Increased-rate stability studies for St John’s wort
(*Hypericum perforatum*), *Ginkgo biloba* and Kava Kava
(*Piper methysticum*) under unfavourable environmental
conditions.

Andre Marais

Dissertation submitted to the faculty of Medicine
(Department of Pharmacology)
University of Pretoria

In partial fulfillment of the requirements of the degree

Magister Scientiae

Supervisor: Dr J.N. Eloff
Co-supervisor: Dr R van Brummelen

Date of submission: July 2001
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>I</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>II</td>
</tr>
<tr>
<td>INDEX</td>
<td>III</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>IX</td>
</tr>
<tr>
<td>OPSOMMING</td>
<td>XI</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>XII</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>XIV</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>XX</td>
</tr>
</tbody>
</table>
PREFACE

I hereby confirm that this is my own work, and that it has not been submitted to any other institution.

Andre Marais
I would like to extend a warm word of thanks to the following:

- Dr Kobus Eloff without whose support and wisdom I would not have been able to complete this project.

- Dr Roy van Brummelen, for his creative ideas, valuable guidance, commitment and motivation, and all those long sleepless nights evaluating and improving this dissertation.

- The Department of Pharmacology, University of Pretoria, for making their facilities available at all hours throughout the two and a half years of this research.

- Biomox Pharmaceuticals for the use of their manufacturing equipment, analytical instruments, and the supplied herbal raw material.

- Marie Murphy and the laboratory staff of Biomox Pharmaceuticals for their valuable, and much appreciated technical assistance.

- My parents for their love and encouragement.

- Tanya for her patience and understanding.

- My Creator for His abundant blessings.
INDEX

CHAPTER 1. Background and Literature review.

1. **INTRODUCTION AND PROBLEM STATEMENT**
 - History
 - Chemistry
 - Mechanism of therapeutic action
 - Clinical studies
 - Clinical indications
 - Adverse effects and toxicity

2. **ST JOHN'S WORT (Hypericum perforatum)**

3. **GINKGO BILOBA**
 - History
 - Chemistry
 - Mechanism of therapeutic action
 - Clinical studies
 - Clinical indications
 - Adverse effects and toxicity

4. **KAVA KAVA (Piper methysticum)**
 - History
 - Chemistry
 - Mechanism of therapeutic action
 - Clinical studies
 - Clinical indications
 - Adverse effects and toxicity

5. **AIM OF THE STUDY**

CHAPTER 2. Materials and methods

1. **MATERIALS**
2. **METHODS**
 - Manufacturing of tablets
2.2.1.1 Hypericum herbal tablets
2.2.1.2 *Ginkgo biloba* herbal tablets
2.2.1.3 Kava Kava herbal tablets

2.2.2 Manufacturing of Capsules
2.2.2.1 Extract capsules
 2.2.2.1.1 Hypericum extract capsules
 2.2.2.1.2 Ginkgo extract capsules
 2.2.2.1.3 Kava Kava extract capsules

 2.2.2.2 Dried herb capsules
 2.2.2.2.1 Hypericum herbal capsules
 2.2.2.2.2 Ginkgo herbal capsules
 2.2.2.2.3 Kava Kava herbal capsules

2.2.3 Liquid extracts

2.3 STORAGE CONDITIONS OF SAMPLES
2.3.1 Radiated samples

2.4 EXTRACTION
2.4.1 Extraction of raw materials
2.4.2 Extractions according to the British Herbal Pharmacopoeia
 2.4.2.1 *Hypericum perforatum*
 2.4.2.2 *Ginkgo biloba*
 2.4.2.3 *Piper methysticum*
2.4.3 Extraction of dosage forms

2.5 THIN LAYER CHROMATOGRAPHY (TLC)
2.5.1 Thin layer chromatography (TLC) analysis of the extracts
 2.5.1.1 Preparation of the vanillin spray reagent
 2.5.1.2 Preparation of the *p*-Anisaldehyde spray reagent
2.5.2 Identification (TLC) according to the British Herbal Pharmacopoeia
 2.5.2.1 *Hypericum perforatum*
 2.5.2.2 *Ginkgo biloba*
 2.5.2.3 *Piper methysticum*
2.5.3 Thin layer chromatography (TLC) analysis of the sample dosage forms

2.6 SPECTROPHOTOMETRY
2.6.1 Hypericin assay by Spectrophotometry
2.6.1.1 Standard Preparation
2.6.1.2 Sample preparation
2.6.1.2.1 Herbal capsules
2.6.1.2.2 Herbal tablets
2.6.1.2.3 Extract capsules
2.6.1.2.4 Radiated samples
2.6.2 Validation of method

2.7 HIGH PRESSURE LIQUID CHROMATOGRAPHY (HPLC)
2.7.1 Ginkgo Flavonol Glycoside (quercetin) Assay by HPLC
2.7.1.1 Chromatographic Conditions
2.7.1.2 Standard Preparation
2.7.1.3 Sample Preparation
2.7.1.3.1 Herbal Capsules
2.7.1.3.2 Herbal Tablets
2.7.1.3.3 Extract Capsules
2.7.1.3.4 Radiated samples
2.7.1.4 Validation of method

2.7.2 Kava lactone assay by HPLC
2.7.2.1 Chromatographic Conditions
2.7.2.2 Standard Preparation
2.7.2.3 Sample Preparation
2.7.2.3.1 Herbal Capsules
2.7.2.3.2 Herbal Tablets
2.7.2.3.3 Extract Capsules
2.7.2.3.4 Radiated samples
2.7.2.4 Standard Deviation on Methods
CHAPTER 3. Results and discussion

3.1 EXTRACTION

3.1.1 Discussion

3.2 HYPERICUM PERFORATUM

3.2.1 Results

3.2.1.1 Thin layer chromatography

3.2.1.1.1 Hypericum samples at 25°C

3.2.1.1.2 Hypericum samples at 40°C

3.2.1.1.3 Hypericum samples at 60°C

3.2.1.1.4 Hypericum samples at 80°C

3.2.1.1.5 Hypericum samples at direct sunlight

3.2.1.1.6 Hypericum samples at high humidity and direct sunlight

3.2.1.2 Spectrophotometry

3.2.1.2.1 Hypericum herbal tablets

3.2.1.2.2 Hypericum herbal capsules

3.2.1.2.3 Hypericum extract capsules

3.2.1.2.4 Hypericum root powder adiated with Cobalt-60 source

3.2.1.3 Summary of TLC and Spectrophotometry results

3.2.1.3.1 Herbal tablets

3.2.1.3.2 Herbal capsules

3.2.1.3.3 Extract capsules

3.2.1.3.4 Liquid extract

3.2.1.3.5 Radiated dried herb

3.2.2 BACKGROUND OF STABILITY PRINCIPLES

3.2.2.1 Example

3.2.2.2 Effect of temperature on the Rate constant

3.2.3 DISCUSSION

3.2.4 SUMMARY
3.3 GINKGO BILOBA

3.3.1 Results

3.3.1.1 Thin layer Chromatography

3.3.1.1.1 Ginkgo samples at 25°C

3.3.1.1.2 Ginkgo at samples 40°C

3.3.1.1.3 Ginkgo at samples 60°C

3.3.1.1.4 Ginkgo samples at 80°C

3.3.1.1.5 Ginkgo samples at direct sunlight

3.3.1.1.6 Ginkgo samples at high humidity and
direct sunlight

3.3.1.2 High Pressure Liquid Chromatography (HPLC)

3.3.1.2.1 Ginkgo herbal tablets

3.3.1.2.2 Ginkgo herbal capsules

3.3.1.2.3 Ginkgo extract capsules

3.3.1.2.4 Ginkgo leaf powder radiated with
 Cobalt-60 Source

3.3.1.3 Summary of TLC and HPLC results

3.3.1.3.1 Herbal tablets

3.3.1.3.2 Herbal capsules

3.3.1.3.3 Extract capsules

3.3.1.3.4 Liquid extracts

3.3.1.3.5 Radiated dried leaf powder

3.3.2 KINETICS OF QUERCETIN

3.3.3 DISCUSSION

3.3.4 SUMMARY

3.4 PIPER METHYSTICUM

3.4.1 Results

3.4.1.1 Thin layer chromatography

3.4.1.1.1 Kava Kava samples at 25°C

SUMMARY

This was a chemical laboratory study. The main focus was to evaluate the chemical stability of Hypericum perforatum (St John’s wort), Ginkgo biloba and Piper methysticum (Kava Kava) under unfavourable environmental conditions. Different dosage forms representing the same amount of active ingredients for each were used. Some of the dosage forms were self manufactured according to Good Manufacturing Practice. Samples of the dried powder of each plant was also exposed to a series of gamma-radiation.

Acetone was used as an extractant for all three plants, after evaluating and discarding the extraction method stipulated in the British Herbal Pharmacopoeia. Identification of the different plants were carried out by means of Thin Layer Chromatography. The in-house developed mobile phases EMW, BEA and CEF, showed better separation and visibility compared to the mobile phases used in the British Herbal Pharmacopoeia. The plates were sprayed with either vanillin or p-anisaldehyde for optimal visualization of the separated compounds.

After the specified period of 6-months, comparative TLC was performed on all samples. This was achieved for each plant by applying all samples stored at a specific condition i.e. 25°C, on the same plate. The samples were stored at low temperature after exposure to the specific time interval.

Quantitative analysis was performed by spectrophotometry, and high pressure liquid chromatography. The data obtained from these analytical methods, were used to evaluate the relative chemical stability of each dosage form. The relationship between the quantitative data and the qualitative changes in the TLC fingerprints, were compared, hoping to achieve a common pattern relating to the stability.

The order of the reaction as well as the reaction rate constant (k) for each dosage form was calculated, except for kava kava. The shelf-life (t_{90}) was calculated using the analyzed data obtained by spectrophotometry or HPLC. The relevance of conventional pharmaceutical calculations in the prediction of shelf-life, by means of accelerated stability tests, was investigated for the possible application to herbal products.
The effects of gamma radiation on the degradation of the chemical compounds present in each plant, was evaluated.

After an evaluation of all the relevant data, it seemed that the tablet-dosage forms were equally effective regarding stability, compared to the capsules. Liquid extracts appeared to be less stable than the extract capsules. The extract capsules seemed to degrade more rapidly than the herbal tablets or herbal capsules. Exposure to low dose radiation (4.4 kGy) did not seem to have an influence on the stability. It was evident that some herbs were more sensitive to sunlight or heat than others.

In general, all three of the chosen plants seemed to be relatively stable if stored in the specified conditions. It seemed valid for the shelf-life to be expressed as two years.
Die hoof klem van hierdie projek was om die chemiese stabiliteit van drie van die mees algemeen gebruikte natuurtlike medisyne in Suid-Afrika te ondersoek. Verskillende doseervorme van St John’s wort (*Hypericum perforatum*), *Ginkgo biloba*, en Kava Kava (*Piper methysticum*), is vir die ondersoek gebruik. Uitsluitend Kava Kava, het die verschillende doseervorme elkeen oor dieselfde hoeveelheid aktiewe plant materiaal beskik. Waar gesikte doseervorme nie beskikbaar was nie, is dit self vervaardig. Alle vervaardiging het geskied onder sogenaamde Goeie Vervaardigings Praktyk (GMP), ’n vereiste gestel deur die medisyne-beheer-raad tydens vervaardiging van alle etiese produkte. Monsters van die gedroogde poeier van elke plant is ook blootgestel aan verschillende dosisse van gamma-bestraling.

In al drie plante was asetoon die gekose ekstraheermiddel, nadat daar besluit is om nie die ekstraksie metode, soos verwat in die British Herbal Pharmacopoeia, te implementeer nie. Identifikasie van die verschillende plante is ook uitgevoer deur middel van dunlaag chromatografie. Met die gebruik van ons eie ontwikkelde mobiele fases, EMW; CEF en BEA in die plek van die mobiele fases soos vermeld in die BHP. Die skieding en visualisering van die bande in die verschillende plante was meer duidelik waarnembaar met ons eie metodes. Die verschillende dunlaagplate is gesproei met vanillien of anysaldoeid en die optimale visualisering van die geskeide komponente.

Na die verstryk van die gespesifiseerde 6-maande, is die verschillende dunlaagplate met mekaar vergelyk. ’n Goeie vergelyking kon getref word deur elke monster wat by dieselfde kondisie onderworpe was, op dieselfde plaat aan te wend bv. Al die monsters van kava kava wat by 25°C gestoor was, is op dieselfde plaat aangewend. Na die onttrekking van die monsters by elke gekose tydsinterval, is it by ’n lae temperatuur gestoor totdat analyses daarop gedoen kon word.

Kwantitatiewe analyse is uitgevoer deur gebruik te maak van spektrofotometrie sowel as hoë-drup vloeistof chromatografie. Die data wat deur hierdie analitiese metodes verkry was, is gebruik om die chemiese stabiliteit in elke doseerform te evalueer. Die verwantskap tussen die ge-analiseerde data en die dunlaag-identifikasie profiele is ondersoek, met die hoop dat daar ’n sekere mate van ooreenstemming getoon kon word, of ’n waarneembare patroon wat ’n moontlike toepassing op die stabiliteit kon hê.
Die orde van die chemiese afbraak, sowel as die reaksie snelheids-konstante \((k) \) is ook vir elke produk, behalwe Kava Kava bepaal. Die rakleeftyd \((t_{90}) \) is ook vir elke produk bepaal deur die waardes uit die analises verkry uit spektrofotometrie en hoë-druk vloeistof chromatografie te gebruik. Die toepaslikheid van konvensionele farmaseutiese vergelykings in die skatting van 'n rakleeftyd, deur gebruik te maak van versnelde stabilitietstoetse, is ook ondersoek. Dit is uitgevoer met die hoop van 'n moonlike toepassing in natuurlike medisyne.

Na evalueringe van al die relevante data het dit gebleek dat die tablette net so effektief, betreffende die stabiliët, is in vergelyking met die kapsules. Verder het dit ook gebleek dat die vloeistof ekstrakte minder stabiel was as die ekstrak kapsules. Die ekstrak kapsules toon 'n vinniger afbraak as die tablette of die fyn-krui kapsules. Blootstelling aan 'n lae dosis bestraling (4,4 kGy) het geen noemenswaardige invloed op die stabiliteit getoon nie.

Dit was duidelik dat sekere produkte meer sensitief teenoor blootstelling aan sonlig en hoë temperature was, as ander. Oor die algemeen het dit gebleek dat al drie hierdie plantes oor 'n aanvaarbare stabiliët beskik, tensy dit onder die regte bewaringstoestande gestoor word. 'n Vervaldatum van twee jaar op hierdie produkte blyk aanvaarbaar te wees.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS</td>
<td>Acquired Immune Deficiency Syndrome</td>
</tr>
<tr>
<td>BEA</td>
<td>Benzene/Ethanol/Ammonium hydroxide [18/2/0.2 v/v/v]</td>
</tr>
<tr>
<td>BHP</td>
<td>British Herbal Pharmacopoeia</td>
</tr>
<tr>
<td>BP</td>
<td>British Pharmacopoeia</td>
</tr>
<tr>
<td>CEF</td>
<td>Chloroform/ethyl acetate/formic acid [10/8/2 v/v/v]</td>
</tr>
<tr>
<td>DI water</td>
<td>De-Ionized water</td>
</tr>
<tr>
<td>EC</td>
<td>Extract capsule</td>
</tr>
<tr>
<td>EMW</td>
<td>Ethylacetate/methanol/water [10/1/35 v/v/v]</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma Amino Butyric Acid</td>
</tr>
<tr>
<td>GMP</td>
<td>Good Manufacturing Practice</td>
</tr>
<tr>
<td>G-protein</td>
<td>Gluco-protein</td>
</tr>
<tr>
<td>HC</td>
<td>Herbal capsule</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immune deficiency Virus</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Pressure Liquid Chromatography</td>
</tr>
<tr>
<td>HT</td>
<td>Herbal Tablet</td>
</tr>
<tr>
<td>LIQ</td>
<td>Liquid Extract</td>
</tr>
<tr>
<td>MCC</td>
<td>Medicine Control Council</td>
</tr>
<tr>
<td>MAO</td>
<td>Monoamine oxidase</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>OTC</td>
<td>Over the Counter</td>
</tr>
<tr>
<td>PAF</td>
<td>Platelet activation factor</td>
</tr>
<tr>
<td>Rf</td>
<td>Retention factor</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer Chromatography</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER 1

Figure 1.1 Lead Herbal sales in the United States for 1998 1

Figure 1.2 *Hypericum perforatum* flowering plant 4

Figure 1.3 Chemical structure for hypericin and pseudohypericin 6

Figure 1.4 *Ginkgo biloba* leaves 8

Figure 1.5 Chemical structure for quercetin 10

Figure 1.6 Chemical structure for ginkgolide A,B,C and bilobalide 10

Figure 1.7 Leaves of *Piper methysticum* 13

Figure 1.8 Chemical structure for kawain, di-hydrokawain, methysticin, and di-hydromethysticin 14

CHAPTER 3

Figure 3.1 Total quantity of compounds extracted with 3 different extractants 39

Figure 3.2.1 TLC of Hypericum root powder with mobile phase EMW (top), BEA (center) and CEF (bottom) and sprayed with p-anisaldehyde (left) and vanillin (right). Each plate shows extraction with Methanol (left), Acetone (center) and n-Hexane (right). Rᵢ values for hypericin are indicated 41

Figure 3.2.2 *Hypericum perforatum* identification according to the British Herbal Pharmacopoeia. (Hypericum left and Rutin right) 42
Figure 3.2.3 Hypericum samples stored at 25°C. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal Tablets (HT) 0,3,6 months. Herbal Capsules (HC) 0,3,6 months. Extract Capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months]

Figure 3.2.4 Hypericum samples stored at 40°C. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal Tablets (HT) 0,3,6 months. Herbal Capsules (HC) 0,3,6 months. Extract Capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months]

Figure 3.2.5 Hypericum samples stored at 60°C. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal Tablets (HT) 0,2,4,6 weeks. Herbal Capsules (HC) 0,2,4,6 weeks. Extract Capsules (EC) 0,2,4,6 weeks.]

Figure 3.2.6 Hypericum samples stored at 80°C. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal Tablets (HT) 0,2,4,6 weeks. Herbal Capsules (HC) 0,2,4,6 weeks. Extract Capsules (EC) 0,2,4,6 weeks.]

Figure 3.2.7 Hypericum stored at direct sunlight. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal Tablets (HT) 0,3,6 months. Herbal Capsules (HC) 0,3,6 months. Extract Capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.2.8 Hypericum samples stored at direct sunlight and high humidity. [Sprayed with p-Anisaldehyde with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.2.9 Absorption spectrum of the hypericin standard solution B prepared in section 2.6.1.1
Figure 3.2.10 Hypericin standard curve

Figure 3.2.11 Degradation of hypericin in Hypericum herbal tablets at different storage conditions

Figure 3.2.12 Degradation of hypericin in Hypericum herbal capsules at different storage conditions

Figure 3.2.13 Degradation of hypericin in Hypericum extract capsules at different storage conditions

Figure 3.2.14 Degradation of hypericin in Hypericum herbal root powder at different radiation doses

Figure 3.2.15 Using linear regression analysis to calculate k for Hypericum herbal capsules at 25°C.

Figure 3.2.16 Arrhenius graph for data obtained for Hypericum herbal tablets.

Figure 3.3.1 TLC of Ginkgo leaf powder with mobile phase EMW (top), BEA (center) and CEF (bottom) and sprayed with p-anisaldehyde (left) and vanillin (right). Each plate shows extraction with Methanol (left), Acetone (center) and n-Hexane (right). Rₜ values for quercetin are indicated

Figure 3.3.2 Ginkgo identification according to the British Herbal Pharmacopoeia. (Ginkgo left and Rutin right)

Figure 3.3.3 Ginkgo samples stored at 25°C. [Sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]
Figure 3.3.4 Ginkgo samples stored at 40°C. [Sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.3.5 Ginkgo samples stored at 60°C. [Sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,2,4,6 weeks. Herbal capsules (HC) 0,2,4,6 weeks. Extract capsules (EC) 0,2,4,6 weeks.]

Figure 3.3.6 Ginkgo samples stored at 80°C. [Sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,2,4,6 weeks. Herbal capsules (HC) 0,2,4,6 weeks. Extract capsules (EC) 0,2,4,6 weeks.]

Figure 3.3.7 Ginkgo samples at direct sunlight. [Sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.3.8 Ginkgo samples stored at direct sunlight and high humidity sprayed with vanillin with mobile phase EMW (top), BEA (center) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.

Figure 3.3.9 HPLC chromatogram of quercetin standard solution C (0.06mg/ml) prepared in section 2.7.1.2

Figure 3.3.10 Quercetin standard curve.

Figure 3.3.11 Degradation of quercetin in Ginkgo herbal tablets at different storage conditions

Figure 3.3.12 Degradation of quercetin in Ginkgo herbal capsules at different storage conditions
Figure 3.3.13 Degradation of quercetin in Ginkgo extract capsules at different storage conditions

Figure 3.3.14 Degradation of quercetin in Ginkgo dried leaf powder at different radiation doses

Figure 3.4.1 TLC of Kava Kava root powder with mobile phase EMW (top), BEA (center) and CEF (bottom) and sprayed with p-anisaldehyde (left) and vanillin (right). Each plate shows extraction with Methanol (left), Acetone (center) and n-Hexane (right)

Figure 3.4.2 Kava Kava identification according to the British Herbal Pharmacopoeia

Figure 3.4.3 Kava Kava samples stored at 25°C. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.4.4 Kava Kava samples stored at 40°C. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.4.5 Kava Kava samples stored at 60°C. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,2,4,6 weeks. Herbal capsules (HC) 0,2,4,6 weeks. Extract capsules (EC) 0,2,4,6 weeks.]

Figure 3.4.6 Kava Kava samples stored at 80°C. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,2,4,6 weeks. Herbal capsules (HC) 0,2,4,6 weeks. Extract capsules (EC) 0,2,4,6 weeks.]
Figure 3.4.7 Kava Kava samples stored at direct sunlight. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.4.8 Kava Kava samples stored at direct sunlight and high humidity. [Sprayed with p-Anisaldehyde with mobile phase BEA (top) and CEF (bottom). From left: Herbal tablets (HT) 0,3,6 months. Herbal capsules (HC) 0,3,6 months. Extract capsules (EC) 0,3,6 months. Liquid extract (LIQ) 0,3,6 months.]

Figure 3.4.9 HPLC chromatogram of Kava Kava root powder prepared in section 2.7.2.3.

Figure 3.4.10 Degradation of kava-lactones in Kava Kava herbal tablets at different storage conditions

Figure 3.4.11 Degradation of kava-lactones in Kava Kava herbal capsules at different storage conditions

Figure 3.4.12 Degradation of kava-lactones in Kava Kava extract capsules at different storage conditions

Figure 3.4.13 Kava Kava dried root powder at different radiation doses