are briefly introduced in Section 4.2.3. Visualization of the SOM is 

discussed in Section 4.3. Problems associated with the SOM algorithm are discussed 

in Section 4.4: missing data are reviewed in section 4.4.1 and outliers in 4.4.2. Two 

measures of SOM quality are discussed next in Section 4.5. First, quantization errors 

are described in Section 4.5.1 and then topographic errors in Section 4.5.2. The 

chapter is concluded in Section 4.6.  

 

4.1 Origin of the Self-Organizing Map Technique 

The idea of using the SOM as it is applied in this thesis was conceived by Kohonen in 

1981 when he suggested using ordered displays to ‘illustrate’ a data set [109, 110, 

114]. Kohonen’s idea was inspired by the work of Von der Malsburg [236]. The SOM 

forms a nonlinear, nonparametric regression (viz, methods used for describing 

relationships between the dependent and independent variables without specifying the 

form of the relationship between them a priori.) of an ordered set of model vectors to 

the distribution of input vector patterns. The model vectors form an “elastic network” 

that maintains the topological order of the input data and develops into specific 

identifiers of the respective areas in the input space. The process steps by which the 

“elastic network” is formed are defined by the SOM algorithm. According to 

Kohonen, in its basic form the SOM can be said to produce a similarity graph of the 
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input data. The SOM does this by taking the input patterns and compressing them 

onto a set of model vectors while preserving the most important topological 

relationships of the patterns before displaying the output, usually in the format of a 

two-dimensional grid. Thus the SOM is more than a clustering method: for it can be 

used to reduce the amount of data by clustering, while at the same time it can project 

the nonlinear mappings of the input data onto a lower-dimensional display. In the 

process the probability density function of the input space is approximated and the 

topological structure of the input space is maintained. 

 

4.2 How the Self-Organizing Map Works 

The essence of the SOM algorithm is that it trains the network to learn to recognize 

input data while preserving the topology of that data. The SOM training utilizes a 

competitive learning strategy during which a weighted vector associated with each 

neuron in a neural network is modified and is gradually developed to become 

sensitive to a set of patterns from a specific domain of the input space. The end result 

of the training process is that different neurons specialize to represent different types 

of input patterns. This specialization is enforced by competition among the neurons. 

The competition occurs when an input pattern is presented to the network, and the 

neuron that is best able to represent the pattern ‘wins’ the competition and is 

rewarded by being allowed to adjust its vector values in order to represent the input 

pattern even more closely. If the winner’s neighbouring neurons are allowed to learn, 

those neurons will also gradually specialize to represent similar patterns, and 

consequently the representations on the output layer will become ordered [104]. With 

the SOM it is crucial that the neurons doing the learning do so as a group and not 

independently of each other, i.e. the neurons must learn as topologically related 

subsets. The adjustments performed during the learning steps become smoothed out 

during the iterative process.  

4.2.1 The Original Self-Organizing Map Algorithm 

The original incremental SOM algorithm defines a special recursive regression 

process where only a subset of models is processed at every step [114]. The first step 
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in the SOM training process is to define a map structure. It is possible to create a 

multi-dimensional lattice structure [108], but complex structures are not generally 

utilized as visualization becomes difficult [234]. Usually the neurons are arranged on 

a regular 1- or 2-dimensional lattice type of array with a hexagonal and oblong 

arrangement. This type of arrangement is able to represent the data clusters better than 

a rectangular arrangement and fits the data input distribution more easily [57].  

The number and positions of neurons on the grid are defined and fixed when the 

map is created and depend on the purpose for which the SOM will be used, and on the 

amount of input data. Sometimes the number of neurons used is determined by a 

heuristic formula such as 5 N or N , where N is the number of training patterns 

[234, 235]. The complexity of the SOM algorithm is governed by the number of 

neurons used: the more neurons that are used the longer the training process takes and 

the greater is the memory requirement. If the natural number of clusters in the data is 

being investigated (as it is in this thesis) the number of neurons used in the trained 

SOM must be far larger than the expected number of clusters in the data [234] but less 

than the number of training patterns [65].  

A vector of variable scalar weights is associated with each neuron. The dimension 

of these vectors is the same as the dimension of the input data vectors. The vectors 

associated with the neurons are referred to as the reference, model or prototype 

vectors. The values with which the model vectors are initialized can influence the 

final states of the map as well the learning speed (by ensuring fast convergence), and 

it is usually preferable that the vectors are initialized in an orderly manner rather than 

randomly [114]. With random initialization the self-organizing process may take a 

long time and a wide neighbourhood function (discussed below) may be necessary 

initially, resulting in heavy computation. If the model vector values are ordered the 

rate of convergence is faster, smoother and more reliable, and a narrower 

neighbourhood function can be used to obtain a more stable map [104, 114]. In 

addition to the model vectors being initialized in an orderly way, generally the 

weights in each vector are different for different neurons. Various initialization 

methods have been proposed and discussed in [13, 65, 114]. 
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If a model vector is denoted by mi a convenient measure of the match between a 

vector m and an input vector x can be based on the Euclidean distance between these 

vectors. The objective of competitive learning is to determine which neuron best 

represents the input x. Thus, the best matching neuron (BMN) would be the neuron 

associated with the model vector (mc) which satisfies the following equation: 

}{ iic min mxmx −=−          Eq.  4-1 

If a pattern x has some missing values those variables are ignored in the distance 

calculation.  

There are several measurements of similarity (or dissimilarity), but the simplest 

one is the Euclidean distance formula which is used to measure distances between 

patterns. This is the metric that is widely used with SOM [114, 233]. The minimum 

distance as determined by the Euclidean distance metric defines the winner (mc), and 

this model vector is then used to represent the input x and is rewarded by having its 

values updated to be closer to the values in x. However, as stated above, learning 

must not happen in isolation from the surrounding neurons. A neighbourhood set, Nc, 

is defined around a neuron. At each learning step all the neurons within the 

neighbourhood of mc are updated by having their values adjusted, although not to the 

same degree as mc. All x patterns which are best represented by mc will select mc as 

the winner and are thus mapped to it. The end result is that each model vector 

specializes to represent a whole domain of the input space and the “elastic net” 

formed takes the shape that best fits the patterns. Those neurons that are 

topographically close to each other in the array will activate each other to learn 

something from the same input pattern x. This will result in a local smoothing effect 

on the model vectors of the neurons in that neighbourhood, and as further learning 

takes place this process leads to global ordering. 

The size of the neighbourhood can vary: initially it should be set very wide to 

encourage global ordering (to give a ‘zooming out’ effect corresponding to a coarse 

global resolution showing a global view), and later it should be decreased (to give a 

‘zooming in’ effect corresponding to a closer view with finer cluster boundaries 

becoming evident). The final width of the neighbourhood is important because during 
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the final stages of the map formation the accuracy of the map and the degree to which 

the map follows the local data structures is determined. 

After selecting the BMN the model vectors are updated. The amount of the update 

is controlled by a neighbourhood function which is a decreasing function of the 

distance of the neighbourhood neurons from the winning neuron. The update rule 

[114] for the model vector i is: 

     [ ](t)(t)(t)h(t)1)(t
iciii

1

mxmm −+=+            Eq.  4-2 

where 

 t denotes time, 

hci(t) is the neighbourhood function, which is usually a function of the 

distance between the locations of the neurons on the map grid such that if rc 

and ri are the locations of neurons c and i respectively then 

)t,(h(t)h icci rr −= and with increasing 0h, ciic →− rr .  

 

For convergence, it is necessary that when 0→)t(hci ∞→t . The neighbourhood 

function has its largest value for the winning neuron and decreases monotonically 

with increasing distance on the map grid 2
ic rr − .  

The neighbourhood can be defined as a Gaussian kernel [114]: 
         

       
−

=

−

expα(t)h (t)2σ2

2
ci

c(x),i

rr

      Eq.  4-3 

where 

α(t) is the learning rate factor, and  

σ(t) is the width of the neighbourhood radius (σ(t) is the same as Nc = Nc(t)). 

Both the learning rate α(t) and the neighbourhood radius σ(t) decrease 

monotonically during training. The learning rate decreases to zero, and the 

neighbourhood radius decreases to a non-zero number such as one. The exact values 

of Nc and α are not critical if the model vectors are initialized with ordered values. 

However, the final value of σ(t) in the last training cycle influences the shape of the 
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SOM: a high final value of σ(t) emphasizes the topological relationship between the 

model vectors at the expense of the quantization effect, whereas a low final value of 

σ(t) emphasizes the quantization effect at the expense of the topological relationships. 

The process of updating each model vector by presenting all the data vectors once is 

called an epoch. In practice the number of epochs can be fairly low. 

The updating process is illustrated in Figure 4-1 where the neighbouring model 

vectors are pulled in the same direction (because of the neighbourhood relations). The 

neighbouring neurons acquire similar model vectors and the map adjusts to the data 

by updating these model vectors. 
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Figure 4-1 : Update Process of the Best Matching Neuron and its Neighbours 
The input →  is presented to each neuron in parallel and the Euclidean distance between each  
associated model vector and the current input is calculated in order to find the model which 
best matches the input. The vector values of the neurons in the neighbourhood of BMN are 
altered (   ) to represent  more closely but to a lesser extent than the vector associated with 
BMN. The neighbourhood is enclosed by purple lines (adapted from Vesanto, [234, fig. 3.2, 
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4.2.2 The Batch Self-Organizing Map Algorithm 

The original SOM training algorithm is stochastic where the model vectors are 

updated after each pattern has been presented to the network. In the SOM batch 

training algorithm the entire data set is presented to the SOM before any updates are 

made. 

The speed of training can be improved by approximately an order of magnitude by 

using the batch version of the SOM algorithm rather than the original SOM. In the 

batch map algorithm no learning rate parameter need be defined, but both the original 

and batch algorithms require the definition of a time-dependent neighbourhood 

function. 

The batch version of the SOM may be summarized by the following steps [113]: 

1. Initialize the model vectors using a suitable method. 

2. Compute for each neuron the average of the data patterns for which that neuron  

    is the BMN. 

3. Denote this average for neuron j as . j
−x

4. Calculate the new model vector (mi) values using the following formula: 

hn

hn

jij j

j jijj
i

∑

∑
=

_
x

m           Eq. 4-4 

 where 

   j iterates over each neuron of the SOM, 

  hij is the neighbourhood function, and 

  nj is the number of patterns for which neuron j is the BMN. 

5. Test for convergence and go back to step 2 and continue training until the  

     algorithm converges. 

A version of the batch SOM algorithm is presented in Appendix B. 

4.2.3 Variants and Related Algorithms 

Kohonen’s SOM model requires that the structure and size of the map are defined 

before a map is created. This places some limitations on the resulting maps. A number 
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of variations of the model have been proposed concerning the topology and the 

number of neurons.  

The choice of the size of the map is important because too many neurons may 

cause overfitting of the training patterns with the result that many neurons have a low 

frequency (where the frequency of a neuron is the number of patterns for which that 

neuron is the BMN). In addition, too many neurons increase the computational 

complexity. On the other hand, too few neurons will result in clusters with a high 

variance among the cluster members. 

The structure of a map may be made more flexible with the aim to improve the 

preservation of the topology, but sometimes this makes visualization more 

complicated than it would be when using a fixed grid [104]. There are many and 

various types of adaptations to the basic SOM and batch SOM algorithms which have 

been developed, and some of these are discussed below. 

 

Growing Variants of the Self-Organizing Map  

One approach in an attempt to optimize map size for the SOM is to allow the number 

of neurons used to vary. Training begins with a small number of neurons and the map 

is allowed to grow and shrink during training as neurons are needed.  

The interpolative method described by Rodrigues and Almeida [176] allows the 

use of a variable number of neurons, but the structure of the map has to be predefined. 

The new neurons have a well defined place on the low dimension grid and so 

visualization is not a problem [233]. 

Engelbrecht [65] suggests a SOM growing algorithm, however, a square map 

structure is assumed. 

Fritzke [74, 75] used a flexible and compact structure with a variable number of 

neurons. The growing cell structure method allows for the cell structure to be 

determined automatically from the input data and for the network size to be 

determined dynamically. New model vectors are added according to an error function 

criterion. The algorithm allows for model vectors to be removed as well as added. 

However, visualization is more complicated than it is with the regular SOM [104, 

233]. 
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Fritzke also developed a growing structure grid which changed dynamically and in 

which, according to [233], visualization is not a problem. 

Blackmore and Miikkulainen [19] describe an incremental grid–growing algorithm 

which incorporates implicit input information directly into the structure of the map, 

and in the process represents it explicitly in the output. Blackmore and Miikkulainen’s 

aim is to guide the development of structures actually present in the input distribution, 

and during organization to detect and correct as early as possible any false topology in 

the map. The authors suggest this requires an incremental approach to building and 

organizing the map. Initially a small number of neurons are utilized in the structure 

and then heuristics are used to find and remove any potentially inaccurate neurons or 

connections, or to add neurons where they are required. After the reorganization of the 

structure the process is repeated until the specified maximum number of neurons is 

achieved. The algorithm can yield an accurate, low-dimensional description of the 

structure in high-dimensional input.  

Another growing variant of SOM was presented in [99] which leads to networks 

with rather complicated structures. Visualization, however, is not a problem with this 

technique. 

A growing grid was presented by Bauer and Villmann in [15] where the output 

space topologies are adapted in an unsupervised way. This is accomplished by 

growing hypercubical output spaces up to a pre-specified maximum number of nodes. 

This Growing Self-Organizing Map (GSOM) starts with a configuration of two 

neurons, learns using the regular SOM algorithm, and adds neurons to the output 

space according to some criterion. Growing is achieved either by adding nodes in one 

of the directions already spanned by the output space, or by adding a new dimension. 

This process of learning and adding is repeated until a pre-specified maximum 

number of neurons is reached. The maps formed by this method deliver an output 

space topology adapted to the input data. The neighbourhood is thus well preserved, 

but the output space is constrained by being forced to maintain a hypercube shape.  

The Growing Hierarchical Self-Organizing Map (GHSOM) [143, 175] has a 

hierarchical architecture composed of independent growing self-organizing maps. 

During the unsupervised training process the architecture of the model is adapted 
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according to the structure of the input data. This is done by allowing the size of maps 

and the depth of the hierarchy to adapt dynamically. The layers of the GHSOM grow 

in a top-down fashion. Starting at the top layer, each map grows in size to represent 

the data set to a specific level of detail and is then analysed. The map neurons that 

need expansion (because they represent an inhomogeneous set of input data) are 

developed into a new SOM in a lower hierarchical layer in order to represent the data 

better. The whole process is then repeated until a suitable level of representation is 

reached.  

The Plastic Self-Organizing Map (PSOM) [124] is another dynamic SOM variant  

which adds new neurons in order to capture new information and deletes neurons that 

store stale information. Parameters are set without prior knowledge of the data set and 

require tuning by running multiple trial sessions. 

Another Growing Self-Organizing Map (GSOM) was described by Alahakoon et 

al. [5-8]. This dynamically growing neural network does not require that a map size 

be specified, but rather can be dictated by the user or the structure of the input data. 

This algorithm incorporates a parameter called the spread factor (SP) which controls 

the map resolution. Initially, if a low SP value is used, a coarse map is obtained. After 

filtering out the data that belongs to a cluster a larger SP value can be used to zoom in 

and exam any sub-clusters.  

The Cellular Probabilistic Self-Organizing Map (CPSOM) [32] is an online 

algorithm which has its foundation in statistical analysis. It is a learning algorithm 

which allows the network to adapt to new patterns and includes a forgetting factor 

(FF) which allows the network to forget stale information. The FF makes the 

algorithm better able to produce flexible dynamic maps. 

The Growing Cellular Probabilistic Self-Organizing Map (GCPSOM) is a hybrid 

of the GSOM and the CPSOM, and is described in [8]. 

 

Tree-structured Self-Organizing Map 

In the SOM the search for the BMN can be speeded up by constructing a tree-

structured SOM [117-120] (TS-SOM). Each layer (level) of the tree is a complete 

quantization of the data set and consists of a separate, progressively larger SOM. The 
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size of the data set is limited by using the information gathered in the previous layer. 

The search for the BMN proceeds layer by layer, each time restricting the search to a 

subset of neurons that is dictated by the location of the BMN in the previous layer. 

The map is taught layer by layer, starting from the smallest layer. The tree structure 

offers search complexity instead of( NlogO ) ( )NO , and so provides a fast search. 

 

Minimal Spanning Tree Self-Organizing Map 

Kangas et al. [101] proposed a minimum-spanning-tree approach (MST-SOM). In the 

MST-SOM the neighbourhood relations are defined using a MST which finds the 

shortest possible set of connections linking a set of vectors. In terms of vector 

quantization the dynamically changing structure of the MST-SOM is faster and more 

stable than the basic SOM. However, in the MST-SOM the model vectors do not have 

well-defined positions on a low-dimensional map. Thus the speed up of the algorithm 

is at the expense of neighbourhood relations, and visualization is more of a problem 

than it is with a regular grid. 

 

Neural Gas 

The neural gas algorithm [141] is another variant of the SOM. Here the 

neighbourhoods are adaptively defined during training by ranking the distance of 

model vectors from the given training pattern. This SOM variant preserves the 

neighbourhood relations but does not always reduce the dimension of the input data. 

Again, visualization is more complicated than with the regular SOM.  

 

Growing Neural Gas 

The Growing Neural Gas (GNG) model developed by Fritzke [76] used competitive 

Hebbian learning in a similar way to the neural gas model described above. The GNG 

model starts with a small network and allows the addition of new neurons. These 

neurons are added after evaluating local statistical metrics collected during prior 

adaptation steps. The network topology is built up in small, incremental steps. The 

dimension of the network depends on the input patterns and may vary, and therefore 

need not be pre-specified. The growth of the network continues as training progresses 
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until a pre-defined maximum network size or a user-defined performance criterion is 

reached. The advantage of this method is that it uses constant parameters and is 

capable of dynamic data clustering. The disadvantage is that it tends to be hard to 

visualize because of the topology dimensions which may vary locally. 

 

Multiple Self-Organizing Maps 

The Multi - Self-Organizing Map (M-SOM) architecture which was described by 

Goerke et al. [83]. This method consists of a set of independent SOMs which work 

together while covering the input space. Each SOM is topologically distinct and has 

its own size and dimension, and each output class is represented with a separate SOM. 

The small size of each map ensures that it is less likely to twist and distort than a 

normal map which covers the entire input space. 

 

4.3 Visualization of the Self-Organizing Map 

The SOM has properties of vector quantization, clustering and projection algorithms. 

Quantization of the input patterns to the model vectors reduces the data set to a 

smaller set. After quantization the density of the model vectors should represent the 

input data’s density and so can be used for clustering, visualization and analysis. The 

reduced data set has the added benefit that the computational complexity of 

subsequent tasks is reduced. In addition, quantization can help reduce the effect of 

outliers (discussed in Section 4.4.4). 

As mentioned above, the density of the model vectors of an organized map reflects 

the density of the input data. The model vectors are far apart in the areas between the 

clusters and close to each other in the clustered areas. Hence the distances between the 

model vectors can be used to demonstrate the cluster structure of the input data.  

To obtain efficient visualization the models require vector projection. Projection 

methods try to find low-dimensional mappings that preserve the order of distances 

between the originally high-dimensional data patterns. Reliable projections can be 

obtained if the characteristics are highly correlated with a lot of redundant 

information, or if the data contains a lot of noise which can be discarded [231, 232, 
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234]. The models (which have well-defined positions on the low-dimensional grid) 

and their projections form a map of the higher-dimensional input space. 

Neighbourhood relations are an essential part of the organization of a SOM, 

however, several potential disadvantages of a SOM can arise relating to the 

neighbourhood.  

The neighbourhood definition is not symmetrical on the map borders, i.e. the 

neurons located at the edges or corners have fewer direct neighbours than the neurons 

located elsewhere on the map. The result of this ‘border effect’ is that during training 

the properties of border neurons are different and the density estimation is different 

for the border neurons than for the map’s central neurons. The occurrence of the 

border effect increases the probability of topological errors [226]. Ultsch suggests the 

border effect can be avoided by embedding the grid in a finite but borderless space 

[225] and that the maps should be unbounded, i.e. the maps should be folded back on 

themselves. 

The vector quantization procedure performs averaging, and this is enhanced by the 

neighbourhood function. This could result in extreme values (belonging to ‘outliers’ - 

see Section 4.4.4) being ‘averaged’ out. If these outliers contain important data which 

should be analyzed, their removal is a disadvantage.  

Another effect that could be a disadvantage occurs when interpolating units are 

placed between data clusters in non-continuous data space. These interpolating units 

are useful for extrapolation of estimates of the data distribution. Sometimes, however, 

this interpolation results in inaccurate information and obscures cluster borders.  

A SOM may be visualized using various techniques which include visualization of 

cluster structure and shape, components and data on the map. The first step of the 

analysis of the map output is to try to determine how clusters relate to each other as 

this provides an overall idea of shape of the map in input space. This means that 

cluster boundaries have to be found. The unified distance matrix (U-matrix) can be 

calculated and used for finding and displaying these boundaries. The U-matrix is a 

graphical representation of the SOM where shades of a colour are used to show the 

distances between each model vector and its adjacent neurons. The U-matrix exploits 

the fact that the distances between neighbouring model vectors are not uniform: 
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distances are small in dense areas (lightly coloured) and distances are greater in sparse 

areas (darker shades of colour). This means that larger distances represent dissimilar 

features between neighbouring nodes and separate the clusters. 

Boundaries of the clusters on the map are usually found by using Ward clustering 

of the model vectors [65]. This clustering method, based on variance, was proposed 

by a statistician named Ward and is one of the most popular hierarchical 

agglomerative clustering (HAC) algorithms. In this approach initially each neuron 

forms its own cluster. The algorithm iterates over the clusters merging the closest 

(according Ward’s distance measure), adjacent, non-empty clusters until an end 

criterion is reached. This stopping criterion could be either an optimal or specified 

number of clusters. The final clusters formed eventually contain patterns with small 

variance over their cluster members but larger variance over other clusters. 

Beside distance matrices, some of the different ways of visualizing the cluster 

structure include using similarity colouring and viewing the map network in 3-

dimensions.  

The component maps may be analyzed to investigate correlations or partial 

correlations between the component variables (attributes). Each component plane 

represents the values of a single component in each SOM neuron and thus depicts the 

range of values for that component. A range of colours is used to represent different 

values (from minimum to maximum) for the particular attribute being considered. 

Blue is used to represent low values while red is used to represent high values. Pale 

blue, green, yellow and orange respectively represent the increasing range of values 

between those of blue and red. 

The relationship between the SOM and the data vectors may be used for 

determining the accuracy of the mappings. A particular pattern’s location on the map 

is usually its BMN, although there may be several neurons with model vectors which 

match the pattern almost as well as its BMN. If there is a fold in the map these 

neurons may be far away from its BMN. The neurons may also be far away because 

the data patterns are far away from the data manifold modelled by the map [232]. The 

various possibilities have to be investigated and the possible reasons for the results 

analyzed. 
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4.4 Problems Associated with the Self-Organizing Map 

The SOM method is an excellent technique, but there are several situations where 

problems may occur. The software must be able to handle these, and analysis of the 

results must take into consideration the possibility of results being affected. These 

problems are summarized briefly below. 

4.4.1 Border Effect 

The border effect is a side-effect of the application of the neighbourhood function and 

is a weakness of the SOM method. This effect, and possible ways to overcome it, has 

already been discussed in Section 4.3. 

4.4.2 Interpolating Units 

When the data cloud is not continuous, interpolating units are placed between the data 

clusters [234]. While these interpolating units may provide useful estimates of the 

data distribution, they can affect the shape of the data manifold. If necessary, these 

units may either be left out or at least taken into consideration when the results are 

analyzed. 

4.4.3 Missing Data 

If a significant proportion of the data set consists of missing data values the software 

must be able to handle the missing values. This can be achieved in a number of ways 

including the following: 

a) When comparing the input data vector with the model vectors if some of the 

components of the input data vectors are unavailable, not applicable or undefined then 

only the known components of each input vector are taken into account and the 

vectors are re-dimensioned accordingly, i.e. the attributes with missing values are 

simply ignored and the length of the vector adjusted. When the model vector values 

are updated, only the component values which correspond to the values available in 

the input vectors are modified. 

b) Missing values can be replaced with the corresponding attribute value of the 

data records' BMNs. 
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c) Depending on the operation that is being performed a combination of both 

method a) and b) can be used. 

d) The data records with missing values may be discarded or just removed from the 

training set and later associated and displayed on the map once it has been trained. 

The way in which missing data are handled may depend on the process being 

performed. For example, during the process of trying to find the BMN, if the sample 

vector xi has some missing values, those variables are ignored in the distance 

calculations. However, during map training a node's new vector values may be 

computed as a weighted mean for all the data records in its neighbourhood. For this 

purpose, the missing values in the data records may be substituted by the 

corresponding attribute value of the data records' BMNs.  

However, as long as provision is made for their occurrence, it has been shown that 

missing values are not normally a problem for SOMs [185]. The SOM’s ability to 

handle missing data was in fact one of the main reasons for selecting the SOM for this 

investigation. 

4.4.4 Outliers 

An outlier is a data pattern that differs substantially from the data distribution and 

hence lies far from the main body of the data. Outliers may occur because of an error 

in the data set, or an outlier may be data patterns that are really different to the rest of 

the data. In biological material this can be a fairly common occurrence and might 

occur due to genetic oddities. In either case, in the SOM displays each outlier affects 

only one map neuron and its neighbourhood, and if necessary can be discarded and 

the analysis performed on the rest of the data set [104]. 

However, sometimes these outliers are important and have qualities which need to 

be analyzed, in which case they should not be discarded. 

4.5 Measures of SOM Quality 

There are various ways of measuring the quality of the SOM, and two of these will be 

discussed next.  
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4.5.1 Quantization error  

The quantization error (Eq) is the sum of distances of each data pattern to the model 

vector of the winning neuron. The accuracy of mapping can be measured by 

calculating the Eq. According to Kohonen [114] the best map is expected to yield 

approximately the smallest average quantization error because it is then ‘fitted best’ to 

the data. The Eq evaluates the fitting of the map to the data. The smaller the Eq the 

smaller the average distance from the input vectors to the model vectors, the closer the 

data vectors are to their models and the better the fit to the data. The lower limit of the 

Eq is zero, which is ideal if there is no noise in the data. An Eq of zero means that the 

neuron weight vector is exactly the same as the data vector, i.e. that each data vector 

maps exactly to one neuron weight vector. However, if there is noise then an Eq of 

zero may mean there is overfitting. On the other hand, the quantization error is high if 

there are unwanted “twists” in the map or if the configuration of the models has not 

reached a stable state in the learning process [114].  

The average Eq  (Eqavg) is defined as: 

    ∑ −=
=

N

1i
ciqavg N

1E mx         Eq.  4-5 

where 

   N is the number of patterns, 

   xi is the current vector pattern, and  

   mc is the BMN of the corresponding xi input vector. 

 

Some attributes are more important, and thus statistically more significant, than 

others with respect to quantization. Hence leaving out, adding or rescaling attributes 

will affect the quantization error and how well the attributes are represented. The 

number of times each map node is the BMN (called the number of hits) also has an 

affect on the Eq. The higher the number of hits on a neuron the greater the total 

number of errors will be. 

The Eq can be used as an indication of map accuracy and as a criterion for stopping 

the SOM training algorithm, i.e. the training can be stopped when the Eq is low 

‘enough’. The Eq may also be used as a criterion for selection of the map model, 
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where several maps of the same size are trained on the same data set and the one with 

the lowest Eq is selected. When comparing Eqs the maps have to be the same size 

because the Eq usually decreases as the number of neurons is increased.  

The Eq does not take into account topology-preserving properties of the map and a 

means of assessing neighbourhood relations will be discussed next.  

4.5.2 Topographic error 

Topology is preserved if data patterns close to each other in the input space are 

mapped to areas close to each other on the map. The topographic error (Et) measures 

the topology preservation and is defined as the proportion of all data vectors for which 

the first and second BMNs are not adjacent neurons [107]. Et is a simple SOM-

specific error measure that assesses the quality of the vector projection.  

    ∑
=

=
N

1i
)(N

1
iuEt x           Eq.  4-6 

where 

  u(xi) = 1, if the 1st BMN and 2nd BMN are not adjacent, otherwise 

u(xi) = 0 

The lower the Et the better the SOM, i.e. if u(xi) = 1 then there are similar models 

in different parts of the map and the mapping is not topology preserving. This 

happens, for example, when the map folds on itself. If u(xi) = 0, similar models are 

close to each other and the mapping is topology preserving. According to Kiviluoto 

[107] if the dimension of the SOM lattice is lower than the dimension of the input 

space then u(xi) = 0 is not possible as, under these circumstances, the topology can 

never be perfectly preserved. 

 

4.6 Conclusion 

This chapter described the SOM and some of its variants. Thereafter the visualization 

of the SOM was discussed together with vector quantization and vector projection. 

Next, the most common side effects of using SOMs were reviewed. Finally two 

methods for assessing the quality of SOM models were discussed. 
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The next chapter describes the research design used to develop the SOM models 

applied in this research. Reasons for selecting the application field are motivated and 

presented, and a description is given of the pre-processing methods applied to the 

data. The process steps necessary for the development, verification and testing of the 

models are discussed.  

 

 
 
 



 

 65

Chapter 5 
Developing the SOM Models 

 

 

The previous chapter discussed the theory and practise of the Self-Organizing Map 

(SOM). In order to use data for computerized analysis the data must be collected, pre-

processed and represented in a format which can be input to and recognized by the 

selected computer program. This chapter describes how the data for this thesis were 

collected and treated before they could be used for biological identification using the 

SOM technique. It then describes how the data sets were presented to the SOM 

software and the SOM models were developed. 

The research design used in this thesis is outlined in Section 5.1. The choice of 

data and the reasons for selecting these data are explained in Section 5.2. Section 5.3 

explains how the data were selected and collected, including a description of any 

limitations. The choice of the computational algorithm and of the software tool 

selected is discussed in Section 5.4. A description of how the data were pre-processed 

and represented is given in Section 5.5. The storage of the data and any special 

requirements that were applied to the data before they were presented to the software 

tool are described in Section 5.6. A description of how the data were divided is given 

in Section 5.7. The process of presenting the training data set to the ANN and the 

formation of the SOM models is given in Section 5.7.1 while Section 5.7.2 describes 

the presenting of the test data set to the SOM models. Section 5.8 concludes the 

chapter. 

5.1 Research Design Outline 

The objective of this thesis is to assess the effectiveness of the SOM for biological 

identification with a view to improving biological identification methods. The steps 

taken to achieve this objective were:  

 Choosing the biological application field - a discussion of what biological field 

was chosen and the reasons for this choice are given. 
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 Sampling the population of the selected biological domain. 

 Indentifying the software tool to be used. 

 Coding the data samples. 

 Presenting these data to the software tool. 

 Interpreting the software results. 

 Assessing the effectiveness of the SOM models. 

 Recommendations arising from using an ANN approach for biological 

identification. 
 

How these steps were performed and the results obtained will be discussed in this 

chapter and in Chapter 6. 

The choice of data is described in the following section together with the reasons 

for the choice. 

 

5.2 Choice of Data 

Careful consideration was given before selecting a botanical rather than zoological 

group. In particular, many groups of commonly encountered trees with complex 

evolutionary and taxonomic relationships seemed appropriate as a means of testing 

the ability and efficiency of the SOM algorithm as an identification tool. The choice 

was driven by the fact that there is a very real need to provide non-specialists with an 

aid to identify trees when an expert is not readily available. This is especially true in 

Africa where there are very few taxonomic experts while the biodiversity of the 

continent is extremely large. Flowering plants alone are estimated to be in the order of 

70000 species. In addition, laymen often find the identification of trees difficult. 

There are several reasons for this: for instance, vegetative characteristics (for example 

leaves), although present most of the time, show variations which are not obvious to 

the inexperienced. To make things even more difficult, some of the most obvious 

macroscopic characteristics (for example flowers and fruit) although extremely useful 

and diagnostic in the identification process, are oftentimes not present. Although each 

tree species does have its own unique characteristics, these characteristics often do not 
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display easily identifiable macroscopic variations within its group that other 

biological species do. For example, most trees have green leaves and 

greyish/brownish/blackish bark with little variation in colour, while, on the other 

hand, other biological species, for instance birds, have different colours and 

sometimes different shapes and sizes. This variation aids enormously in 

differentiating the species during the identification process. 

Having selected trees as the source for the data sets to test the SOM, the next step 

was to find a small group or genus of trees. The training and test data sets have to be 

limited in size so that the amount of data does not become overwhelming, but the 

group should still remain scientifically suitable for testing the identification tool. 

Consequently, in choosing a model system it is necessary to look for a relatively small 

genus which is taxonomically well worked out but also has some challenges. Ideally 

the chosen species should be identifiable by an experienced expert but should present 

difficulties for the layman who does not have experience with the particular taxa. To 

limit the size of the data set it was thought that the group chosen should be limited to 

a region rather than the whole of South Africa, southern Africa or the world. As the 

author is resident in KwaZulu-Natal (KZN) the choice of taxa was limited to this 

province of South Africa.  

The genus Acacia has 23 taxa which are indigenous to KZN, and this is considered 

a reasonable number for a study at this level and complexity. Also the genus is found 

fairly commonly in KZN, thus making the gathering of data less difficult. The Acacia 

species are not easy for non-specialists to differentiate, especially as the vegetative 

characteristics show variation which is not obviously diagnostic to inexperienced 

botanists. Often the flowers and pods are not present and these are usually important 

macroscopic characteristics used for differentiating Acacia species. 

Acacia is an important and widespread African genus which often dominates the 

landscape. In fact Acacia species are extremely important locally and all species make 

some contribution to the environment and rural economy by way of shade, shelter, 

soil stabilization and fertility, food for browsing animals and fuel; to mention a few 

uses. Many are also important ingredients in local herbal medicines called muthi. In 
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view of the above, the Acacia trees indigenous to KZN were selected for testing the 

SOM algorithm’s ability to identify tree species. 

In the next section the recent plans to change the name Acacia are discussed and 

the meaning of the name Acacia is explained. 

5.2.1 Moves to Transfer African Acacia Species to a New Genus 

The name Acacia is the Latin form for the Greek name acanth/acantho meaning 

thorny or spiny [211] or alternatively the Greek word akakia (which is derived from 

ακις (akis) which is Greek for a sharp point). Although irrelevant to this thesis it is 

interesting to note that the Acacia wood is reputed to be the wood used to build the 

Arc of the Covenant [159]. 

Since this thesis was started a recommendation has been made for the name Acacia 

to be conserved for the Australian species and that the African (and other) species be 

placed in newly proposed genera [26]. However, counter proposals are to be put 

forward for adoption at the 2011 Botanical Conference in Melbourne. As a result this 

thesis will continue to use Acacia for the African species until this nomenclatural 

problem is resolved [9]. A number of papers [137, 142, 146-148, 158] deal with the 

Acacia name change issue. 

The acquisition of the data set used in this thesis is discussed next. 

 

5.3 Data Collection 

Having selected the Acacia species of KZN to trained and test the SOM the next step 

to be performed is to collect and prepare the data for use. These steps will be 

discussed next and an outline of the steps is depicted in Figure 5-1. 

Training Data, 

Testing Data 

Data 

Standardization 

Data Pre-

processing 

Data 

Collection 

 

Figure 5-1 : Process Diagram of Steps in Preparing Data for SOM 
  (adapted from Vesanto [234, page 3]) 
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A process of acquisition and elicitation of the data is needed for inputting into any 

analytical computer software and to a large extent the final function and success of 

such an analytical system is dependent on ‘what’ data are presented to it and ‘how’ 

these data are presented. Traditionally, botanical data are stored in a number of forms, 

but by far the most extensive source of morphological information is in the form of 

written descriptions. When gathering the data for computerized analysis, the first 

problem that has to be dealt with is the manner in which these data are structured. 

Morphological, anatomical and cytological botanical data are such that they cannot be 

presented directly to a computer system because they are often incomplete, imprecise, 

unstructured and dispersed [66]. In this thesis the data for the data sets were drawn 

from several sources. This included extracting information from authoritative 

botanical literature (keys and scientific descriptions) and herbarium specimens’ 

documents, undertaking field work, and consulting experts. In particular, the data 

were directly derived in a manner similar to that employed by botanical experts: 

namely from dichotomous keys of the ‘if-then’ type, monograph descriptions, species 

description composed by experts, and herbarium specimens. These are the sources of 

data that are used for the classification and recognition of plant species. In particular, 

data sources used were the Flora written by Ross [178-180], with additional data 

being gathered from [28, 42, 53, 145, 168, 191, 207, 218, 229, 230]. In addition, data 

were obtained from observing Acacia species in nature, and from information gained 

directly from knowledgeable colleagues. This information was subsequently 

confirmed by consulting herbarium documents and specimens, and by taxonomic 

experts.  

Thus, information on acacias was gathered and summarized and a list of 

macroscopic diagnostic attributes (descriptors or characteristics) at species level was 

compiled. The choice of descriptors was guided by the attributes which were 

presented in the consulted literature. Only macroscopic characteristics that are easily 

and usually observed with the naked eye, and that are normally used in the field for 

identification, were considered. Once a list of the most important taxonomic 

characteristics had been drawn up, the attributes were grouped as shown in Table 5-1. 
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Table 5-1 : Sub-groups of Acacia Characteristics 

Sub-groups Maximum No. of Characteristics  

Habit & Thorns 43 

Flowers 19 

Pods and Seeds 25 

Leaves 40 

Total 127 

 

The following points should be noted in conjunction with Table 5-1:  

 Habit and thorn characteristics of the trees included attributes which 

described the tree in general (viz. the habit), for example the maximum 

height of the tree, colour of the trunk; and thorn qualities such as the type of 

thorn (straight or recurved), and the length of thorn.  

 Leaf characteristics included attributes such as the length of the leaf and the 

number of leaflets.  

 Flower characteristics included qualities such as colour and shape of 

inflorescences.  

 Pod and seed characteristics included attributes such as shape of the pod 

and number of seeds.  

Altogether 127 macroscopic characteristics were extracted to describe each of the 

Acacia species used in this study.  

The identifying diagnostic attributes and their values were stored in a MS-Excel 

spreadsheet. An example of a portion of this table is shown Table 5-2. The database of 

information is seen as a matrix, where each row represents an instance and each 

column represents an attribute. In botanical science the genus name (in this case 

Acacia) can be abbreviated to its initial (in this case A.) when the genus name is 

followed by the species name. Thus, Acacia ataxacantha can be abbreviated to A. 

ataxacantha. This convention will be used in this thesis. In Table 5-2, as confirmed by 

a taxonomic expert, A. ataxacantha has an elongate or spike-like inflorescence with 

white flowers, while A. karroo has a capitate or head-like inflorescence with yellow 
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flowers. This information is indicated by the value ‘Yes’ in the appropriate columns 

in Table 5-2. For each specimen the corresponding attribute value (if available or 

applicable) was noted, and finally a table of values was obtained for 80 samples for 

each of the 23 KZN Acacia species. Altogether a total of 1840 specimen descriptions 

was obtained. 

    Table 5-2 : Extract from a Numerical Table Describing Acacia Specimens 

 … SPK1 HD2 COLY3 COLWH4 … 
A. ataxacantha  Yes   Yes  
…      … 
A. karroo   Yes Yes   
where the codes: 

1   ‘SPK’ means spike;  

2   ‘HD’ means head; 

3   ‘COLY’ means colour yellow; 

4   ‘COLWH’ means colour white. 

 

According to Lisboa [136] the sample size of the data set should be at least five 

times more than the number of attributes; and if the sample size is small, cross-

validation should be used. Vesanto also states that for SOMs the number of samples 

must be considerably more than the number of attributes [234]. 

In this research project, half the herbarium samples were kept for training and half 

were kept for testing. As a result, for the whole data set the training sample size (920) 

is over seven times the number of attributes (127). In addition, a 30-fold cross-

validation was employed. 

In the next section the choice of software is discussed. 

 

5.4 Choice of Software 

According to Cottrell [45] the SOM, and its related extensions, is the most popular 

artificial neural algorithm for use in unsupervised learning, clustering, classification 

and data visualization. Kohonen [116] states that over 7000 scientific articles have 

been written about SOM [105, 157], and in addition many commercial projects 
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employ the SOM as a tool for solving hard real-world problems [45]. SOM properties 

include quantization, clustering and visualization, which are all useful for identifying 

data. The SOM technique, in particular, can still provide results for data even when 

many values of the characteristics are missing, thus making the method highly 

appropriate for the problem of botanical identification. For these reasons, and for 

reasons already discussed in previous chapters, the SOM algorithm was selected as an 

ANN technique to solve the problem of botanical identification. 

Having decided to use the SOM algorithm, available SOM tools were investigated. 

The Helsinki University of Technology (HUT) web page [1] lists available SOM 

software and gives a short evaluation of each package. SOM_PAK is public domain 

software [112] which was developed by the SOM Programming Team of HUT and 

may be considered as the original SOM implementation. Deboeck [56] and Kohonen 

[115] also give an overview of available SOM software tools. Even though 

SOM_PAK appeared to be a logical choice, at the time of selecting the software, 

Viscovery® SOMine was the state-of-the-art SOM software, and so this package was 

chosen for use in this research.  

The Viscovery® SOMine software is simple to operate and is reliable. The pre-

processing of input data allows for scaling, priority settings and transformations. 

Output visualization can be in the form of cluster maps, component planes, U-matrix, 

iso-contours and limited statistics. Several clustering options are available and the 

SOM algorithm is combined with the Ward clustering method. The software can 

perform dependency analysis, however the final analysis/interpretation of the output is 

performed by the user and not by the package. The software uses the batch map 

algorithm and provides some accelerated computing (in the form of a growing map) 

which has the effect of being able to achieve high computing speed. The map array is 

always hexagonal, and the initialization of the model vectors is made along the plane 

spanned by the principal axes. The neighbourhood function is always Gaussian and 

missing data are handled automatically. These features combine to offer a very 

effective software tool. 

The version of Viscovery® [2] used during this thesis is Viscovery® SOMine Plus 

Version 4.0 which allows up to 50,000 data records with no restriction on the number 
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of variables (characteristics). The Viscovery® software allows certain parameters to 

be set before the data are presented to the ANN. For instance, the software allows the 

user to select the number of nodes. When the user selects the number of nodes the 

software uses approximately the number requested (not necessarily exactly). The 

default value for the number of nodes used for SOMine is set to 2000 nodes.  

With Viscovery® software the significance of a characteristic can be scaled by 

increasing the priority of that characteristic. If a priority of less than one is selected, 

the importance of that characteristic is decreased. If a priority of more than one is 

selected, the importance of that characteristic is increased. The default priority is 1 

and this was the value used for the work in this research.  

The value of the map tension may also be selected. The default value is 0.5, and 

this value was used as a larger tension (say above 1) would result in a rigid map.  

The Viscovery® software default values were used in this research as the aim of 

this thesis was to see if the SOM is an effective tool for identifying biological 

material. More particularly, the inter-relationships of the data were important and so, 

as far as possible, default values were used to minimize the effect of manipulation and 

thereby possibly biasing the outcomes. 

The next section presents a discussion on how the data were prepared for inputting 

into the ANN. 

 

5.5 Data Pre-processing 

There are two assumptions made about the data collected: firstly, the identification of 

all instances is unknown to the SOM, and secondly, the data are numerical and are 

either continuous or discrete. No formulas, calculations, macros or text are allowed 

within the data set except for text descriptions in the title row and title column. 

Consequently, in the data table the first row is a title row that labels each column of 

attribute values; and the first column is a title column that labels each specimen 

sample. The title row and title column are ignored during subsequent creation of the 

SOM.  
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Although the identity of the instances of the species is assumed unknown and not 

presented to the SOM, the class labels for all the instances have been determined by 

experts and this information is used afterwards for labelling and to aid in the 

interpretation of the results. The reason for not presenting species’ identities to the 

ANN initially is so that the output of the SOM is data driven and not affected by 

imposing human decisions which could be biased. In this way the identities of the 

specimens do not affect the structures that may be found, and any pattern presented by 

the SOM is determined objectively and a priori. 

Data, as extracted from botanical sources, are usually in the form of written 

descriptions. These textual descriptions have to be represented numerically before 

presentation to an ANN. This transformation was done manually and the results were 

stored in a table, as shown in the extract presented in Table 5-3. 

 

Table 5-3 : Extract from Numerical Table Describing Acacia Species 

 
 

    Column 1           Column m 

 

…  TR_HT_MAX  STEMS  TR_CRWN  … 

Attribute 

Title Row 

A. ataxacantha  0.9

A. borleae 0.05  0.7  

A. brevispica 0.1

 …  

Samples/ 

Specimen 

  

       Sample Title Column            Attributes/Characteristics/Variables 

Row n 

  

In Table 5-3 column one, the names of the specimens are given, while in row one 

the names of the attributes are given. The intersection of each row [2..n] and of each 

column [2..m] gives the attribute value for the respective specimen. For example, in 

Table 5-3, A. borleae has a maximum tree height (TR_HT_MAX) which is 

represented by 0.05, and a stem (STEMS) value of 0.7 (which means the tree may 

have one or more stems from the base). No values are available for describing the tree 
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crown (TR_CRWN) so this cell in the table is left blank. By employing a numerical 

table-format the data can be investigated from the viewpoints of either the specimens 

or their attributes. When the table is investigated as a collection of specimens 

interesting similarities between individual specimens can be considered. When the 

table is investigated as a set of specimen attributes the statistical properties and 

dependencies of the attributes can be considered [234]. 

Some characteristic values were encoded with discrete values of 0 or 1 

(corresponding to false or true, or present or absent) as appropriate. This encoding 

was used for characteristics such as colour of flowers where species with white 

flowers could for example have their characteristic value as 1 (true for white flowers) 

while species with yellow flowers could have this characteristic value stored as 0 

(false for white flowers).  

Other characteristic values were encoded using a real number between 0 and 1. 

This encoding was used for characteristics such as length of thorn. The normalization 

of the data is discussed in Section 5.6. 

During the pre-processing stage, the original raw data were cleaned and 

transformed so that: 

 the significant data properties were presented more clearly, 

 there are fewer or no erroneous values, and 

 the data are in a numerical format suitable for the SOM method.  

During the next phase data were standardized, and this is discussed in the next 

section. 

 

5.6 Data Standardization and Storage 

Data were normalized between (0, 1) to focus attention on the pattern of the data 

rather than on absolute levels of the data values. Some characteristic values, such as 

maximum tree height, have high values while other characteristic values are much 

lower, such as leaflet length. In order to standardize the effect of the contributions of 

the different variables all data were (0,1)-normalized as was suggested by Kohonen 

[114]. 
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Once the data set has been prepared it must be stored in a format that is compatible 

with the Viscovery® SOM software. The SOM software will accept data stored in a 

MS-Excel spreadsheet or in a text file. For this research Microsoft® Office Excel 

2003 was used for storing the data.  

The data set was compiled independently of the Viscovery® SOMine software 

used, and the data were presented to the SOM software only when the training and 

testing was done. The SOMine tool can work with any set of numerical data prepared 

according to the necessary criteria, and so the ANN could be used with any biological 

material.  

The next section gives a description of the process followed when presenting the 

data to the SOM algorithm.  

 

5.7 Data Utilization 

Kohonen [114] reported on a technique which required that the data set be divided. 

This technique allows some of the data to be used for training the SOM while the 

remaining data are used for testing. The patterns used for training have a relatively 

small amount of data missing while the test data set has a higher proportion of 

attribute values missing. This test data set was mapped on to the trained SOM. A 

technique similar to this was employed for this thesis. 

For this research project the data set was split to form a training set and a test set. 

The training set was divided further to provide subsets for cross-validation purposes, 

and the next three subsections describe how these sets were used. In addition, the 

training set was divided into subsets based on four major biological characteristics 

(i.e. habit and thorns; flowers; pods and seeds; and leaves), and the entire 

experimental procedures were repeated for each subset. 

5.7.1 Training Data Set 

For training the ANN data must be as complete as possible (i.e. little missing data). 

The training set is meant to represent an analysis of the complete knowledge of 

Acacia as known by taxonomic experts of this genus. These experts need to have a 
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very good overall knowledge of the attributes of each of the Acacia species. For this 

reason the training data set was made as complete as possible, and when values were 

missing (because they were not observed or were absent) the gaps were filled in 

wherever possible by referring to accredited expert sources as has been done in other 

biological research [31, 43, 66, 78].  

In this thesis, with reference to a model or a data set, the word ‘whole’ has been 

used to refer to the data set containing all the attributes of the samples. For example, 

the term ‘whole SOM model’ is used to describe the SOM models formed using the 

whole data set, and the term ‘whole data cross-validation sets’ is used to describe the 

cross-validation sets consisting of data containing the whole set of attributes. 

The whole data set represents 23 Acacia species and consists of 920 attribute 

patterns. These were evenly distributed among the species giving 40 patterns (or 4.7% 

of the training data set) for each of the species. Each pattern consists of up to 127 

attributes with a small number of values missing where a particular attribute value 

was unknown or inappropriate for the pattern in question.  

All experiments used a 30-fold cross validation process where the training set was 

randomly divided into thirty disjoint sets of which 29 subsets contained 30 patterns 

each and one subset contained the remaining 50 patterns. This gave a queue of 

subsets. The division of the data set is shown in Table 5-4. 

      Table 5-4 : Composition of the Whole Data Cross-Validation Sets 

Whole Training Set Number Size of Training Set Size of Verification Set 

1 870 50 

2 – 30 890 30 

 

For each of 30 simulations the first 29 subsets were used as the training set and the 

last one as the test validation set (to measure generalization performance of the maps). 

After each simulation the last subset was removed from the end of the queue and 

reinserted at the front of the queue, and the network was trained again. Thus the 

verification set consisted of a unique set for each simulation (i.e. each pattern gets 

used exactly once for verification) but the training sets were not unique (i.e. each 
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pattern gets used 29 times for training). After these steps were repeated for a total of 

30 simulations, 30 training-validation set pairs were obtained. 

Each of the 30 training sets was presented to the ANN as depicted graphically in 

Figure 5-2. 

 

 

 

 

     

Training Data 

(30 sets) 

SOM Training 

with 29 sets and 

validation with 

the last set 

Training/Validation Process 

  ( Repeated 30 times, each time after rotating the 30th set to the front of queue )  

 Figure 5-2 : Steps in Performing SOM Training 
         (adapted from Vesanto [234, page 3]) 

  

In this research the whole set of training data was presented to the software and 

the number of nodes selected varied from 23 (the number of Acacia species used in 

the data set) upwards. It was found that the best results were obtained by using 201 

nodes, where best results were judged to be the ability to cluster the specimens 

accurately into 23 groups using the smallest number of nodes.  

So as not to influence the output of the algorithm unduly, this research used the 

default parameter values (except for the number of nodes). This meant that all 

components (characteristics or attributes) were used without restricting, amplifying or 

suppressing the range of values, or removing any records. 

After the network had been trained the output of each simulation was saved. Each 

simulation outputs a cluster map and value maps for each of the characteristics. These 

30 cluster maps are the models that were used for performing the testing phase and are 

discussed in Chapter 6, subsection 6.1.1. 

The next section describes the process of presenting the verification data to the 

trained map. 
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5.7.2 Verification Data Sets 

Each of the 30 verification data sets was presented in turn to its respective trained map 

using Viscovery®’s recall function. This verification process was performed to 

demonstrate that the results were not obtained randomly and could be obtained 

repeatedly. The 30 verification sets were obtained as described in Section 5.7.1, and 

the results of the cross-validation process are discussed in Chapter 6, Section 6.1.2. 

The next section discusses the test data set. 

5.7.3 Test Data Set 

Each of the 30 SOM models, obtained as described in subsection 5.7.1, was used to 

see if the model could identify an Acacia test data set accurately. The test data set 

consisted of 920 patterns consisting of up to 127 attributes. These patterns were 

previously unseen by the trained network and were sparsely populated, i.e. had many 

missing attribute values. When trees are observed in nature, many characteristics are 

absent or may not be observed at that particular time. For example, flowers and pods 

are often absent during particular seasons. Therefore, no attempt was made to fill in 

missing values in the test data set. Use of a sparse test data set is important to this 

investigation as it is essential to demonstrate that the trained ANN can identify data 

sets with many missing values. Table 5-5 describes the process followed for testing 

the SOM models. 
 

  Table 5-5 : Testing the SOM Model 

SOM Models  Test Set Function Utilized Results 

1 - 30 920 randomly 

sorted patterns 

Viscovery® Recall 

Cluster 

Membership 

See Section 

6.1.3 

 

The randomly shuffled test data set was presented to each of the 30 trained SOMs 

using the recall function as depicted in Figure 5-3. This process was repeated 30 

times, each time using a different trained map. These results will be presented and 

discussed in chapter 6. 

 
 
 



Chapter 5 : Developing the SOM Models 

 

  

80

Visualization 

Clustering 

Modeling 

Randomly 

Shuffled 

Test Data 

Testing Process Repeated 30 Times 

New Trained Map 

 
      Figure 5-3 : Steps in Modelling Test Data 

 (adapted from Vesanto [234, page 3]) 

5.7.4 Data Sub-Groups 

In addition to using the entire training data set as a complete entity having 127 

attributes, the training data set was also split into each of the sub-groups shown in 

Table 5-6. This was done in order to test if a trained sub-group map was able to 

identify the corresponding sub-group test set. Each of these sub-groups was randomly 

shuffled and treated in the same way as the whole data set had been treated. The 30 

training-validation data set pairs were obtained for each of the sub-groups and the 

network was trained with each of these training data sets. Thereafter the verification 

process was performed on each of the training data sets using the respective validation 

set. 

          Table 5-6 : Data Sub-Groups 

Data Sub-Groups No. of Attributes 

Habit & Thorns 43 

Flowers 19 

Pods and Seeds 25 

Leaves 40 

Total 127 

 

The next step involves checking and analyzing the maps and results obtained from 

training and testing the network. This analysis will be covered in Chapter 6. The 
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following section briefly summarizes the work covered in this chapter and introduces 

Chapter 6. 

 

5.8 Conclusion 

This chapter aimed to provide a description of the choice of software and 

application data used in this thesis. It discussed the process followed in choosing the 

biological application field and the reasons for this choice. Next, the process of how 

the sampling of the biological domain (in this case the acacias of KZN) was 

performed is described. The choice of Viscovery® SOMine software is discussed and 

the coding necessary for pre-processing the data is described. Finally, the presentation 

of these data to the SOM algorithm is described together with the training verification 

and testing of the SOMs.  

In order to assess the SOM models as tools for biological identification, the 

effectiveness of the maps produced by the training data sets are discussed and 

analyzed in Chapter 6. Validation set results are investigated to verify that the maps 

are able to produce consistent and accurate results. Thereafter, in order to demonstrate 

the SOM’s ability to identify Acacia trees efficiently and accurately, the results 

obtained from presenting the test data set to the trained maps are analyzed and 

discussed.  
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Chapter 6 

Analysis of the SOM Performance 

 

The basis of empirical science is that every problem or scientific question is 

investigated via the experimental collection of data. These data are then analyzed for 

patterns of certainty and are then interpreted in the context of the already extant body 

of knowledge on the subject. Good science is hypotheses driven, and these hypotheses 

must have deductive or predictive power. The main task of a SOM, if used in this 

process, would be to act as an exploration tool for acquiring and understanding the 

properties of these data, and for generating hypotheses about these properties.  

Chapter 5 outlined the research design process that was performed for this thesis. 

The choice of the application field and the application software was discussed and 

reasons for their selection were given. The sampling process was described and the 

pre-possessing and the encoding of the data were explained. Finally, the presentation 

of data to the software and the verification and testing processes were described.  

This chapter presents the results of the experiments outlined in Chapter 5 and 

analyzes them to assess the effectiveness of the models for identifying specimens of 

KZN Acacia species. These models consist of five sets:  

1. TreeSOM models which were developed from the whole data set,  

2. Habit and ThornSOM models which were developed from the habit and thorn 

data sets,  

3. FlowerSOM models which were developed from the flower data set, 

4. Seed and PodSOM models which were developed from the seed and pod data 

sets, and  

5. LeafSOM models which were developed from the leaf data set.  

These models are referred to as the TreeSOM, ThornSOM, FlowerSOM, PodSOM 

and LeafSOM models respectively. 

Section 6 introduces the TreeSOM models, and the results of the training of the 

TreeSOM models are discussed in Section 6.1.1 followed by a discussion of the 
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results of the verification process in Section 6.1.2. Testing and analysis of results of 

the TreeSOM models are described in Sections 6.1.3 and 6.1.4 respectively. The Habit 

and ThornSOM models are presented in Section 6.2 and are discussed using the same 

structure as outlined above for the TreeSOM models. Similarly, the results of each of 

the remaining models are then described, but in less detail so as to avoid repetition. 

However, more details are given where the results showed different or interesting 

aspects worth noting. The FlowerSOM models are covered in Section 6.3, the 

PodSOM models in Section 6.4 and the LeafSOM models in Section 6.5. The C5 and 

CN2 results are discussed in Section 6.6, and the chapter is concluded in Section 6.7. 

 

6.1 The TreeSOM Models 

The TreeSOM models were created from the whole data sets as described in Chapter 

5. The performance of these models is now investigated and analyzed by evaluating 

the results of each of the steps performed (i.e. the training, verification, and testing 

phases). These steps are discussed and evaluated in turn. 

6.1.1 Evaluation of the TreeSOM Models 

The whole data set contained 920 specimen patterns, 40 for each of the 23 KZN 

Acacia species. The patterns had up to 127 attributes each and were used for training 

and validating the neural network. Training the network using each of the 30 whole 

training data sets was performed as described in Chapter 5, subsection 5.7.1. The 

number of neurons used for training the network was 201. This number was 

determined by requesting the software to use 23 nodes (the number of KZN Acacia 

species comprising the data set) for training and then increasing the number of nodes 

used until the network could cluster the different species accurately into 23 separate 

‘classes’. These 23 classes equate to the 23 species and subtaxa of KZN Acacia 

recognized by taxonomists using conventional classification rules. 

The SOM cluster map obtained from the first simulation of the whole training data 

set is presented in Figure 6-1. The cluster maps obtained from the other 29 

simulations were similar. This figure shows that 870 randomly shuffled specimens 
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have been assigned to their own unique clusters. The map confirms that the SOM was 

able to learn from the input training data and differentiated between the 23 species. 

The TreeSOM was able to cluster each of the specimens uniquely, i.e. to a cluster 

which contained only specimens from a single Acacia species, and thus there were no 

misidentifications.  

After training, each of the clusters was manually labelled with the names of the 

species that had been mapped to that cluster of nodes. This is also illustrated in Figure 

6-1. It is notable that the species that are mapped close to each other in the TreeSOM 

have similar characteristics in nature. 

A. robusta swazica 

A. grandicornuta

            A. karroo

A. gerrardii

A. senegal

A. nigre-
scens       A. burkei

       A. luederitzii

A. caffra

  cantha

kraussiana

schweinfurthii
   A.

A. ataxa-

A. brevispica

A. sieberiana

A. nilotica

      montana

A. natalitia
A.       

A. kosiensis

     A. davyi

A. tortilis    

      A. xanthophloea

       borleae
A.

     A.

     A.

 

Figure 6-1 : TreeSOM Model 1 

In addition to producing a cluster map, the SOM software produces a component 

plane map for each attribute (or morphological character) in the data set that was used 

in the development of the map. Each component plane of the SOM consists of the 

values of the same component in each model vector. The component maps are 

visualized by giving each neuron a colour according to the relative value of the 

respective component in that neuron. A blue colour coding depicts low values for an 

attribute, while a red colour coding depicts high values. This variation is shown in the 

bar chart at the bottom of each component map. By comparing the component maps 

with each other the correlations between variables can be seen.  
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A component map for the single attribute TH_STR (i.e. straight thorns) is shown in 

Figure 6-2, and for ease of identification each of the clusters is outlined with black 

lines. 

              Thorns More Some Hooked, Some        Thorns More  
         Hooked  Straight, Some Both        Straight 
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       (b) 
      Figure 6-2 : Straight Thorn Component Map for 23 Acacia species 
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The left side of the map in Figure 6-2 (a) is blue depicting that those clusters 

contain patterns with low values for straight thorns (this is to be expected as the blue-

coded clusters correspond to species that have hooked thorns and not straight thorns). 

On the right side of Figure 6-2 (a), the red colour coding depicts the clusters which 

have high values for straight thorns (again this is to be expected as the red-coded 

clusters correspond to species that have straight thorns). The green and paler blue 

coding coincides with clusters which have medium values for straight thorns (these 

clusters correspond to species which can have both hooked and straight or 

‘straightish’ thorns). The middle clusters correspond to the specimens belonging to A. 

tortilis, which has straight and hooked thorns, or to A. luederitzii, which has hooked 

thorns with some thorns thick and ‘straightish’. The position of these two species on 

the map is thus located between the species with low values for straight thorns 

(hooked thorn species) and the species with high values for straight thorn (straight 

thorn species). 

The map displayed in Figure 6-2 (b) is essentially the same as Figure 6-2 (a) but 

the species labels have been removed and replaced by labels indicating the thorn types 

of the different sections of the map.  

In Figure 6-3 the component map for the component map HD (round flower head) 

is displayed alongside the component map COLWH (white coloured flowers). Both 

maps have the clusters outlined with black lines. In the HD component map of Figure 

6-3 (a), the Acacia species which are blue coded are clustered in the upper left corner 

and represent the species that have low values for capitate influorescence (HD), i.e. 

these species all have spicate influorescence (elongated flower). On the right side and 

lower portion of Figure 6-3 (a) the red coded clusters represent the species with high 

values for capitate influorescence, i.e. these species all have captitate influorescence. 

From the COLWH component map shown in Figure 6-3 (b) it can be seen that the 

Acacia species with spicate inflorescences (top left of Figure 6-3 (a)) all have white 

flowers: i.e. in the left section of map Figure 6-3 (b) all specimens have high values 

(red colour code) for white flowers. Looking at Figure 6-2 (b) in conjunction with 

Figure 6-3 (a) and (b) it can be seen that the species with white flowers (top left of 

Figure 6-3 (b)) and spicate inflorescences (top left of Figure 6-3 (a)) also all have 
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hooked thorns (left side of Figure 6-2 (b)). Similarly, from these figures in can be seen 

that all species with capitate inflorescences (right side of Figure 6-3(a)) and yellow 

flowers (blue colour code on the right side of Figure 6-3(b)) have straight thorns (right 

side of Figure 6-2 (a)). 
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Figure 6-3 : Component Maps of Species with Capitate, White Flowers 

 

From the above observations it is apparent that the SOM is identifying species’ 

similarities and differences as was hoped and expected.  

Figure 6-4 depicts the species which have well-defined leaf cushions (A. gerrardii 

and A. robusta), and species which sometimes have cushions or which have poorly 

defined cushions. From the figure it can be seen that species with cushions (with the 

exception of A. senegal) are species which have straight thorns and are therefore 

located on the right side of the map. This map also clearly demonstrates the location 

of the species A. gerrardii and A. robusta next to each other. Botanically these 

species are recorded as bearing a strong resemblance to each other [180]. Similarly A. 

grandicornuta and A. robusta are reported to be very similar species and, according 

to Ross [180, p129], a case could be made to place A. grandicornuta under A. 

robusta. However, the former is still a very distinct taxon and Ross suggests it would 

be better to keep these species separate. The map in Figure 6-4 shows the closeness of 
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these two species to each other and to A. gerrardii as they are all located near to each 

other in the top right centre of the map. 
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Figure 6-4 : Component Map of Species with Leaf Cushions 

Another interesting exercise is to examine how the TreeSOM groups the species 

when the number of clusters is reduced. This is illustrated in Figure 6-5 which 

presents a dendrogram of how the Acacia species of KZN clustered when the number 

of clusters of the TreeSOM model was varied from 2 to 23. The height of the 

horizontal bars in Figure 6-5 indicates the order in which the species were split. 

Alternatively, Table 6-1 lists how TreeSOM splits the species’ groups as the number 

of clusters is increased. Colours are used to emphasize the splitting of the species into 

subgroups, and shades of similar colours are used to emphasize species which are 

known to have close relationships.  

Table 6-2 gives a list of some known similarities which are all demonstrated in the 

dendrogram in Figure 6-5. From this table it can be seen that many of the 

relationships demonstrated in the TreeSOM model are verified from relationships 

already established in the literature based on the analysis of morphology. The close 

locations of some species to each other are demonstrated in the TreeSOM model in 

Figure 6-1. For example, the species A. gerrardii, A. grandicornuta and A. robusta are 

closely related biologically, and TreeSOM verifies this by clustering the species 
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together at the top, central right of Figure 6-1. These species remain grouped together 

(group 6 on the dendrogram in Figure 6-5) and are only distinguished from each other 

in the latter stages of the division of the clusters. 
 

se kr kabu ng xaswbo lu to ge gr ro da na nl siat ca br sc moko

  1  2 3 4 5 6 7 8 9
 

     Figure 6-5 : Dendrogram of TreeSOM’s Clustering of 23 KZN Acacia Species 

    (NB: The groups are numbered for reference purposes.) 
 
    Key: 

at   =  A. ataxacantha ka   =  A. karroo ro    =  A. robusta 
bo  =  A. borleae ko   =  A. kosiensis sc   =  A. schweinfurthii 
br   =  A. brevispica kr    =  A. kraussiana se   =  A. senegal 
bu  =  A. burkei lu    =  A. luederitzii si    =  A. sieberiana 
ca  =  A. caffra mo  =  A. montana sw  =  A. swazica 
da  =  A. davyi na   =  A. natalitia to   =  A. tortilis 
ge  =  A. gerrardii ng   =  A. nigrescens xa  =  A. xanthophloea 
gr   =  A. grandicornuta nl    =  A. nilotica  

       The abbreviations used in Figure 6-5 have been used in place of species names in 

some tables and figures in this chapter. 
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 Table 6-1 : The Order in which TreeSOM Splits the Species 

Number 
of 

Clusters 

                Division of Species (as Number of Clusters Increases) 

 

1 (at,bo,br,bu,ca,da,ge,gr,ka,ko,kr,lu,mo,na,ng,nl,ro,sc,se,si,sw,to,xa) 
2 (at,br,bu,ca,kr,ng,sc,se) : (bo,da,ge,gr,ka,ko,lu,mo,na,nl,ro,si,sw,to,xa) 
3 (at,bu,ca,ng,se) : (br,kr,sc) 
4 (bo,ge,gr,lu,ro,sw,to) : (da,ka,ko,mo,na,nl,si,xa) 
5 (bo,sw)  : (ge,gr,lu,ro,to) 
6 (bu,ng) : (at,ca,se) 
7 (lu,to) : (ge,gr,ro)  
8 (mo,ko) : (da,ka,na,nl,si,xa) 
9 (se) : (at,ca)  

10 (da,ka,na,xa) : (nl,si) 
11 (kr) : (br,sc) 
12 (ka) : (da,na,xa) 
13 (ng) : (bu) 

14 (xa) : (da,na) 
15 

 
(bo) : (sw) 

16 (lu) : (to) 
17 (nl) : (si) 
18 (ge) : (gr,ro) 
19 (at) : (ca) 
20 (gr) : (ro) 
21 (br) : (sc) 
22 (da) : (na) 
23 (ko) : (mo) 

Group BGroup A | : |
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 Table 6-2 : TreeSOM and Documented Similarities of KZN Acacia Species 

Relation/Connection Shown by TreeSOM Known Morphological Relationship 

A. burkei and A. nigrescens are located next 

to each other in Figure 6-1 in the top left-

hand corner of the TreeSOM model. In 

Figure 6-5 the species are clustered together 

as group 1.  

Some forms of A. burkei are known to be 

hard to distinguish from A. nigrescens [168, 

179, 180, 229]. 

A. senegal, A. ataxacantha and A. caffra are 

located next to each other in Figure 6-1 in the 

left-hand centre of the TreeSOM model. In 

Figure 6-5 the species are clustered together 

as group 2. 

A. ataxacantha and A. caffra have been 

confused in the past [168, 179, 180, 229]. 

A. ataxacantha and A. senegal are classified 

next to each other by Ross, which is 

commonly thought to indicate that the author 

regarded the species as being close [179]. 

A. kraussiana, A. brevispica and A. 

schweinfurthii are located next to each other 

in Figure 6-1 in the bottom left-hand side of 

the TreeSOM model. In Figure 6-5 the 

species are clustered together as group 3.  

 

A. brevispica and A. schweinfurthii are 

sometimes difficult to differentiate [168, 179, 

180, 229]. 

A. kraussiana, A. brevispica and A. 

schweinfurthii are classified next to each 

other by Ross [179]. 

A. borleae and A. swazica are located next to 

each other in Figure 6-1 in the right-hand top 

corner of the TreeSOM model. In Figure 6-5 

the species are clustered together as group 4. 

A. borleae and A. swazica are classified next 

to each other by Ross [179]. 

A. luederitzii and A. tortilis are located next 

to each other in Figure 6-1 in the middle 

centre of the TreeSOM model. The species 

are also shown in Figure 6-5 to be clustered 

together as group 5. 

A. luederitzii and A. tortilis are classified next 

to each other by Ross [179]. 
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A. gerrardii, A. grandicornuta and A. robusta 

are shown located next to each other in 

Figure 6-1 in the right, top and centre of the 

TreeSOM model. The species are also shown 

in Figure 6-5 to be clustered together as 

group 6.  

Some A. gerrardii and A. robusta bear a 

strong resemblance to each other [180, p127]. 

A. grandicornuta and A. robusta are closely 

related [180, p129]. 

Ross classifies A. gerrardii, A. grandicornuta 

and A. robusta next to each other [179]. 

A. karroo, A. davyi, A. natalitia and A. 

xanthophloea are located next to each other 

in Figure 6-1 in the right, bottom and centre 

of the TreeSOM model. In Figure 6-5 The 

species are clustered together as group 7. 

A. karroo and A. natalitia were preciously 

classified together as part of the A. karroo 

complex [42]. 

A. nilotica and A. sieberiana are shown 

located next to each other in Figure 6-1 in the 

bottom centre, of the TreeSOM model. In 

Figure 6-5 the species are clustered together 

as group 8. 

These two species are not usually associated 

in modern published classificatory systems. 

A. kosiensis and A. montana are shown 

located next to each other in Figure 6-1 in the 

bottom right-hand corner of the TreeSOM 

model. In Figure 6-5 the species are  

clustered together as group 9. 

A. kosiensis and A. montana were previously 

classified together as part of the A. karroo 

complex [42]. 

A. karroo, A. borleae and A. swazica are 

shown located next to each other in Figure 6-

1 in the right-hand side of the TreeSOM 

model. In Figure 6-5 A. borleae and A. 

swazica are shown together as group 4. 

According to Ross A. karroo is related to the 

glandular-podded Acacia which include A. 

borleae and A. swazica [180, p94]. 

(continuation of Table 6-2) 

 

The unified distance matrix (U-matrix) representation of the SOM visualizes the 

distances between the neurons. The distance between adjacent neurons is calculated 

and presented with different shades of colour between the adjacent nodes. A dark 

colour between the neurons corresponds to a large distance and therefore indicates a 

gap between the codebook vectors in the input space. A light colour between the 

 
 
 



Chapter 6 : Analysis of the SOM Performance  

 

  

93

neurons signifies that the codebook vectors are close to each other in the input space. 

Light areas can be thought of as clusters and dark areas as cluster separators.  

A U-matrix representation of the whole Acacia data is presented in Figure 6-6 (b) 

with the cluster map for the same data in Figure 6-6 (a) for comparison purposes. 

Lines have been superimposed on Figure 6-6 (b) to emphasize the wider spacing 

between some clusters. To the left of the central superimposed lines the species have 

hooked thorns, while to the right all the species have some straight thorns. These 

differences are emphasized by the separation between the clusters. Many of the 

smaller clusters are also evident in Figure 6-6 (b), for example, A. nigrescens is 

evident in the top left-hand corner and A. kraussiana is evident in the bottom left-

corner. 
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    (a)         (b) 
           Figure 6-6 : U-Matrix representation of TreeSOM Model 1 

 

Thus the cluster relations between closely related species are clearly illustrated by 

the U-matrix. 

6.1.2 Evaluation of the TreeSOM Model Verification Results 

 
Once the 30 whole training sets had each been used to train the network, 30 TreeSOM 

models were obtained. Each of these models was used in turn to see if the matching 

verification test set could be identified correctly. The recall function (where the 

cluster membership is recalled) was used for these experiments and the results were 

analysed. The results of these tests are shown in Table 6-3, and as recorded in the 
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right-hand column of this table, the identification of the validation sets was 

successful. 

 Table 6-3 : 30-Fold Training and Verification Test Results 

Training 
Set 

Size Result (No. of 
Unique Clusters) 

Verification 
Test Set 

Test 
Size 

% Correctly 
Identified  

1 870 23  1 50 100 

2 890 23 2 30 100 

3-30* 890 23 3-30 30 100 

      (In Table 6-3 in row 4 the results for training and verification testing pairs  
      3-30 have been condensed to one row because all the results were identical.) 
 

For demonstration purposes one of these tests was repeated using the association 

function of the SOM software. In Figure 6-7 (a) a TreeSOM model is shown for 

training set 1 after the species labels had been added. In Figure 6-7 (b) the same 

model is associated with the verification test set 1. During this association the 50 

verification test patterns were presented to TreeSOM to see if the model could 

identify the patterns correctly. The map in Figure 6-7 (b) demonstrates that TreeSOM 

was able to identify each of the patterns correctly.  
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Figure 6-7 : TreeSOM Model 1 with Associated Verification Test Set 

 

Table 6-4 tabulates the results of the association of verification test 1 with training 

map 1. Columns 1 and 3 give the label of the pattern to be identified, while columns 2 
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and 4 give the result of the identification. Thus, from Table 6-4 it can be seen that all 

50 patterns were assigned to the correct locations on the map, i.e. that the TreeSOM 

had performed as was intended and had identified the specimen patterns correctly. 

      Table 6-4 : TreeSOM Associated Verification Data Set Results 

Verification 
Specimen Code 

Identity of Cluster Verification 
Specimen Code

Identity of Cluster 

at3 A. ataxacantha mo11, mo17 A. montana 

bo34 A. borleae na1, na18, 
na29, na40 

A. natalitia 

br32 A. brevispica ng32, ng9 A. nigrescens 

ca12, ca21, ca9 A. caffra nl20, nl3, nl38 A. nilotica 

da2, da22 A. davyi ro9 A. robusta 

ge16, ge2, 
ge30, ge40 

A. gerrardii sc31, sc36, sc9 A. schweinfurthii 

gr26, gr3, 
gr30 

A. grandicornuta se2, se7, se9 A. senegal 

ka2, ka26, 
ka34 

A. karroo si13, si32, si33, 
si36, si40 A. sieberiana 

ko16 A. kosiensis to32, to4 A. tortilis 

kr4 A. kraussiana xa10, xa15, xa7 A. xanthophloea 

lu26, lu38 A. luederitzii   

 

6.1.3 Evaluation of the TreeSOM Model Test Results  

Each of the 30 TreeSOM models obtained from training the network was used to see 

if the model could identify an Acacia test data set accurately. The recall function was 

utilized for these tests. 

In order to demonstrate the process visually, one map was selected and the whole 

test set was associated with the map. The output of that association is presented in 

Figure 6-8 (b). For clarity the labels on the maps show the total number of patterns 

that were associated with the clusters rather than displaying the individual pattern 

code names.  
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            Figure 6-8 : TreeSOM Model 1 with Associated Test Set 

The TreeSOM model is presented Figure 6-8 (a) for comparison purposes. In 

Figure 6-8 (b) the map presented is the one obtained after 920 test specimens were 

associated with the selected model. In Figure 6-8 (b) it can be seen that TreeSOM was 

able to identify the 919 test specimens correctly, the only exception being that one A. 

robusta has been classified as an A. grandicornuta (second cluster from the top right 

corner). This misidentication is not unexpected as these species are very similar, and 

suggestions have been made that A. grandicornuta be placed under A. robusta 

because of their morphological similarity [179].  

TreeSOM test error results are summarized in Table 6-5.  

  Table 6-5 : TreeSOM Test Error Results 

Map 
No. X 

Cluster 
No. 

ID of 
Cluster 

No.  Correctly 
IDed in Cluster  

Type of 
Error 

No. of 
Errors 

Errors in 
Cluster 

1 2 gr 40 ro as gr 1 1 
2 – 30     0 0 

Total Errors 1 
Error Rate 0.004% 
Correct Rate 99.996% 
 

As can be seen from Table 6-5, the only error that occurred was in map 1. 

Consequently, the TreeSOM had an error rate of 0.004% and a correct rate of 

99.996% when performing these tests. The test data set had an average of 19.52 

attribute values per specimen. 

In the next section the test results are analyzed statistically.  
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6.1.4 Statistical Analysis of the TreeSOM Model Test Results 

Table 6-6 presents the multi-class confusion matrix for the results depicted in Figure 

6-8(b). The values on the major diagonal of the confusion matrix quantify the patterns 

that were correctly identified by TreeSOM. These are the true positive (TP) counts for 

each species. The off-major-diagonal values indicate the number of misidentified 

patterns (consisting of the false negative (FN) and the false positive (FP) results). For 

example, in the gr row of Table 6-6, the FP count is the sum of all off-major-diagonal 

values in row gr, i.e. those patterns which are not actually A. grandicornuta species 

but which are predicted as A. grandicornuta species. The FP count for A. 

grandicornuta is 1 in this case as an A. robusta (column ro) has been predicted as A. 

grandicornuta. Similarly, the FN count for A. robusta is 1, i.e. the sum of all off-

major-diagonal values in column ro. 
 

  Table 6-6 : TreeSOM Multi-Class Confusion Matrix 
A C T U A L FP

at bo br bu ca da ge gr ka ko kr lu mona ng nl ro sc se si sw to xa
at 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bo 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
br 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
bu 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ca 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
da 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P ge 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
R gr 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
E ka 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D ko 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I kr 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 0
C lu 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0
T mo 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0
E na 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0
D ng 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0

nl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0
ro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0
sc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0
se 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0
si 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0
sw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
to 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0
xa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0

FN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 

The results in Table 6-6 show that the TreeSOM is able to identify KZN Acacia 

species accurately when presented with a wide range and diversity of attributes. The 

one error – the prediction of an A. robusta as an A. grandicornuta - was the only 
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misidentification made in any of the 30 TreeSOM models (it also only occurred with 

one model: the other 29 models were able to identify all the patterns correctly). 

One of the ways to evaluate the results of classifiers is to calculate true positive, 

false positive and other related rates (discussed in Chapter 3). Choosing multiple class 

performance measures can become quite complicated, but according to Hand and Till 

[90] one way to evaluate performance is to derive pair-wise confusion matrices. This 

method yields an overall measure of how well each class is separated from all of the 

other classes. In this thesis this technique was followed.  

Figure 6.9 shows how the pair-wise confusion matrices were derived.  
 

  
 

 
                

            

    
           

           

     
         
         POS           NEG 

 

Figure 6-9 : Binary Class Confusion Matrix Template for each KZN Acacia Species 

     where  TP, FP, FN and TN represent respective counts for true positive, false  

positive, false negative and true negative results, 

POS is the total sum of actual positive patterns (TP + FN), and 

NEG is the total sum of actual negative patterns (FP + TN). 
 

With reference to Figure 6-9, the columns of the matrix display the actual/known 

results of the tests. In column 1 of the matrix the numbers of actual true positives and 

false negatives for species X are shown and in column 2 the numbers of actual false 

positives and true negatives for all the other 22 KZN Acacia species (i.e. other than 

the one used in column 1 and depicted as Species X) are shown. The rows of the 

matrix display the predicted results of the tests. In row 1 the number of predicted true 

TP FP 

FN TN 
Predicted Number of Species X 

Predicted Number of Other 22     

Species 

Actual Number 

of Species X  Other 22 Species 

Actual Number of  
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positives and false positives for species X is shown and in row 2 the number of 

predicted false negatives and true negatives is shown for all the other 22 KZN Acacia 

species (other than the one used in row 1). A binary confusion matrix was produced 

for each of the 23 KZN species. 

Using the values from the binary class confusion matrices for the 30 TreeSOM test 

results the true positive and false positive rates were calculated for each species and 

are presented in Table 6-7.  Averaged pair-wise comparisons of the species (classes) 

[90] have been used to calculate the fractions in this table. These results show that 

TreeSOM was able to separate each of the species with a very high degree of 

accuracy.  

Table 6-7 : Fraction Metrics for TreeSOM Species 
Species TP FP Acc Prec Sp 

at 1 0 1 1 1 
bo 1 0 1 1 1 
br 1 0 1 1 1 
bu 1 0 1 1 1 
ca 1 0 1 1 1 
da 1 0 1 1 1 
ge 1 0 1 1 1 
gr 1 3.79E-05 0.999964 0.999187 0.999962 
ka 1 0 1 1 1 
ko 1 0 1 1 1 
kr 1 0 1 1 1 
lu 1 0 1 1 1 
mo 1 0 1 1 1 
na 1 0 1 1 1 
ng 1 0 1 1 1 
nl 1 0 1 1 1 
ro 0.999167 0 0.999964 1 1 
sc 1 0 1 1 1 
se 1 0 1 1 1 
si 1 0 1 1 1 
sw 1 0 1 1 1 
to 1 0 1 1 1 
xa 1 0 1 1 1 

Average 0.999964 1.65E-06 0.999997 0.999965 0.999998 
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Key for Table 6-7  

Assessment 

Measure 
Abbreviation Formula 

TP fraction         tp 
tp =  Sn = Sensitivity 

tp = TP / (FN+TP)                                                   (Eq. 3.3)

FP fraction         fp fp = FP / (FP + TN)                                                  Eq. 6.1 

Precision        Prec 
Prec = PPV                                                              (Eq. 3.2)

Prec = TP / (TP + FP) 

Accuracy        Acc Acc = (TN + TP) / TN + TP + FP + FN                  (Eq. 3.1)

Specificity         Sp Sp = TN / (TN + FP)                                               (Eq. 3.4)

Table 6-7 shows that except for the misidentification of A. robusta as A. 

grandicornuta the TreeSOM was able to identify all the other KZN Acacia species 

correctly. This misidentification, as previously noted, occurred on only one of the 30 

TreeSOM models and was restricted to one specimen of A. robusta being identified as 

A. grandicornuta. In addition these species are biologically closely related so the 

misidentification is not unexpected. The results displayed in Table 6-7 are 

exceptionally good and demonstrate clearly that TreeSOM is well able to identify 

Acacia species. 

The results of Table 6-7 were used to plot a ROC space diagram of the TP fractions 

against the FP fractions for each species. Figure 6-10 displays this graph.  
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    Figure 6-10 : TreeSOM Test ROC Space 
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6.2 The Habit and ThornSOM Models 

The habit and thorn data set is a subset of the whole data set and was created by 

deleting/excluding all attributes other than the habit and thorn attributes. 

Consequently, only the attributes pertaining to habit and thorn characteristics of the 

KZN Acacia species form this data set: no flower, seed, pod or leaf characteristics are 

included. The training, verification, testing and analysis of results for the Habit and 

ThornSOM models are discussed in the following subsections. The habit and thorn 

data set will be referred to as the thorn data set in this chapter for the sake of brevity.  

6.2.1 Evaluation of the Habit and ThornSOM Models 

The patterns in the habit and thorn data set were pre-processed in the same way as 

was previously done for the whole data set. This resulted in 30 thorn training and 

verification pairs. The division of the thorn data set is shown in Table 6-8.  

      Table 6-8 : Makeup of Thorn Data Training and Cross-Validation Sets 

Thorn Training  

Set Number 

Size of  

Training Set 

Maximum No 

of Attributes  

Size of  

Verification Set 

1 870 43 50 

2 – 30 890 (each set) 43 30 (each set) 

 

The 30 training sets were presented in turn to the SOM software using 103 

neurons, and 30 ThornSOM maps were obtained. The ThornSOM cluster map 

obtained from one of these simulations (in this case the thorn training set 6) is 

presented in Figure 6-11. For convenience, each of the clusters in this figure has been 

labelled manually with the abbreviated name of the species that has been mapped to 

that cluster of nodes. The SOMine association function was used to perform the 

labelling. It can be seen that not all the 890 randomly shuffled patterns have been 

assigned to their own unique clusters. The map shows that the ThornSOM was able to 

learn from the input training data the differences between 21 of the 23 Acacia species, 

and it was able to cluster these 21 species uniquely in each of the 30 maps, i.e. in each 

of the 30 maps 21 clusters contained patterns belonging to one species only.  
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In the bottom right-side of Figure 6-11 it can be seen that the model did not cluster 

A. robusta and A. grandicornuta species separately (see the large cluster, right edge, 

second from bottom). These results are consistent with the close relationship of these 

species which has been documented in botanical literature [168, 179, 180]. 

kr br x 18   xa    na      ko

   sc x 37       si mo

at

    se      br x 19 da sw

   bo

to

bu ro x 38          gr x 40

   lu nl

ng ge ka

ca          

 
            Figure 6-11 : ThornSOM Model 6 

Additionally, in the top left-hand side of Figure 6-11 the model has classified 18 of 

the A. brevispica patterns together with 37 of the A. schweinfurthii patterns. The other 

19 A. brevispica patterns have formed their own unique cluster (in the middle of the 

map, slightly left of centre). 

Table 6-9 lists details of errors obtained in the 30 thorn training maps. Only the 

results of the training maps that had errors are presented. From this table it can be 

seen that the ThornSOM maps 6 and 11 were unable to separate A. robusta and A. 

grandicornuta. Similarly, maps 10, 21 and 27 classified some A. grandicornuta 

patterns as A. robusta. In maps 24 and 26 some A. robusta patterns have been 

classified as A. grandicornuta. As mentioned earlier in this chapter, the botanical 

literature and the whole data set map results already show that these species are very 

close. The inability of the ThornSOM to separate A. robusta from A. grandicornuta, 

though regrettable, is not surprising in view of the fact that the literature remarks on 

the similarity between these species. However, these results do show that the range 

and diversity of thorn attributes in this training data set is sometimes insufficient for 

the ThornSOM to be able to separate the A. robusta species from the A. grandicornuta 
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species. It must also be noted that only two of the 30 ThornSOM maps were unable to 

separate A. robusta species from the A. grandicornuta species. 

Table 6-9 : Habit and ThornSOM Errors 

Thorn 

Map X 

No. of 

Clusters 

in Map X 

ID of  

Cluster

Cluster 

No. 

Type of 

Error 

No. of   

Errors in 

Cluster 

No. of  

Errors in  

Map X 

6 22 gr 2 ro as gr 38  

  sc 4 br as sc 18 56 

10 40 ro 30 gr as ro 4 4 

11 22 sc 11 br as sc 17  

   10 gr as ro 38 55 

21 43 ro 29 gr as ro 4 4 

24 43 gr 14 ro as gr 4  

  gr 43 ro as gr 7 11 

26 44 gr 19 ro as gr 10 10 

27 40 ro 10 gr as ro 4  

  ro 26 gr as ro 2 6 

Total errors  146 

Error Rate 0.55% 

Correct Rate 99.45% 

 

 

The ThornSOM maps 6 and 11 have also misclassified some A. brevispica as A. 

schweinfurthii. The closeness of these two species has already been discussed in Table 

6-2, and again this overlap between the species is not surprising. In fact Ross [180, p 

43] reports about these species that A. brevispica subsp. dregeana is very variable and 

in southern Africa it bridges many of the discontinuities with A. schweinfurthii that 

exist further north in Africa. Ross then states “Consequently difficulty is sometimes 

experienced in southern Africa in distinguishing specimens of A. brevispica subsp. 

dregeana from A. schweinfurthii” 

The results in Table 6-9 show that with the thorn training set (which used, at most, 

43 attributes for training) could not always differentiate the 23 KZN Acacia on thorn 
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and habit characteristics alone. The number of attributes coupled with their similarity 

in some species was insufficient to classify correctly or differentiate between the 

species, even at the training level. 

However, many of the relationships already demonstrated in the TreeSOM can also 

be seen in the thorn model. The component maps in Figure 6-12 depict some of these 

relationships.  

The BK_COL plane (bark colour, top left map) in Figure 6-12 the relationship 

between A. xanthophloea, A. sieberiana and A. davyi is clearly shown (blue colour, 

top centre). These species all have pale or yellowish bark while most of the other 

species have darker bark (with the exception of A. ataxacantha). 

In the BK_TX plane (bark texture, top centre map) the similar bark texture of 

several species can be seen. In the top right corner of the map: A. xanthophloea, A. 

natalitia, A. kosiensis, and A. swazica (blue) can have flaking bark; A. xanthophloea, 

A. natalitia and A. kosiensis (dark blue) also can have smooth bark; A. davyi, A. 

montana and A. kosiensis (bluish) can have fissured bark although A. davyi is usually 

corky. The species in the bottom half of the map (A. caffra, A. nigrescens, A. burkei, 

A. luederitzii, A. tortilis, A. gerrardii, A. robusta and A. grandicornuta) all have rough 

and fissured bark and are coloured red, yellow or orange. 

Still with reference to Figure 6-12, the value map BRLET_HR (branchlet hair, top 

right map) represents the species which have hairy branchlets. Of particular note is 

that the young branchlets of A. gerrardii and A. luederitzii (bottom centre) are very 

hairy (orange colour). Also, A. xanthophloea, A. davyi, A. natalitia A. kosiensis, A. 

montana, A. swazica, A. borleae, A. grandicornuta and A. robusta are glabrous, or 

glabrous-to-pubescent, and are coloured green or blue. 
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BK_COL
kr br x 18   xa na      ko

   sc x 37 si mo
at
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ng ge ka
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Figure 6-12 : Component Maps for Some Habit and Thorn Attributes 

In the map BRLET_GLD (branchlet gland plane, centre row, left map) the 

branchlet gland attributes are shown: A. brevispica and A. schweinfurthii (red/orange 

colour, top left) have some glands, as does A. swazica (pale orange colour, right 

centre), while A. borleae has many glands (dark red colour, right, centre). The TEND 

map (tendrils, centre row, middle map) shows that the only KZN species that has 

tendrils is A. kraussiana (red colour, top left). 

 
 
 



Chapter 6 : Analysis of the SOM Performance  

 

  

106

The SC_HK map (scattered hooks, centre row, right map) shows that A. 

kraussiana, A. ataxacantha, A. schweinfurthii and A. brevispica (top, left corner) are 

the species with thorns scattered between the nodes. 

The component plane Mixed (mixed thorns, bottom left map) shows the clear 

differentiation of A. luederitzii and A. tortilis (bottom centre) from the other species. 

These two species each have some hooked thorns and some straight/straightish thorns. 

The map labelled TH_HK (thorn hooked, bottom centre map) shows on the left the 

species that have at least some hooked thorns (A. kraussiana, A. brevispica, A. 

schweinfurthii, A. ataxacantha, A. senegal, A. caffra, A. burkei, A. tortilis, A. 

nigrescens and A. luederitzii), and on the right those with only straight thorns (A. 

sieberiana, A. xanthophloea, A. natalitia, A. kosiensis, A. montana, A. davyi, A. 

swazica, A. borleae, A. grandicornuta, A. robusta, A. karroo, A. nilotica and A. 

gerrardii).  

The last component map presented in Figure 6-12, PRK3, (prickles in threes, 

bottom right map) shows that A. senegal (middle, left) is the only KZN species that 

has thorns arranged in groups of three (rather than in pairs or singularly). 
 
A U-matrix representation of the thorn Acacia data set is presented in Figure 6-13 

(b) with the cluster map for the same data in Figure 6-13 (a) for comparison purposes.  
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        (a)                          (b) 
Figure 6-13 : U-Matrix Representation of Habit and ThornSOM Model 

 

The closeness between the species with hooked thorns, the species with straight 

thorns and the species with some hooked and some straight or ‘straightish’ thorns is 

clearly demonstrated in Figure 6-13. The species with hooked thorns are clustered on 
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the left-most sides of the lines superimposed on the figures; species with hooked and 

straight/straightish thorns are clustered between the lower central lines; and the 

species with straight thorns (only) are clustered on the right-most sides of the lines. 

Thus it can be seen that the ThornSOM models, despite being composed from less 

data than were used for the TreeSOMs, are still capable of recognizing patterns and 

relationships within the data.  

6.2.2 Evaluation of the Habit and ThornSOM Model Verification Results 

As was previously done for the TreeSOM models, each of the 30 ThornSOM models 

obtained from the thorn subset training process was used in turn to see if the 

corresponding verification test set could be identified correctly. 

For demonstration purposes, the thorn verification test set 6 was mapped onto 

ThornSOM model 6 using the association function of the SOM software. In Figure 6-

14 (a) the ThornSOM model 6 is shown after the species labels were added. The 

associated verification map is displayed in Figure 6-14 (b) together with the labels of 

the associated verification test patterns. 
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   (a)          (b) 
    Figure 6-14 : ThornSOM Model 6 with Associated Verification Set 

 

The recall function was used with each of the 30 trained maps to obtain results for 

analysis of the verification test experiments. The results of the clusters which had 

misidentification errors are shown in Table 6.10. ThornSOM 6 had two errors in 

cluster two, where two A. robusta patterns were identified as A. grandicornuta 

species. In map 24 cluster 14, another A. robusta pattern was identified as A. 
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grandicornuta species. Map 11 had two types of errors: in cluster 10 one A. 

grandicornuta pattern was identified as A. robusta, and in cluster 11 two A. brevispica 

patterns were identified as A. schweinfurthii. 

 Table 6-10 : 30-Fold Thorn Verification Test Error Results 

Thorn 
Map X 

Size of 
Training 
Set 

No. of 
Unique 
Clusters    

Verification 
Test Set 
No. 

Test
Set 
Size 

Cluster 
No.   

Type of 
Error 

No. of 
Errors in 
Cluster 

6 890 20 (out of 22) 6 30 2 ro as gr 2 
11 890 20 (out of 22) 11 30 10 gr as ro 1 

 890 20 (out of 22)   11 br as sc 2 
24 890 41 (out of 43) 24 30 14 ro as gr 1 

Total Errors 6 
Error Rate 0.65% 
Correct Rate 99.35% 

 

The results in Table 6-10 show that there were six errors for the 30 ThornSOMs 

verification tests. Consequently, the average error rate is 0.65%. 

6.2.3 Evaluation of the Habit and ThornSOM Model Test Results 

Each of the 30 ThornSOM models obtained from training the network was used to see 

if the model could identify an Acacia thorn test set accurately. This test set was 

composed of 920 unseen patterns and consisted of up to 43 possible attributes. 

However, the test set differed from the training data set in that many more attribute 

values were missing. Whereas the training data set was as complete as possible, the 

test set was sparsely populated. As mentioned before, this is the normal situation in 

nature where only a few attributes are present or are observed at one time. In the habit 

and thorn data set the average number of attributes per test specimen was 8.61. 

The recall function was utilized for performing these tests. In addition, in order to 

demonstrate the results visually, a trained map was selected and the test set was 

associated with the map and the output is presented in Figure 6-15 (b). For clarity the 

labels on the maps show the number of patterns that were associated with the cluster 

rather than the individual pattern code names. The ThornSOM model is presented in 

Figure 6-15 (a) for comparison purposes.  
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The map presented in Figure 6-15 (b) is the one obtained after 920 test specimens 

were associated with the model in Figure 6-15 (a). It can be seen that ThornSOM 

correctly identified most of the 920 thorn test patterns. Although the trained 

ThornSOM was unable to separate A. robusta and A. grandicornuta species, 39 of the 

A. grandicornuta and 37 of the A. robusta test patterns were mapped correctly to the 

same cluster (see large cluster on right edge, second from bottom of Figure 6-15 (b)). 

An A. karroo pattern was also grouped in this cluster and so was incorrectly identified 

as A. grandicornuta/A. robusta species. Most of the other errors found are for species 

that are biologically closely related, and these have already been discussed. However, 

there are a few misidentifications for which no apparent explanations could be found. 
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          (a)          (b) 
Figure 6-15 : ThornSOM Model 6 with Associated Test Set 

 

The errors for each of the 30 ThornSOM models are tabulated in Table 6-11. The 

average error rate for the ThornSOM tests was 3.44%. Thus the ThornSOM had an 

average correct rate of over 96% even though the test data had many missing values. 

The maximum number of thorn attributes that could have been present was 43 but in 

the thorn test set there was an average of 8.61 attribute values present per specimen. 

Despite the high number of missing values the correct identification rate of 96.56% is 

statistically significant. 
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Table 6-11 : Habit and ThornSOM Test Error Results 

Trained  
Map X  
 

Total 
Errors 

Total 
Correct 

Trained 
Map X 
 

Total Errors Total 
Correct 

1 35 885 16 32 888 
2 25 895 17 33 887 
3 32 888 18 30 890 
4 31 889 19 28 892 
5 28 892 20 29 891 
6 33 887 21 29 891 
7 33 887 22 29 891 
8 31 889 23 32 888 
9 23 897 24 41 879 
10 33 887 25 28 892 
11 70 850 26 34 886 
12 27 893 27 33 887 
13 29 891 28 24 896 
14 31     889       29 32     888      
15 28     892     30 27  893  
Total Error        950 
Error Rate 3.44% 
Correct Rate 96.56% 

 

For clarity, Table 6-12 tabulates the results of the ThornSOM map 6 test. Only the 

clusters which had errors are shown. Besides showing other errors, the table shows 

that one A. natalitia has been identified as an A. schweinfurthii. This is shown in 

cluster 4 of Table 6-12 and can also be seen in Figure 6-15 (b) (large cluster on the 

top edge, second from the left). As A. natalitia has straight thorns and A. 

schweinfurthii has hooked thorns this is an obvious error. 

The misidentification of A. kosiensis, A. xanthophloea and A. grandicornuta as A. 

tortilis (cluster 1 in Table 6-12 and the cluster slightly below centre in Figure 6-15 

(b)) also does not have an apparent biological explanation. The A. tortilis species, 

which has some hooked thorns and straight thorns, does differ from the other species 

which have straight thorns only. Similarly the misidentification of A. caffra as A. 

kraussiana does not have an obvious explanation although both have hooked thorns 

(see cluster 17 in Table 6-12 and in Figure 6-15 (b) top left corner). 
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  Table 6-12 : ThornSOM Model 6 Test Error Results 

Cluster No. ID of 
Cluster 

No.  Correctly 
IDed in Cluster  

Type of 
Error 

No. of 
Errors 

Errors in 
Cluster 

1 to 40 gr as to 
ko as to 
xa as to 

1 
1 
1 

 
 
3 

2 gr & ro 39 + 37 ka as gr/ro 1 1 
3 da 37 bo as da 

ro as da 
1 
1 

2 

4 sc 39 at as sc 
na as sc 

4 
1 

 
5 

5 bu 40 ng as bu 3 3 
6 br 38 sc as br 

at as br 
1 
1 

 
2 

7 si 40 na as si 
da as si 
nl as si 
bo as si 
ro as si 

1 
2 
1 
1 
1 

 
 
 
 
6 

8 ge 40 nl as ge 2 2 
10 se 40 ca as se 1 1 
11 xa 39 da as xa 

ro as xa 
ko as xa 

1 
1 
1 

 
 
3 

15 at 34 br as at 1 1 
17 kr 40 at as kr 

br as kr 
ca as kr 

1 
1 
1 

 
 
3 

22 mo 40 na as mo 1 1 
Total Errors 33   
Error Rate 3.59% 
Correct Rate 96.41% 
 

The ThornSOM test results are analyzed further in the next subsection.      

6.2.4 Statistical Analysis of the Habit and ThornSOM Model Test Results 

The multi-class confusion matrix for the results obtained in Figure 6-15(b) is 

presented in Table 6-13. As already mentioned, in the matrix the values on the major- 

diagonal of the matrix represent the patterns that were correctly identified. The sum of 

the off-major-diagonal values in each row indicates the FP for the predicted species.  

Similarly, the sum of the off-major-diagonal values in each column indicates the 

FN for the actual species in that column.  
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          Table 6-13: Multi-Class Confusion Matrix for ThornSOM Map 6 Test 

A C T U A L FP
at bo br bu ca da ge gr ka ko kr lu mo na ng nl ro sc se si sw to xa

at 34 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
bo 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
br 1 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2
bu 0 0 0 40 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 3
ca 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
da 0 1 0 0 0 37 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2

P ge 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2
R gr 0 0 0 0 0 0 0 39 1 0 0 0 0 0 0 0 37 0 0 0 0 0 0 38
E ka 0 0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D ko 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 0 0 0 0
I kr 1 0 1 0 1 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0 3
C lu 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 0 0 0 0
T mo 0 0 0 0 0 0 0 0 0 0 0 0 40 1 0 0 0 0 0 0 0 0 0 1
E na 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0 0
D ng 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0 0

nl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 37 0 0 0 0 0 0 0 0
ro 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
sc 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 39 0 0 0 0 0 5
se 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0 0 1
si 0 1 0 0 0 2 0 0 0 0 0 0 0 1 0 1 1 0 0 40 0 0 0 6
sw 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 40 0 0 0
to 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 40 1 3
xa 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 39 3

FN 6 2 2 0 2 3 0 1 1 2 0 0 0 3 3 3 40 1 0 0 0 0 1  
 

   In the confusion matrix it can be seen that all the A. robusta were misidentified 

(37 were identified as A. grandicornuta, one as A. davyi, one as A. sieberiana and one 

as A. xanthophloea).  The identification of 37 A. robusta as A. grandicornuta meant 

that the ThornSOM model was unable to separate the test patterns of these two 

species. Other misidentifications which occurred can be seen by inspecting Table 6-

13. In the table the columns represent the actual identity of the pattern, and the rows 

represent what the pattern was predicted to be. 

Using the values from the confusion matrices for the 30 ThornSOM test results the 

true positive, false positive, accuracy, precision and specificity rates were calculated 

and are presented in Table 6-14. Averaged pair-wise comparisons of the classes [90] 

from the 30 ThornSOM test simulations have been used to calculate the fractions in 

this table. From the rates shown in Table 6-14 it can be seen that the average FP rate 

for ThornSOM is 0.16% and the TP rate is 96.42%. This demonstrates that the models 

were highly successful in identifying Acacia specimens using only thorn data. 
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Table 6-14 : Average ThornSOM  Rate Fractions 

 Species TP FP Acc Prec Sp 
at 0.900833 0.000492 0.995217 0.988807 0.999508 

bo 0.946667 0.000152 0.997536 0.996624 0.999848 

br 0.982500 0.004545 0.994891 0.910202 0.995455 

bu 0.958333 0.002424 0.995870 0.949884 0.997576 

ca 0.973333 0.000152 0.998696 0.996706 0.999848 

da 0.921667 0.000303 0.996304 0.993095 0.999697 

ge 0.999167 0.002879 0.997210 0.941356 0.997121 

gr 0.873333 0.002803 0.991812 0.922481 0.997197 
ka 0.974167 0.000833 0.998080 0.981977 0.999167 
ko 0.967500 0.000000 0.998587 1.000000 1.000000 
kr 0.993333 0.000417 0.999312 0.991130 0.999583 
lu 1.000000 0.000492 0.999529 0.989431 0.999508 

mo 0.953333 0.000152 0.997826 0.996623 0.999848 
na 0.996667 0.003333 0.996667 0.931915 0.996667 
ng 0.961667 0.002235 0.996196 0.952756 0.997765 
nl 0.942500 0.001477 0.996087 0.967039 0.998523 
ro 0.895000 0.004053 0.991558 0.896325 0.995947 
sc 0.958333 0.001326 0.996920 0.972358 0.998674 
se 1.000000 0.000265 0.999746 0.994309 0.999735 
si 0.991667 0.002803 0.996957 0.942429 0.997197 
sw 1.000000 0.001250 0.998804 0.973738 0.998750 
to 1.000000 0.000833 0.999203 0.982343 0.999167 

xa 0.987500 0.004167 0.995471 0.915953 0.995833 

Average 0.964239 0.001625 0.996890 0.964673 0.998375 
 

Using the FP and TP rates from Table 6-14, a graph showing the ThornSOM test 

ROC space has been drawn up and is presented in Figure 6-16. This ROC space graph 

shows that the ThornSOM performed much better than the average guess, i.e. all 

results are above the diagonal line. The (FP, TP) points for A. grandicornuta 

(0.002803, 0.873333) and A. robusta (0.004053, 0.895000) are the furthest from the 

perfectly-performing-classifier point (which is (0, 1)). The (FP, TP) points for A. 

ataxacantha (0.000492, 0.900833) and A. davyi (0.000303, 0.921667) are the next 

furthest points from the ideal points. Plotting FP and TP values gives a good 

indication of the true ability of the ThornSOM to identify thorn data. Again the results 
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show that ThornSOM was able to identify thorn data successfully as it performed well 

above the diagonal line superimposed on Figure 16-16 for all the species.  
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   Figure 6-16 : ThornSOM Test ROC Space 

 

In the next section the FlowerSOM models are discussed. 

6.3 The FlowerSOM Models 

The flower data set is a subset of the whole data and was created by deleting all 

attributes other than the flower attributes. The training, verification and testing 

procedures performed are the same as those already carried out on the whole, and on 

the habit and thorn data sets. These procedures will therefore only be discussed briefly 

for the FlowerSOM models.  

6.3.1 Evaluation of the FlowerSOM Models 

The patterns in the flower data set were pre-processed in the same way as was 

previously done for the whole data set. This resulted in 30 flower training and 

verification pairs. The division of the flower data set is shown in Table 6-15.  
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Table 6-15 : Makeup of Flower Data Cross-Validation Sets 

Flower Training  

Set Number 

Size of  

Training Set 

Maximum No 

of Attributes  

Size of  

Verification Set 

1 870 19 50 

2 – 30 890 (each set) 19 30 (each set) 

 

After training SOMs using different numbers of neurons, it was found that the SOM 

produced the best results with 93 neurons. Map 2, which was formed with 93 neurons, 

is displayed in Figure 6-17. 
ng bu bu br br kr kr da

br kr mo da x 10 

se at at mo

at sc sc sc ko ko

ca ca sw

to

to

sw sw bo bo

ro si ge5 lu ka

  ro si ge lu ka nl nl 

si ge lu gr xa xa

na
x 40 

 
     Figure 6-17 : FlowerSOM Model 2 

 

The FlowerSOM training maps show that the training of the flower data set on its 

own was not as successful as the TreeSOM data and ThornSOM data. The total 

number of attributes possible was at most 19. This number of attributes appears to be 

too small to separate the flower data into unique Acacia clusters with no errors or just 

a few errors. 

There was a great variation in the number of clusters formed by the flower maps. 

In some of the maps, 49 clusters were formed, some of which were very small and 

had very few specimens mapped to them. In each of two maps only four clusters were 

formed, while other maps had 21 clusters or more. This appears to suggest that the 

FlowerSOM models had not stabilized. 

For clarity, Table 6-16 tabulates the error results of the FlowerSOM. Only statistics 

of the maps which had errors are displayed. 
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 Table 6-16 : Misidentification Errors in FlowerSom 

Flower 
Map X 

No. of 
Clusters 

in 
Map X 

ID of 
Cluster 

Cluster 
No. 

No. in 
Cluster 

Type of 
Error 

No. of 
Errors 

in 
Cluster 

No. of 
Errors 

in 
Map X 

1 22 na 15 76 da as na 38 38 
2 49 da 12 50 na as da 10 10 
3 22 da 

ge 
si 

6 
10 
13 

79 
50 
27 

na as da 
si as ge 
ge as si 

39 
22 
9 

 
 

70 
4 50 na 21 51 da as na 12 12 
5 20 ge 

to 
na 
nl 

1 
2 
3 

19 

77 
46 
76 
79 

si as ge 
lu as to 
da as na 
bo as nl 

37 
8 

36 
39 

 
 
 

120 
6 22 da 10 77 na as da 38 38 
7 49 na 9 49 da as na 12 12 
8 21 si 

na 
1 

10 
76 
76 

ge as si 
da as na 

38 
37 

 
75 

9 49 na 10 51 da as na 12 12 
10 22 to 

na 
4 
8 

49 
80 

lu as to 
da as na 

10 
40 

 
50 

11 21 si 
na 

2 
15 

76 
80 

ge as si 
da as na 

38 
40 

 
78 

12 21 ge 
na 

1 
10 

79 
78 

si as ge 
da as na 

39 
39 

 
78 

13 21 si 
na 

2 
11 

76 
78 

ge as si 
da as na 

36 
39 

 
75 

14 22 na 8 76 da as na 38 38 
15 21 si 

to 
na 

1 
3 

14 

76 
56 
80 

ge as si 
lu as to 
da as na 

38 
17 
40 

 
 

95 
16 21 si 

to 
da 

1 
6 

12 

78 
41 
79 

ge as si 
lu as to 
na as da 

39 
5 

39 

 
 

83 
17 21 si 

da 
1 
9 

77 
78 

ge as si 
na as da 

37 
38 

 
75 

20 22 na 9 79 da as na 39 39 
21 21 ge 

lu 
na 
xa 

1 
3 

11 
15 

78 
49 
79 
52 

si as ge 
to as lu 
da as na 
nl as xa 

38 
10 
39 
14 

 
 
 

101 
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22 4 si 
 

ko 
 
 
 

se 
 

sc 

1 
 

2 
 
 
 

3 
 

4 

230 
 
 

345 
 
 
 

196 
 
 

119 
 

ge, gr, lu,  
ro & to  

as si 
bo, da, ka, 
mo, na, nl 
sw & xa  

as ko 
at, bu, ca, 

& ng  
as se 

br & kr  
as sc 

39, 37, 
38, 

37, 39 
39, 38, 
39, 38, 
36, 38, 
38, 39 

 
40, 38, 
40, 38 
39, 40 

 
 
 
 
 
 
 
 
 
 
 

730 
23 21 ge 

da 
3 
9 

79 si as ge 
na as da 

39 
37 

 
76 

24 21 si 
to 
na 

3 
5 
8 

76 
41 
80 

ge as si 
lu as to 
da as na 

37 
1 

40 

 
 

78 
25 48 na 12 50 da as na 12 12 
26 4 gr 

 
za 
 
 

se 
 

sc 

1 
 

2 
 
 

3 
 

4 

232 
 
 

348 
 
 
 

191 
 

 
119 

ge, lu, ro, si
& to  
as gr 

bo, da, ka, 
ko, mo,  

na, nl & sw 
as xa 

at, bu,  ca, 
& ng 
as se 

br & kr 
as sc 

40, 37, 
39, 38, 

38 
39, 39, 
38, 39, 
39, 39, 
38, 38 
40, 37, 
38, 36, 

 
39, 40 

 
 
 
 
 
 
 
 
 
 
 

731 
27 22 da 8 79 na as da 39 39 

Total Errors 2765 
Error Rate 17.26% 
Correct Rate 82.74% 
(Table 6-16 continued) 

6.3.2 Evaluation of the FlowerSOM Model Verification Results 

The verification sets presented to the trained flower maps showed few errors other 

than those to be expected considering the training errors. The trained FlowerSOM 

using data set 2 is shown in Figure 6-18 (a). The results of presenting the verification 

set to this map are displayed in Figure 6-18 (b). From this map it can be seen that two 

A. davyi patterns (da20 and da30) were mapped to the A. natalitia cluster (second 

cluster from the top, right side). These were the only errors that occurred on this map, 

although it is notable that the A. natalitia cluster had ten A. davyi patterns mapped to 

it during the training stage. 
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           (a)            (b) 
Figure 6-18 : FlowerSOM Model 2 with AssociatedVerification Test Set 

 

6.3.3 Evaluation of the FlowerSOM Model Test Results 

Although there were originally 920 test patterns some of them did not have any flower 

data in them. The flower test data set was randomly shuffled and presented to each of 

the 30 FlowerSOM models in turn. SOM ignored the empty patterns entirely, hence 

there were effectively only 534 testing flower specimens in total.  

In order to demonstrate the results visually, a trained map was selected (in this case 

map 2) and the test set was associated with this map. The output of the association is 

presented in Figure 6-19 (b).  
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             (a)            (b) 

Figure 6-19 : FlowerSOM Model 2 with Associated Test Set 
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Figure 6-19 (b) shows that there were 69 misidentifications. For clarity the labels 

on the maps show the number of patterns that were associated with the cluster rather 

than the individual pattern code names. The FlowerSOM model is presented in Figure 

6-19 (a) for comparison purposes. The map presented in Figure 6-19 (b) is the one 

obtained after the flower test specimens were associated with the map in Figure 6-19 

(a). Again, considering the problems already existing with the trained map, the 

FlowerSOM was able to identify some patterns accurately. However, there were 

numerous misidentifications which are evident from studying Figure 6-19 (b).  

The overall results obtained from presenting the test patterns to the 30 FlowerSOM 

models are summarized in Table 6-17.  

          Table 6-17 : FlowerSOM Test Results 

Trained  
Map X  

Total 
Errors 

Total 
Correct 

Trained  
Map X 

Total 
Errors 

Total 
Correct 

1 104 430 16 93 441 
2 69 465 17 106 428 
3 103 431 18 80 454 
4 82 452 19 75 459 
5 135 399 20 97 437 
6 87 447 21 111 423 
7 68 466 22 449 85 
8 116 418 23 106 428 
9 76 458 24 109 425 
10 88 446 25 75 459 
11 112 422 26 451 83 
12 109 425 27 79 455 
13 105 429 28 80 454 
14 99 435 29 78 456 
15 110 424 30 61 473 
Total Error 3513 
Error Rate 21.93% 
Correct Rate 78.07% 

 

Table 6-18 breaks down the errors that occurred when FlowerSOM model 2 was 

presented with the test data set. Many of the misidentifications do not appear to make 

sense. For example, in cluster 6 A. kraussiana and A. schweinfurthii have both been 

identified as A. borleae. Also, in cluster 17 A. grandicornuta has been identified as A. 

ataxacantha. However, results like this might have some basis which could be 
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revealed if further studies were performed using, for instance, data for Acacia from 

the rest of southern Africa, or if studies were performed to look at the ancestral 

relationships between the Acacia species. 

 Table 6-18 : FlowerSOM Model 2 Test Results 

Cluster No. ID of 
Cluster 

No. of Tests 
per Cluster 

Type of 
Error 

No. of 
Errors 

Errors in 
Cluster 

4 to 3 xa as to  1 1 
6 bo 11 da as bo 

kr as bo 
sc as bo 
xa as bo 

2 
2 
2 
2 

 
 
 
8 

10 ka  26 xa as ka 4 4 
12 na 17 nl as na 3 3 
17 at 4 br as at 

gr as at 
kr as at 

1 
1 
1 

 
 
3 

19 ca 21 se as ca 
bu as ca 
at as ca 

6 
4 
4 

 
 
14 

20 at 18 ge as at 1 1 
21 
 

sc 17 
 

kr as sc 
to as sc 
nl as sc 
gr as sc 

4 
2 
1 
1 

 
 
 
8 

23 ko 28 na as ko 
bo as ko 
mo as ko 

1 
2 
3 

 
 
6 

28 si 21 ro as si 3 3 
30 si 5 ge as si 

to as si 
1 
2 

 
3 

31 at 3 bu as at 2 2 
33 ro 

 
25 br as ro 

na as ro 
2 
1 

 
3 

34 sw 20 na as sw 
xa as sw 

1 
1 

 
2 

43 xa 3 nl as xa 1 1 
47 lu 24 si as lu 1 1 
48 xa 21 na as xa 6 6 
Total Errors 69 
Error Rate 12.92% 
Correct Rate 87.08% 
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6.3.4 Statistical Analysis of the FlowerSOM Test Results 

Confusion matrices were drawn up for the results of each FlowerSOM model and the 

metrics obtained are shown in Table 6-19. 

 

     Table 6-19 : Fraction Metrics for FlowerSOM Species 

Species TP FP Acc Prec Sp 
at 0.747826 0.002283 0.986954 0.880152 0.997717 
bo 0.678261 0.000457 0.985705 0.887524 0.999543 
br 0.769565 0.000457 0.989638 0.922754 0.999543 
bu 0.802899 0.004044 0.98764 0.848285 0.995956 
ca 0.957971 0.023418 0.97578 0.762332 0.976582 
da 0.469697 0.006901 0.971536 0.428903 0.993099 
ge 0.688406 0.012785 0.974345 0.578878 0.987215 
gr 0.855072 0.003066 0.990824 0.874309 0.996934 
ka 0.915942 0.017352 0.979775 0.672654 0.982648 
ko 0.984058 0.032746 0.967978 0.794114 0.967254 
kr 0.717391 0.002348 0.985581 0.877066 0.997652 
lu 0.928986 0.006458 0.990762 0.82834 0.993542 
mo 0.783908 0.002574 0.98583 0.885889 0.997426 
na 0.36087 0.01696 0.956242 0.454418 0.98304 
ng 0.933333 0.005153 0.992197 0.841955 0.994847 
nl 0.785507 0.00287 0.988015 0.878864 0.99713 
ro 0.921739 0.006132 0.990762 0.817658 0.993868 
sc 0.795652 0.015329 0.976529 0.758373 0.984671 
se 0.744928 0.003979 0.985206 0.855612 0.996021 
si 0.595652 0.010241 0.972784 0.580869 0.989759 
sw 0.933333 0.020939 0.977091 0.632831 0.979061 
to 0.881159 0.025114 0.970849 0.802134 0.974886 
xa 0.689855 0.007567 0.979401 0.775348 0.992433 
Average 0.780087 0.009964 0.980931 0.766924 0.990036 

 

The TP and FP fractions displayed in Table 6-19 were used to draw up a graph of 

the FlowerSOM ROC space. This graph is displayed in Figure 6-20. 

The rates shown in Table 6-19, and the ROC graph displayed in Figure 6-20, show 

that the TP rate for A. natalitia is low (0.36087) because of the misidentification of A. 

natalitia which occurred with nearly every map. Similarly, the identification of some 

A. davyi as A. natalitia (and as other species) resulted in a low TP rate (0.469697) for 

A. davyi. Low TP rates were also demonstrated by A. sieberiana and A. gerrardii. 

Despite these relatively low results the FlowerSOM models demonstrated that, even 
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with data containing an average of 4.62 attribute values per specimen, the 

FlowerSOMs could still differentiate many of the Acacia test specimens.  
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   Figure 6-20 : FlowerSOM Test ROC Space 

 

The Seed and PodSOM and the LeafSOM will be discussed in the next two 

sections. 

  

6.4 The Seed and PodSOM Models 

The same procedure as was followed for the other models was performed using the 

seed and pod data set. The maps produced and results obtained are discussed in the 

following sections, but in less detail than for TreeSOM and ThornSOM. 

6.4.1 Evaluation of the Seed and PodSOM Models 

The SOM was trained with 870/890-pattern seed and pod data sets and 587 neurons. 

Each specimen pattern contained values for up to 25 attributes. The Seed and 

PodSOM model obtained using training data set 23 is presented in Figure 6-21. As 

shown in this figure, 23 clusters were formed with two clusters having two 

misidentifications. These misidentifications are shown in the top right-hand corner of 
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the map where two A. burkei were mapped to an A. caffra cluster. Also near the top 

right-hand corner, the second cluster from the top shows that eight A. ataxacantha 

were mapped to an A. burkei cluster. The other 21 clusters on the map formed unique 

species clusters. 
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         Figure 6-21 : Seed and PodSOM Model 23 

The errors obtained in the 30 Seed and PodSOM maps are shown in Table 6-20. 
 

 Table 6-20 : Misidentification Errors in Seed and PodSOMs 

Trained 
Map X 

No. of 
Clusters  

 ID of 
Cluster 

Cluster 
No. 

No. in 
Cluster 

Type of 
Error 

No. of 
Errors in 
Cluster 

No. of 
Errors  
 

2 23 bu 2 47 at as bu 9 9 
21 23 ca 21 38 bu as ca 2 2 
23 23 bu 6 43 at as bu 8  

  ca 19 41 bu as ca 2 10 
30 23 bu 5 46 at as bu 8 8 

Total Errors 29 
Error Rate 0.11% 
Correct Rate 99.89% 
 

6.4.2 Evaluation of the Seed and PodSOM Model Verification Results 

Once the Seed and PodSOM models had been formed they were verified using the 

remaining data sets left out during the training sessions. Figure 6-22 shows the results 

of mapping the verification test to map 23. Figure 6.22 (a) presents the PodSOM 

 
 
 



Chapter 6 : Analysis of the SOM Performance  

 

  

124

obtained from using training map 23, and the map in Figure 6.22 (b) is obtained from 

associating verification set 23 with this map. The map in Figure 6.22 (b) shows there 

was only one type of error, with an A. burkei being identified as an A. caffra. 
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Figure 6-22 : Seed and PodSOM Verification for Map 23 

6.4.3 Evaluation of the Seed and PodSOM Model Test Results 

The seed and pod test data set, as was the case with the flower test data set, 

included specimen patterns which were empty, i.e. they did not have data on seeds 

and pods. This is what happens in nature, as in different seasons the seeds and pods 

are not always present (or observed or collected) on the tree specimens. Thus the test 

data set consisted of only 688 unseen seed and pod patterns. 

Figure 6-23 presents the Seed and PodSOM model 23 and the associated test set. 
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 Figure 6-23 : Seed and PodSOM Model 23 with Associated Test Set 
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The map presented in Figure 6-23 (a) is the trained PodSOM map 23, and Figure 6-

23 (b) presents the same map after 688 test specimens were associated with it. 

Table 6-21 lists the errors which occurred when the seed and pod test set was 

presented to each of the 30 Seed and PodSOM models. The average error rate for 

these models was 10.16%. This error rate is relatively high compared with the error 

rates obtained for TreeSOM and ThornSOM. However, it must be remembered that 

the seed and pod test set only had an average of 4.23 attribute values per specimen. 

When this low number of attribute values is taken into consideration the error rate is 

surprisingly good. 

      Table 6-21 : Seed and PodSOM Test Results 

Trained Map X  Total 
Errors 

Total 
Correct 

Trained Map X 
 

Total 
Errors 

Total 
Correct 

1 68 620 16 70 618 
2 72 616 17 68 620 
3 68 620 18 68 620 
4 68 620 19 68 620 
5 70 618 20 71 617 
6 70 618 21 66 622 
7 69 619 22 68 620 
8 70 618 23 92 596 
9 72 616 24 69 619 

10 72 616 25 69 619 
11 66 622 26 68 620 
12 67 621 27 72 616 
13 67 621 28 68 620 
14 70 618 29 69 619 
15 69 619 30 74 614 

Total Error 2098 
Error Rate 10.16% 
Correct Rate 89.84% 

 

Table 6-22 tabulates the results of presenting the test set to PodSOM Model 23. 

Only the results for clusters which had errors are presented. 
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   Table 6-22 : Seed and PodSOM Model 23 Test Error Results 

Cluster No. ID of 
Cluster 

No. of Tests 
per Cluster 

Type of 
Error 

No. of 
Errors 

Errors in 
Cluster 

5 sw 38 ng as sw 7 7 
6 bu 15 at as bu 

to as bu 
ca as bu 

1 
7 
1 

 
 
9 

14 gr  74 at as gr 
bo as gr 
br as gr 
ge as gr 
lu as gr 
nl as gr 

8 
9 
7 
8 
9 
7 

 
 
 
 
 
48 

19 ca 50 bu as ca 
at as ca 

21 
1 

 
22 

22 nl 24 ca as nl 1 1 
23 ko 36 si as ko 5 5 
Total Errors 92 
Error Rate 13.37% 
Correct Rate 86.83% 

 

6.4.4 Statistical Analysis of the Seed and PodSOM Model Test Results 

For each of the tests performed, a confusion matrix was drawn up and a metrics table 

was produced. This table is shown in Table 6-23. The (TP, FP) point for A. 

ataxacantha species (0, 0.687778) is the point furthest from the perfect classifier point 

(0, 1). The (TP, FP) point for A. luederitzii species (0, 0.695833) is the next furthest 

point from the point (0, 1). These results occurred because these two species were 

sometimes misidentified as other species. Conversely, the FP rate for A. 

grandicornuta was 0.020141, which was relatively high because other species were 

misidentified as this species.  
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     Table 6-23 : Fraction Metrics for Seed and PodSOM Species 

Species TP FP Acc Prec Sp 
at 0.687778 0.000000 0.986822 1.000000 1.000000 
bo 0.756250 0.005691 0.974128 0.924324 0.991463 
br 0.758621 0.000000 0.989826 1.000000 1.000000 
bu 0.902469 0.012405 0.985368 0.739286 0.987342 
ca 0.997778 0.005235 0.995833 0.906924 0.994985 
da 1.000000 0.000456 0.999225 0.989449 0.999493 
ge 0.884444 0.043617 0.967878 0.643452 0.960740 
gr 0.866667 0.020141 0.969477 0.804517 0.978248 
ka 1.000000 0.000000 1.000000 1.000000 1.000000 
ko 0.997849 0.007610 0.992684 0.860847 0.992390 
kr 1.000000 0.000000 1.000000 1.000000 1.000000 
lu 0.695833 0.000000 0.985998 1.000000 1.000000 

mo 1.000000 0.000000 1.000000 1.000000 1.000000 
na 1.000000 0.000169 0.999952 0.997917 0.999899 
ng 0.766667 0.000000 0.989826 1.000000 1.000000 
nl 0.766667 0.000068 0.989826 0.998611 0.999949 
ro 0.988889 0.000000 0.999225 1.000000 1.000000 
sc 1.000000 0.000000 1.000000 1.000000 1.000000 
se 1.000000 0.000000 1.000000 1.000000 1.000000 
si 0.821429 0.000000 0.992733 1.000000 1.000000 
sw 1.000000 0.010654 0.989826 0.815789 0.989346 
to 0.766667 0.000000 0.989826 1.000000 1.000000 
xa 1.000000 0.000000 1.000000 1.000000 1.000000 

Average 0.898174 0.004611 0.991237 0.942657 0.995385 
 

The TP and FP rates from Table 6-23 were used to produce a graph of the Seed and 

PodSOM ROC space which is displayed in Figure 6-24. This graph shows that the 

Seed and PodSOM models were able to identify many test specimens even though 

there were problems in the identification of some species. The point (0.687778, 0) for 

A. ataxacantha is the further point from the perfect classifier point (0, 1). A. 

luederitzii (0.687778, 0) is the next furthest point from the point (0, 1). These results 

highlight that these two species were sometimes identified as other species. Despite 

this, the Seed and PodSOM test results demonstrate that the models were able to 

identify some species correctly even though there were many missing values.  
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Seed and PodSOM Test ROC Space

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FP Fraction

TP
 F

ra
ct

io
n

 
  Figure 6-24 : Seed and PodSOM Test ROC Space 

 
The LeafSOM model is discussed in the next section. 

 

6.5 The LeafSOM Models 

The leaf data set consisted of 920 patterns with up to 40 characteristics. The 30 sets of 

training data were presented to the SOM software as described in Chapter 5 using 162 

neurons. 

6.5.1 Evaluation of the Trained LeafSOM Models 

The LeafSOM model obtained using the leaf data set 21 is shown in Figure 6-25.  
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Several errors are shown on the map in Figure 6-25. One A. nilotica was identified 

as A. sieberiana as shown in the cluster on the right edge, just below centre. Another 

error occurred and is shown in the cluster at the bottom edge of the figure, third 

cluster from the left. Here two A. swazica were identified as A. natalitia.  

 What is interesting to note in the map displayed in Figure 6-25 is that although 

only leaf attributes were used in the training data set, it can be seen that LeafSOM has 

clustered all the hooked-thorns species (i.e. those with no straight thorns) in the top 

half of the map. Going from left to right and down the map these species are: A. 

nigrescens, A. kraussiana, A. senegal, A. brevispica, A. caffra, A. burkei, A. 

ataxacantha and A. schweinfurthii. The species A. tortilis and A. luederitzii which 

both have some hooked thorns and some straight/straightish thorns are clustered next 

to each other in the bottom right corner of the map. 

Some of the component maps that were output using data set 21 are shown in 

Figure 6-26.  
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    Figure 6-26 : LeafSOM Component Maps 
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These maps in Figure 6-26 show clearly some of the attributes for the different 

species. For instance, the Cushions component map clearly shows that A. robusta, A. 

gerrardii and A. grandicornuta all have high values for the cushion attribute. 

Another example of similar species which are depicted in a component map is the 

species which have stalked glands which are shown grouped in the top right-hand 

corner of the GLD_STK component map. Similarly, the species which have numerous 

pinna pairs are shown as a distinct group at the right side and top of the PIN_PR 

component map. While the species with numerous leaves are shown in the bottom, 

left-hand corner of the LV_NUM component map. 

The U-Matrix for the LeafSOM model 21 is shown in Figure 6-27 (b), and the 

trained LeafSOM is shown in Figure 6-27 (a). If the map in Figure 6-27 (b) is 

analyzed in conjunction with the maps shown in Figure 6-26 then certain traits 

become evident. Lines have been superimposed on the maps for reference purposes. 

From Figure 6-27 (b) some of the boundaries between the different species can be 

deduced. For example, the groups at the bottom left of Figure 6-27 (b) seem to be 

influenced by the LV_NUM attribute, and these groups consist of the species with 

larger numbers of leaves. The top centre group bears a correlation to the species with 

leaf stalks (LF_STK). The top left group seems to be influenced by the component 

leaflet description (LFT_DESC). The right-most group of clusters seems to be 

correlated to the number of pinna pairs (PIN_PR) attribute. 
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      Figure 6-27 : U-Matrix  representation of LeafSOM Model 21  
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6.5.2 Evaluation of the LeafSOM Model Verification Results 

The verification data sets were used to validate the LeafSOM models as was described 

in Chapter 5. Figure 6-28 shows the results for one of these verification tests. In this 

figure the leaf verification set 21 has been mapped to the LeafSOM model 21. 

The results of the verification test in Figure 6-28 (b) show that the 30 verification 

patterns were all mapped to their correct clusters. The LeafSOM model 21 is 

presented in Figure 6-28 (a) for comparison purposes. 
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    Figure 6-28 : LeafSOM Model with Associated Verification Set 21 

6.5.3 Evaluation of the LeafSOM Model Test Results  

The leaf test data set consisting of 918 unseen patterns was associated with the 

LeafSOM models. The results obtained for model 21 are presented in Figure 6-29. 
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Figure 6-29 : LeafSOM Model 21 with Associated Test Set 
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The errors that occurred when the leaf test data set was associated with each of the 

30 LeafSOM models are tabulated in Table 6-24. From this table it can be seen that 

the average error rate is 12.64%. Considering that the leaf data set consisted of a 

possible 40 attributes these results were not as good as one expected. However, it 

must be noted that there was on average 5.55 attribute values per test specimen in the 

leaf test data set. When taking this into consideration the error rate was relatively 

good. 

The LeafSOM models were unable to identify the A. davyi species satisfactory. 

Only four A. davyi specimens were correctly identified by LeafSOM model 21. This 

can be seen in Figure 6-29 (b) in the cluster on the right edge, 3rd cluster from the top. 

   Table 6-24 : LeafSOM Test Results   

Trained  
Map X 
 

Total 
Errors 

Total 
Correct 

Trained  
Map X 
 

Total 
Errors 

Total 
Correct 

1 115 803 16 116 802 
2 115 803 17 105 813 
3 107 811 18 102 816 
4 112 806 19 159 759 
5 111 807 20 126 792 
6 118 800 21 124 794 
7 114 804 22 112 806 
8 116 802 23 110 808 
9 111 807 24 114 804 
10 123 795 25 119 799 
11 113 805 26 124 794 
12 122 796 27 111 807 
13 121 797 28 115 803 
14 120 798 29 102 816 
15 120 798 30 109 809 
Total Errors 3480 
Error Rate 12.64% 
Correct Rate 87.36% 

 

The errors that were shown in Figure 6-29 (b) are tabulated in Table 6-25. From 

cluster 14 in this table it can be seen that although the cluster was identified as A. 

davyi only four of the ten specimens grouped on this cluster were A. davyi.  
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 Table 6-25 : LeafSOM Model 21 Test Error Results 

Cluster No. ID of 
Cluster 

No. of Tests 
per Cluster 

Type of 
Error 

No. of 
Errors 

Errors in 
Cluster 

1 xa 32 nl as xa 1 1 
2 ka 43 xa as ka 

bu as ka 
3 
1 

 
4 

3 ge 54 ka as ge 
sc as ge 
si as ge 
at as ge 
da as ge 
nl as ge 
ca as ge 
xa as ge 
gr as ge 

1 
3 
2 
1 
3 
1 
1 
1 
1 

 
 
 
 
 
 
 
 

14 
4 gr 44 ro as gr 

xa as gr 
4 
1 

 
5 

5 si 40 da as si 
ca as si 
nl as si 
to as si 

5 
1 
8 
1 

 
 
 

15 
6 na 42 xa as na 

sw as na 
1 
1 

 
2 

8 at 58 sc as at 
da as at 
si as at 
ca as at 

16 
1 
2 
1 

 
 
 

20 
9 lu 60 da as lu 

to as lu 
xa as lu 
nl as lu 

12 
4 
2 
2 

 
 
 

20 
10 se 46 si as se 

to as se 
bu as se 

3 
2 
1 

 
 

6 
11 kr 43 bu as kr 

ca as kr 
2 
1 

 
3 

13 bu 21 ca as bu  1 
14 da 10 br as da 

ca as da 
si as da 
at as da 

1 
2 
2 
1 

 
 
 

6 
16 ca 38 da as ca 

si as ca 
5 
3 

 
8 

17 sc 22 si as sc 
da as sc 

2 
1 

 
3 

18 br 46 sc as br 
ca as br 
da as br 
si as br 

2 
2 
2 
1 

 
 
 

7 
19 mo 41 da as mo 1 1 
21 nl 29 to as nl 1 1 
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22 ko 43 ca as ko 
da as ko 

1 
2 

 
3 

23 to 35 bu as to 
da as to 
xa as to 

1 
1 
1 

 
 

3 
24 sw 40 da as sw 1 1 

Total Errors 124 
Error Rate 13.51% 
Correct Rate 86.49% 

 (Table 6-25 continued) 

 

6.5.4 Statistical Analysis of the LeafSOM Model Test Results      

The rates in Table 6-26 were drawn from the confusion matrices created to display the 

results of the LeafSOM tests. In this table, the TP rate for A. davyi is 0.2, which is 

extremely low. This low rate resulted because very few of the A. davyi specimens 

were correctly associated with the A. davyi cluster (also shown in Table 6-25, cluster 

14). 

Table 6-26 shows that the TP rate for A. schweinfurthii (0.521667) was also low. 

This result can be confirmed by looking at cluster 17 of Table 6-25, which shows that 

for map 21 only 22 A. schweinfurthii test specimens were correctly identified.  

The TP rate for A. sieberiana is 0.524167, which is low and resulted because this 

species was frequently identified as other species. From Figure 6-29 it can be seen 

that map 21 only had 25 of the test A. sieberiana specimens correctly identified. 

Also of note in Table 6-26 are the rates for A. nigrescens. These show that no 

errors were made in identifying this species. This result is not surprising as the leaves 

of A. nigrescens are very distinctive and distinguish the species from other KZN 

Acacia species (except for some A. burkei which can also have large leaflets). 
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      Table 6-26 : Fraction Metrics for LeafSOM Species 

Species TP FP Acc Prec Sp 
at 0.965833 0.025209 0.974401 0.644432 0.974791 

bo 1.000000 0.001025 0.999020 0.978353 0.998975 

br 0.954167 0.011883 0.986638 0.762696 0.988117 

bu 0.883333 0.000645 0.994299 0.984515 0.999355 

ca 0.730833 0.006112 0.982426 0.848845 0.993888 

da 0.200000 0.006780 0.960385 0.553142 0.993220 

ge 0.984167 0.013174 0.986710 0.773739 0.986826 

gr 0.945000 0.003834 0.993936 0.918823 0.996166 

ka 0.974167 0.003986 0.995062 0.918964 0.996014 

ko 1.000000 0.003037 0.997095 0.938250 0.996963 

kr 1.000000 0.004708 0.995497 0.908028 0.995292 

lu 0.995833 0.013743 0.986674 0.769423 0.986257 

mo 1.000000 0.001746 0.998330 0.963517 0.998254 

na 1.000000 0.000835 0.999201 0.982382 0.999165 

ng 1.000000 0.000000 1.000000 1.000000 1.000000 

nl 0.810000 0.004480 0.987436 0.895555 0.995520 

ro 0.915000 0.001898 0.994481 0.957915 0.998102 

sc 0.521667 0.002923 0.976362 0.895737 0.997077 

se 1.000000 0.007365 0.992956 0.862544 0.992635 

si 0.524167 0.011314 0.968446 0.687485 0.988686 

sw 0.994167 0.002354 0.997495 0.951302 0.997646 

to 0.854167 0.003531 0.990269 0.918729 0.996469 

xa 0.806667 0.001557 0.990087 0.959525 0.998443 

Average 0.872138 0.005745 0.989009 0.872778 0.994255 
 

 

Figure 6-30 displays the FP and TP rates plotted on a graph in ROC space. These 

rates are obtained from Table 6-26. The poor identification rates for A. davyi, A. 

schweinfurthii and A. sieberiana are again demonstrated on this graph. 
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LeafSOM Test ROC Space
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             Figure 6-30 : LeafSOM Test ROC Space 

 

In the next section the C5 and CN2 results are discussed. 

 

6.6 C5 and CN2 Results 

The Acacia data sets were tested using the C5 and CN2 algorithms. However, the 

results from these tests were not meaningful. The C5 algorithm chose the shortest 

route to determining the identity of the species, so the training results showed 100% 

success, as did the TreeSOM results. However, as soon as attribute values were 

missing from the test data the C5 algorithm was unable to produce meaningful results. 

The extracted rules for CN2 include default cases, which meant that if a 

characteristic was absent then the specimen could fall through to the default argument 

and be incorrectly identified as a totally different species.  

Hence it was concluded that the use of these algorithms with the data sets used in 

this research was totally inappropriate. The C5 and CN2 algorithms could not identify 

the test data specimens meaningfully because they could not handle the large number 

of missing values. The C5 and CN2 results did not make sense and it was therefore 

not possible to make a comparison between these results and the results obtained 
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from the SOM as had been intended at the start of this investigation. Consequently 

these results are not presented here.  

 

6.7 Summary of SOM Results 

A summary of the test results obtained using SOM is presented in Table 6-27 

 

 Table 6-27 : Summary of SOM Test Data Set Results 

SOM Model Size1 of 
Training 
Data Set 

No. of  
Neurons 
used for 
Training 

Max.2 No. 
of 

Attributes 

Size3 of 
Test 
Data Set 

Average 4 No.  
of Attribute  
Values 

Correct 
Rate 

TreeSOM 890/870 201 127 920 19.52    99.996% 
Habit & 
ThornSOM 

890/870 103 43 920 8.61 96.56% 

FlowerSOM 890/870 93 19 534 4.62 78.07% 
Seed & 
PodSOM 

890/870 587 25 688 4.23 89.86% 

LeafSOM 890/870 162 40 918 5.55 87.36% 
 
 1  For training the size of each data set was either 890 for the first set, or 870 for    

each of the other 29 data sets. 

 2  This is the maximum number of attributes that were used for describing the data           

in the relevant data set. 

 3  In the test data sets some test data specimens had no data on flowers, seed and      

pods, or on leaves, consequently the size of the set was smaller. 

 4  This is the average number of attribute values per test specimen. 

 

      From Table 6-27 it can be seen that if there is an average of 19.52 attribute values 

present in the test data set per specimen, as there is for testing TreeSOM, then 

identification results are very good. The correct rate for identification using TreeSOM 

was 99.996%.  

For Habit and ThornSOM the average number of attribute values per specimen 

present in the test data set was 8.61 and the correct rate for identification was 96.56%. 
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Any correct rate over 96% is statistically significant, so these identification results are 

also good. 

FlowerSOM had an average number of attributes values of 4.64 per specimen in 

the test data set, and had a correct rate for identification of 78.07%. This rate is too 

low and would need to be improved. However, it is felt that the reduction in the 

correct rate was affected by two factors: the low average number of attribute values 

per specimen present in the test data set, and the low number of attributes available 

for describing the training data (there were at most 19 attributes available for 

describing the flower data sets). 

Similarly, Seed and PodSOM had an average number of attributes values of 4.23 

per specimen in the test data set, and had a correct rate for identification of 89.84%. 

These identification results were higher than for FlowerSOM, and it is felt that this 

improvement was probably due to the fact that PodSOM had up to 25 attributes 

available for describing the seed and pod training data. Again, it is thought that if the 

number of attributes for describing the training data, as well as the average number of 

attribute values per test specimen, were increased the identification correct rate would 

be higher. The number of neurons needed to get these results was very high being 

over half the total number of training data patterns presented to the networks. 

LeafSOM had up to 40 attributes for describing the leaf training data, but there 

was only an average of 5.55 attribute values per specimen used to describe the leaf 

test data set. The correct identification rate for LeafSOM was 87.36%. This rate was 

disappointing in view of the relatively high number of attributes available for 

describing the leaf data. However, the relatively low correct rate is again thought to 

be as a result of the low average number of attribute values per specimen used in the 

test data set.  

What is also worth noting is that none of the SOM models had difficulty 

identifying and subdividing what was until recently known as the A. karroo complex 

which included the species A. karroo, A .montana, A. natalitia and A. kosiensis [42]. 

The newly described species, A. montana, A. natalitia and A. kosiensis, were 

previously included under the umbrella of A. karroo. 
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Overall the results of the SOMs were considered good, and the TreeSOM models 

showed what an excellent identification technique the SOM has proved to be. 

Therefore the SOM promises to be of immense use in the identification and 

classification of biodiversity.  

 

6.8 Conclusion 

The maps produced by using the whole, habit and thorn, flower, seed and pod, and leaf 

data sets were presented and discussed in turn in this chapter. First, the training data 

sets used to produce the SOM maps were discussed and the results analyzed. Next the 

results of verifying the maps using a 30-fold cross-validation method were presented 

and discussed. Thereafter, the results of testing the maps to see if they could identify 

unseen Acacia material from their data sets were presented. The results of the 

identification test sets were analyzed, and confusion matrices and/or ROC space graphs 

used to rate the performance of the models.  

The test results obtained from presenting the unseen data to the C5 and CN2 

algorithms were not meaningful and consequently were not presented here. The C5 

and CN2 techniques have been used in the other research for identification (see 

references given on pp42-43) and for this reason were selected to be used for 

comparison with the SOM. However, the C5 and CN2 methods were clearly unable to 

identify the biological data used in this research and it is believed that this was 

because these methods could not cope with the large number of missing values in the 

unseen data sets.  

In the next chapter the final conclusions will be presented together with 

recommendations for future work. 
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Chapter 7 
Future Development and Conclusion  

 

 

The primary objective of this thesis was to evaluate the suitability of the SOM for use 

as an identification tool for biological species. The first step towards this was to 

discuss traditional identification methods that have been used so as to develop an 

understanding of the shortcomings of procedures in current use. These traditional 

methods were discussed in Chapter 2, and the need for improved identification 

techniques was highlighted. 

In Chapter 3, various attempts to utilise AI techniques to identify biological 

specimens were reviewed, but it is apparent that the full potential of modern AI 

technology has not been achieved. This has been part of the motivation for conducting 

this experimental research project which uses Viscovery® SOMine software to 

attempt to find a more effective identification tool.  

Chapter 4 described the SOM algorithm in detail. The basic theory and concepts 

behind this algorithm were presented together with the problems which can occur 

with the technique. Some variants and extensions of the SOM were also described. 

Chapter 5 outlined the research design that was followed for this thesis. The choice 

of KZN Acacia as the application field and the reasons for their selection were given. 

Any limitations imposed on the extent of the data set were also described. The choice 

of Viscovery® SOMine software was also motivated. The sampling process was 

described and the pre-processing and the encoding of the data were explained. Finally, 

the presentation of data to the software and the verification and testing processes were 

described. 

The models obtained from performing the experiments described in Chapter 5 were 

presented in Chapter 6. These models were discussed and analyzed. It was concluded 

that the SOM had been applied very successfully to the Acacia data sets. The models 

were able to predict the species of the test specimens with accuracy ranging from 78% 

to 99%. 
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The experiments conducted with the SOM algorithm had two distinct objectives.  

1.  The teaching or inductive phase. The first objective was to examine whether the 

SOM was able to structure and correlate the data and identify statistically distinct 

biological patterns contained within that data. This the SOM proved well able to do; 

as well as being able to recognize distinctive patterns within species. Additionally, in 

performing this function the SOM confirmed that the conversion of the botanical data 

from a descriptive form into a normalized numerical form was effective. 

2.  The testing or deductive phase. The second objective of the experiments was to 

determine the accuracy with which the SOM would be able to identify “unknown” 

biological specimens. This accuracy proved to be high (up to 99%) when an extensive 

range of attribute values was used to describe the data set for developing a model. For 

example, the TreeSOM models, which were formed from large data sets, were able to 

identify test data accurately. However, accuracy was reduced when only a few 

attributes were used to form the models and/or to describe the test data set. For 

example, the FlowerSOM models, which were formed from limited data sets, had a 

correct identification rate of only 78.07%.  

At the start of this thesis it was hoped that the SOM would be able to help with 

identifying biological specimens. The TreeSOM models have successfully 

demonstrated that they are able to differentiate the different Acacia species occurring 

in KZN. These models, created with training data sets which had up to 127 attribute 

values, obtained an average correct rate of 99.996% with test data sets which had an 

average of 19.52 attribute values per test specimen.  

The Habit and ThornSOMs were also used successfully to identify unseen habit 

and thorn test data specimens. The average correct rate for these models was 96.56%.  

Even though the number of attributes used for training these models was at most 43 

and the average number of attribute values in the test data set was 8.61 per test 

specimen. 

The Seed and PodSOM models were trained with data sets which had at most 25 

characteristics and obtained an average correct rate of 89.84% when presented with 

unseen data. In view of the fact that the average number of attribute values per test 

specimen was 4.23 the correct rate for Seed and PodSOM was surprisingly good. 
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The LeafSOM models were trained using up to 40 attributes. The average correct 

rate achieved when these models were presented with unseen test specimens was 

87.36%. The lower rate of success of LeafSOM was disappointing because of the 

relatively high number of attributes were available for describing the leaf training 

data. However, it must be noted that the average number of attribute values used for 

the leaf test specimens was only 5.55 per specimen. This paucity of test data probably 

contributed to the correct rate being lower than expected. 

The FlowerSOM correct rate was 78.07%, the lowest rate obtained during the 

experiments. However, the number of attributes used for training the FlowerSOM was 

at most 19 and because of the correlation between some of the attributes the 

FlowerSOM models were not sufficiently diagnostic. Additionally, the flower test 

specimens themselves were not well defined as the average number of attribute values 

per test specimen was only 4.62. Taking these last two factors into account the correct 

rate of 78.07% is understandable, and it is felt that the lower identification rate was 

more to do with the sparse data sets, rather than with a shortcoming of the technique 

utilized.  

Although the Habit and ThornSOM models were the only subset models to obtain 

an average correct rate over 96%, all the subset models show promise of being able to 

identify the species.  

Also, at the start of this thesis it was hoped that the C5 and CN2 algorithms could 

be used to provide meaningful results for comparison with those obtained by using the 

SOM for identifying unseen biological specimens. The selection of the C5 and CN2 

algorithms for identification of incomplete biological data sets turned out to be a poor 

choice for comparison purposes. However, the SOM results showed that the SOM 

technique was suitable for biological identification and was able to succeed where 

other techniques had failed and that the SOM algorithm’s superiority for identification 

was clearly established. 
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7.1 Future Work 

Some of the relationships between species and the correlations between 

characteristics, as were illustrated by the SOM models, have no obvious or known 

biological explanation. It is felt that an important continuation of the work started in 

this thesis would be to investigate the taxonomic relationships suggested by the 

TreeSOMs. These may have evolutionary or genetic significance which could be 

tested. For example, in Figure 6-5 TreeSOM’s clustering of the species splits the KZN 

Acacia species into four major groups (at the level where 4 clusters were requested). 

At this level TreeSOM splits the species into two subgroups for the hooked thorn 

species and two subgroups for the species with some straight thorns. It would be 

interesting to see if there are valid phylogenetic reasons behind this split into four 

groups. 

Also, some of the associations between species are well documented and based on 

morphological evidence [168, 179, 180], but other relationships depicted by TreeSOM 

appear not to be documented. The authors of the above references discuss similarities 

between A. robusta, A. grandicornuta and A. gerrardii, and between A. luederitzii and 

A. tortilis, but not between A. nilotica and A. sieberiana. It would be very interesting 

to see if other evidence (morphological or genetic) supports the relationship suggested 

by TreeSOM between A. nilotica and A. sieberiana. 

The unsupervised SOM techniques have been demonstrated on a botanical data set 

and its four subsets. The subset models were not as successful as the whole model in 

identifying unknown specimens. The apparent loss of accuracy demonstrated by the 

FlowerSOM needs to be investigated further. It is felt that the current flower data set, 

for instance, only offers two different types of data on what are very important 

characteristics:  flowers are either white or yellow, while inflorescences are either 

capitate or spicate. These characteristics are highly correlated, with all the spicate 

inflorescences being white. This means that the data are easy to separate into two 

groups, but these important flower characteristics on their own are not sufficient to 

differentiate species. More data (i.e. more characteristics) need to be collected to 

make the differentiation between species and attributes more successful. In addition, 
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because of time restraints and lack of resources, important reproductive characteristics 

were omitted from the data set and should be included in future work.  

The experimental work in this thesis was performed on data collected on KZN 

Acacia species. The SOM results would change if data on Acacia species from the rest 

of southern Africa were included. Acacia data from species found in South Africa or 

even southern Africa should be extracted and used to see what relationships the SOM 

could detect with these extended data sets. If this wider range of species were 

included then some of the relationships detected by SOM in the KZN data sets might 

also make more sense. For example, the relationship between A. nilotica and A. 

sieberiana might change or be clarified. 

One of the main strengths of SOMs is the successful preservation of 

neighbourhood relations. This strength should be further utilized to discover structures 

within other botanical and biological species. It would also be interesting to see if the 

SOM could identify infraspecific taxa such as subspecies and varieties. Again, this 

would be an interesting future development of this research. 

Another extension of this research project would be to use other species that are 

more difficult to identify, and see if SOM models can be developed which could help 

with the identification of problem groups. The SOM could be used in conjunction 

with DNA sequence data to trace evolutionary histories and to determine whether 

species in a genus originate from a common ancestor.  

From the foregoing it can be seen that the SOM promises to be an exciting tool for 

biological identification, and with further work could even help solve the backlog 

dilemma regarding the barcoding of biodiversity. 

 

7.2 Conclusion 

AI technology offers non-experts the advantage of identification of botanical material, 

particularly when experts are not available. This is of special relevance in Africa 

where the demand for experts far exceeds what is currently available.  

When identifying species, botanical data by their nature are often sparse. A 

technique that can succeed in getting a species name when information is missing is 
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particularly valuable. In this respect, the field guides that are most commonly utilized 

fail dismally in the hands of a layperson. Thus the SOM technique, which is a well 

known technique which has been tried and tested for its ability to handle sparse data 

sets, is extremely important. 

In this thesis the use of SOM as a tool for analysis of data sets based on 23 KZN 

Acacia species has been demonstrated. The results have been shown to be consistent 

with existing knowledge of the species, and new relationships have been 

demonstrated within the data set.  

It is therefore believed that the SOM is indeed a very real and viable alternative 

tool for the identification of biological specimens, and because of its capability of 

handling fuzzy and sparsely populated data sets it must be recognized as an essential 

tool to help with the identification and classification of biodiversity. 

 
 
 



 

 146

Bibliography 

[1] "SOM Toolbox for Matlab: Software implementations of the SOM," 2001, 
http://www.cis.hut.fi/projects/somtoolbox/links/somsoftware.shtml. 

[2] "Viscovery Software GmbH - Viscovery SOMine 5.0," 2008, 
http://www.viscovery.net/somine. 

[3] H. A. Abbass, M. Towsey, and G. Finn, "C_Net: Generating Multivariate Decision 
Trees From Artificial Neural Networks Using C5," 1999, 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6514. 

[4] A. Abraham, "Rule-based Expert System," in Handbook of Measuring System 
Design, P. H. Sydenham and R. Thorn, Eds.: John Wiley & Sons, Ltd, 2005. 

[5] D. Alahakoon and S. K. Halgamuge, "Knowledge Discovery with Supervised and 
Unsupervised Self Evolving Neural Networks," in Proceedings of 5th International 
Conference on Soft Computing and Information/Intelligent Systems, Fukuoka, Japan, 
1998, pp. 907-910. 

[6] D. Alahakoon, S. K. Halgamuge, and B. Sirinivasan, "A Self Growing Cluster 
Development Approach to Data Mining " in Proceedings of IEEE International 
Conference on Systems, Man and Cybernetics, San Diego, USA, 1998, pp. 2901-
2906. 

[7] D. Alahakoon, S. K. Halgamuge, and B. Sirinivasan, "A Structure Adapting Feature 
Map for Optimal Cluster Representation," in Proceedings of The 5th International 
Conference on Neural Information Processing (ICONIP 98), Kitakyushu, Japan, 
1998, pp. 809-812. 

[8] D. Alahakoon, S. K. Halgamuge, and B. Strinivasan, "Dynamic Self-Organizing 
Maps with Controlled Growth for Knowledge Discovery," in Foundations of 
Computational Intelligence: Volume 4: Bio-Inspired Data Mining, A. Abraham, A. E. 
Hassanien, and A. Ponce de Leon F. de Carvalho, Eds. Berlin, Heidelberg: Springer-
Verlag, 2005. 

[9] N. Allsopp, "Acacia Name Change," Grassroots: Newsletter of the Grassland Society 
of Southern Africa, vol. 5, p. 8, November 2005. 

[10] A. Ananthaswamy, "Earth faces sixth mass extinction," in NewScientist, 2004, 
http://www.newscientist.com/article/dn4797-earth-faces-sixth-mass-extinction.html. 

[11] A. Asuncion and D. J. Newman, "UCI Machine Learning Repository," University of 
California, Irvine, School of Information and Computer Sciences, 2007, 
http://www.ics.uci.edu/~mlearn/MLRepository.html. 

[12] W. D. Atkinson and A. Gammerman, "An Application of Expert Systems Technology 
to Biological Identification," Taxon, vol. 36, pp. 705-714, November 1987. 

[13] M. Attik, L. Bougrain, and F. Alexandre, "Self-organizing Map Initialization," 
Lecture notes in computer science, vol. 3696, pp. 357-362, 2005. 

[14] W.-H. Au, K. C. C. Chan, A. K. C. Wong, and Y. Wang, "Attribute Clustering for 
Grouping, Selection, and Classification of Gene Expression Data," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, vol. 2, pp. 83-101, April 
- June 2005. 

[15] H.-U. Bauer and T. Villmann, "Growing a Hypercubical Output Space in a Self-
Organizing Feature Map," International Computer Science Institute, Berkeley July 
1995. 

[16] K. S. Bawa, "Cataloguing life in India: the taxonomic imperative," Current Science, 
vol. 98, pp. 151-153, 25 January 2010. 

[17] J. Bernatavičienė, G. Dzemyda, o. Kurasova, and V. Maecinkevičius, "Optimal 
decisions in combining the SOM with nonlinear projection methods," European 
Journal of Operational Research, vol. 173, pp. 729-745, 2006. 

 
 
 

http://www.cis.hut.fi/projects/somtoolbox/links/somsoftware.shtml
http://www.viscovery.net/somine
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6514
http://www.newscientist.com/article/dn4797-earth-faces-sixth-mass-extinction.html
http://www.ics.uci.edu/%7Emlearn/MLRepository.html


Bibliography 

 

  

147

[18] M. Bishop, M. Svensen, and C. K. I. Williams, "GTM: Generative topographic 
mapping," Neural Computation, vol. 10, pp. 215-234, 1998. 

[19] J. Blackmore and R. Miikkulainen, "Incremental Grid Growing: Encoding High-
Demensional Structure into a Two-Dimensional Feature Map," in IEEE International 
Conference on Neural Networks, ICNN'93, Austin, 1993, pp. 450-455. 

[20] F. Blayo and P. Demartines, "Data analysis: How to compare Kohonen neural 
networks to other techniques?," in Proceedings of IWANN International Workshop on 
Artificial Neural Networks, 1991, pp. 469-476. 

[21] F. Boero, "Light after dark: the partnership for enhancing expertise in taxonomy," 
Trends in Ecology & Evolution, vol. 16, p. 266, 5 May 2001. 

[22] R. Boswell, "Manual for CN2 version 6.1," The Turing Institute Limited, Manual, 
January 1990. 

[23] S. Brosse, J. L. Giraudel, and S. Lek, "Utilisation of non-spervised neural networks 
and principal component analysis to study fish assemblages," Ecological Modelling, 
vol. 146, pp. 159-66, 1st December 2001. 

[24] A. Browne, B. D. Hudson, D. C. Whitley, M. G. Ford, and P. Picton, "Biological data 
mining with neural networks: implementation and application of a flexible decision 
tree extraction algorithm to genomic problem domains," Neurocomputing, 2003. 

[25] R. K. Brummitt, "World Geographical Scheme for Recording Plant Distributions," in 
Plant Taxonomic Database Standards. vol. 2: Working Group on Taxonomic 
Databases For Plant Sciences (TDWG), 2001, 
http://www.nhm.ac.uk/hosted_sites/tdwg/TDWG_geo2.pdf. 

[26] R. K. Brummitt, "Report of the committee for spermatophyta: 55. Proposal 1584 on 
Acacia," Taxon  vol. 53, pp. 826-829, 2004. 

[27] B. G. Buchanan and E. H. Shortliffe, "Rule-Based Expert Systems: The MYCIN 
Experiments of the Stanford Heuristic Programming Project," AAAI Press 1984, 
http://www.aaaipress.org/Classic/Buchanan/buchanan.html. 

[28] J. D. Carr, The South African Acacias: Conservation Press, 1976. 
[29] R. Céréghino, Y.-S. Park, A. Compin, and S. Lek, "Predicting the species richness of 

aquatic insects  in streams using a limited number of environmental variables," 
Journal of the North American Benthological Society, vol. 22, pp. 442-456, 2003. 

[30] A. R. Chapman, "Directions for the structure of taxonomic descriptive data," Western 
Australian Herbarium Department of Conservation and Land Management 2001. 

[31] W. W. L. Cheung, T. J. Pitcher, and D. Pauly, "A fuzzy logic expert system to 
estimate intrinsic extrinction vulnerabilities of marine fishes to fishing," Biological 
Conservation, vol. 124, pp. 97-111, 2005. 

[32] T. W. S. Chow and S. Wu, "An Online Cellular Probabilistic Self-Organizing Map 
for Static and Dynamic Data Sets " IEEE Transactions on Circuits and Systems, vol. 
51, pp. 732-747, 2004. 

[33] S. Chu, J. DeRisi, M. B. Eisen, J. Mulholland, D. Botstein, P. O. Brown, and I. 
Herskowitz, "The Transcriptional Program of Sporulation in Budding Yeast," 
Science, vol. 282, pp. 699-705, 23 OCTOBER 1998. 

[34] W. J. Clancey and R. Letsinger, "NEOMYCIN: Reconfiguring a Rule-Based Expert 
System for Application to Teaching," IJCAI, pp. 829-836, 1981. 

[35] W. J. Clancey, "From GUIDON to NEOMYCIN and HERACLES in Twenty Short 
Lessons: ORN Final Report 1979-1985," August 1986. 

[36] J. Y. Clark and K. Warwick, "Artificial Keys for Botanical Identification using a 
Multilayer Perceptron Neural Network (MLP)," Artificial Intelligence Review, vol. 
12, pp. 95–115, 1998. 

 
 
 

http://www.nhm.ac.uk/hosted_sites/tdwg/TDWG_geo2.pdf
http://www.aaaipress.org/Classic/Buchanan/buchanan.html


Bibliography 

 

  

148

[37] J. Y. Clark, "Artificial neural networks for species identification by taxonomists," 
BioSystems, vol. 72, pp. 131–147, 2003. 

[38] P. Clark and T. Niblett, "Induction in Noisy Domains," in 2nd European Machine 
Learning Conference (EWSL-87), Bled, Yugoslavia, 1987, pp. 11-30. 

[39] P. Clark and T. Niblett, "The CN2 Induction Algorithm," Machine Learning, vol. 3, 
pp. 261-283, 1989. 

[40] P. Clark and R. Boswell, "Rule Induction with CN2: Some Recent Improvements," in 
Machine Learning - EWSL-91: European Working Session on Learning, Porto, 
Portugal, 1991, pp. 151-163. 

[41] P. E. Clark, "CN2 - Rule induction from examples," in Peter Clark - Software, 
http://www.cs.utexas.edu/users/pclark/software/. 

[42] K. Coates Palgrave, Trees of Southern Africa, 3rd ed.: Struik, 2002. 
[43] W. F. Contreras, E. G. Galindo, A. B. Morillas, and P. M. Lorenzo, "An application 

of expert systems to botanical taxonomy," Expert Systems with Applications, vol. 25, 
pp. 425-430, 2003. 

[44] B. Coppin, Artificial Intelligence Illuminated, 1 ed.: Jones & Bartlett, 2004. 
[45] M. Cottrell and M. Verleysen, "Advances in Self-Organizing Maps," Neural 

Networks, vol. 19, pp. 721–722, 2006. 
[46] B. C. Craenen and A. E. Eiben, "Computational Intelligence," in Encyclopedia of Life 

Support Sciences, EOLSS: EOLSS Co. Ltd., http://www.cs.vu.nl/~gusz/papers/Comp-
Intell-Craenen-Eiben.ps. 

[47] M. J. Dallwitz, "Overview of the DELTA System," http://delta-intkey.com. 
[48] M. J. Dallwitz, "A general system for coding taxonomic descriptions," Taxon, vol. 29, 

pp. 41–6, 1980. 
[49] M. J. Dallwitz, "A comparison of matrix-based taxonomic identification systems with 

rule-based systems," in Proceedings of IFAC Workshop on Expert Systems in 
Agriculture, 1992, pp. 215–8. 

[50] M. J. Dallwitz, "A comparison of interactive identification programs ", 2000, 
http://delta-intkey.com. 

[51] M. J. Dallwitz, T. A. Paine, and E. J. Zurcher, "Principles of Interactive Keys," 2002, 
http://biodiversity.uno.edu/delta/. 

[52] M. J. Dallwitz, T. A. Paine, and E. J. Zurcher, "User’s guide to the DELTA System: a 
general system for processing taxonomic descriptions," 1993 onwards, http://delta-
intkey.com. 

[53] L. Davidson and B. Jeppe, Acacias - A field guide to the identification of the species 
of Southern Africa. Johannesburg: Centaur, 1981. 

[54] R. Davis, "A DSS for diagnosis and therapy," in Special Issue: Proceedings of a 
conference on Decision Support Systems, Santa Clara, California, 1977, pp. 58-72. 

[55] E. J. Dean, "Investigating the Potential Use of Computers and Fuzzy Expert Systems 
as Tools for the Identification of Biological Organisms," Durban Institute of 
Technology, Printing Department, Durban 2001. 

[56] G. Deboeck, "Software Tools for Self-Organizing Maps," in Visual Explorations in 
Finance with Self-Organizing Maps, G. Deboeck and T. Kohonen, Eds. London: 
Springer-Verlag, 1998, pp. 179-194. 

[57] G. Deboeck and T. Kohonen, Visual Explorations in Finance with Self-Organizing 
Maps. London: Springer-Verlag, 1998. 

[58] R. DeSalle, M. G. Egan, and M. Siddall, "The unholy trinity: taxonomy, species 
delimitation and DNA barcoding," Phil. Trans. R. Soc. B, vol. 360, pp. 1905–1916, 
2005. 

 
 
 

http://www.cs.utexas.edu/users/pclark/software/
http://www.cs.vu.nl/%7Egusz/papers/Comp-Intell-Craenen-Eiben.ps
http://www.cs.vu.nl/%7Egusz/papers/Comp-Intell-Craenen-Eiben.ps
http://delta-intkey.com/
http://delta-intkey.com/
http://biodiversity.uno.edu/delta/
http://delta-intkey.com/
http://delta-intkey.com/


Bibliography 

 

  

149

[59] J. Durkin, "Application of Expert Systems in Science," Ohio Journal of Science, vol. 
90, pp. 171-179, 6 September 1990. 

[60] R. A. Dyer, The Genera of Southern African Flowering Plants vol. 1. Pretoria: 
Department of Agricultural Technical Services, 1975. 

[61] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, "Cluster analysis and 
display of genome-wide expression patterns," Proc. Natl. Acad. Sci. USA : Genetics, 
vol. 95, pp. 14863-14868, December 1998. 

[62] M. B. Eisen and P. O. Brown, "DNA arrays for analysis of gene expression," Methods 
Enzymol. , vol. 303, pp. 179-205, 1999. 

[63] M. K. El-Najdawi and A. C. Stylianou, "Expert Support Systems: Integrating AI 
Technologies," Communications of the ACM, vol. 36, December 1993. 

[64] A. P. Engelbrecht, S. E. Rouwhorst, and L. Schoeman, "A Building Block Approach 
to Genetic Programming for Rule Discovery," in Data Mining: A Heuristic Approach 
H. A. Abbass, R. A. Sarker, and C. S. Newton, Eds.: Idea Group Publishing, 2001, 
pp. 174-189. 

[65] A. P. Engelbrecht, Computational Intelligence: An Introduction. Chichester: Wiley & 
Sons, 2002. 

[66] W. Fajardo, E. Gibaja, and P. Moral, "G.R.E.E.N. An Expert System to identify 
Gymnosperms," 2004, http://www.ist.cmu.ac.th/intech/paper/InTech0284.pdf. 

[67] L. Fausett, Fundamentals of Neural Networks: Architectures, Algorithms and 
Applications Englewood Cliffs, NJ: Prentice-Hall, 1994. 

[68] E. A. Feigenbaum, "The art of artificial intelligence: I. Themes and case studies of 
knowledge engineering," Stanford University STAN-CS-77-621, August 1977. 

[69] E. A. Feigenbaum, "Expert Systems: Principles and Practice," Stanford University 
1992. 

[70] E. A. Feigenbaum and B. G. Buchanan, "DENDRAL and Meta-DENDRAL: roots of 
knowledge systems and expert system applications," Artificial Intelligence, vol. 59, 
pp. 233-240, 1993. 

[71] C. Fernández, E. Soria, J. D. Martín, and A. J. Serrano, "Neural Networks for animal 
science applications: Two case studies," Expert Systems with Applications, vol. 31, 
pp. 444-450, 2006. 

[72] G. B. Fogel and D. W. Corne, "Computational intelligence in bioinformatics," 
BioSystems, vol. 73, pp. 1-4, 2003. 

[73] I. France, A. W. G. Duller, G. A. T. Duller, and H. F. Lamb, "A new approach to 
automated pollen analysis," Quatern. Sci. Rev., vol. 19, pp. 537-546, 2000. 

[74] B. Fritzke, "Let it Grow - Self-Organizing  Feature Maps with Problem Dependent 
Cell Structure," in Proceedings of ICANN-91, International Conference on Artificial 
Neural Networks, Espoo, Finland, 1991, pp. 403-408. 

[75] B. Fritzke, "Growing Cell Structures - A Self-organizing Network for Unsupervised 
and Supervised Learning," International Computer Science Institute, Berkeley, 
California May 1993. 

[76] B. Fritzke, "A Growing Neural Gas Network Learns Topologies," in Advances In 
Neural Information Processing Systems 7, G. Tesauro, D. S. Touretzky, and T. K. 
Leen, Eds. Cambridge MA: MIT Press, 1995. 

[77] R. Froese, D. Pauly, and Editors, "FishBase." 2008, www.fishbase.org. 
[78] E. L. G. Galindo, "Modelos de Representación del Conocimiento Para la 

Indentificatión Taxonómica Y Aplicaciones," in Dpto. Ciencias de la Computación e 
Inteligencia Artificial. vol. Ph. D. Granada: Universidad de Granada, 2004. 

[79] K. J. Gaston and M. A. O'Neill, "Automated Species Identification: Why Not?," Phil. 
Trans.: Biological Sciences, vol. 359, pp. 655-667, April, 29 2004. 

 
 
 

http://www.ist.cmu.ac.th/intech/paper/InTech0284.pdf
http://www.fishbase.org/


Bibliography 

 

  

150

[80] I. D. Gauld, M. A. O'Neill, and K. J. Gaston, "Driving Miss Daisy: the performance 
of an automated insect identification system," in Hymenoptera: Evolution, 
Biodiversity and Biological Control A. D. Austin and M. Dowton, Eds. Canberra: 
CSIRO Publishing, 2000, pp. 303-312. 

[81] M. Gerstein and R. Jansen, "The current excitement in bioinformatics—analysis of 
whole-genome expression data: how does it relate to protein structure and function? ," 
Current Opinion in Structural Biology, vol. 10, pp. 574-584, 1 October 2000. 

[82] J. L. Giraudel and S. Lek, "A comparison of self-organizing map algorithm and some 
conventional statistical methods for ecological community ordination," Ecological 
Modelling, vol. 146, pp. 329-339, 2001. 

[83] N. Goerke, F. Kintzler, and R. Eckmiller, "Multi-SOMs: A New Approach to Self-
Organizing Classification," Lecure Notes in Computer Science, vol. 3686/2005, pp. 
469-477, 2005. 

[84] R. Goodacre, J. Pygall, and D. B. Kell, "Plant seed classification using pyrolysis mass 
spectrometry with unsupervised learning: The application of auto-associative and 
Kohonen artificial neural networks," Chemometrics and Intelligent Laboratory 
Systems, vol. 34, pp. 69-83, 1996. 

[85] M. Granzow, D. Berrar, W. Dubitzky, A. Schuster, F. J. Azuaje, and R. Eils, "Tumor 
Classification by Gene Expression Profiling: Comparison and Validation of Five 
Clustering Methods," ACM SIGBIO Newsletter, vol. 21, pp. 16 - 22, April 2001. 

[86] I. Guyon, Neural Networks and Applications. Amsterdam: Elsevier, 1990. 
[87] M. Hajibabaei, M. A. Smith, D. H. Janzen, J. J. Rodriguez, J. B. Whitfield, and P. D. 

N. Hebert, "A minimalist barcode can identify a specimen whose DNA is degraded," 
Molecular Ecology Notes, 2006. 

[88] M. Hajibabaei, G. A. C. Singer, E. L. Clare, and P. D. N. Hebert, "Design and 
applicability of DNA arrays and DNA barcodes in biodiversity monitoring," BMC 
Biology, vol. 5:24 2007. 

[89] M. Hajibabaei, G. A. C. Singer, P. D. N. Hebert, and D. A. Hickey, " DNA 
barcoding: how it complements taxonomy, molecular phylogenetics and population 
genetics," in Trends in Genetics, 2007. 

[90] D. J. Hand and R. J. Till, "A Simple Generalisation of the Area Under the ROC Curve 
for Multiple Class Classification Problems," Machine Learning, vol. 45, pp. 171–186, 
2001. 

[91] M. H. Hassoun, Fundamental Artificial Neural Networks: MIT Press, 1995. 
[92] S. Haykin, Neural Networks : A Comprehensive Foundation, 2 ed. Upper Saddle 

River, NJ: Prentice Hall, 1999. 
[93] P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. deWaard, "Biological 

identifications through DNA barcodes," Proc. R. Soc. B vol. 270, pp. 313–321, 2003. 
[94] P. D. N. Hebert, S. Ratnasingham, and J. R. deWaard, "Barcoding animal life: 

cytochrome c oxidase subunit 1 divergences among closely related species," Proc. R. 
Soc. Lond. B (Suppl.), vol. 270, pp. S96-S99, 15 May 2003. 

[95] P. D. N. Hebert, M. Y. Stoeckle, T. S. Zemlak, and C. M. Francis, "Identification of 
Birds through DNA Barcodes," PLoS Biology, vol. 2, pp. 1657-1663, October 2004. 

[96] G. D. D. Hurst and F. M. Jiggins, "Problems with mitochondrial DNA as a marker in 
population, phylogeographic and phylogenetic studies: the effects of inherited 
symbionts," in Proc Biol Sci. vol. 272, 2005. 

[97] J. Jalasiewicz, M. Williams, A. Smith, T. L. Barry, A. L. Coe, P. R. Brown, P. 
Brenchley, D. Cantrill, A. Gale, P. Gibbard, F. J. Gregory, M. W. Hounslow, A. C. 
Kerr, P. Pearson, R. Know, J. Powell, C. Waters, J. Marshall, M. Oates, P. Rawson, 

 
 
 



Bibliography 

 

  

151

and P. Stone, "Are we now living in the Anthropocene?," GSA Today, vol. 18, pp. 4-
8, February 2008. 

[98] D. H. Janzen, "Forward," in Plant Conservation: a natural history approach., G. 
Krupnick and J. Kress, Eds.: University of Chicago Press, 2004. 

[99] S. Jockusch, "A Neural Network which adapts its structure to a given set of patterns," 
in Parallel Processing in Neural System and Computers, R. Eckmiller, G. Hartmann, 
and G. Hauske, Eds. Amsterdam; New York: North-Holland, 1990, pp. 169-172. 

[100] S. B. Jones, A. E. Luchsinger, and (eds), Plant Systematics. Singapore: McGraw-Hill 
Book Company Inc., 1987. 

[101] J. A. Kangas, T. Kohonen, and J. Laaksonen, "Variants of Self-Organizing Maps," 
IEEE Transactions on Neural Networks, vol. 1, pp. 93-99, 1990. 

[102] N. K. Kasabov, Foundations of neural networks, fuzzy systems, and knowledge 
engineering, 2 ed.: Marcel Alencar, 1996. 

[103] S. Kaski, "Exploratory Data Analysis by the Self-Organizing Map: Structure of 
Welfare and Poverty in the World," in Neural Networks in Financial Engineering. 
Proceedings of the Third International Conference on Neural Networks in the Capital 
Markets, Singapore, 1996, pp. 498-507. 

[104] S. Kaski, "Data exploration using self-organizing maps." vol. Ph.D.: Helsinki 
University of Technology, Acta Polytechnica, Scandinavica, 1997, 
http:\www.cis.hut.fi/-sami/thesis. 

[105] S. Kaski, J. Kangas, and T. Kohonen, "Bibliography of Self-Organizing Map (SOM) 
Papers: 1981--1997," Neural Computing Surveys, vol. 1, pp. 102-350, 1998. 

[106] M. Y. Kiang, "Extending the Kohonen self-organizing map networks for clustering 
analysis," Computational Statistics & Data Analysis, vol. 38, pp. 161-180, 28 
December 2001. 

[107] K. Kiviluoto, "Topology preservation in self-organizing maps," in ICNN'96, IEE 
International Conference on Neural Networks, IEEF, Service Center, Piscataway, 
1996, pp. 294–299. 

[108] K. Kiviluoto, "Comparing 2D and 3D self-organizing maps in financial data 
visualization," in Methodologies for the Conception, Design and Application of Soft 
Computing - Proceedings of the 5th International Conference on Soft Computing and 
Information/Intelligent Systems (IIZUKA'98), Fukuoka, Japan, 1998, pp. 68-71. 

[109] T. Kohonen, "Construction of similarity daigrams for phonemes by a self-organizing 
algorithm," Helsinki University of Technology, Espoo, Finland. Report TKK-F-
A463, 1981. 

[110] T. Kohonen, "Self-Organized Formation of Topologically Correct Feature Maps," 
biological Cybernetics, vol. 43, pp. 59-69, 1982. 

[111] T. Kohonen, Self-Organization and Associative Memory, 2 ed. vol. 8. Berlin: 
Springer-Verlag, 1984. 

[112] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen, "SOM_PAK: the self-
organizing map program package," Report A31, Helsinki University of Technology , 
Laboratory of Computer and Information Science, Espoo, Finland, 1996. 

[113] T. Kohonen, "The self-organizing map," Neurocomputing, vol. 21, pp. 1-6, 1998. 
[114] T. Kohonen, Self-organizing maps, 3rd ed. vol. 30. Berlin: Springer-Verlag, 2001. 
[115] T. Kohonen, "Software Tools for SOM," in Self-organizing maps, 3rd ed. vol. 30 

Berlin: Springer-Verlag, 2001, pp. 311-328. 
[116] T. Kohonen, "Self-organizing neural projections," Neural Networks Special Issue, 

vol. 19, pp. 723–733, 2006. 

 
 
 

http://www.cis.hut.fi/-sami/thesis


Bibliography 

 

  

152

[117] P. Koikkalainen and E. Oja, "Self-organizing hierarchical feature maps," in 
Proceedings of IJCNN'90, International Joint Conference on Neural Networks, San 
Diego, 1990, pp. 279-284. 

[118] P. Koikkalainen, "Progress with the tree-structured self-organizing map," in 
Proceedings of ECAI'94, 11th European Conference on Artificial Intelligence, 1994, 
pp. 211-215. 

[119] P. Koikkalainen, "Fast deterministic self-organizing maps," in Proceedings of 
ICANN'95, International Conference on Artificial Neural Networks, 1995, pp. 63-68. 

[120] P. Koikkalainen, "Tree Structured Self-Organizing Maps," in Kohonen Maps, M. Oja 
and S. Kaski, Eds.: Elsevier Science, 1999, pp. 121-130. 

[121] W. J. Kress, "DNA 'barcoding' of plants," in Plant Talk, 2005, http://www.plant-
talk.org/resource/dna.html. 

[122] W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen, "Use of 
DNA barcodes to identify flowering plants," PNAS, vol. 102, pp. 8369–8374, June 7 
2005. 

[123] N. Laitinen, J. Rantanen, S. Laine, O. Antikainen, E. Räsänen, S. Airaksinen, and J. 
Yliruusi, "Visualization of particle size and shape distributions using self-organizing 
maps," Chemometrics and Intelligent Laboratory Systems, vol. 62, pp. 47-60, 28 
April 2002. 

[124] R. Lang and K. Warwick, "The Plastic Self Organizing Map," in Proceeding of the 
International Joint Conference on Neural Networks, IJCNN'02, Honolulu, Hawaii, 
2002, pp. 727-732. 

[125] P. Langley and H. A. Simon, "Applications of Machine Learning and Rule 
Induction," Communications of the ACM, vol. 38, pp. 55-64, 1995. 

[126] N. Lavrač, "Selected techniques for data mining in medicine," Artificial Intelligence 
in Medicine, vol. 16, pp. 3–23, 1999. 

[127] N. Lavrač, P. Flach, B. Kavšek, and L. Todorovski, "Rule induction for subgroup 
discovery with CN2-SD," in ECML/PKDD/IDDM-2002, 2nd International Workshop 
on Integration and Collaboration Aspects of Data Mining, Decision Support and 
Meta-Learning Helsinki, Finland, 2002. 

[128] R. D. Lawrence, "A Scalable Parallel Algorithm for Self-Organizing Maps with 
Applications to Sparse Data Problems," Data Mining and Knowledge Discovery, vol. 
3, pp. 171-195, June 1999. 

[129] R. Leakey and R. Lewin, "The Sixth Extinction," in The Sixth Extinction: Patterns of 
Life and the Future of Humankind: Anchor, 1995, pp. 232-245. 

[130] J. Lederberg, "How DENDRAL was conceived and born," in ACM Symposium on the 
History of Medical Informatics, National Library of Medicine 1987. 

[131] O. A. Leistner, "Seed plants of southern Africa: families and genera," in Strelitzia. 
vol. 10 Pretoria: National Botanical Institute, 2000. 

[132] Leung and Lam, "Fuzzy concepts in expert systems," Computer, vol. 21, pp. 43-56, 
September 1988. 

[133] S.-T. Li, "A web-aware interoperable data mining system," Expert Systems with 
Applications, vol. 22, 27 November 2001 2002. 

[134] X. Li and C. F. Eick, "Fast Decision Tree Learning Techniques for Microarray Data 
Collections," in The 2003 International Conference on Machine Learning and 
Applications (ICMLA'03), Los Angeles, California, 2003. 

[135] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J. Lederberg, "DENDRAL: a 
case study of the first expert system for scientific hypothesis formation," Artificial 
Intelligence in Medicine, vol. 61, pp. 209-261, 1993. 

 
 
 

http://www.plant-talk.org/resource/dna.html
http://www.plant-talk.org/resource/dna.html


Bibliography 

 

  

153

[136] P. J. G. Lisboa, "A review of evidence of health benefit from artificial neural 
networks in medical intervention," Neural Networks, vol. 15, pp. 11-39, January 
2002. 

[137] M. Luckow, C. Hughes, B. Schrire, P. Winter, C. Fagg, R. Fortunato, J. Hurter, L. 
Rico, F. J. Breteler, A. Bruneau, M. Caccavari, L. Craven, M. Crisp, Alfonso Delgado 
S., Sebsebe Demissew, Jeffrey J. Doyle, Rosaura Grether, Stephen Harris, Patrick S. 
Herendeen, Héctor M. Hernández, Ann M. Hirsch, Richard Jobson, Bente B. 
Klitgaard, Jean-Noël Labat, Mike Lock, Barbara MacKinder, Bernard Pfeil, Beryl B. 
Simpson, Gideon F. Smith, Mario Sousa S., Jonathan Timberlake, Jos G. van der 
Maesen, A. E. Van Wyk, Piet Vorster, Christopher K. Willis, J. J. Wieringa, and M. 
F. Wojciechowski, "Acacia: The Case against Moving the Type to Australia," Taxon, 
vol. 54, pp. 513-519, May 2005. 

[138] S. C. Madeira and A. L. Oliveira, "Biclustering Algorithms for Biological Data 
Analysis: A Survey," IEEE Transactions on Computational Biology and 
Bioinformatics, vol. 1, pp. 24-45, January-March 2004. 

[139] Magill, Magill's Medical Guide, Revised ed.: Salem Press, 1998. 
[140] P. Mangiameli, S. K. Chen, and D. West, "A comparison of SOM neural network and 

hierarchical clustering methods," European Journal of Operational Research, vol. 93, 
pp. 402-417, 1996. 

[141] T. M. Martinetz and K. J. Schulten, "A "Nerual-Gas" Network Learns Topologies," in 
Artificial Neural Networks, Proceedings of ICANN'91, International Conference of 
Artificial Neural Networks, Amsterdam, 1991, pp. 397-402. 

[142] B. R. Maslin, A. E. Orchard, and J. G. West, "Nomenclatural and classification 
history of Acacia (Leguminosae: Mimosoideae), and the implications of generic 
subdivision ", 2003. 

[143] D. Merkl, M. Dittenbach, and A. Rauber, "Uncovering Hierarchical Structures in 
Data Using the Growing Hierarchical Self-Organizing Map," Neurocomputing, vol. 
48, pp. 199-216, 2002. 

[144] T. Mitchell, B. Buchanan, G. DeJong, T. Dietterich, P. Rosenbloom, and A. Waibel, 
"Machine Learning," Annual Review of Computer Science, vol. 4, pp. 417-433, June 
1990. 

[145] E. Moll, Trees of Natal, 2nd ed.: University of Cape Town Eco-Lab Trust Fund, 
1992. 

[146] E. Moll, "Acacia for Africa," in Veld & Flora, 2005. 
[147] A. Moore, "Re-typing Acacia," in Veld & Flora, 2006. 
[148] G. Moore, "The handling of the proposal to conserve the name Acacia at the 17th 

International Botanical Congress - an attempt at minority rule," Bothalia, vol. 37, pp. 
109-118, 2007. 

[149] C. Moritz and C. Cicero, "DNA Barcoding: Promise and Pitfalls," PLoS Biology, vol. 
2, pp. 1529-1531, October 2004. 

[150] F. Murtagh, "Interpreting the Kohonen self-organizing feature map using contiguity-
constrained clustering," Pattern Recognition Letters, vol. 16, pp. 399-408, April 
1995. 

[151] A. Narayanan, X. Wu, and Z. R. Yang, "Mining viral protease data to extract 
cleavage knowledge," Biodiversity and Conservation, vol. 18, pp. S5-S13, 2002. 

[152] A. Neme and P. Miramontes, "Biological Domain Identification Based in Codon 
Usage by Means of Rule and Tree Induction," in Computational Methods in Systems 
Biology. vol. 3082/2005, V. Danos and V. Schachter, Eds.: Springer Berlin / 
Heidelberg, 2005, pp. 221-224  

 
 
 



Bibliography 

 

  

154

[153] J. Nikkilä, P. Törönen, S. Kaski, J. Venna, E. Castrén, and G. Wong, "Analysis and 
visualization of gene expression data using Self-Organizing Maps," Neural Networks, 
vol. 15, pp. 953-966, October-November 2002. 

[154] N. J. Nilsson, Artificial Intelligence : A New Synthesis, 2nd ed. San Mateo, 
California: Morgan Kaufmann, 1998. 

[155] G. A. Norton, D. J. Patterson, and M. Schneider, "LucID: A Multimedia Educational 
Tool for Identification and Diagnostics," 2000. 

[156] C. Ohmann, V. Moustakis, Q. Yang, and K. Lang, "Evaluation of automatic 
knowledge acquisition techniques in the diagnosis of acute abdominal pain," Artificial 
Intelligence in Medicine, vol. 8, pp. 23-36 February 1996. 

[157] M. Oja, S. Kaski, and T. Kohonen, "Bibliography of Self-Organizing Map (SOM) 
Papers: 1998-2001 Addendum," Neural Computing Surveys, vol. 3, pp. 1-156, 2002. 

[158] A. E. Orchard and B. R. Maslin2, "(1584) Proposal to conserve the name Acacia 
(Leguminosae: Mimosoideae) with a conserved type," Taxon, vol. 52, pp. 362-363, 
May 2003. 

[159] Oxford Dictionary of English. vol. 2009, http://www.askoxford.com. 
[160] R. J. Pankhurst, Biological Identification: The principles and practice of 

identification methods in biology. London: Edward Arnold, 1978. 
[161] J. L. Pappas, "Biological taxonomic problem soving using fuzzy decision-making 

analytical tools," Fuzzy Sets and Systems, vol. 157, pp. 1687-1703, 2006. 
[162] Y.-S. Park, R. Céréghino, A. Compin, and S. Lek, "Applications of artificial neural 

networks for patterning and predicting aquatic insect species richness in running 
waters," Ecological Modelling, vol. 160, pp. 265-280, 15 February 2003. 

[163] E. S. Peer, "A Serendipitous Software Framework for Facilitating Collaboration in 
Computational Intelligence," in Computer Science, Faculty of Engineering, Built 
Environment and Information Technology. vol. Magister Scientiae Pretoria: 
University of Pretoria, 2004, http://cirg.cs.up.ac.za/. 

[164] E. P. Phillips, The Genera of South African Flowering Plants, 2nd ed. vol. 25. 
Pretoria: Department of Agriculture, 1951. 

[165] V. Podgorelec, P. Kokol, B. Stiglic, and I. Rozman, "Decision trees: an overview and 
their use in medicine," Journal of Medical Systems, vol. 26, pp. 445-463, October 
2002. 

[166] V. Podgorelec, P. Kokol, M. M. Stiglic, M. Heričko, and I. Rozman, "Knowledge 
discovery with classification rules in a cardiovascular dataset," Computer Methods 
and Programs in Biomedicine, vol. 80  Supplement, pp. S39-S49, 2005. 

[167] D. Poole, A. Mackworth, and R. Goebel, "Computational Intelligence and 
Knowledge," in Computational Intelligence: A Logical Approach New York: Oxford 
University Press, 1998, pp. 1-22. 

[168] E. Pooley, The Complete Field Guide to Trees of Natal, Zululand & Transkei. 
Durban: Natal Flora Publications Trust, 1993. 

[169] J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, pp. 81-106, 
1986. 

[170] J. R. Quinlan, "Generating production rules from decision trees," in Tenth 
International Conference on Articial Inteligence, Milan, Italy, 1987, pp. 304-307. 

[171] J. R. Quinlan, C4.5: Programs for Machine Learning: Morgan Kaufmann, 1993. 
[172] J. R. Quinlan, "Bagging, boosting, and C4.5," in Thirteenth National Conference on 

Artificial Intelligence Cambridge, MA., 1996, pp. 725-730. 
[173] J. R. Quinlan, "Rulequest Research Data Mining Tools: C5.0," 1998, 

www.rulequest.com/see5. 

 
 
 

http://www.askoxford.com/
http://cirg.cs.up.ac.za/
http://www.rulequest.com/see5


Bibliography 

 

  

155

[174] A. E. Radford, W. C. Dickison, J. R. Massey, and C. R. Bell, "Plant Identification," in 
Vascular Plant Systematics New York: Harper & Row, 1986, pp. 522-536. 

[175] A. Rauber, D. Merkl, and M. Dittenbach, "The Growing Hierarchical Self-Organizing 
Map: Exploratory Analysis of High-Dimensional Data," IEEE Transactions on 
Neural Networks, vol. 13, pp. 1331-1341, November 2002. 

[176] J. S. Rodrigues and L. B. Almeida, "Improving the learning speed in topological 
maps of patterns," in Proceedings of INNc, Paris, 1990. 

[177] R. Rojas, Neural Networks: A Systematic Introduction: Springer-Verlag, 1996. 
[178] J. H. Ross, The Acacia Species of Natal - An Introduction to the Indigenous Species: 

The Natal Branch of the Wildlife Protection and Conservation Society of South 
Africa, 1971. 

[179] J. H. Ross, "Fabaceae, subfamily Mimosoideae," in Flora of Southern Africa. vol. 16, 
part 1, J. H. Ross, Ed. Pretoria, South Africa: Botanical Research Institute, 
Department of Agricultural Technical Services, 1975, p. 159. 

[180] J. H. Ross, "A Conspectus of the African Acacia Species," in Memoirs of the 
Botanical Survey of South Africa. vol. 44, D. J. B. Killick, Ed. Pretoria: Botanical 
Research Institute, Department of Agricultural Technical Services, 1979, p. 155. 

[181] S. E. Rouwhorst and A. P. Engelbrecht, "Searching the Forest: Using Decision Trees 
as Building Blocks for Evolutionary Search in Classification Databases," in 2000 
Congress on Evolutionary Computation, CEC2000, La Jolla Marriott, San Diego, 
USA, 2000, pp. 633 - 638. 

[182] S. Russel and P. Norvig, Artificial Intelligence : A Modern Approach, 2 ed.: Prentice 
Hall, 2003. 

[183] I. Ruthven and M. Lalmas, "Using Dempster-Shafer’s Theory of Evidence to 
Combine Aspects of Information Use," Journal of Intelligent Information Systems, 
vol. 19, pp. 267–301, 2002. 

[184] S. R. Safavian and D. Landgrebe, "A Survey of Decision Tree Classifier 
Methodology," Transactions on Systems, Man, and Cybernetics, vol. 21, pp. 660-674, 
May 1991. 

[185] T. Samad and S. A. Harp, "Feature map learning with partial training data," in 
International Joint Conference on Neural Networks (IJCNN'91), Piscataway, NJ, 
1991, p. 949. 

[186] J. W. Sammon Jr, "A Nonlinear Mapping for Data Structure Analysis," IEEE 
Transactions on Computers, vol. C-18, pp. 401-409, May 1969. 

[187] E. V. Samsonova, J. N. Kok, and A. P. IJzerman, "TreeSOM: Cluster analysis in the 
self-organizing map " Neural Networks, vol. 19, pp. 935–949, 2006. 

[188] L. M. Santos and H. Du Buf, "Identification by Gabor Features," in Automatic 
Diatom Identification. vol. 51, H. du Buf and M. M. Bayer, Eds., pp. 187-220. 

[189] P. H. Schalk and P. Oosterbroek, "Interactive knowledge systems: meeting the 
demand for disseminating up-to-date biological information," Biodiversity Letters, 
vol. 3, pp. 119-123, Jul.- Sep., 1996. 

[190] R. J. Schalkoff, Artificial Neural Networks: McGraw-Hill, 1997. 
[191] E. Schmidt, M. Lotter, and W. McCleland, Trees and Shrubs Of Mpumalanga and 

Kruger National Park, 1st ed.: Jacana, 2002. 
[192] J. F. Schreer, R. J. O'Hara Hines, and K. M. Kovacs, "Classification of Dive Profiles: 

A Comparison of Statistical Clustering Techniques and Unsupervised Artificial 
Neural Networks," Journal of Agriculture , Biological, and Environmental Statistics, 
vol. 3, pp. 383-404, 1998. 

 
 
 



Bibliography 

 

  

156

[193] G. Schwarzer, W. Vach, and M. Schumacher, "On the misuses of artificial neural 
networks for prognostic and diagnostic classification in oncology," Statistics in 
Medicine, vol. 19, pp. 541 - 561, February 29 2000. 

[194] G. Shafer, A mathematical theory of exidence. Princeton: Princeton University Press, 
1976. 

[195] S. Shanmuganathan, P. Sallis, and J. Buckeridge, "Self-organising map methods in 
integrated modelling of environmental and economic systems," Environmental 
Modelling & Software, vol. 21, pp. 1247-1256, 2006. 

[196] E. H. Shortliffe, S. G. Axline, B. G. Buchanan, T. C. Merigan, and S. N. Cohen, "An 
Artificial Intelligence Program to Advise Physicians Regarding Antimicrobial 
Therapy," Computers and Biomedical Research, vol. 6, pp. 544-560, 1973. 

[197] E. H. Shortliffe, S. G. Axline, B. G. Buchanan, and S. N. Cohen, "Design 
Consideration for a Program to Provide Consultation in Clinical Therapeutics," in The 
13th San Diego Biomedical Symposium, 1974. 

[198] E. H. Shortliffe and B. G. Buchanan, " A model of inexact reasoning in medicine," 
Mathematical Bioscience, vol. 23, pp. 351–379, 1975. 

[199] E. H. Shortliffe, R. Davis, S. G. Axline, B. G. Buchanan, C. C. Green, and S. N. 
Cohen, "Computer-Based Consultations in Clinical Therapeutics: Explanation and 
Rule Acquisition Capabilities of the MYCIN System," Computers and Biomedical 
Research, vol. 8, pp. 303-320, 1975. 

[200] E. H. Shortliffe, F. S. Rhame, S. G. Axline, S. N. Cohen, B. G. Buchanan, R. Davis, 
A. C. Scott, R. Chavez-Pardo, and W. J. van Melle, "MYCIN, Computer Program 
Providing Antimicrobial Therapy Recommendations," in American Federation for 
Clinical Research, Western Sectional Meeting. vol. 33 Carmel, California, 1975. 

[201] E. H. Shortliffe, Computer-Based Medical Consultation, MYCIN. New York, 
America: Elsevier, 1976. 

[202] E. H. Shortliffe, "MYCIN: A Knowledge-Based Computer Program Applied to 
Infections Diseases," in Annual Meeting of the Society for Computer Medicine Las 
Vegas, Nevada, 1977. 

[203] E. H. Shortliffe, B. G. Buchanan, and E. A. Feigenbaum, "Knowledge Engineering 
for Infectious Disease Therapy Selection," in International Conference on 
Cybernetics and Society: IEEE, 1979. 

[204] E. H. Shortliffe, B. G. Buchanan, and E. A. Feigenbaum, "Knowledge Engineering 
for Medical Decision Making: A Review of Computer-Based Clinical Decision 
Aids," in Proceedings of the IEEE, 1979, pp. 1207-1224. 

[205] T. Shortliffe and R. Davis, "Some Considerations for the Implementation of 
Knowledge-Based Expert Systems," SIGART Newsletter, vol. 55, pp. 9-12, December 
1975. 

[206] J. Smaldon and A. A. Freitas, "Improving the Interpretability of Classification Rules 
in Sparce Bioinformatics Datasets," in Proceeding of AI-2006, the Twenty-sixth SGAI 
International Conference On Innovative Techniques and Applications of Artificial 
Intelligence, 2006, pp. 377-381. 

[207] N. Smit, Guide To The Acacias of South Africa, Ist ed.: Briza, 1999. 
[208] G. F. Smith, M. Buys, M. Walters, D. Herbert, and M. Hamer, "Taxonomic research 

in South Africa: the state of the discipline," South African Journal of Science, vol. 
104, pp. 254-258, July/August 2008. 

[209] P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. 
Brown, D. Botstein, and B. Futcher, "Comprehensive Identification of Cell Cycle–
regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray 

 
 
 



Bibliography 

 

  

157

Hybridization," Molecular Biology of the Cell, vol. 9, pp. 3273–3297, December 
1998. 

[210] C. A. Stace, Ways and Means, 2nd ed. Cambridge: Cambridge University Press, 
1989. 

[211] W. T. Stearn, Botanical Latin. London: Nelson, 1967. 
[212] M. Stoeckle, "Taxonomy, DNA, and the Bar Code of Life " BioScience, vol. 53, pp. 

Viewpoint 2-3, September 2003. 
[213] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky, E. S. 

Lander, and T. R. Golub, "Interpreting patterns of gene expression with self-
organizing maps: Methods and application to hematopoietic differentiation," Proc. 
Natl. Acad. Sci. USA : Genetics, vol. 96, pp. 2907-2912, March 1999. 

[214] A. C. Tan and D. Gilbert, "An empirical comparison of supervised machine learning 
techniques in bioinformatics," in First Asia Pacific Bioinformatics Conference (APBC 
2005) Adelaide, Australia, 2003. 

[215] D. Tautz, P. Arctander, A. Minelli, R. H. Thomas, and A. P. Vogler, " A plea for 
DNA taxonomy," Trends in Ecology & Evolution, vol. 18, pp. 70-74 2003. 

[216] K. Thiele, "The Library of Life," Lisbon 2003. 
[217] B. T. Tien and G. van Straten, "A Neuro-Fuzzy Approach to Identify Lettuce Growth 

and Greenhouse Climate," Artificial Intelligence Review, vol. 12, pp. 71-93, 1998. 
[218] J. Timberlake, C. Fagg, and R. Barnes, Field Guide to the Acacias of Zimbabwe: 

CBC, 1999. 
[219] P. Törönen, M. Kolehmainen, G. Wong, and E. Castrén, "Analysis of Gene 

Expression Data Using Self-Organizing Maps," FEBS Letters, vol. 451, pp. 142-146, 
21 May 1999. 

[220] A. Ultsch, "Knowledge Extraction from Self-Organizing Neural Networks," in 
Information and classification, O. Opitz, B. Lausen, and R. Klar, Eds. Berlin: 
Springer, 1993, pp. 301–306. 

[221] A. Ultsch, D. Guimaraes, D. Korus, and H. Li, "Knowledge Extraction from Artificial 
Neural Networks and Applications," in Transputer Anwender Treffen/World 
Transputer Congress, Aachen, 1993. 

[222] A. Ultsch, "The Integration of Neural Networks with Symbolic Knowledge 
Processing," in New Approaches in Classification and Data Analysis, E. Diday, Y. 
Lechevallier, M. Schader, P. Bertrand, and B. Burtschy, Eds. New York: Springer 
Verlag, 1994, pp. 445-454. 

[223] A. Ultsch and C. Vetter, "Self-Organizing-Feature-Maps versus Statistical Clustering 
Methods: A Benchmark," University of Marburg, FG Neuroinformatik & Kuenstliche 
Intelligenz, Marburg, Research Report  Nr 0994, 1994. 

[224] A. Ultsch and D. Korus, "Integration of Neural Networks with Knowledge-Based 
Systems," in Proc. IEEE Int. Conf. Neural Networks, Perth, Australia, 1995. 

[225] A. Ultsch, "Maps for the Visualization of high-dimensional Data Spaces," in 
Proceedings of the Workshop on Self organizing Maps Kyushu, Japan, 2003, pp. 225-
230. 

[226] A. Ultsch and L. Hermann, "Architecture of Emergent Self-Organizing Maps to 
Reduce Projection Errors," in Proceedings of European Symposium on Artificial 
Neural Networks, Bruges, Belgium, 2005, pp. 1-6. 

[227] A. Ultsch, "Using Information Retrieval Methods for a Comparison of Algorithms to 
find differentially expressed Genes in Microarray Data," DataBionics Research Lab, 
Department of Computer Science, University of Marburg, Marburg, Technical Report 
Nr. 12, October 2007. 

 
 
 



Bibliography 

 

  

158

[228] P. E. Utgoff, "Incremental Induction of Decision Trees," Machine Learning, vol. 4, 
pp. 161-186, 1989. 

[229] B. van Wyk and P. van Wyk, Field Guide To Trees of Southern Africa, 1st ed.: Struik, 
1997. 

[230] F. Venter and J. A. Venter, Making the most of indigenous trees. Pretoria: Briza, 
2002. 

[231] J. Vesanto, "SOM-Based Data Visualization Methods," in Intelligent Data Analysis. 
vol. 3, 1999, http://citeseer.ist.psu.edu/vesanto99sombased.html  

[232] J. Vesanto, "Using SOM in Data Mining," in Computer Science and Engineering. vol. 
Licentiate of Science in Technology Espoo: Helsinki University of Technology, 2000, 
http://citeseer.ist.psu.edu/vesanto00using.html. 

[233] J. Vesanto and E. Alhoniemi, "Clustering of the Self-Organizing Map," IEEE 
Transactions on Neural Networks, vol. 11, pp. 586-600, May 2000. 

[234] J. Vesanto, "Data Exploration Process Based on the Self-Organizing Map," in 
Computer Science and Engineering. vol. Ph. D. Espoo: Helsinki University of 
Technology, 2002. 

[235] J. Vesanto, "SOM algorithm implementation in SOM Toolbox ", Updated 18 March 
2005, accessed 23 March 2010, 
http://www.cis.hut.fi/projects/somtoolbox/documentation/. 

[236] C. Von der Malsburg, "Self-Organization of orientation sensitive cells in the striate 
cortex," Biological Cybernetics, vol. 14(2), pp. 85-100, 1973. 

[237] E. G. Voss, "The history of keys and phylogenetic trees in systematic biology," 
Journal of the Scientific Laboratories, vol. 43, pp. 1-25, 1952. 

[238] W. J. Walley and M. A. O'Connor, "Unsupervised pattern recognition for the 
interpretation of ecological data," Ecological Modelling, vol. 146, pp. 219-230, 1st 
December 2001. 

[239] A. T. Watson, M. A. O'Neill, and I. J. Kitching, "Automated identification of live 
moths (Macrolepidoptera) using Digital Automated Identification SYstem (DAISY)," 
Systematics and Biodiversity, vol. 1, pp. 287-300, 2003. 

[240] P. J. D. Weeks and K. J. Gaston, "Image analysis, neural networks, and the taxonomic 
impediment to biodiversity studies," Biodiversity and Conservation, vol. 6, pp. 263-
274, 1997. 

[241] A. F. Weller, A. J. Harris, and J. A. Ware, "Artificial neural networks as potential 
classification tools for dinoflagelate cyst images: A case using the self-organizing 
map clustering algorithm," Review of Palaeobotany and Palynology, vol. 141, pp. 
287-382, 2006. 

[242] P. Werbos, "Beyond regression: New tools for prediction and analysis in the 
behavioral sciences," in Applied Mathematics. vol. Ph.D. Cambridge: Harvard 
University, 1974. 

[243] Q. D. Wheeler, "Taxonomic triage and the poverty of phylogeny," Philosophical 
Transactions of The Royal Society B, vol. 359, pp. 571-583, 18 March 2004. 

[244] R. D. Whitworth, H. Dawson, and E. Baudry, "DNA barcoding cannot reliably 
identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae)," 
Proceedings of the Royal Society B, vol. 274, pp. 1731-1739, 2007. 

[245] A. Wilcox and G. Hripcsak, "Knowledge Discovery and Data Mining to Assist 
Natural Language Understanding," in Proc AMIA Annu Fall Symp. , 1998, pp. 835-9. 

[246] K. W. Will and D. Rubinoffb, "Myth of the molecule: DNA barcodes for species 
cannot replace morphology for identification and classification," Cladistics, vol. 20, 
pp. 47–55, 2004. 

 
 
 

http://citeseer.ist.psu.edu/vesanto99sombased.html
http://citeseer.ist.psu.edu/vesanto00using.html
http://www.cis.hut.fi/projects/somtoolbox/documentation/


Bibliography 

 

  

159

[247] K. W. Will, B. D. Mishler, and Q. D. Wheeler, "The Perils of DNA Barcoding and 
the Need for Integrative Taxonomy," Syst. Biol., vol. 54, pp. 844–851, 2005. 

[248] C. Woese and G. Fox, "Phylogenetic structure of the prokaryotic domain: the primary 
kingdoms," Proc Natl Acad Sci U S A, vol. 74 (11), pp. 5088-90, 1977. 

[249] C. Woese, L. Magrum, and G. Fox, "Archaebacteria," J Mol Evol vol. 11 (3), pp. 245-
51, 1978. 

[250] C. Woese, O. Kandler, and M. Wheelis, "Towards a natural system of organisms: 
proposal for the domains Archaea, Bacteria, and Eucarya.," Proc Natl Acad Sci U S 
A, vol. 87 (12), pp. 4576-9, 1990. 

[251] J. B. Woolley and N. D. Stone, "Application of Artificial Intelligence to Systematics: 
Systex-A Prototype Expert System for Species Identification," Systematic Zoology, 
vol. 36, pp. 248-267, September 1987. 

[252] S. M. Wraith, J. S. Alkins, B. G. Buchanan, W. J. Clancey, R. Davis, L. M. Fagan, J. 
Hannigan, A. C. Scott, E. H. Shortliffe, W. J. van Melle, V. L. Yu, S. G. Axline, and 
S. N. Cohen, "Computerized Consultation System for Selection of Antimicrobial 
Therapy," Am J Hosp Pharm, vol. 33, pp. 1304-1308, December 1976. 

[253] Z. R. Yang and K.-C. Chou, "Mining Biological Data Using Self-Organizing Map," 
Journal of Chemical Information and Computer Sciences vol. 43, pp. 1748-1753, 
2003. 

[254] V. L. Yu, B. G. Buchanan, E. H. Shortliffe, S. M. Wraith, R. Davis, A. C. Scott, and 
S. N. Cohen, "Evaluating the Performance of a Computer-Based Consultant," 
Computer Programs in Biomedicine, vol. 9, pp. 95-102, 1979. 

[255] V. L. Yu, L. M. Fagan, S. M. Wraith, W. J. Clancey, A. C. Scott, J. Hannigan, R. 
Blum, L., B. G. Buchanan, and S. N. Cohen, "Antimicrobial Selection by a Computer. 
A Blinded Evaluation by Infectious Diseases Experts," Journal of the American 
Medical Association, vol. 242, pp. 1279-282, September, 21 1979. 

[256] Y. Yuan and M. J. Shaw, "Induction of fuzzy decision trees," Fuzzy Sets and Systems 
vol. 69, pp. 125-139, 1995. 

[257] L. A. Zadeh, "Outline of a theory of usuality based on fuzzy logic," University of 
California 1986. 

[258] J. M. Zurada, Introduction to Artificial Neural Systems: West Publishing Company, 
1992. 

 
 
 

 

 
 
 



 

 160

Appendix A : Acronyms, Abbreviations and Glossary of Terms 

ASCII – American Standard Code for Information Interchange is a character-encoding 
scheme based on the order of the English alphabet. ASCII codes represent text in devices 
such as computers. 

classification – The process of defining and naming classes of organisms [49]. 

CI – Computational Intelligence. 

DELTA – DELTA format Language for TAxonomy is a flexible format for encoding 
taxonomic data descriptions prior to computer processing. 

empirical - Empirical data are data that are produced by experiment or observation. It refers 
to the use of working hypotheses that are testable using observation or experiment. 

FlowerSOM – SOM model developed from a set of KZN Acacia flower data (a subset of the 
whole Acacia data set).  

glabrous – smooth, hairless. 

genus – A genus is a taxonomic unit used in the classification of organisms. In the hierarchy 
of biological classification genus comes above species. For example Acacia. 

identification – Identification is the process of assigning a specimen to a (pre-existing) taxon. 
The name of the taxon can then be used as an index to find known information about the 
taxon, and therefore about the specimen itself [49]. 

key – A key is a reference tool or device which aids identification of biological entities such as 
plants. A key offers a series of choices where for each choice the user must choose between 
prominent contrasting features (characteristics or attributes) of the entity to be defined. By 
a process of elimination successively smaller groupings of entities are split off until the 
specimen can be identified, i.e. the series of choices progressively leads to the definition of 
the species of the entity. The groupings derived from such a key are artificial rather than 
natural and this method of identification has the disadvantage that if a mistake is made at 
any stage identification will be completely wrong.  

KZN – KwaZulu-Natal. 

LeafSOM – SOM model developed from a set of KZN Acacia leaf data (a subset of the 
whole Acacia data set). 

PodSOM – SOM model developed from a set of KZN Acacia seed and pod data (a subset of 
the whole Acacia data set). 

polyclave – multiple-entry access key. 

pubescent – hairy, covered with short hairs 

Self-organizing map – A SOM is a result of a nonparametric regression process that maps 
high-dimensional, nonlinearly-related data onto a visual, two-dimensional display in order 
to perform classification and clustering [114]. 

SOM - Self-Organizing Map (see Self-organizing map for definition). 
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Species (sp.) – Species is a taxonomic rank which is used in biological classification. In the 
hierarchy of biological classification species comes below genus.  For example in the 
name A. kraussiana the species is kraussiana. 

stochastic - Stochastic means being or having random variables. A stochastic model is a tool 
for estimating probability distributions of potential outcomes by allowing for random 
variation in one or more inputs over time.  

subspecies (subsp.) – A taxonomic rank that is subordinate to species and which usually 
arises as a consequence of geographical distribution or isolation within a species. For 
example, A. brevispica subsp. dregeana. 

taxon (pl. taxa) – A taxon is a name designating an organism or group of organisms (no 
matter the level of the taxonomic hierarchy. The group (one or more) is sufficiently similar 
to each other to be considered as a single unit. The group is sufficiently dissimilar to any 
other group to be considered as a candidate for membership of that group. 

taxonomist – a biologist who specializes in the classification of organisms into groups on the 
basis of their structure, origin and behaviour. 

taxonomy – The science of biological description, classification and identification [49]. 

ThornSOM – SOM model developed from a set of KZN Acacia habit and thorn data (a 
subset of the whole Acacia data set). 

topology – Topology refers to the relationships and characteristics shared in common among 
data samples. 

TreeSOM – SOM model developed from a whole set of KZN Acacia data. 

TDWG - Taxonomic Data Working Group. 

variety (var.) (pl. varieties) – A taxonomic rank below subspecies and as such it has a 
ternary name, for example A. luederitzii var. retinens. 

whole data set – The data set used in this research project to describe the KZN Acacia 
species. 
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Appendix B : Batch SOM Algorithm 

A general algorithm for the SOM method can be summarized as: 

 

standardize input data: 

  initialise weight vectors; 

  for each iteration (t = 0, 1, 2, …) 

     for each input vector (i = 0, 1, 2, …) 

        for each neuron weight vector (j = 0, 1, 2, …) 

           for each vector component (k = 0, 1, 2, …) 

       Disti,j = 
2

)k,jweightk,iinput(
k

−∑  

           next k;     

        next j; 

        find winner; 

        adjust winner’s neighbourhood; 

     next i; 

  next t; 

  display output; 
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