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Abstract 

Title: Advanced Low Order Orthotropic Finite Element Formulations 

Author: Susanna Elizabeth Geyer 

Degree: M.Eng (Mechanical) 

Department: Mechanical Engineering 

Supervisor: Prof. Albert A. Groenwold 

Keywords: Drilling d.o.f., Assumed stress, Membrane, Flat shell , Finite element, 
Orthotropy 

In this study advanced low order finite elements for the linear analysis and ultimately, the 
global optimization of orthotropic shells structures, are presented. Low order quadrilaterals 
are attractive in optimization, since they result in low connectively of the structural stiffness 
matrix, and hence, reduced computational effort. However, standard 4-node quadrilaterals 
are notorious for their low accuracy. 

Both drilling degrees of freedom and assumed stress interpolations have the potential to 
improve the modeling capabilities of low order quadrilateral finite elements. Therefore, it 
seems desirable to formulate low order elements with both an assumed stress interpolation 
field and drilling degrees of freedom, on condition that the elements are rank sufficient and 
invariant. 

Firstly, a variational basis for the formulation of two families of assumed stress membrane 
finite elements with drilling degrees of freedom, is presented. This formulation depends on 
the formulation of Hughes and Brezzi, and is derived using the unified formulation presented 
by Di and Ramm. The recent stress mode classification method presented by Feng et al. is 
used to derive the stress interpolation matrices. The families, denoted 8,6(M) and 8,6(0), are 
rank sufficient, invariant , and free of locking. The membrane locking correction suggested 
by Taylor ensures that the consistent nodal loads of both families are identical to those of a 
quadrilateral 4-node membrane finite element with two translational degrees of freed om per 
node. 

Secondly, the rectangular assumed strain plate element presented by Bathe and Dvorkin 
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is combined with the above mentioned membrane families to form flat shell finite elements. 
The strain-displacement measures of these elements are modified on the element level to 
incorporate the effect of element warp. 

Thirdly, the constitutive relationship of the flat shell elements is extended to include sym­
metric orthotropy. In opposition to the general trend to employ quadratic or even cubic 
elements for orthotropic analyses, it is shown that the simpler 4-node assumed stress fami­
lies with drilling degrees of freedom presented herein are highly accurate and effective. 

Finally, the influence of the stability parameter ,,(, the integration scheme order and the 
effect of the membrane locking correction are evaluated. The numerical value of the param­
eter "( is shown to be irrelevant in the patch test. The effect of the previously proposed 
membrane-bending locking correction when included in in-plane analysis is demonstrated. 

The elements have been incorporated in the EDSAP /CALSAP finite element infrastructure. 
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Opsomming 

Titel: Gevorderde Lae-Orde Ortotropiese Eindige Element Formulerings 

Outeur: Susanna Elizabeth Geyer 

Graad: M.Ing (Meganies) 

Departement: Meganiese Ingenieurswese 

Sudieleier: Prof. Albert A. Groenwold 

Sleutelwoorde: Boor-vryheidsgraad, Aangenome-spanning, Membraan, Plat dop, 
Eindige-element, Ortotropie 

In hierdie stu die word gevorderde lae-orde eindige-elemente vir die lineere analise van or­
totropiese dop-strukture ontwikkel. Die uiteindelike doel van hierdie elemente is die globale 
optimering van ortotropiese dop-strukture. Lae-orde vierhoekige elemente is aantreklik in 
optimering, omdat dit lei tot lae koppeling in die styfheidsmatriks. Dit lei weer tot ver­
minderde berekeningstyd. Vier-node vierhoekige elemente is egter berug vanwee hulle lae 
akkuraatheid. 

Beide boor-vryheidsgrade ('drilling degrees offreedom') en aangenome-spanningsinterpolasies 
('assumed stress interpolations') het die potensiaal om die modelleringseienskappe van lae­
orde vierhoekige elemente te verbeter. Daarom is dit wenslik om lae-orde elemente te for­
muleer met beide 'n aangenome-spanningsinterpolasieveld en boor-vryheidsgrade, op voor­
waarde dat die elemente se rang voldoende is en dat die elemente invariant is. 

Eerstens word 'n variasionele basis vir die formulering van twee aangenome-spanning mem­
braan eindige-element families met boor-vryheidsgrade aangebied. Dit is gebaseer op die 
formulasie van Hughes en Brezzi en is afgelei deur gebruik te maak van die genormaliseerde 
formulasie van Di en Ramm. Die spanningsmode klassifikasie van Feng et al. is gebruik vir 
die afieiding van die spanningsinterpolasie-matrikse. Die families, genoem 8,8(M) en 8,8(D), 
se rang is voldoende en is invariant. Hierdie families to on ook geen sluitingsgedrag nie. Die 
membraan-sluitingskorreksie wat voorgestel is deur Taylor verseker dat die nodale kragte in 
die families ooreenstem met 'n vier-node vierhoekige membraan eindige-element wat twee 
verplasings-vryheidsgrade per node besit. 
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Tweedens word die reghoekige aangenome-vervorming plaat element van Bathe en Dvorkin 
gekombineer met bogenoemde membraan element families om plat dop eindige-elemente te 
vorm. Die vervorming-verplasing verwantskap van hierdie elemente word op die element vlak 
gemanipuleer om die effek van element uit-vlak distorsie te akkomodeer. 

Derdens word die materiaalverwantskap van die plat dop elemente uitgebrei om simmetriese 
ortotropie in te sluit. In teenstelling met die algemene gebruik om kwadratiese of kubiese 
elemente vir ortotropiese analises te gebruik, word die eenvoudiger vier-node aangenome­
spanning families met boor-vryheidsgrade bier voorgestel. Hierdie elemente lewer baie goeie 
resultate en is effektief. 

Laastens word die invloed van die stabiliteitsparameter I, die integrasieskema-orde en die 
effek van die membraan-sluitingskorreksie geevalueer. Daar word getoon dat die numeriese 
waarde van die parameter I irrelevant is in die laptoets ('patch test'). Die cffek van die 
voorheen voorgestelde membraan-sluitingskorreksie wanneer dit ingesluit word in in-vlak 
analises word gedemonstreer. 

Die clemente is geakkomodeer in die EDSAP /CALSAP eindige-element infrastruktuur. 
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Chapter 1 

Introduction 

1.1 Motivation 

Composite materials are quite different from metals. Composites are combinations of mate­
rials differing in composition or form where the individual constituents retain their separate 
identities and do not dissolve or merge together. These separate constituents act together 
to give the necessary mechanical strength or stiffness to the composite part. 

Composites in structural applications have the following characteristics [2]: 

• They generally consist of two or more physically distinct and mechanically separable 
materials. 

• They are made by mixing the separate materials in such a way as to achieve controlled 
and uniform dispersion of the constituents. 

• Mechanical properties of composites are superior to, and in some cases uniquely differ­
ent from, the properties of their constituents. This is clearly seen with glass-reinforced 
plastics. In the case of glass-reinforced plastics, the epoxy resin is a relatively weak, 
flexible, and brittle material, and although the glass fibers are strong and stiff, they 
can be loaded in tension only as a bare fiber. \\Then combined, the resin and fiber give 
a strong, stiff composite with excellent toughness characteristics. 

In recent years, composite materials have been used increasingly in various engineering dis­
ciplines because of their versatility. For example, composites are used in the space, aircraft, 
automotive, boat and locomotive industries [2]. 

However, there is also a great number of difficulties associated with composites materials, 
one of which is their increased complexity. Because of this complexity, the design process of 
composites is ideally performed using optimization methods. Unfortunately, determination 
of the optimum parameters is not simple and can be expensive since a large number of 
locally optimal stacking sequences typically appear, which implies that this problem is a 
global optimization problem [3]. 
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CHAPTER 1. INTRODUCTION 2 

Usually, composite structures are geometrically quite complex, both in-plane and trough the 
thickness, and they cannot be solved by analytical methods. This implies that numerical 
methods have to be used for the analysis and design of these structures, of which the finite 
element method seems to be the most suitable. Because the finite elements method is an 
approximate method, convergence is only obtainable in the limit of mesh refinement and, 
since, in optimization, a complete finite element analysis yields only a single design iteration, 
it is desirable to perform the finite element analysis with minimal computational effort. 

Hence, it is desirable to keep the cost of forming the element stiffness matrices and the cost 
of solving the equilibrium equations as Iowa possible. Elements that are 'inexpensive' are 
normally inaccurate, implying that highly refined meshes may be required to obtain conver­
gence, with implied high assembly and solution costs. 'Visa versa', higher order elements 
typically require less elements on the structural level, but are associated with expensive eval­
uations of the element stiffness matrix, as well as increased connectivity on the structural 
level. 

Therefore, advanced low order formulations are a natural candidate for the analysis of or­
tho tropic shell structures. This is in particular true when these elements are included in 
a computationally expensive optimization infrastructure. However, there is a surprisingly 
small literature base devoted to the behavior of simple composite shell elements. This is 
possibly a result of earlier convictions that high order elements were a requirement when 
analyzing composites [4]. 

Flat orthotropic shell elements are not a popular choice for the analysis of orthotropic struc­
tures. Typically, doubly curved quadratic or even cubic elements are formulated. However, 
orthotropy is independent of shell curvature, and the results will mainly depend on the 
kinematic ability and accuracy of the fiat shell element. 

Both drilling degrees of freedom and assumed stress interpolations have the potential to 
improve the modeling capabilities of, in particular, low order quadrilateral finite elements. 
Therefore, it seems desirable to formulate low order elements with both an assumed stress 
interpolation field and drilling degrees of freedom, on condition that the elements are rank 
sufficient and invariant. These elements can truly be called advanced, state-of-the-art finite 
elements for the analysis of orthotropic structures. 

1.2 Objectives 

This study has the ultimate objective of suggesting advanced low order finite elements for 
the linear analysis, and ultimately the global optimization, of orthotropic shell structures. 

The main requirement is the formulation of a suitable shell finite element for symmetric 
orthotropy. The element must have an acceptable balance between 

• element cost and 

• numerical accuracy. 

Further requirements for the element are: 

 
 
 



CHAPTER 1. INTRODUCTION 3 

• The final formulation must be rank sufficient, invariant and robust. 

• None (or as few as possible) adjustable numerical parameters should be present. 

• The ability to model general warped geometries should be included. 

1.3 Approach 

Firstly, suitable isotropic assumed stress membrane elements with in-plane drilling degrees 
of freedom are formulated. 

Secondly, the selected membrane elements are combined with a suitable plate element to 
form flat shell finite elements. 

Finally, the constitutive relationship of the flat shell elements is extended to provide for 
symmetric orthotropy. 

Extensive numerical evaluation is performed in order to obtain information on element per­
formance, CJnvergence rates, sensitivity to distortion, etc. 

1.4 Thesis overview 

In Chapter 2 assumed stress membrane finite elements with drilling degrees of freedom 
are discussed. This chapter starts with the variational formulation of these elements, as 
formulated by Hughes and Brezzi [5]. The membrane locking correction proposed by Taylor 
[6] is also introduced in this chapter. Chapter 3 presents numerical results for the membrane 
elements formulated in Chapter 2. 

Chapter 4 starts with the formulation of the plate element proposed by Bathe and Dvorkin 
[7]. This plate element is then combined with the above mentioned membrane elements to 
form flat shell elements. Numerical results are presented in Chapter 5. 

The constitutive relationship of the flat shell elements is extended in Chapter 6 to accom­
modate layered symmetric orthotropy. Numerical results for these elements are presented in 
Chapter 7. 

The capabilities of the proposed elements are summarized in Chapter 8. 

The operators arising from the finite element interpolation are summarized in Appendix A. 

The stress mode classification after Feng et ai. [8] is presented in Appendix B. 

The transformation operators for the constrained stress fields are presented in Appendix C. 

The different integration schemes used in this study are presented in Appendix D. 

In Appendix E fragments of the source code developed during this study are presented. 

In Appendix F a list of some of the terms used in this study are given. 

 
 
 



Chapter 2 

Assumed stress membranes with 
drilling d.o.f. 

2.1 Introduction 

2.1.1 Summary of recent research 

Both finite elements with drilling degrees of freedom and mixed/hybrid assumed stress for­
mulations are currently research topics of note. Drilling degrees of freedom are for obvious 
reasons highly desirable when modeling, for instance, folded plates and beam-shell (or mem­
brane) intersections [9]. 

Classical attempts to develop membrane elements with rotational degrees of freedom were 
unsuccessful [5]. Compilations of these early efforts are presented by Frey [10] and Bergan and 
Felippa [11]. The papers of Bergan and Felippa and Allman [12] presented fresh approaches 
to the formulation of membrane elements with rotational degrees of freedom [13]. The key 
to their success was the use of a quadratic displacement function for the normal component 
of displacement rather than the cubic functions employed in earlier works. 

Allman with his simple, but powerful formulation, introduced the term 'vertex rotation' 
[12]. In this formulation, the vertex rotations are related to the derivatives computed at the 
element nodes. The vertex rotations introduced by Allman in the constant strain triangle 
dramatically improved the in-plane behavior of his element. Cook presented a quadrilateral 
element with drilling degrees of freedom, derived from the Allman triangle [14]. A similar 
formulation was presented by Allman [15]. 

Since these attempts, many papers on the subject have appeared, notably those by Jetteur, 
Jaamei and Frey [10, 16, 17, 18] and by Taylor and Simo et al. [6, 19, 20]. However, these 
elements all suffered from the serious drawback that they are rank deficient. To address 
this deficiency, Hughes and Brezzi [5] presented a rigorous framework wherein elements with 
independently interpolated rotation fields could be formulated. Utilizing the formulation of 
Reissner [21], they argue that formulations employing 'convenient' displacement, rotation 
and stress interpolations are doomed to failure. Instead, they propose a modified variational 
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CHAPTER 2. ASSUMED STRESS MEMBRANES WITH DRILLING no.F. 5 

principle based on the Euler-Lagrange equations presented by Reissner. However, they 
improved the stability properties in the discrete approximations. 

Finite element interpolations employing the formulation of Hughes and Brezzi were finally 
presented by Hughes et at. [22] and Ibrahimbegovic et at. [23, 24]. Since then, the develop­
ments in membrane finite elements with drilling degrees of freedom has been numerous. 

Previously, Groenwold and Stander applied the 5-point quadrature presented by Dovey [1] 
to drilling degree of freedom membranes, which improved the element behavior through the 
introduction of a 'soft' higher order deformation mode [3, 25]. 

The developments in mixed/hybrid membrane finite elements has been equally important 
during recent years. Since the assumed stress hybrid finite element presented by Pian [26], 
numerous formulations have been proposed. A compilation is presented by Pian [27]. The 
biggest difficulty in deriving hybrid finite elements seems to be the lack of a rational method­
ology for deriving stress terms [8]. Many approaches were made to address this deficiency, 
e.g. see [28, 29]. 

I t is recognized that the number of stress modes m in the assumed stress field should satisfy 

m?:,n r (2.1) 

with n the total number of nodal displacements, and r the number of rigid body modes in an 
element. If (2.1) is not satisfied, rank deficiencies arise, viz. the element stiffness matrix rank 
is less than the total degree of deformation modes. Furthermore, the equality represented by 
(2.1) is optimal, since m > n-r increases the element stiffness [30]. Therefore, assumed stress 
formulations should not only satisfy the requirements of rank sufficiency and invariance, but 
preferably also the equality condition represented by (2.1). Feng et at. [8] present a brief 
compilation of studies dealing with criteria for stability and convergence. Amongst others, 
notable contributions are those by Brezzi [31] and Babuska [32]' who present necessary and 
sufficient conditions. Feng et al. propose a classification method which also proves that 
kinematic modes can exist even if m > n - r, and show that the m modes are to be chosen 
from m different stress groups. 

The limiting principle of Fraeijs de Veubeke [33] states that a complete but unconstrained 
assumed stress field becomes identical to the corresponding assumed displacement element. 
This has lead to the introduction of additional incompatible displacements in numerous 
formulations. Di and Ramm [34] have chosen not to introduce incompatible modes, but 
present a rigorous unified formulation to propose stress interpolations. 

Previously, a mixed/hybrid assumed stress membrane finite element with drilling degrees of 
freedom has been presented by Aminpour [35, 36]. However, this element is rank deficient (by 
one). The framework presented by Hughes and Brezzi [5] can however be used to overcome 
this drawback. 

Sze and Ghali [37] presented a rank sufficient formulation using only 8 interpolating stress 
modes, denoted HQ8*, which is one less than the equality expressed in (2.1). They used 
four zero energy modes. One is the equal-rotations mode and the other three are the rigid­
body modes. The equal-rotations mode, known as an hourglass mode, is stabilized by a 
quadratic stress mode. This important contribution probably represents the first ranks 
sufficient assumed stress membrane finite element with drilling degrees of freedom. 
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The element presented by Sze and Ghali does not include a locking correction to overcome 
membrane locking when the element is used as the membrane component of a flat shell 
finite element. In addition, the interpolation field in the element is not necessarily optimally 
constrained. 

2.1.2 This study 

In this study, a variational basis for the formulation of two families of assumed stress mem­
brane finite elements with drilling degrees of freedom is presented, depending on the formu­
lation of Hughes and Brezzi. The families are derived using the unified formulation presented 
by Di and Ramm [34]. The recent stress mode classification method presented by Feng et 
al. [8J is used to derive the stress interpolation matrices. Both families, denoted 8,B(M) and 
8/i(D), are rank sufficient, invariant, and free of locking. The membrane locking correction 
suggested by Taylor [6] is used to ensure that the consistent nodal loads in both families are 
identical to those of a quadrilateral 4-node membrane finite element with two translational 
degrees of freedom per node. 

2.2 A framework for independently interpolated rota­
tion fields 

In this section, a rigorous framework for the formulation of independently interpolated ro­
tation fields is presented. The formulation of Hughes and Brezzi [5] is closely followed. The 
interpolation fields proposed by Ibrahimbegovic et al. are presented in Section 2.2.2. 

2.2.1 Variational formulation 

Let n c ]Rd be an open set with a piecewise smooth boundary. d:2:: 2 denotes the number 
of spatial dimensions. The stress tensor, (j (do not assume symmetry), the displacement 
vector, U, and the skew-symmetric rotational tensor, ,¢, are taken as dependent variables. 

The Dirichlet boundary value problem is the focus for this framework. More complicated 
boundary conditions provide no essential difficulties and may be handled by standard means 
(see, e.g., [38]). The Euclidean decomposition of a second-rank tensor is used, e.g., 

symm (j + skew (j 

where 

symm (j 

skew (j 

(2.2) 

(2.3) 

(2.4) 
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The boundary value problem 


Given f, the body force vector, find u, 1/J and 0', such that: 


For all x EO 


div 0' + f 
skew 0' 

1/J 
symm 0' 

0 

0 

skewVu 

C·symmVu 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

and on the boundary r ao 
u 0 (2.9) 

where (2.5) through (2.9) are, respectively, the equilibrium equations, the symmetry condi­
tions for stress, the definition of rotation in terms of displacement gradients, the constitutive 
equations and the displacement boundary condition. 

The elastic moduli, C {Cijkl }, 1 ~ i, j, k, l ~ d, are assumed to satisfy the following 
conditions: 

Cijkl Ck1ij (2.10) 

Cijkl Cjikl = Cij1k (2.11) 

Cijkltijtkl > 0 V tij tji 0 (2.12) 

where (2.10) through (2.12) are referred to as, respectively, the major symmetry, the minor 
symmetries, and positive-definiteness. 

For an isotropic material and plane stress, the constitutive modulus tensor C = {Cijkl } has 
the form 

(2.13) 

where 

vE 
(2.14)

(1 - v2 ) 

E 
(2.15)

2(1+v) 

where E and v are Young's modulus and Poisson's ratio, respectively. A and It are the Lame 
parameters and Oij is the Kronecker delta. 

Variational form of the boundary value problem 

Let L2 (0) denote the space of square-integrable functions on 0, and let Hl(O) denote the 
space of functions in L2(0) with generalized derivatives also in L2(0). HJ(O) is the subset 
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of Hl(O) whose members satisfy zero boundary conditions. The spaces relevant to the 
boundary value problem are: 

v 
W 

T 

{vlv E (HJ(O) t} 
{wlw E (L2(O))d, symm w = o} 
{rlr E (L2(o))d} 

(2.16) 

(2.17) 

(2.18) 

where V is the space of trail displacements, lV of trail rotations, and T of trail stresses. 

Consider the following functional [21]: 

IT=VxWxT-+IR (2.19) 

IT(v,w,r) ~ i symm r· C- 1
, symm r dO + i rT. (Vv w) dO - i V· f dO (2.20) 

The stationary condition and integration-by-parts reveals that the Euler-Lagrange equations 
emanating from IT correspond to the equations of the boundary value problem (i.e. (2.5)­
(2.8)), viz. 

o 5IT(u,,,p, u)(v, w, r) 

-i symm r . C- 1 
• symm u dO + i rT . (Vu "p) dO 

+ r u T
. (Vv w) dO r V· f dO (2.21) in in 

i symm r· (C- 1
, symm u symmVu) dO 

- r skew r· (skewVu -"p) dO - r v' (div u + f) dO in in 
+ r W· skew u dO V {v, w, r} E V x W x T (2.22) in 

So that there is no confusion with the index-free notation, note that: 

(2.23) 

where 

(2.24) 

From (2.22) observe that w plays the role of a Lagrange multiplier that enforces the symmetry 
of the stress. 
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Mathematical theory of the continuous case 

Let U V x W. The following mapping needs to be introduced: 

a 

b 

f 
a(u, T) 

b(T, {v,w}) 

f({v,w}) 

TxT-+IR 

TxU-+IR 

U-+IR 

In symm u . C-1 
. symm T dO 

(TT, \7v - w) In TT . (\7v w) dO 

j~ v· f dO 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Note that (2.28) and (2.29) are bilinear forms. (2.28) is symmetric, and f is continuous. 

The variational form of the boundary value problem,(2.22), can now be rewritten as follows: 

Problem (M) 

Find {u, 1jJ} E U and u E T such that 

a( U, T) + b( T, {u, 1jJ} ) 0 V T E T 

b(u,{v,w})=f({v,w}) v {V,W}EU 

The discrete problem 

(2.31) 

(2.32) 

Let Vh, ~Vh and Th be finite dimensional subspaces of V, Wand T, respectively. The su­
perscript 'h' denotes dependence upon a mesh parameter. V h, W h and Th are typical finite 
element spaces involving piecewise polynomial interpolations. The standard way of develop­
ing a discrete approximation is to pose (2.31) and (2.32) in terms of the finite dimensional 
subspaces. 

Problem (Mt) 
Find {uh, 1jJh} E Uh = Vh X W h and u h E Th such that 

a(uh, Th) + b(Th, {u\ 1jJh}) 0 V Th E Th 

b( u h, { v\ wh}) = f ( { v\ wh} ) V { vh , wh} E Uh 
(2.33) 

(2.34) 

Problem (Mt) has a unique solution {uh, 1jJh} E Uh, u h E Th. A proof is presented by 
Hughes and Brezzi [5]. 
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A modified variational formulation 

The ellipticity of the continuous problem is not inherited by the discrete problem for conve­
nient finite element spaces. In order to improve upon the ellipticity of the standard mixed 
formulation, consider the following functional: 

II, : V x tV x T --t IR (2.35) 

II,(v, w, T) 2:, (IT ( v, w, T) ) 

II(v,w, T) ~ k Iskew TI2 dO (2.36) 

This functional gives rise to a system of variational equations formally equivalent to those 
of IT. This may be seen as follows: 

o 8IT(u,,,p, o-)(v, w, T) 

In symm T' (C- 1 
. symm 0- - symmVu) dO 

k skew T' (skewVu "p - "y-1skew 0-) dO - k v . (div 0- + f) dO 

+ In w . skew 0- dO V {v, w, T} E V x W x T (2.37) 

Observe that skew T = O. Thus the Euler-Lagrange equations of the continuous problem 
are unchanged. Nevertheless, the consequences of the additional term are significant in the 
context of approximate solutions. This may be seen more clearly by writing (2.37) in the 
standard format of a mixed problem. 

Problem (M,) 

Find {u,,,p} E U and 0- E T such that 

a,(o-,T)+b(T,{u,,,p})=O V TET 
b( 0-, { v, w} ) f ( { v, w}) V {v, w} E U 

where 

a,(o-,T) a(o-,T) - ,-1 (skew 0-, skew T) 

The finite dimensional counterpart of Problem (M,) is given by: 

Problem (M!;) 

Find {uh,,,ph} E Uh and o-h E Th such that 

(2.38) 

(2.39) 

(2.40) 
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a')'(u\ Th) + b(T\ {u\ -zPh}) = 0 V Th E Til, 

b( u\ { v\ wh} ) f ( { v h, wh} ) v { vII" wh} E Uh 

11 

(2.41) 

(2.42) 

Various special cases of the previous variational formulation can be developed by eliminating 
fields through the use of Euler-Lagrange equations. The symmetrical components of stress 
can be eliminated by way of the constitutive equation. Define the functional 7r ')' by 

7r I ( v, w, skew 1') ITI ( v, w, C . symm \7' v + skew 1') 

_ 1 f symm'Vv. C. symm'Vv drt 
2 in 
+ In skew TT. (skew\7'v w) dO 

-t,-111 Iskew 1'12 dO In v . f dO 

Displacement-type modified variational formulations 

(2.43) 

From the practical point of view, the most interesting formulation is one based entirely on 
kinematic variables, namely, displacement and rotation. To this end, the modified varia­
tional formulations permit the elimination of skew u by way of the following Euler-Lagrange 
equation 

(2.44) 

The following functional is derived by employing (2.44) in (2.43) 

:VxW-+IR (2.45) 

(v,w) 'lf1 (v,w,,(skew\7'v - w)) 

tin symm\7'v· C· symm\7'v dO 

+~, f Iskew\7'v wl 2 dO f V· f dO 
2 in in (2.46) 

Since this is the simplest formulation within this framework, it is the one most likely to be 
used by program developers [5]. Indeed, this formulation was used by Ibrahimbegovic et ai. 
in 1990 [23]. 

The variational equation emanating from (2.46) is 
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o bif(u,1/J)·(v,w) 

j~ symm\7v· C· symm\7u dn 

+ k (skew\7v wf· C'y(skew\7u 1/J)) dn k v . f dn 

-k v . div [C· symm\7u + ,(skew\7u 1/J) + fJ dn 

-k w T 
. ("y(skew\7u -1/J)) dn 

(2.47) 

(2.48) 

The last term in (2.48) asserts that the skew-symmetric stresses are zero, and the first term 
express equilibrium in terms of the symmetric stresses. In the corresponding discrete case, 
the skew-symmetric stresses will not be in general identically zero and thus will play a role 
in the equilibrium conditions. The mathematical formulation of the variational problem is 

Problem (D"() 

Find {u, 1/J} E U such that 

B,,((u,1/J;v,w}) J({v,w}) V {v,w} E U (2.49) 

where 

B)u,1/J; v,w}) - k symm\7v· C· symm\7u dn 

+ j~ (skew\7v - wf . b(skew\7u 1/J)) dn (2.50) 

is a symmetrical bilinear form. The corresponding discrete problem is: 

Problem (D':y) 

Find {u h
, 1/J h

} E Uh such that 

(2.51) 

Generalization 

Hu-Washizu variational formulations are frequently used as a basis for finite element dis­
cretizations. A Hu-vVashizu-type variational formulation accounting for rotations and non­
symmetric stress tensors derives from the following functional: 

H(v,w, skewT, symmT, E) ~ { E' C . E dn + { symm T . (symm \7 v - E) dn 
2 in in 
+ 1 { skewTT . (skew\7v w) dn { V· f dn (2.52) 

2 in in 
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2.2.2 Finite element interpolations by Ibrahimbegovic et al. 

The rotational and translational interpolations of the formulation of Hughes and Brezzi [5] 
are addressed in detail in the papers of Hughes et ai. [22] and Ibrahimbegovic et ai. [23]. 
Here, the formulation of Ibrahimbegovic et ai. [23] is followed closely. 

The independent rotation field is interpolated as a standard bilinear field over each element. 
Accordingly 

4 

~)h L L Ni
e
((, T])~i (2.53) 

e i=l 

where (e.g., see [39]) 

(2.54) 

The in-plane displacement approximation is taken as an Allman-type interpolation field 

+ L N B~((, T])tiUg (2.55) 
e 

ljk and njk denote the length and the outward unit normal vector on the element side 
associated with the corner nodes j and k. 

(2.56) 

and 
(2.57) 

The indices in the above are explicitly given in Appendix A. 

In (2.55) the following Serendipity shape functions defined by Zienkiewicz and Taylor [39] 
are used. 

1 
NS1((, T]) 2(1 - e)(1 + T]iT]); i = 5,7 (2.58) 

NS1((, TJ) 
1 
2(1 + (i()(l - T]2); i = 6,8 (2.59) 

To reflect the superior performance of the 9-node Lagrangian element over that of the 8-node 
Serendipity element, a hierarchical bubble function interpolation is added in (2.55) where 

(2.60) 

The terms in the element stiffness matrix arising from this interpolation may be eliminated 
at the element level by static condensation [40]. 
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2.2.3 On the numerical value of ! 

For isotropic elasticity and Dirichlet boundary value problems, Ibrahimbegovic et al. take 
1 equal to the value of the shear modulus [23]. The choice of 1 = G was suggested by 
Hughes et ai. [22]. Numerical studies by Ibrahimbegovic et ai. [23] show that their element 
formulation is insensitive to the value of 1 used, at least for several orders of magnitude 
which bound the shear modulus. This was however shown for one particular problem only. 
Results by Groenwold and Stander [25] indicated that there may be a more pronounced 
sensitivity to the value of 1 for certain examples. For some problems, therefore, enforcement 
of the rotational field by sufficiently large values of 1 is crucial [25]. 
Notwithstanding the undesirability of having a problem dependent parameter in the formu­
lation, both the shear and extension patch tests (Figure 3.3) are passed for any positive value 
of l' As the patch test is a necessary and sufficient condition for convergence (see [41]), the 
numerical value of 1 becomes irrelevant in the limit of mesh refinement l

. 

2.3 	 Assumed stress membrane element with drilling 
degrees of freedom formulation 

2.3.1 Variational formulation 

In this study, the formulation presented by Hughes and Brezzi (see (2.43)) is extended 
through the addition of the term 

hsymm TT. (symmVv €) dO 	 (2.61) 

where represents a Lagrangian multiplier. The following Hu-\Vashizu like functional is 
obtained 

Problem (Me) 

III' (v, w, T) 1 r(symmVvf. C. symmVv dn + rsymm TT . (symmVv ­2in in €) dO 

+ rskew TT • (skewVv - w) dn ­in
hv T 

. f dO 

12 r[skew T]2 dOin 
(2.62) 

Substituting the constitutive relationship € = C- I 
. symm T, Problem (Me) can be rewritten 

to obtain 

hsymm TT. symmVv dO 1 rsymm TT. C- I . symm T dO
2in 

skew TT . (skewVv w) dn 1 I r[skew T]2 dO 
2 in 

IThe effect of I is extensively demonstrated in Chapters 3, 5, and 7 
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(2.63) 

The variational equation which results from variations on (2.63) is 

o = 5Il')' (v, w, r) = r symm u T . symmVv dfl + r symm rT . symmVu dfl Jn Jn 

r symm rT. a-I. symm u dfl + r skew rT . (skewVu -1/J) dfl 
k k 

+ k (skewVvT . skew u wT . skew u) dfl In skew rT . skew u dfl 

In u T 
. f dfl (2.64) 

Furthermore, it is possible to eliminate the skew-symmetric part of the stress tensor by 
substituting 

,-lskew u = skewVu 1/J (2.65) 

into Problem (Me) to obtain 

Problem (Dc) 

I1,(v,w, r) k symm rT . symmVv dfl - ~ k symm rT . a-I. symm r dfl 

+~, r [skewVv - W]2 dfl r vT
• f dfl (2.66) 

2 Jn Jn 

which is now similar to the generalization presented by Hughes and Brezzi (see [5]). The 
corresponding variational equation becomes 

o 5I1,( v, w, r) k symm u T 
. symm Vv dfl 

+ In symm rT . symm V u dfl - In symm rT . a-I . symm u dfl 

j~ (skewVv - W)T . (skewVu -1/J) dfl k u T 
. f dfl 

2.3.2 Finite element interpolation 

The discrete version of Problem (!vIc) is obtained as 

Problem (M~) 

o k" (symm Uh)T . symmVvh dfl + k" (symm rhf' . symmVuh dfl 

(2.67) 

- r (symm rh)T . a-I. symm u h dfl + r (skew rhf' . (skewVuh 1/Jh) dfl I n,, In,, 

+ k" ((skewVvh)T . skew u h 
- (whf . skew u h) dfl 

_,-I r (skew rhf . skew u h dfl - r (Uhf'. f dfl (2.68) 
Jnh Jnh 
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It is required that the three distinct independent interpolation fields arising from the transla­
tions, rotations, and the enhanced stresses are interpolated. The rotational and translational 
interpolations were addressed in detail in the paper ofIbrahimbegovic et al. [23] (see Section 
2.2.2). However, the newly introduced assumed stress field is presented in more detail in the 
following. 

The independent rotation field is interpolated as in Section 2.2.2. The in-plane displacement 
approximation is taken as an Allman-type interpolation field 

(2.69) 


with N Si the Serendipity shape functions. In accordance with the limiting principle of 
Fraeijs de Veubeke [33], the hierarchical bubble shape function is not included. lp; and njk 

denote the length and the outward unit normal vector on the element side associated with 
the corner nodes j and k (Figure 2.1). 

TJ 
2 5 1 

6 8 ( 

,., 
( 43 

3 


Figure 2.1: Membrane finite element 


The skew-symmetric stress field is chosen constant over the element, i.e. 


(2.70) 


Using matrix notation, symmVue and skewVue are respectively given by 

and 

(2.71) 


(2.72) 
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The operators arising from this interpolation are summarized in Appendix A. 

For the assumed stress field, the global stresses are directly interpolated by the stress pa-
rameters ,l.e. 

(2.73) 
e 

where pe is the interpolation matrix in terms of the local coordinates and f3e is the stress 
parameter vector. Equations (2.73) represent an unconstrained interpolation field, which is 
not necessarily optimal. Constraints may be enforced by a suitable transformation matrix 
A e, such that 

(2.74) 
e 

Various forms for A e were presented by Di and Ramm [34], and are applied to the new 
families of elements in sections to follow. 

The body force vector is given by 

(2.75) 

In matrix notation, the stationary conditions result in 

[0 G,T 

-~~:n' 1 [ :J [ ~ 1 
h eT 0 (2.76) 
G e _He 

with 

G e in peT. (Be Gel dO (2.77) 

He in peT. C-- 1 . pe dO (2.78) 

he 1 w, ge]T dO (2.79) 
n 

where C- I denotes the elastic compliance matrix, and where pe may be replaced by A e pe. 
The force-displacement relationship is defined by 

(2.80) 

with 
(2.81) 

Finally, stress recovery is obtained through 

(2.82) 

Similarly to the foregoing, the discrete version of Problem (Dc) yields 
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Problem (D~) 

o = r (symm uhf· symmVvh dO + r (symm -rhf . symmVuh dO .I o.h .I o.h 

- r (symm -rh)T . C-1 . symm u h dfl 
.lo.h 

+, r (skewVvh whf. (skewVuh 'ljJh) dfl r (uhf· f dO (2.83) 
.I~ .I~ 

which directly results in 
[Ke + p~] q r (2.84) 

with 

P~ = '.k { :: } [be gel dO (2.85) 

The parameter, in the foregoing formulations is problem dependent, since it is part of a 
penalty term. The effect of, is studied in Chapters 3, 5, and 7 to come. 

2.3.3 Developing and constraining the assumed stress field 

The stress field assumed in (2.73) may, without loss of generality, be expressed as 

symm u e P{3 symm u~ + symm u h [Ie Ph] { ~: } (2.86) 

where the superscript e is dropped on P Q for reasons of clarity. In (2.86), Ie allows for the 
accommodation of constant stress states. The higher order stress field is represented by 

symm u h = P h{3h = P h2{3h2 + P h3{3h3 

where P h2{3h2 and P h3{3h3 are introduced for reasons of clarity. Therefore, 

symm u e = P{3 = symm u~ + symm uft = [Ie P h2 P h3 ] { %:2 } 
{3h3 

Furthermore, the classification of Feng et al. [8] is now extended, and written as 

Ie{3e 

(2.87) 

(2.88) 

(2.89) 

with {O"d through {0"3} presented in Appendix B, and representing the constant stress 
capability of the formulation. Various possibilities exist for P h2 (e.g. see [8]), but the 
obvious choice is the linear capability, given for instance by 

(2.90) 
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with {ad and {a6} again given in Appendix B. (2.89) combined with (2.90) yields the usual 
formulation for a 5-parameter stress field, as is also for instance used by Di and Ramm [34], 
for their 5{3 elements. The additional terms required for the finite element with drilling 
degrees of freedom are chosen as 

Ph3f3h3 (2.91) 

viz. 

[ 

-~ 0 1]2] 
P h3 = 0 -1] -e 

1] ~ 0 
(2.92) 

This formulation is similar to the unconstrained field used by Sze and Chali [37]. A different, 
invariant possibility is 

P~3 [{ag}{aS}{a23}] (2.93) 

When using 9 interpolating stress modes, (i.e. m n - T 12 - 3 = 9), the stress modes 
may be selected as 

VIZ. 

o 1]2 0 1 o -1] 0 e 
1] ~ 0 0 

(2.94) 

(2.95) 

This formulation is similar to the formulation presented by Aminpour [35]. A different 
possibility is given by 

(2.96) 

(Here, it is chosen to retain P h2 unmodified, which is not a requirement.) P h3 is then used 
instead of P h3 . As stated previously, constraints may be enforced through a suitable trans­
formation matrix A, such that symm (J'e = A e 

pef3. Various forms for A e were presented 
by Di and Ramm [34], and are applied in Table 2.1 to the 8(3 and 9(3 families, while the 5(3 
family is also given for reasons of completeness. In the table, IJI indicates the determinant 
ofthe Jacobian J, and 9 the determinant of the metric tensor. The transformation operators 
T Ol T and Q are given in Appendix C. 

The following notation is used: 

• NC The stresses are associated with the strain derived from the displacements and 
are not subjected to any constraint. 

• EP - Pian and Sumihara [28] have developed a rational approach for the assumed 
stress element in which the equilibrium equations in a weak form related to the internal 
displacement field are used as a constraint condition; it serves as a pre-treatment for 
the initial assumed stress trial. \\lith this method, an appropriate perturbation of 
element geometry is often needed to obtain sufficient constraints. 
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• 	 OC The higher order stress is selected to be orthogonal to the constant part in a 
weak sense [42]. 

• 	 NT - The initial stress is decomposed into a constant and a higher order part, and then 
the higher order part is defined independently so that the constant part of the initial 
stress can be preserved. Following this approach the transformation for the higher 
order part of the initial stress defined in isoparametric space is normalized. 

• 	 PH - The physical components of the higher order stress part are first interpolated in 
isoparametric space and then converted to their contravariant components. Finally, 
the latter are transformed to the global system using the transformation matrix. 

No Element Higher order stress 
1 5p-NC Ph = P h2 
2 5p-EP Ph T OP h2 
3 5p-OC Ph i!T!TOP h2

I . 
4 5,B-NT Ph = gTPh2 
5 5p-PH Ph = TQPh2 
6 8p(M)-NC and 8p(D)-NC Ph = P h2 + P h3 
7 8p(M)-EP and 8p(D)-EP Ph T OP h2 + T OP h3 
8 8p(M)-OC and 8p(D)-OC Ph IJIToPh2 + JIToPh3 
9 8p(M)-NT and 8p(D)-NT Ph = gTPh2 + gTPh3 
10 8p(M)-PH and 8,B{D)-PH Ph = TQPh2 + TQPh3 
11 9p(M)-NC and 9p{D)-NC Ph = P h2 + PM 
12 9p(M)-EP and 9p(D)-EP Ph T oP h2 + TOPM 

13 9p(M)-OC and 9p(D)-OC Ph IJIToPh2 + IJI ToPM 

14 9p{M)-NT and 9p(D)-NT Ph = gTPh2 + gTPM 

15 9p(M)-PH and 9p(D)-PH Ph = TQPh2 + TQPM 

Table 2.1: Unified formulation for the 5,8, 8p and 9,B families 

2.4 Membrane locking correction 

Flat shell elements assembled from membrane elements with in plane drilling degrees of free­
dom suffer undesirable membrane-bending interactions associated with the drilling degrees 
of freedom [6]. 

Mechanistically, the locking phenomena may be described as follows [6]: Flat quadrilateral 
shell elements approximate curved shell geometries with the possibilities of kinks between 
adjacent elements. In these situations the continuity of the three rotation parameters for the 
shell result in a situation where non-zero drilling degrees of freedom in one element leads to 
non-zero bending degrees offreedom in the adjacent element (and 'vice-versa'). Accordingly, 
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the elements will exhibit a membrane-bending locking performance, unless the drilling degree 
of freedom part of the membrane strains may assume a zero value over the element. 

For the assumed displacement field of the 8;3(M), 8;3(D), 9;3(M) and 9;3(D) elements (see 
(2.69)) zero strains are not possible for non-zero rotations [6]. An exception is the special 
case of identical rotations at opposite nodes. One such case is for example, reflected in: 

(2.97) 

Taylor [6J presented a correction which alleviates the membrane-bending locking. The cor­
rection, which is based on a three field formulation (displacement, strain and stress), is 
repeated here, albeit with a slightly different notation. 

Using matrix notation, symmVue for the 8,8(M), 8;3(D), 9;3(M) and 9li(D) elements is given 
by 

symm Vue = B~Ui + G~itPi i = 1,2,3,4 (2.98) 

where Ui and tPi are nodal values of displacement and rotation respectively and summation 
is implied. 

In the following, the 8;3(M), 8;3(D), 9;3(M) and 9,8(D) elements with the interpolation given 
in (2.98) are now denoted 8;3(M)*, 8;3(D)*, 9;3(M)* and 9;3(D)*. Here, the asterisk (*) 
indicates that the membrane locking correction, (which is described in the following), is 
not performed. For the 8;3(M), 8;3(D), 9;3(M) and 9;3(D) elements, the modified strain 
relationship proposed by Taylor [6J is used. This relationship is given by 

symmVue B~Ui + G~itPi + symmVu~ (2.99) 

This modified strain relation is required to satisfy a requirement that the drilling parameter 
part can be inextensible. Accordingly, it is desired that 

(2.100) 

for rotational fields which are inextensible. Unless the drilling degrees of freedom are elimi­
nated completely it is only possible to satisfy (2.100) in a weak sense. A suitable weak form 
may be constructed by augmenting the usual potential energy of each element for a shell by 
the term 

he {rT (G~(,.pi + symmVu~) dne = 0 (2.101) 

where n e is the surface region of the shell. Both {rT and symm V U o are assumed constant 
over each element. Performing the variation with respect to {rT leads to 

symmVu~ - ~e he G~itPi dn
e 

and, therefore, the modified strain relationship 

(2.102) 

I \S'5<=b '2....0 2... 0 

\:, ,S~I 47'$c:r 
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symmVu
e 

= B~Ui + (G¢i A hz G¢i dn) tPi 

which is the final result presented by Taylor [6]. 

(2.103) 

 
 
 



Chapter 3 

Numerical results: Isotropic 
membrane elements 

In this chapter numerical results are presented for the isotropic membrane elements developed 
in Chapter 2. 

In the following, 

• Q4 denotes a standard 4-node bilinear membrane element with 8 degrees of freedom. 

• QC9D refers to an implementation by Groenwold and Stander [25] of the Ibrahimbe­
govic et al. membrane finite element with drilling degrees of freedom [23]. The element 
is based on the variational formulation due to Hughes and Brezzi [5], and the formu­
lation includes a hierarchical bubble shape function. This element has 12 degrees of 
freedom. 

• 513 denotes an implementation of the 513 family due to Di and Ramm [34]. 

• 8j3(M) and 8j3(D) denote the two families proposed herein. An asterisk (*) indicates 
that the membrane locking correction is not included. (The formulation by Sze and 
Ghali [37] is similar to the 8j3(D)*-EP element presented herein.) 

• 9j3(M) and 9j3(D) denote the two families proposed herein with 9 interpolating param­
eters. 

The penalty stiffness terms (r/ne)heheT and p~ (in (2.80) and (2.84) respectively), which 
relate the in-plane rotations to the in-plane translations, respectively are integrated using a 
2 x 2 Gaussian quadrature, and a 1 point quadrature. All other integrals are evaluated using 
3 x 3 Gaussian quadrature. 

Alternatively, GeT He-1Ge in (2.81) may be integrated by the 5-point rule presented in 
[1, 25]. However, reduced integration in mixed/hybrid finite elements is in general not 
advantageous. 

23 
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3.1 Element rank 

Eigenvalue analyses of the different 8,B(M)-NT and 9,B(M)-NT formulations are presented in 
Table 3.1. 

E 1.0 v = 0.25 

X2 (2.2,2.2) 

(o,:j (2,2) 

(0).2) 

2:1 

(0,0) (2,0) (0.2,0) 


Figure 3.1: Regular and distorted element geometries for eigenvalue analysis 


Ai Ph3 P'!3 PM P~4 
1 0.14286E+Ol o.14286E+01 0.14286E+01 0.14286E+01 
2 0.76923E+00 0.76923E+00 0.76923E+00 0.76923E+00 
3 0.76923E+00 0.76923E+00 0.76923E+00 0.76923E+00 
4 0.57692E+00 0.57692E+00 O.57692E+00 0.57692E+00 
5 0.39461E+00 0.50514E+00 0.39461E+00 0.50514E+00 
6 0.39461E+00 0.50514E+00 0.39461E+00 0.50514E+00 
7 O.80219E-Ol 0.84600E-Ol 0.80219E-01 0.84600E-Ol 
8 O.80219E-Ol 0.84600E-0l 0.80219E-Ol 0.84600E-Ol 
9 0.44444E-0l O.44444E-Ol O.44444E-Ol 0.44444E-Ol 
10 0.63228E-16 O.42331E-16 O.41967E-16 0.37303E-16 
11 0.95029E-17 O.13642E-17 O.35205E-16 -O.12714E-16 
12 -O.37504E-16 -0.26489E-16 -O.14526E-16 -O.74542E-16 

Table 3.1: Eigenvalues of square 8,B(M)-NT and 9,B(M)-NT elements (plane stress, iJi = 1, 
= 1, v = 0.3) 

The different stress modes used in the elements are given in (2.93) through (2.96). The table 
reveals that all the formulations are of adequate rank, while rigid body modes are captured 
adequately. Using the distorted element geometry depicted in Figure 3.1 it is determined 
that the elements are invariant (not shown in tabulated form). 
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3.2 Membrane patch tests 

A necessary and sufficient requirement for convergence of finite elements is that the patch 
tests suggested by Irons [43] is passed [41]. This also applies for mixed formulations [44], 
while a necessary condition for non-singularity is 

m~ n (3.1 ) 

where m is the number of degrees of freedom in the primary (displacement) variables, and 
n is the number of degrees of freedom in the constraint variables of the mixed formulation. 
The 8,8(M) and 9,8(M) families satisfy (3.1). For all the patch tests performed in this study, 
the mesh depicted in Figure 3.2 is used. 

X21 
1 7 
~------------------~ 

3 5 
(8,7)(4,7) 

10 

6 (8,3) 
4 

(2,2) 

2~________________~8 

Figure 3.2: Mesh used in patch tests 

3.2.1 Constant extension and constant shear patch tests 

The 8,8 and 9,8 families pass these patch tests, with and without the membrane locking 
correction. \Vhen the membrane locking correction is excluded, constant nodal moments are 
required. The patch tests are passed for any r > O. See Figure 3.3 for boundary conditions. 

3.2.2 Modified shear patch test 

This new test illustrates the capabilities of membrane finite elements with drilling degrees 
of freedom (Figure 3.4). 


For a square membrane subjected to complementary shear, the three degrees of freedom at 

a single node are constrained. The correct displacements and stresses are obtained, while no 

additional devices are required. 
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ul=u2=0 ~~"'-'-~~"-"-'-~ --­ ul=u2=0 
L­______~ P 

Figure 3.3: Constant extension patch test and constant shear patch test 

Original 

10 
I 

I 
I 

Displaced
I 

I 
I 

1-*-0lUI U 2 - - I' 

I" 10 

Figure 3.4: Modified constant shear patch test 

3.3 Taylor's patch test and Ramm's cantilever beam 

The geometry is depicted in Figure 3.5, and tabulated numerical results are presented in 
Table 3.2. 

Load case 1 once again represents a patch test. Obviously, all the elements studied pass 
this test. Load case 2 represents bending behavior. In general, the NT-formulation in each 
family is the most accurate. When the locking correction is applied the error is smaller than 
without this correction. 

In load cases 3 and 4 the effect of element distortion is examined. For both these load cases 
the error is smaller when the locking correction is not applied. For the displacements the 8th 
formulation is by far the most accurate. For both load cases the 9,8(M)*-NC formulation 
performs very good for the stress predictions. 

The results obtained with the 8,8 and 9(3 families are almost identical. In general, the new 
families are more accurate than the QC9D element, but not quite as accurate as the 5(3 
family. 

 
 
 



27 CHAPTER 3. NUNIERICAL RESULTS: ISOTROPIC MEMBRANE ELEMENTS 

1 

1 

1 
A 

I" "I" "I" "I"1 1 1 3 
"I 

LC 1 LC 2 --- --­1.5 3.0 

v 
1 

0.25 

--­1.5 

x2t 1500 
v 0.25LC 4 

4150 
LC 3 LC 4 

1 1000 t 150 

A Xl 

_llOOOt;; ­
2 3 "I" 3 

Figure 3.5: Taylor's patch test and Ramm's cantilever beam 

3.4 Cook's membrane 

This popular test problem (See Figure 3.6) has been used by many authors. The center 
displacement for the various elements studied is tabulated in Table 3.3, while the stresses 
(amin)B and (amax)A are presented in Table 3.4. 

From 'fable 3.3 it is clear that the NT-formulation outperforms all the other elements. The 
elements perform better without the locking correction. 


Table 3.4 illustrates that the 8f]* formulation performs better for the maximum stress, while 

the 9f] families outperform the other elements for the minimum stress. 


Once again, the displacement results obtained with the 8f] and 9f] families are almost iden­
tical, and in general more accurate than the QC9D results. 

Table 3.5 shows that small values of I lead to higher displacement accuracy, since the 
rotational field is only weakly enforced. However, the usual choice of I = G results in 
good accuracy. I 0 results in the most accurate formulation. Due to the redundant 
constraints in the problem no rank deficiencies arise. However, ,Ois not suitable for 
general problems. 

Table 3.6 reveals that with the 5-point and 8-point integration schemes, the accuracy in­
creases in general. Both the integration schemes improve the performance of the elements 
when the membrane locking correction is used, due to the introduction of a 'soft' higher 
order deformation mode. 
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48 
"I 

16 

1 
v = 0.333 

44 

Figure 3.6: Cook's membrane 

3.5 Thick walled cylinder 

This problem is used to assess the performance of the elements studied for nearly incom­
pressible materials. Depicted in Figure 3.7, numerical results for this problem are tabulated 
in Table 3.7. 

The analytical solution is given by 

u(r) (1 + v)pRi [R~ (1 - 2 ) 1 (3.2)E (R~ - RI) T + V r 

where p represents the pressure on the inner surface, Rl denotes the inner radius and R2 the 

outer radius. 


i'vlacNeal and Harder [45] calculated the following values: 


• UI A = 5.0399 X 10-3 for VI 0.49, 

• UI A = 5.0602 X 10-3 for V2 = 0.499, and 

• UI A 5.0623 X 10-3 for V3 = 0.4999. 

Table 3.7 reveals that the QC9D element becomes over stiff as v ---+ 0.5, while the 5p, 8p 
and 9p families do not reveal this locking like behavior. 


Note that the NC-formulations are the most accurate. In general, the 5,8 family slightly 

outperforms the other families. 
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E = 1000 


V2 0.499 
V3 0.4999 ~_-"-----'-_____----l:r 

Symm 9.00 

VI = 0.49 

Figure 3.7: Thick walled cylinder 

3.6 Cook's beam 

The geometry is depicted in Figure 3.8. Numerical results for the displacements are given 
in Table 3.8, and the stress results are presented in Table 3.9. 

For the displacements the 8(3* and 9(3* formulations outperform the other elements. For the 
stress evaluation the 5(3 family is by far the most accurate. For the irregular mesh the 8(3-0C 
and 8(3*-OC formulations are very accurate. The 8(3 and 9(3 formulations are accurate for 
-(Tn. The results obtained with the 8(3 and 9(3 families are almost identical. 

E 30000 P=40 h 12 

V = 0.25 l 48 


12 12 12 12 
B I'" "I- "I'" "I'" "I 

I I I \ / / I 

C ..II'" "I I'" "I'"16 4 8 20 


Regular mesh Irregular mesh 


Figure 3.8: Cook's beam 
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3.7 Higher order patch test 

Load case 1 (a unit couple applied at the free ends) represents a higher order patch test 
(Taylor et at. [41]). Load case 2 was presented by Ibrahimbegovic et ai. [23] (See Figure 
3.9). The center displacements and the tip rotations are given in Table 3.10. 

For the center displacements of load case 1 with the regular mesh, the 5f3 family is very 
accurate. The EP-, OC- and KT-formulations for all the families are also accurate. Note that 
the 8,:3(M)-NC element and the OC-formulations for the irregular mesh are very accurate. 
For the tip rotations of Load case I, the EP-, OC- and NT-formulations are very accurate 
for the regular mesh. The NT-formulation is also accurate for the irregular mesh. 

The EP-, OC- and NT-formulations are also accurate for the center displacements of load 
case 2 for the regular mesh. For the irregular mesh the OC-formulations without the locking 
correction are the most accurate. For the tip rotations for load case 2 the NC- and PH­
formulations outperform the other elements. QC9D is the most accurate for the irregular 
mesh. 

E 100 P 1 l = 10 
v = 0.3 M=0.5 h 1 

LC 2 1-- "ILC 1 
iVI( ....-­ r)M1h

p )1'11M(;l 
A B 

i 

II I I 

Regular mesh 

IS§;: ZZI 

Irregular mesh 

Figure 3.9: Higher order patch test 
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1 2 Case 3 Case 4 
Element Ul A -11'2.4 11'2 A -aXB 11'2A -aXB 

Q4 6.000 14.90 44.60 1724 49.54 2395 
QC9D 6.000 16.78 81.86 2541 84.59 3453 
5jj-NC 6.000 17.50 77.54 2775 82.02 3829 
5jj-EP 6.000 17.28 96.18 3014 98.19 4137 
5jj-OC 6.000 17.18 93.13 2446 95.06 3349 
5jj-NT 6.000 18.33 97.33 3019 98.91 4148 
5jj-PH 6.000 17.86 96.33 2982 98.38 4095 
8jj(M)*-NC 6.000 16.60 98.34 3074 99.40 4151 
8jj(M)*-EP 6.000 16.41 98.97 3015 100.1 4148 
8j3(M)*-OC 6.000 16.63 101.0 2614 102.1 3609 
8,8(M)*-NT 6.000 17.60 99.28 3017 100.3 4141 
8jj(M)*-PH 6.000 17.20 97.37 2887 98.34 3990 
8jj(M)-NC 6.000 17.09 84.17 2732 87.26 3572 
8j3(M)-EP 6.000 16.86 84.82 2882 87.96 3824 
8,8(M)-OC 6.000 16.91 84.49 2456 87.23 3296 
8,8(M)-NT 6.000 17.73 85.71 2878 89.13 3844 
8j3(M)-PH 6.000 17.40 89.57 2409 92.30 3174 
8j3(D)*-NC 6.000 16.60 98.38 3055 99.45 4131 
8jj(D)*-EP 6.000 16.41 98.85 2998 99.96 4131 
8j3(D)*-OC 6.000 16.63 101.0 2598 102.0 3592 
8jj(D)*-NT 6.000 17.60 99.21 3004 100.2 4129 
8jj(D)*-PH 6.000 17.20 97.46 2873 98.43 3975 
8jj(D)-NC 6.000 17.10 84.22 2726 87.31 3565 
8jj(D)-EP 6.000 16.87 84.86 2881 88.00 3822 
8jj(D)-OC 6.000 16.92 84.50 2456 87.24 3295 
8jj(D)-NT 6.000 17.74 85.75 2878 89.18 3843 
8jj(D)-PH 6.000 17.41 89.67 2415 92.42 3178 
9jj(M)*-NC 6.000 16.60 98.27 3006 99.27 4030 
9jj(M)*-EP 6.000 16.41 98.88 2922 99.79 3960 
9jj(M)*-OC 6.000 16.62 98.95 2906 99.79 3948 
9,8(M)*-.\'T 6.000 17.60 99.06 2888 99.90 3907 
9,8(M)*-PH 6.000 17.19 97.03 2819 97.92 3863 
9/3(M)-NC 6.000 17.09 83.83 2551 86.77 3292 
9jj(M)-EP 6.000 16.86 83.75 2494 86.51 3234 
9jj(M)-OC 6.000 16.91 83.93 2518 86.80 3294 
9jj(M)-NT 6.000 17.73 84.23 2440 87.17 3169 
9jj(M)-PH 6.000 17.40 88.98 2194 91.61 2883 
9jj(D)*-NC 6.000 16.60 98.31 2985 99.32 4007 
9,8(D)*-EP 6.000 16.41 98.76 2899 99.67 3936 
Analytical 6.000 18.00 100.0 3000 102.0 4050 

Table 3.2: Taylor's patch test and Ramm's cantilever 
beam: Numerical results 
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1 2 Case 3 Case 4 
Element UI A -U2A U2A -aXB U2A -aXB 

9,B(D)*-OC 6.000 16.63 98.86 2887 99.69 3928 
9,B(D)*-NT 6.000 17.59 98.98 2868 99.82 3886 
9,B(D)*-PH 6.000 17.19 97.13 2804 98.02 3846 
9,B(D)-NC 6.000 17.10 83.87 2544 86.81 3284 
9,B(D)-EP 6.000 16.86 83.77 2492 86.53 3230 
9,B(D)-OC 6.000 16.91 83.95 2518 86.83 3292 
9,B(D)-KT 6.000 17.74 84.26 2439 87.19 3166 
9,B(D)-PH 6.000 17.40 89.08 2200 91.72 2887 
Analytical 6.000 18.00 100.0 3000 102.0 4050 

Table 3.2: Taylor's patch test and Ramm's cantilever 
beam: Numerical results (continued) 

Element 2 x 2 4x4 8x8 16 x 16 32 x 32 
Q4 11.80 18.29 22.08 23.43 23.82 
QC9D 19.27 22.61 23.55 23.83 23.92 
5,B-NC 17.76 21.94 23.38 23.80 23.92 
5,B-EP 21.13 23.02 23.69 23.88 23.94 
5,B-OC 21.04 23.02 23.69 23.88 23.94 
5,B-NT 21.54 23.05 23.69 23.88 23.94 
5,B-PH 21.13 23.02 23.69 23.88 23.94 
8,B(M)*-NC 21.83 23.15 23.64 23.85 23.92 
8,B(M)*-EP 22.18 23.28 23.69 23.86 23.92 
8,B(M)*-OC 22.38 23.30 23.69 23.86 23.92 
8,B(M)*-\T 22.65 23.32 23.69 23.86 23.92 
8,B(M)*-PH 21.85 23.19 23.66 23.85 23.93 
8,B(M)-NC 19.60 22.63 23.56 23.83 23.92 
8,B(M)-EP 20.11 22.71 23.58 23.84 23.92 
8,B(M)-OC 20.18 22.73 23.58 23.84 23.92 
8,B(M)-NT 20.42 22.74 23.58 23.84 23.92 
8,B(:Vl)-PH 19.59 22.65 23.57 23.84 23.92 
8,B(D)*-NC 21.81 23.15 23.64 23.85 23.92 
8,B(D)*-EP 22.21 23.29 23.69 23.86 23.92 
8,B(D)*-OC 22.41 23.30 23.69 23.86 23.92 
8,B(D)*-NT 22.67 23.32 23.69 23.86 23.92 
8,B(D)*-PH 21.84 23.19 23.66 23.85 23.93 
8,B(D)-NC 19.59 22.63 23.56 23.83 23.92 
8,B(D)-EP 20.12 22.72 23.58 23.84 23.92 
Best known 23.90 

Table 3.3: Cook's membrane: Center displacement U2c 
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Element 2 x 2 4x4 8x8 16 x 16 32 x 32 
8p(D)-OC 20.19 22.73 23.58 23.84 23.92 
8p(D)-NT 20.42 22.74 23.58 23.84 23.92 
8p(D)-PH 19.60 22.65 23.57 23.84 23.92 
9p(M)*-NC 21.83 23.15 23.64 23.85 23.92 
9p(M)*-EP 22.10 23.28 23.69 23.86 23.92 
9p(M)*-OC 22.28 23.29 23.69 23.86 23.92 
9,B(M)*-NT 22.59 23.31 23.69 23.86 23.92 
9,B(M)*-PH 21.81 23.19 23.66 23.85 23.93 
9,B(M)-NC 19.51 22.63 23.56 23.83 23.92 
9p(M)-EP 19.77 22.70 23.58 23.84 23.92 
9p(M)-OC 19.86 22.71 23.58 23.84 23.92 
9;3 ()'I)-NT 20.09 22.73 23.58 23.84 23.92 
9p(M)-PH 19.52 22.65 23.57 23.84 23.92 
9p(D)*-NC 21.81 23.15 23.64 23.85 23.92 
9/J(D)*-EP 22.13 23.28 23.69 23.86 23.92 
9p(D)*-OC 22.30 23.29 23.69 23.86 23.92 
9p(D)*-NT 22.61 23.31 23.69 23.86 23.92 
9p(D)*-PH 21.81 23.19 23.66 23.85 23.93 
9p(D)-NC 19.50 22.63 23.56 23.83 23.92 
9p(D)-EP 19.78 22.71 23.58 23.84 23.92 
9p(D)-OC 19.88 22.72 23.58 23.84 23.92 
9p{D)-NT 20.11 22.73 23.58 23.84 23.92 
9p(D)-PH 19.53 22.65 23.57 23.84 23.92 
Best known 23.90 

Table 3.3: Cook's membrane: Center displacement 
(continued) 

x x 
Element (O'max) A (O'min) B (O'max) A (O'min) B to'max) A (O'min) B 

x 

Q4 0.1278 -0.0908 0.1905 -0.1508 0.2251 -0.1866 
QC9D 0.1839 -0.1616 0.2241 -0.1805 0.2323 -0.2013 
5p-NC 0.1657 -0.1614 0.2201 -0.1832 0.2334 -0.1973 

0.1855 -0.1564 0.2241 -0.1857 0.2345 -0.1986 
5P-OC 0.1776 -0.1688 0.2225 -0.1855 0.2343 -0.1987 
5p-NT 0.1721 -0.1775 0.2215 -0.1835 0.2344 -0.1982 
5p-PH 0.1884 -0.1557 0.2250 -0.1851 0.2347 -0.1984 
8,B(M)*-NC 0.1675 -0.2042 0.2122 -0.1877 0.2266 -0.1981 
8p(M)*-EP 0.2052 -0.2262 0.2340 -0.2025 0.2357 -0.2020 
8p(M)*-OC 0.1927 -0.2261 0.2316 -0.2036 0.2355 -0.2020 
Best known 0.2360 -0.2010 0.2360 -0.2010 0.2360 -0.2010 

Table 3.4: Cook's membrane: Stress analysis 
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2 x 2 mesh 4 x 4 mesh 8 x 8 mesh 
Element (Clmax )A (Clmin) B (Clmax )A (Clmin) B (Clmax )A (Clmin) B 

8p(M)*-NT 0.1798 -0.2420 0.2293 -0.2043 0.2352 -0.2020 
8p(M)*-PH 0.2147 -0.2315 0.2333 -0.1971 0.2357 -0.2021 
8p(M)-NC 0.1564 -0.1569 0.2092 -0.1736 0.2269 -0.1955 
8p(M)-EP 0.1813 -0.1645 0.2264 -0.1822 0.2355 -0.1989 
8p(M)-OC 0.1765 -0.1842 0.2246 -0.1809 0.2352 -0.1989 
8p(:Vl)-NT 0.1601 -0.2066 0.2212 -0.1801 0.2345 -0.1990 
8p(M)-PH 0.1856 -0.1777 0.2281 -0.1813 0.2358 -0.1996 
8p(D)*-NC 0.1679 -0.2033 0.2122 -0.1877 0.2266 -0.1981 
8p(D)*-EP 0.2058 -0.2257 0.2340 -0.2025 0.2357 -0.2020 
8p(D)*-OC 0.1933 -0.2257 0.2316 -0.2037 0.2355 -0.2020 
8p(D)*-NT 0.1804 -0.2417 0.2292 -0.2043 0.2352 -0.2020 
8p(D)*-PH 0.2148 -0.2307 0.2332 -0.1971 0.2357 -0.2021 
8p(D)-NC 0.1565 -0.1562 0.2092 -0.1736 0.2269 -0.1955 
8p(D)-EP 0.1810 -0.1646 0.2264 -0.1822 0.2355 -0.1989 
8p(D)-OC 0.1763 -0.1842 0.2245 -0.1809 0.2352 -0.1989 
8,B(D)-NT 0.1600 -0.2062 0.2212 -0.1801 0.2345 -0.1990 
8p(D)-PH 0.1853 -0.1775 0.2280 -0.1812 0.2357 -0.1996 
9p(M)*-NC 0.1639 -0.1991 0.2123 -0.1884 0.2266 -0.1981 
9p(M)*-EP 0.1964 -0.2069 0.2317 -0.2014 0.2354 -0.2019 
9p(M)*-OC 0.1876 -0.2121 0.2297 -0.2022 0.2351 -0.2019 
9p(M)*-NT 0.1700 -0.2300 0.2263 -0.2030 0.2347 -0.2020 
9p(M)*-PH 0.1946 -0.2261 0.2312 -0.1978 0.2350 -0.2021 
9p{M)-NC 0.1606 -0.1685 0.2108 -0.1754 0.2270 -0.1960 
9p(M)-EP 0.1850 -0.1795 0.2302 -0.1831 0.2352 -0.1995 
9p(M)-OC 0.1766 -0.1886 0.2278 -0.1831 0.2349 -0.1996 
9p(M)-NT 0.1629 -0.2089 0.2240 -0.1839 0.2342 -0.1999 
9p(M)-PH 0.1868 -0.1928 0.2286 -0.1834 0.2352 -0.2001 
9p(D)*-NC 0.1641 -0.1983 0.2124 -0.1884 0.2266 -0.1981 
9p(D)*-EP 0.1967 -0.2066 0.2317 -0.2015 0.2354 -0.2019 
9p(D)*-OC 0.1879 -0.2118 0.2296 -0.2022 0.2351 -0.2019 
9p(D)*-NT 0.1703 -0.2297 0.2263 -0.2031 0.2347 -0.2020 
9p(D)*-PH 0.1946 -0.2256 0.2312 -0.1978 0.2350 -0.2021 
9p(D)-NC 0.1607 -0.1678 0.2108 -0.1754 0.2270 -0.1960 
9p(D)-EP 0.1850 -0.1793 0.2302 -0.1831 0.2352 -0.1995 
9p(D)-OC 0.1766 -0.1883 0.2277 -0.1831 0.2349 -0.1996 
9,B(D)-NT 0.1631 -0.2071 0.2240 -0.1839 0.2342 -0.1999 
9p(D)-PH 0.1867 -0.1926 0.2285 -0.1834 0.2352 -0.2001 
Best known 0.2360 -0.2010 0.2360 -0.2010 0.2360 -0.2010 

Table 3.4: Cook's membrane: Stress analysis (continued) 
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r 
G x 0 20.73 
G x 10-3 20.73 
G x 10-2 20.73 
G x 10-2 20.67 
G x 10° 20.42 
G x 101 20.05 
G x 102 19.94 
G x 103 19.93 
Best known 23.90 

Table 3.5: Cook's membrane: Influence of I for the 2 x 2 mesh 
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Element 2 x 2 4x4 8 x 8 16 x 16 32 x 32 

8fJ(D)*-NC 21.93 23.15 23.64 23.85 23.92 
8fJ(D)*-EP 22.28 23.29 23.69 23.86 23.92 
8fJ(D)*-OC 22.02 23.23 23.68 23.86 23.92 
8fJ(D)*-NT 22.31 23.25 23.68 23.86 23.92 
8fJ(D)*-PH 21.68 23.16 23.66 23.85 23.93 
8,8(D)-NC 20.61 22.68 23.56 23.84 23.92 
8,8(D)-EP 20.47 22.73 23.58 23.84 23.92 
8,8(D)-OC 20.45 22.70 23.58 23.84 23.92 
8fJ(D)-NT 20.68 22.72 23.58 23.84 23.92 
8fJ(D)-PH 20.36 22.67 23.58 23.85 23.93 

5 

8 point integration 
8fJ(D)*-NC 21.93 23.15 23.64 23.85 23.92 
8,B(D)*-EP 22.28 23.29 23.69 23.86 23.92 
8,8(D)*-OC 22.10 23.26 23.68 23.86 23.92 
8fJ(D)*-NT 22.40 23.28 23.69 23.86 23.92 
8fJ(D)*-PH 21.76 23.17 23.66 23.85 23.93 
8fJ(D)-NC 20.60 22.68 23.56 23.84 23.92 
8fJ(D)-EP 20.47 22.73 23.58 23.84 23.92 
8fJ(D)-OC 20.48 22.72 23.58 23.84 23.92 
8fJ(D)-NT 20.72 22.74 23.58 23.84 23.92 
8fJ(D)-PH 20.39 22.68 23.58 23.85 23.93 
Full integration 
8,8(D)*-NC 21.81 23.15 23.64 23.85 23.92 
8fJ(D)*-EP 22.21 23.29 23.69 23.86 23.92 
8,8(D)*-OC 22.41 23.30 23.69 23.86 23.92 
8,B(D)*-NT 22.67 23.32 23.69 23.86 23.92 
8fJ(D)*-PH 21.84 23.19 23.66 23.85 23.93 
8fJ(D)-NC 19.59 22.63 23.56 23.83 23.92 
8fJ(D)-EP 20.12 22.72 23.58 23.84 23.92 
8fJ(D)-OC 20.19 22.73 23.58 23.84 23.92 
8,8(D)-NT 20.42 22.74 23.58 23.84 23.92 
8fJ(D)-PH 19.60 22.65 23.57 23.84 23.92 
Best known 23.90 

Table 3.6: Cook's membrane: Effect of integration scheme order 
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Element Vi .49 V2 = .499 V3 .4999 
Q4 4.277E-03 1.821E-03 2.694E-04 
QC9D 4.84SE-03 3.S32E-03 1.226E-03 
5,B-~C 5.035E-03 5.055E-03 5.057E-03 
5~-EP 4.996E-03 5.015E-03 5.017E-03 
5~-OC 4.996E-03 5.014E-03 5.016E-03 
5~-NT 4.996E-03 5.015E-03 5.017E-03 
5~-PH 4.996E-03 5.015E-03 5.017E-03 
S~(M)*-NC 5.003E-03 5.022E-03 5.024E-03 
8~(M)*-EP 4.990E-03 5.008E-03 5.010E-03 
8~(M)*-OC 4.990E-03 5.007E-03 5.009E-03 
8~(M)*-NT 4.990E-03 5.00SE-03 5.010E-03 
8~(M)*-PH 4.915E-03 4.866E-03 4.853E-03 
S~(M)-NC 5.003E-03 5.022E-03 5.024E-03 
S~(M)-EP 4.990E-03 5.00SE-03 5.01OE-03 
8~(M)-OC 4.990E-03 5.007E-03 5.009E-03 
8~(M)-NT 4.990E-03 5.00SE-03 5.01OE-03 
S~(M)-PH 4.915E-03 4.865E-03 4.852E-03 
S~(D)*-NC 5.003E-03 5.022E-03 5.024E-03 
S~(D)*-EP 4.990E-03 5.008E-03 5.010E-03 
8~(D)*-OC 4.990E-03 5.007E-03 5.009E-03 
8~(D)*-NT 4.990E-03 5.008E-03 5.010E-03 
S~(D)*-PH 4.915E-03 4.S66E-03 4.S53E-03 
8~(D)-~C 5.003E-03 5.022E-03 5.024E-03 
S~(D)-EP 4.990E-03 5.008E-03 5.010E-03 
8~(D)-OC 4.990E-03 5.007E-03 5.009E-03 
8~(D)-NT 4.990E-03 5.008E-03 5.010E-03 
8~(D)-PH 4.915E-03 4.S65E-03 4.S52E-03 
9~(M)*-NC 5.003E-03 5.022E-03 5.024E-03 
9~(M)*-EP 4.990E-03 5.008E-03 5.009E-03 
9~(M)*-OC 4.989E-03 5.007E-03 5.009E-03 
9~(M)*-NT 4.990E-03 5.007E-03 5.009E-03 
9~(M)*-PH 4.915E-03 4.865E-03 4.852E-03 
9~(M)-~C 5.003E-03 5.022E-03 5.024E-03 
9~(M)-EP 4.990E-03 5.00SE-03 5.009E-03 
9~(M)-OC 4.989E-03 5.007E-03 5.009E-03 
9~(M)-NT 4.990E-03 5.007E-03 5.009E-03 
9~(M)-PH 4.915E-03 4.S65E-03 4.S52E-03 
9~(D)*-NC 5.003E-03 5.022E-03 5.024E-03 
9~(D)*-EP 4.990E-03 5.008E-03 5.009E-03 
9~(D)*-OC 4.989E-03 5.007E-03 5.009E-03 
9~(D)*-NT 4.990E-03 5.007E-03 5.009E-03 
Analytical 5.040E-03 5.060E-03 5.062E-03 

Table 3.7: Thick-walled cylinder: Radial displacement 
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Element 1)3 .4999 
9(3(D)*-PH 4.915E-03 4.865E-03 4.852E-03 
9(3(D)-NC 5.003E-03 5.022E-03 5.024E-03 
9(3(D)-EP 4.990E-03 5.008E-03 5.009E-03 
9(3(D)-OC 4.989E-03 5.007E-03 5.009E-03 
9(3(D)-NT 4.990E-03 5.007E-03 5.009E-03 
9(3(D)-PH 4.915E-03 4.865E-03 4.852E-03 
Analytical 5.040E-03 5.060E-03 5.062E-03 

Table 3.7: Thick-walled cylinder: Radial displacement 
( continued) 

Element 1 x 4 2x8 4 x 16 Irregular mesh 
Q4 0.2434 0.3161 0.3446 0.2108 
QC9D 0.3426 0.3490 0.3536 0.3206 
5(3-NC 0.3505 0.3516 0.3544 0.3218 
5(3-EP 0.3505 0.3516 0.3544 0.3483 
5(3-0C 0.3505 0.3516 0.3544 0.3425 
5(3-NT 0.3505 0.3516 0.3544 0.3497 
5(3-PH 0.3505 0.3516 0.3544 0.3483 
8/1(M)*-NC 0.3465 0.3521 0.3548 0.3440 
8(3(M)*-EP 0.3465 0.3521 0.3548 0.3455 
8(3(M)*-OC 0.3465 0.3521 0.3548 0.3452 
8(3(M)*-NT 0.3465 0.3521 0.3548 0.3473 
8(3(M)*-PH 0.3465 0.3521 0.3548 0.3445 
8(3(M)-NC 0.3456 0.3497 0.3538 0.3264 
8(3(M)-EP 0.3456 0.3497 0.3538 0.3289 
8/1(M)-OC 0.3456 0.3497 0.3538 0.3298 
8(3(M)-NT 0.3456 0.3497 0.3538 0.3317 
8;9(M)-PH 0.3456 0.3497 0.3538 0.3308 
8(3(D)*-NC 0.3465 0.3521 0.3548 0.3440 
8(3(D)*-EP 0.3465 0.3521 0.3548 0.3456 
8/1(D)*-OC 0.3465 0.3521 0.3548 0.3492 
8(3(D)*-NT 0.3465 0.3521 0.3548 0.3474 
8,B(D)*-PH 0.3465 0.3521 0.3548 0.3445 
8/3(D)-NC 0.3456 0.3497 0.3538 0.3264 
8(3(D)-EP 0.3456 0.3497 0.3538 0.3289 
8(3(D)-OC 0.3456 0.3497 0.3538 0.3299 
8(3(D)-NT 0.3456 0.3497 0.3538 0.3318 
8(3(D)-PH 0.3456 0.3497 0.3538 0.3308 

0.3465 0.3521 0.3548 0.3437*-NC 

Table 3.8: Cook's beam: Tip displacement U2A 
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Element 1 x 4 2x8 4 x 16 Irregular mesh 
9{1(M)*-EP 0.3465 0.3521 0.3548 0.3450 
9p(M)*-OC 0.3465 0.3521 0.3548 0.3461 
9p(M)*-NT 0.3465 0.3521 0.3548 0.3466 
9p(M)*-PH 0.3465 0.3521 0.3548 0.3442 
9p(M)-:\'C 0.3456 0.3497 0.3538 0.3257 
9p(M)-EP 0.3456 0.3497 0.3538 0.3273 
9/3(M)-OC 0.3456 0.3497 0.3538 0.3291 
9p(M)-NT 0.3456 0.3497 0.3538 0.3293 
9p(M)-PH 0.3456 0.3497 0.3538 0.3304 
9p(D)*-NC 0.3465 0.3521 0.3548 0.3437 
9p(D)*-EP 0.3465 0.3521 0.3548 0.3450 
911(D)*-OC 0.3465 0.3521 0.3548 0.3461 
9p(D)*-NT 0.3465 0.3521 0.3548 0.3466 
9p(D)*-PH 0.3465 0.3521 0.3548 0.3442 
9p(D)-NC 0.3456 0.3497 0.3538 0.3257 
9p(D)-EP 0.3456 0.3497 0.3538 0.3273 
9p(D)-OC 0.3456 0.3497 0.3538 0.3291 
9p(D)-NT 0.3456 0.3497 0.3538 0.3293 
9p(D)-PH 0.3456 0.3497 0.3538 0.3305 
Analytical 0.3553 

Table 3.8: Cook's beam: Tip displacement U2A (contin­
ued) 

1 x 4 mesh 2 x 8 mesh Irregular mesh 
Element (-O'll)B (0'12) C (-O'll)B ( O'12)C ( -O'll)B ( O'12)C 

Q4 44.08 1.068 55.70 2.029 38.65 
QC9D 63.06 2.044 61.87 2.797 56.33 
5p-l\"C 60.00 3.333 60.05 3.333 54.72 
5p-EP 60.00 3.333 60.05 3.333 58.28 
5p-OC 60.00 3.333 60.05 3.333 55.62 
5p-NT 60.00 3.333 60.05 3.333 58.79 
5p-PH 60.00 3.333 60.05 3.333 60.25 
8p(M)*-NC 61.63 2.865 61.20 1.035 62.05 
8p(M)*-EP 61.63 2.865 61.20 1.035 63.55 
8p(M)*-OC 61.63 2.865 61.20 1.035 60.43 
8p(M)*-NT 61.63 2.865 61.20 1.035 63.50 
8p(M)*-PH 61.63 2.865 61.20 1.035 63.99 
8p(M)-NC 60.12 2.805 59.78 3.194 58.85 
8p(M)-EP 60.12 2.805 59.78 3.194 61.89 
Analytical 60.00 5.000 60.00 5.000 60.00 5.000 

Table 3.9: Cook's beam: Stress analysis 
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1 x 4 mesh 2 x 8 mesh Irregular mesh 
Element (-all) B (a12)c (-au) B (a12)c (-all)B (a12)C 
8(3(M)-OC 60.12 2.805 59.78 3.194 59.40 
8(3(M)-NT 60.12 2.805 59.78 3.194 61.14 
8(3(M)-PH 60.12 2.805 59.78 3.194 57.53 
8(3(D)*-NC 61.63 2.865 61.20 1.035 62.02 
8(3(D)*-EP 61.63 2.865 61.20 1.035 63.53 
8(3(D)*-OC 61.63 2.865 61.20 1.035 60.41 
8(3(D)*-NT 61.63 2.865 61.20 1.035 63.50 
8(3(D)*-PH 61.63 2.865 61.20 1.035 63.94 
8(3(D)-NC 60.12 2.805 59.78 3.194 58.82 
8,8(D)-EP 60.12 2.805 59.78 3.194 61.88 
8(3(D)-OC 60.12 2.805 59.78 3.194 59.39 
8,8(D)-NT 60.12 2.805 59.78 3.194 61.14 
8,8(D)-PH 60.12 2.805 59.78 3.194 57.52 
9/3(M)*-NC 61.63 2.865 61.20 1.035 62.18 
9(3(M)*-EP 61.63 2.865 61.20 1.035 62.72 
9(3(M)*-OC 61.63 2.865 61.20 1.035 63.44 
9(3(M)*-NT 61.63 2.865 61.20 1.035 62.17 
9(3(!'v1)*-PH 61.63 2.865 61.20 1.035 63.53 
9;8(M)-NC 60.12 2.805 59.78 3.194 57.31 
9(3(M)-EP 60.12 2.805 59.78 3.194 57.74 
9;8(M)-OC 60.12 2.805 59.78 3.194 58.99 
9(3(M)-NT 60.12 2.805 59.78 3.194 56.19 
9(3(M)-PH 60.12 2.805 59.78 3.194 55.71 
9(3(D)*-NC 61.63 2.865 61.20 1.035 62.15 
9(3(D)*-EP 61.63 2.865 61.20 1.035 62.69 
9(3(D)*-OC 61.63 2.865 61.20 1.035 63.43 
9(3(D)*-NT 61.63 2.865 61.20 1.035 62.50 
9(3(D)*-PH 61.63 2.865 61.20 1.035 63.48 
9(3(D)-NC 60.12 2.805 59.78 3.194 57.29 
9(3(D)-EP 60.12 2.805 59.78 3.194 57.73 
9(3(D)-OC 60.12 2.805 59.78 3.194 58.99 
9(3(D)-NT 60.12 2.805 59.78 3.194 56.18 
9(3(D)-PH 60.12 2.805 59.78 3.194 55.70 
Analytical 60.00 5.000 60.00 5.000 60.00 5.000 

Table 3.9: Cook's beam: Stress analysis (continued) 

 
 
 



41 CHAPTER 3. NUMERICAL RESULTS: ISOTROPIC MEIVfBRANE ELEMENTS 

Center displacement U2A Tip rotation ¢B 
Regular mesh Irregular mesh Regular mesh Irregular mesh 

Element LC 1 LC 2 LC 1 LC 2 LC 1 LC 2 LC 1 LC 2 
Q4 0.6921 0.2749 
QC9D 1.462 1.472 1.181 1.207 0.5801 0.6385 0.5243 0.6801 
5;J-NC 1.500 0.6987 
5;J-EP 1.500 1.405 
5lJ-OC 1.500 1.389 
5;J-NT 1.500 1.418 
5;J-PH 1.500 1.393 
8;J(M)*-NC 1.461 1.470 2.021 2.004 0.5765 0.6377 0.8855 1.019 
8;J(M)*-EP 1.483 1.493 1.485 1.488 0.5876 0.6455 0.5930 0.7540 
8;J(M)*-OC 1.483 1.493 1.489 1.493 0.5876 0.6455 0.5943 0.7632 
8;J(M)*-NT 1.483 1.493 1.481 1.488 0.5876 0.6455 0.6079 0.7900 
8;J(M)*-PH 1.461 1.470 1.447 1.436 0.5765 0.6377 0.6160 0.8747 
8;J(M)-NC 1.461 1.470 1.500 1.530 0.5765 0.6377 0.7346 0.9267 
8;J(M)-EP 1.483 1.493 1.232 1.254 0.5876 0.6455 0.5734 0.7623 
8;J(M)-OC 1.483 1.493 1.233 1.257 0.5876 0.6455 0.5956 0.7971 
8;J(M)-NT 1.483 1.493 1.245 1.266 0.5876 0.6455 0.6068 0.8368 
8;J(M)-PH 1.461 1.470 1.273 1.317 0.5765 0.6377 0.6066 0.9481 
8;J(D)*-NC 1.461 1.470 2.011 1.991 0.5765 0.6377 0.8702 0.9925 
8;J(D)*-EP 1.483 1.493 1.483 1.485 0.5876 0.6455 0.5889 0.7374 
8;J(D)*-OC 1.483 1.493 1.487 1.491 0.5876 0.6455 0.5902 0.7450 
8;J(D)*-NT 1.483 1.493 1.480 1.485 0.5876 0.6455 0.6034 0.7704 
8;J(D)*-PH 1.461 1.470 1.445 1.432 0.5765 0.6377 0.6084 0.8428 
8,8(D)-NC 1.461 1.470 1.488 1.512 0.5765 0.6377 0.7150 0.8895 
8,8(D)-EP 1.483 1.493 1.229 1.250 0.5876 0.6455 0.5689 0.7421 
8,8(D)-OC 1.483 1.493 1.230 1.253 0.5876 0.6455 0.5907 0.7741 
8;J(D)-NT 1.483 1.493 1.243 1.262 0.5876 0.6455 0.6009 0.8106 
8;J(D)-PH 1.461 1.470 1.271 1.311 0.5765 0.6377 0.5959 0.9037 
9,8(M)*-NC 1.461 1.470 1.995 1.979 0.5765 0.6377 0.8129 1.007 
9;J(M)*-EP 1.483 1.493 1.480 1.483 0.5876 0.6455 0.5917 0.7534 
9;J(M)*-OC 1.483 1.493 1.482 1.484 0.5876 0.6455 0.5937 0.7622 
9;J(M)*-NT 1.483 1.493 1.473 1.481 0.5876 0.6455 0.6063 0.7886 
9;J(M)*-PH 1.461 1.470 1.434 1.426 0.5765 0.6377 0.6054 0.8542 
9;J(M)-NC 1.461 1.470 1.484 1.518 0.5765 0.6377 0.7272 0.9187 
9;J(M)-EP 1.483 1.493 1.228 1.253 0.5876 0.6455 0.5706 0.7616 
9;J(M)-OC 1.483 1.493 1.230 1.254 0.5876 0.6455 0.5949 0.7979 
9;J(M)-NT 1.483 1.493 1.243 1.267 0.5876 0.6455 0.6063 0.8365 
9;J(M)-PH 1.461 1.470 1.265 1.307 0.5765 0.6377 0.5978 0.9273 
9;J(D)*-NC 1.461 1.470 1.985 1.967 0.5765 0.6377 0.8580 0.9807 
9;J(D)*-EP 1.483 1.493 1.478 1.480 0.5876 0.6455 0.5877 0.7369 
Analytical 1.500 0.600 

Table 3.10: Higher order patch test: Numerical results 
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Center displacement U2A 

Regular mesh Irregular mesh 
Tip rotation 'l/JB 

Regular mesh Irregular mesh 
Element LC 1 LC 2 LC 1 LC 2 LC 1 LC 2 LC 1 LC 2 
9p(D)*-OC 1.483 1.493 1.480 1.482 0.5876 0.6455 0.5898 0.7442 
9p(D)*-NT 1.483 1.493 1.472 1.479 0.5876 0.6455 0.6019 0.7691 
9p(D)*-PH 1.461 1.470 1.433 1.422 0.5765 0.6377 0.5988 0.8251 
9p(D)-NC 1.461 1.470 1.472 1.500 0.5765 0.6377 0.7079 0.8821 
9p(D)-EP 1.483 1.493 1.226 1.248 0.5876 0.6455 0.5660 0.7414 
9,8(D)-OC 1.483 1.493 1.228 1.250 0.5876 0.6455 0.5901 0.7752 
9p(D)-NT 1.483 1.493 1.241 1.262 0.5876 0.6455 0.6003 0.8103 
9p(D)-PH 1.461 1.470 1.264 1.301 0.5765 0.6377 0.5881 0.8862 
Analytical 1.500 0.600 

Table 3.10: Higher order patch test: Numerical results 
( continued) 

 
 
 



Chapter 4 

Isotropic flat shell elements 

In this chapter, fiat shell elements are formulated through the assembly of membrane and 
plate elements. The exact solution of a shell approximated by fiat facets compared to the 
exact solution of a truly curved shell may reveal considerable differences in the distribution 
of bending moments, shearing forces , etc. However, for 'simple' elements the discretization 
error is approximately of the same order and excellent results can be obtained with the fiat 
shell approximation [39] . Apart from being easy to define geometrically, fiat shell elements 
will always converge to the correct deep shell solution in the limit of mesh refinement [46J. 

4.1 Plate formulation 

For the plate component of the fiat shell element the shear deformable formulation of Mindlin 
is employed. The final formulation is modified to include the assumed strain interpolation 
of Bathe and Dvorkin [47]. 1 

4.1.1 Mindlin plates: Bending theory and variational formulation 

In this section the treatments of Hinton and Huang [48] and Papadopoulos and Taylor [49] 
are followed closely, albeit with different notations. However, the same may be found in the 
standard works of, for instance Hughes [38], Zienkiewicz and Taylor [39] and Bathe [50]. 

The simplest plate formulation which accounts for the effect of shear deformation, is pre­
sented . The transverse shear is assumed constant throughout the thickness. T he assumptions 
of the first order Mindlin theory are 

(4.1) 

1From now on, the drilling degree of freedom 1/), introduced in Chapter 2, is denoted 1/)3 for reasons of 
clarity. 
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(4.2) 

where UI, U2 and 'lL3 are the displacements components in the X l ) X2 and .T3 directions 
respectively, U3 is the lateral displacement and 'l/J [ and 'l/J2 are the normal rotations in the 
Xl3 and X23 planes respectively (See Figure 4.1). The element is assumed to be fiat, with 
thickness t. Flatness of the plate is not a necessary assumption, but merely simplifies the 
required notation and implementation. The element area is denoted D. 

/ 
1/ / 

r------------- - -~-~--~~ 

Figure 4.1: Four-node shell element 

(4.1) is obviously inconsistent with three-dimensional elasticity. However , the transverse 
normal stress may be neglected for plates where the thickness is small compared with the 
other dimensions . Moreover, when a linear or constant through-the-thickness displacement 
assumption is made, as is customary in the shear-deformable plate theories, limited locking 
occurs due to the Poisson effect , when (J3 3 is restrained. (4.2) implies that straight normals 
to the reference surface, X3 = 0, remain straight, but do not necessarily remain normal to 
the plate after deformation (Figure 4.2). Also, the transverse displacement 'U3 is constant 
through the thickness . 

The displacement field assumed in (4.2) yields in-plane strains of the form 

X3'l/J2,2 

1'12 X3 ('l/JI,2 + 'l/J2,d (4.3) 

where 

(4.4) 
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I <iJ; 

~I I 

I ~ I 

I fu l 'A c· 
I ssumed delormatlOIl 

I I 

True deformation 

Normal on neutral axis 

after deformation 


Figure 4.2: Mindlin theory 

T he transverse shear strains are obtained as 

1 13 = 'U3 ,1 + 'lh 
123 = 'U3 ,2 + <iJ1 ( 4.5) 

For plane stress and linear isotropic elasticity the forgoing strain field defines the in-plane 
stresses as 

E 
CTll ------:-2 [Ell + VE22 ] (4 .6)

1 - v 

-1--
E 
- v- h 2 + VEn ] (4.7)

2 

CT21 = G,12 (4.8) 

where E is Young's modulus and v is Poisson's ratio. Similarly, the out-of-plane stresses are 
given by 

CT13 CT31 = (4.9)G ' 13 
(/23 CT32 = G ,'23 (4.10) 

where 

G = E (4.11)
2(1 + v) 
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Integrating the in-plane stresses , which vary linearly along the plate thickness , gives stress 
resultants of .the form 

t 

Mll l : O'U X 3 dX3 (4. 12) 
. 2 

t 

M2 2 1_21 0'22·1:3 dX3 (4. 13) 
2 

t 

M12 = M21 = / 2 0'12 X 3 dX3 (4 .14) 
t -2 

Introd ucing matrix notation , the forgoing are written as 

[ 
!vIll 1 

M= M22 
M12 

(4. 15) 

and the curvatures It as 

(4. 16) 

It follows that the moment-curvature relation may be expressed as 

( 4.17) 

where 

D - _ _ E_t
3

_ [~~ ~ 1 
b - 12(1 - 1/

2 ) 0 0 1;// 
(4.18) 

Similarly, the out-of-plane stresses, when integrated along the thickness, glve transverse 
shear forces 

which , using matrix notation, results in 

where 

t 

1_21 0'13 dX3 
"2 
t 

[ 21 0'23 dX3 
2 

Q= D si 

(4. 19) 

( 4.20) 

(4.21) 
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( 4.22) 

( 4.23) 

( 4. 24) 

Summation convention is implied over Xl, X2 and X3 for Latin indices and over Xl and X2 

for Greek indices, so that the local equilibrium equations may be appropriately integrated 
through the thickness to deduce the plate equilibrium equations 

SOt,Ot + P o (4.25) 

where p denotes the transverse surface loading. The first equation relates the bending mo­
ments to the shear forces, whereas the second is a statement of transverse force equ ilibrium. 

In the limiting case where t ----+ 0 the Kirchhoff hypothesis of zero transverse shear strains 
must hold . Therefore 

U31 + 1/;2 0 
o (4.26) 

(4.5) imply that the transverse shear strain remains constant through the element thickness. 
This is inconsistent with classical theory, where the corresponding transverse shear stress 
varies quadratically. Also , the transverse shear strain on the plate surface is required to be 
zero. Consequently, a temporary modification to the displacement field is made, namely 

(4.27) 

Imposing the constraint 

t 

1~2l (x~ + ,BX3)X3 dX3 = 0 
. 2 

( 4.28) 

and setting 113 = 0 on the plate faces results in 

[ 
5 ( 2 3t2) 1 1 13 = 1 - 3t2 3X3 - 20 (1/;2 + u3,d (4.29 ) 

Moreover, substituting (4.29) into (4.21) leads to 
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Therefore, for consistency reasons, a 'shear correction ' term is introduced as 

into (4,21), which now becomes 

where 

, 6 
k=-

5 

T he total plate energy, based on potential energy for bending and shear, is written as 

48 

(4 .30) 

(4,31) 

( 4.32) 

(4.33) 

( 4.34) 

where IIext is the potential energy of the applied loads. The thin plate Kirchhoff conditions 
of (4 .26) should be satisfied in the finite element interpolation . 

4.1.2 F inite element interpolation 

The displacement in the reference surface of the element is defined by 

w here Nt (~, TJ) are the isoparametric shape functions 

The sectional (normal) rotations are interpolated as 

Nn~, 17)1/Jl 
Nt (~, 17 )1/J~ 

(4 ,35 ) 

( 4.36) 

( 4.37) 

(4 .38) 
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and the transverse mid-surface displacements are interpolated as 

( 4.39) 

where U3, 'l/Jl and 'l/J~ are the nodal point values of the variables U3, 'l/J] and 'l/J2 respectively. 

The curvature-displacement relations are now written as 

4 

'" = L B bi qi ( 4.40) 
i=l 

The element curvature-displacement matrix is given in Appendix A. The unknowns at node 
z are 

(4.41) 

The shear strain-displacement relations are written as 

4 

1= L B siqi (4.42) 
i = l 

The element shear strain-displacement matrix is given in Appendix A. 

4.1.3 Assumed strain interpolations 

The stationary condition of (4.34) directly resul ts in the plate force-displacement relationship 

K eq = T ( 4.43) 

where 

K C = (K b + K s) ( 4.44) 

with 

K b In ",T D bI'\, dD (4.45) 

K s In IT D SI dD ( 4.46) 

Subscripts band s indicate bending and shear respectively. For elements with 4 nodes, the 
expression for K b is problem free, at least in terms of locking. The employed interpolation 
field of (4.36) in K S results in severe locking when full integration is used . 
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One solution that overcomes the locking phenomena, while ensuring that the final element 
formulation is rank sufficient, is to incorporate the substitute assumed strain interpolation 
field of Bathe and Dvorkin [7, 47]. 

3 

A 
f.~t 

~-+--f--J 

r; 

Figure 4.3: Interpolation functions for the transverse shear strains 

Depicted in Figure 4.3, the assumed interpolation field of Bathe and Dvorkin is written as 

(4.47) 

( 4.48) 

where the superscripts A through D designate the sampling points for calculating the co­
variant shear strains. The shear strain components in the Cartesian coordinate system, E13 

and E23, are obtained [51] using a transformation which in the case of a fiat plate element 
reduces to the standard (2 x 2) Jacobian, J 

{ ~~: } = l [~~ :~ ~~ :~ 1 { !:: } = ~J~s ( 4.49) 

Therefore, the substitute shear strains Es are expressed as 
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while the associated transverse stiffness-displacement relationship becomes 

k s = / B; DsBs dD .!n 
The element stiffness-displacement relationship now becomes 

51 

( 4.50) 

( 4.51) 

( 4.52) 

vvhich is the final element formulation. The assumed strain interpolation satisfies the Kir­
choff conditions of zero transverse shear strains in the thin plate limit, while locking is also 
adequately prevented. 

4 .2 Shell formulation 

4.2.1 Element formulation 

Flat shell elements are simpler than generally curved shell elements, both in terms of formu­
lation and computer implementation. As the element Jacobian matrix is constant through 
the thickness, analytical through-the-thickness integration is easily performed . 

The element force-displacement relationship of the 8,B(M) and 9,B(M) membrane families is 
defined by (2.80), and for the 8,B(D) and 9,B(D) membrane families by (2.84). These rela­
tionships are repeated here using a different notation to distinguish between the membrane 
and plate components. T he two different force-displacement relationships for the membrane 
families are rewritten in a universal form to clarify the notation 

K mqm = rm (4.53) 

where 

(4.54) 

for the mixed formulation, and 

K m= K + P, ( 4.55) 

for the displacement formulation. 

K m denotes the membrane stiffness matrix, q rn the element displacements and rm the ele­
ment body force vector. The unknown nodal displacements qm and the specified consistent 
nodal loads r m are defined by 
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Tm 

[u~ u; 1P;f 
[U{ U~ NI~lT 

where 1P; is the in-plane rotation and M~ the in-plane nodal moment. 

52 

(4.56) 

( 4.57) 

Similarly, the Mindlin plate force-displacement relationship (see (4.52)) is rewritten as 

( 4.58) 

The displacements qp ' and the specified consistent nodal loads T p, are resp ectively defined 
by 

['u1 1P~ 1P;f 
[U~ M{ M~f 

(4.59) 

( 4.60) 

T hrough assembly of the membrane and plate elements, the flat shell element stiffness matrix 
K e is obtained in a local element coordinate system as 

T he local shell force-displacement relationship is given by 

where the shell nodal displacements and loads for node i respectively are 

[u~ u~ u1 1P~ 1P; 1P~] T 
[U{ U~ U~ M{ M~ j\,{Jf 

4.2 .2 A general warped configuration 

( 4.61) 

( 4.62) 

( 4.63) 

( 4.64) 

The warp correction employed in this study is the so-called 'rigid link' correction suggested 
by Taylor [6], which is depicted in Figure 4.4. Simple kinematic nodal relationships are used 
to evaluate the warp effect. 

For elements with true rotational degrees of freedom the rotations about the local x3-axes 
in the warped and projected planes may be taken as equal. Assuming reasonably small 
warp , the effect of the drilling degree on the out-of-plane bending rotations is neglected. 
The strain-displacement modification presented by Taylor is therefore extended by addition 
of the final row and column as follows [52] 
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2 

Figure 4.4: Warped and projected quadrilateral shell element 

- i 
U 1 
-i
U 2 
-i
U 3 

ib1 
ib~ 
ib1 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 

_ 
. 
Xi

3 0 0 1 0 0 
0 3 0 0 1 0Xi 

0 0 0 0 0 1 

iu1 
i

U 2 
i'U3 (4.65)

t/Jt 
'1/;2 
1/;3 

where x~ defines the warp at each node and bared quantities (for example ul) act on the fiat 

projection. 


This correction is much simpler than for instance the correction presented by Robinson [53]. 


 
 
 



Chapter 5 

Numerical results: Isotropic plates 
and shells 

In this chapter numerical results are presented for the isotropic plate and shell elements 
presented in Chapter 4. 

In the following, 

• SA denotes the Bathe-Dvorkin assumed strain plate element [7]. 

• QI denotes the incompatible modes element presented by Ibrahimbegovic [54] . 

• QC9D / SA and QC9D* / SA denotes the fiat shell elements that are formed by com­
bining the QC9D membrane element of Ibrahimbegovic et al. and the Bathe-Dvorkin 
assumed strain plate element , respectively with and without the locking correction. 

• 5;3 /SA denotes the fiat shell element that is formed by combining the 5;3-NT membrane 
element and the Bathe-Dvorkin assumed strain plate element. 

• 8;3-NC/SA, 8;3-NT /SA, 8;3*-NC/SA and 8;3*«T /SA denotes the fiat shell elements 
that are formed by the 8;3(D) membrane element combined with the Bathe-Dvorkin 
assumed strain plate element , respectively with and without the locking correction . 

• 9;3-NC/SA, 9;3- T /SA, 9;3*-NC/ SA and 9;3*-NT / SA denotes the fiat shell elements 
that are formed by the 9,6(D) membrane element combined with the Bathe-Dvorkin 
assumed strain plate element, with and without the locking correction. 

The notation' (incl. RBF) ' indicates that the following residual bending fiexibility correction, 

(5.1) 

54 
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is included [13 , 45, 55], where the term l2 / Eh2 is denoted the residual bending flexibility in 
[55]. 

A shear rigid formulation is obtained by setting the shear correction factor k ----t (X) [52]. 

5.1 Plate patch tests 

T he plate elements used in this study passed the following patch tests: 

• Constant curvature patch test (See Figure 5.1) 

• Constant shear patch test with zero rotations (See Figure 5.1) 

• Constant twist patch test (See F igure 5.2) 

However, the constant twist patch test depicted in Figure 5.2 is passed exactly for thin plates 
only. Since the plate is exactly the same as the original formulation of Bathe and Dvorkin, 
these results are not repeated here. (See [7, 47]). 

The residual bending flexibility correction is not included in the patch tests. However , the 
element rank stays unchanged as a result of the residual bending flexibility correct ion. 

~ofI.-.L.LJ.....<'-"-"-~'-"-"--®p 

~-----' 

Figure 5.1: Constant curvature patch test and constant shear patch test with zero rotations 

Figure 5.2: Constant twist patch test 
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5.2 	 Cantilever under t ransverse tip loading 

T his simple one-dimensional problem is taken from Bathe and Dvor·kin [47]. The geometry 
and the material properties are depicted in Figure 5.3. Normal 4-node elements employing 
bi-linear bending shape functions can only represent this problem in the limit of mesh re­
finement, since the elements only have a constant strain capability. Table 5. 1 reveals that 
the residual bending flexibility correction raises the capability of the 4-node element to the 
linear strain level for this problem. 

E = 2.1 X 106 P = 1.0 
v = 0.0 t = 0.1 

'tPI = 0 

Ul = U2 = U3 


1/Jl = 0 

= 0 

O '-----,;..:========:;;;~--LC
L-U_2_=_U3_-_--' .y 10 

Figure 5.3: Cantilever under transverse tip loading 

5.3 	 T hin simply supported plate under uniformly dis­
tributed load 

This problem (See Figure 5.4) is included to illustrate the effect of the residual bending 
flexibility correction on thin plates [54]. Moreover, the effect of the degree of support at 
the boundaries (Xl = l/2, X l = -l/2, X 2 = l/2 and X2 = - l/2) is also illustra.ted. Two 
conuitions are considered , namely hard support and soft support. For the soft supported 
condition the theoretical solution is unknown. The central deflection , -U3A' is measured. 

Tables 5.2 and 5.3 show that the QI and SA(incl. RB F) elements converge from above, while 
the SA and SA(k ---t (0) elements converge form below. 


For both support conditions the results obtained with the SA element are superior to the 

results obtained with both QI and SA(incl. RBF). 


5.4 	 Pinched hemispherical shell with 18° hole 

T his problem forms part of the set proposed by NlacNeal a.nd Harder [45]. This doubly­
curved shell problem is characterized by inextensible bending modes and large rigid body 
rotations [56]. T he geometry is depicted in Figure 5.5, and tabulated numerical results are 
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Center 
line E = 10.92 l = 10 P = 1 

v = 0.3 t = 0.1 

x'l 

l/2 

, , 
'A e: - ­ - - - - ­ - - - ­

Hard support 
Uj = 0 
1/Jl = 1/J2 = 'l/J3 = 0 

Soft support 
U3 = 0 

:r:l~ Center 
lineI'" "I l/ 2 

:r-igure 5.4: Thin simply supported plate under uniformly distributed load 

presented in Table 5.4. The exact solution is 0.094 [45], although more recent analyses 
suggest 0.093 [20]. 


T he results obtained "vith the 8,6 / SA and 9/3/SA families are almost identical. 5/3/ SA 

outperform the 8/3/SA and 9/3/ SA families for a coarse mesh. Note that the NC-formulations 

are more accurate than the NT-formulations for the coarse mesh. 


T he influence of r on this problem is very small, although for small values of r the accuracy 
improves slightly. The results are reflected in Table 5.5. The choice of "( = G results in good 
accuracy. 

For the coarse mesh the elements with the membrane locking correction using the 8-point 
integration scheme outperforms the other combinations of integration schemes with and 
without the locking correction (see Table 5.6). . 

5.5 Warped pinched hemisphere 

In Figure 5.6 the geometry and the discretization of the warped pinched hemisphere is 
depicted. The chosen discretization implies that quadrilateral flat shell elements become 
highly warped. Mesh refinement is obtained by bisection. ote that the warpage does not 
disappear in the limit of mesh refinement. 

The exact analytical solution was presented by Parisch [56], which compares well with the 
solution of the pinched hemisphere with 18° hole, since additional elements in the top of the 
hemisphere are expected to contribute only slightly towards the overall stiffness of the shell 
under pinching loads. This problem is also dominated by inextensible bending modes and 
large rigid body rotations [56]. 

Table 5.7 reveals that the 5/3/ SA element outperforms all the other elements for this test. 
Very little detrimental effect due to the out-of-plane warp is evident. Still, the warp correc­
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Symmr---­__-r-

A 

E = 9.825 X 107 

V = 0.3 
T = 10.0 
P = 1.0 
t = 0.04 

Figure 5.5: Pinched hemisphere 

tion , (4.65), is crucial. 

5.6 Thick pinched cy linder with open ends 

The pinched cylinder problem is dominated by inextensible bending behavior and results 
will reveal any tendency towards membrane-bending locking [6J. In Figure 5.7 the geometry 
and the discretization are depicted .. 

Table 5.8 reveals that the NC-formulations are the most accurate for the coarse mesh . In 
general, the locking correction improves the element behavior for this problem. 

5.7 Thin pinched cylinder with open ends 

This problem is identical to the previous, except for a thiner wall thickness (Figure 5.7). 
Table 5.9 ill ustrates that all the elements tested perform almost identically, since the drilling 
degrees of freedom are not activated due to the pinching loads. The locking correction only 
slightly improves the performance of the elements. 
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E = 6.825 X 107 

J/ = 0.3 
P = 1.0 
r = 10.0 
t = 0.04 

Fixed 

Figure 5.6: Warped pinched hemisphere 

5.8 Pinched cylinder with end membranes 

This problem is also dominated by inextensible bending behavior (See Figure 5.8). However, 
this problem is regarded as more difficult than the pinched cylinder wi th open ends [47]. 

From Table 5.10 it can be seen that that all the elements tested perform almost identically. 
(Once again, the drilling degrees of freedom are not activated due to the pinching loads. ) 

5.9 T hick pre-twisted beam 

This problem is in the set proposed by MacNeal and Harder [45]. Results are presented 
by Taylor[6]. The thick pre-twisted beam depicted in Figure 5.9 is used to illustrate the 
capability of the elements for warped geometries. 

umerical results for this problem are tabulated in Table 5.11. All the elements tested 
perform almost identically for this test . The 5{J jSA element is not inc! uded in this test , 
because the lack of drilling degrees of freedom complicates the use of this element for this 
geometry. This shows that the drilling degrees of freedom are a necessity for the problem. 
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5.10 

r = 4.953 
l = 10 .35 
E = 10.5 X 106 

v = 0.3125 

ThiCk{ t = 0.094 
P = 100.0 

Thin {t = 0.01548 
P = 0.1 

I" 1/2l1/2 ·1 

Figure 5.7: Pinched cylinder with open ends 

Thin pre-twisted beam 

Jetteur [16] proposed this problem, and this problem is used to evaluate locking. Results 
are presented by Taylor[6]. The thin pre-twisted beam is also depicted in Figure 5.9 . 

.\Jumerical results for this problem are tabulated in Table 5.12. Again, all the elements 
perform virtually identical and are very accurate. 

5.11 Scordelis-Lo roof 

In Figure 5.10 the geometry and the discretization of this problem is depicted. The analytical 
solution of the mid-side vertical displacement, U3A' is normally taken as 0.3024 [45], even 
though a value of 0.3086 was originally presented by Scordelis and Lo [57]. 

T he NT-formulations and the QC9D element outperform the other elements (Table 5.13) . 

5 .12 Slender cantilever 

MacNeal and Harder [45] proposed this problem to illustrate the effect of mesh distortion 
and element aspect ratio (See Figure 5.11, Table 5.14). Three shapes are considered, namely 

 
 
 



61 CHAPTER 5. NUMERICAL RESULTS: ISOTROPIC PLAT ES AND SHELLS 

E = 3.0 X 106 
T = 300.0 

V = 0.3 l = 600.0 
P = 1.0 t = 3.0 

E nd 
membrane 

r---~~~~-L~-------

Figure 5.8: Pinched cylinder with end membranes 

• regular shaped elements, (Xi = 0° for i = 1, 2,3,4 ,5, 

• parallelogram shaped elements, (Xi = 45° for i = 1, 2,3 ,4,5, and 

• trapezoidal shaped elements, (x, = 135° and (X) = 45° for i = 1,3,5 and j = 2,4. 

The clamped boundary condition prescribed by MacNeal and Harder for the beam does 
not allow modeling of the pure extensional force field for non-zero values for Poisson's ratio 
(v #- 0) with membrane elements. For this reason the extension test was modified so that 
only the required restraints, two in the longitudinal and one in the thickness direction, are 
modeled [52]. 

For all the meshes all the elements converge to the exact answer for the unit extensional 
load case, except the C-formulation without the locking correction for the regular mesh. 
For the out-of-plane shear and the twisting forces all the elements yields identical results for 
all the meshes. Even for the irregular meshes the elements perform very well. 

For the in-plane shear test the 5(3 j8A element is the most accurate, while the T-formulation 
are also very accurate for the regular mesh. For the irregular meshes the 5(3 j8A element is 
not accurate, while the 8(3*-NT j8A element still gives accurate results. 
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xl 
Ell / E 22 = 40 w = 1.1 
E22 /G23 = 2 l = 12 E~~~§fu E22/G13 = 5/ 3 Thick: t = 0.32 
E 22 / G 12 = 5/3 T hin: t = 0.0 5 

f4--!... -----~~rfV' 
l/1 2 = 0.28 P = 1 

X 3\ Q=l 

Figure 5. 9: Pre-twisted beam 

E = 432 X 106 
l = 50.00 


l/ = 0.0 r = 25.0 

Load =90/unit shell area (weight) t = 0.25 


I ~ 

I 

Figure 5.10: Scordelis-Lo roof 

Element 1x1 1 x4 
SA 1.429 1.875 

SA(incl. RBF) 1.905 1.905 

Exact solution 1.905 

Ta ble 5.1: Cantilever under transverse tip loading: Tip displacement U3A 
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107E = 1.0 X P = 1 t = 0.1 
/.I = 0.30 l = 6.0 h = 0.2 

~r-----"-------,~l} 


A 
~--~--~--~--~--~--r 

Regular mesh 

! IY f f IY 
Irregular mesh 

Figure 5.11: Slender cantilever 

Element 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32 
SA 39712 40436 40593 40632 40641 
SA(k -+ (0) 39690 40414 40572 40612 40625 
SA (incl. RBF) 44141 41499 40854 40694 40654 
QI [54] 42512 41115 40761 40673 40651 
Plate theory [58] 40644 

Table 5. 2: T hin simply supported plate under uniformly distributed load (Hard supported): 
Center displacement -U3A 

Element 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32 
SA 39728 40466 40653 40747 40841 
SA(k -+ (0) 39690 40414 40572 40612 40625 
SA (incl. RBF) 46550 42774 41533 41089 40948 
QI [54] 44613 42273 41395 41060 40961 

Table 5.3: Thin simply supported plate under uniformly distributed load (Soft supported): 
Center displacement -7.L3A 
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Element 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32 

5{3/S 0.08420 0.09330 0.09292 0.09313 0.09346 
QC9D/SA 0.006745 0.01135 0.05953 0.08987 0.09318 
8{3-NC/SA 0.01202 0.05681 0.08483 0.09278 0.09348 
8{3-NT / SA 0.007731 0.01304 0.06408 0.09053 0.09322 
9{3-NC/SA 0.01185 0.05606 0.08459 0.09276 0.09348 
9{3­ T / S 0.006939 0.01 226 0.06145 0.09015 0.09320 
QC9D*-SA 0.006554 0.01047 0.05905 0.08998 0.09324 
8(3*-NC/SA 0.009182 0.03363 0.08394 0.09297 0.09355 
8{3*­ T /SA 0.007268 0.01177 0.06329 0.09063 0.09328 
9{3*-NC/SA 0.008982 0.03334 0.08372 0.09295 0.09355 
9!3 *-NT/SA 0.006809 0.01116 0.06087 0.09026 0.09326 
Best known [20] 0.09300 

Table 5.4: Pinched Hemisphere with 18° Hole: Radial displacement UI A 

2 x 2 I 
G x 10 3 0.008067 
G x 10-2 0.008057 
G x 10-1 0.007975 
G x 10° 0.007731 
G x 101 0.007605 
G x 102 0.007586 
G x 103 0.007584 
Best known 0.093000 

Table 5.5: Pinched Hemisphere with 18° Hole: Influence of I for the 2 x 2 mesh 
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Element 2 x 2 4 x 4 8 x 8 16 x 16 
5 point integration 
8,6 *-NC/SA 0.01087 0.05721 0.09174 0.09362 
8,Lh-EP/SA 0.008424 0.03635 0.08937 0.09312 
8{3*-OC/SA 0.007254 0.03604 0.08939 0.09312 
8{3*-NT/SA 0.007338 0.03612 0.08939 0.09312 
8{3*-PH/SA 0.007274 0.03492 0.08926 0.09311 
8{3-NC/SA 0.02543 0.08607 0.09311 0.09343 
8{3-EP /SA 0.02981 0.08757 0.09270 0.09307 
8{3-0 C/SA 0.02600 0.08707 0.09272 0.09308 
8{3­ T / SA 0.02603 0.08707 0.09272 0.09308 
8{3-PH/S 0.01494 0.08287 0.09262 0.09307 
8 point integration 
8{3 *-NC/SA 0.01088 0.05733 0.09175 0.09362 
8{3*-EP / SA 0.008416 0.03601 0.08922 0.09311 
8{3 *-OC/SA 0.007309 0.03598 0.08926 0.09311 
8{3 *-NT/ SA 0.007430 0.03607 0.08926 0.09311 
8{3*-PH/ SA 0.007276 0.03457 0.08909 0.09310 
8{3-NC/SA 0.02530 0.08596 0.09312 0.09344 
8{3-EP / SA 0.02452 0.08532 0.09253 0.09306 
8{3-0C/SA 0.03495 0.08610 0.09257 0.09307 
8{3-NT/ S 0.03507 0.08612 0.09257 0.09307 
8{3-PH/SA 0.01425 0.08045 0.09243 0.09306 
Full integration 
8{3* - ·C/ SA 0.009182 0.03363 0.08394 0.09297 
8{3 *-EP / SA 0.007056 001176 0.06330 0.09063 
8{3 *-OC/SA 0.007299 0.01182 0.06333 0.09063 
8{3 *-. T / SA 0.007268 0.01177 0.06329 0.09063 
8{3* -PH/ SA 0.006586 0.01120 0.06141 0.09035 
8{3-NC/S 0.01202 0.05681 0.08483 0.09278 
8{3-EP / SA 0.007667 0.01306 0.06409 0.09053 
8{3-0C/SA 0.008486 0. 01311 0.06411 0.09053 
8{3­ T / SA 0.007731 0.01304 0.06408 0.09053 
8{3-PH/ SA 0.006829 0.01239 0.06208 0.09025 
Best known 0.093 

Table 5.6: Pinched Hemisphere with 18° Hole: Effect of integration scheme order 
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Element 2x2 4 x4 8 x 8 16 x 16 

5/3/SA 0.08549 0.09086 0.09154 0.09185 
QC9D/SA 0.0005911 0.006161 0.04522 0.08607 
8/3-NC/SA 0.001446 0.02180 0.07363 0.09068 
8/3-NT / SA 0.0006833 0.007153 0.04885 0.08692 
9/3- NC/SA 0.001439 0.02153 0.07339 0.09066 
9/3-NT/SA 0.0006833 0.006864 0.04805 0.08674 
QC9D*/SA 0.0004999 0.005915 0.04471 0.08614 
8/3*-NC/SA 0.001410 0.01910 0.07212 0.09085 
8t3*-NT /SA 0.0005637 0.006761 0.04813 0.08697 
9,G*-NC/SA 0.001402 0.01890 0.07190 0.09083 
9,G*-NT /S 0.0005637 0.006519 0.04736 0.08680 
Analytical [56] 0.09240 

Table 5.7: Warped pinched hemisphere: Radial displacement U1 
A 

Element 2 x 2 4 x 4 8 x 8 16 x 16 
5/3 /SA 0.07026 0.1002 0.1100 0.1128 
QC9D/SA 0.07005 0.09980 0.1099 0.1128 
8,G-NC/SA 0.07088 0.1005 0.1101 0.1129 
8,B-NT/ SA 0.07008 0.09990 0.1099 0.11 28 
9,G-NC/ SA 0.07088 0.1005 0.1101 0.1129 
9,G-.;T/SA 0.07005 0.09982 0.1099 0.1128 
QC9D*/SA 0.07001 0.09979 0.1099 0.1128 
8/3*-NC/SA 0.07019 0.1007 0.1102 0.1129 
8,G*- T/SA 0.07002 0.09986 0.1099 0.1128 
9,G*- elSA 0.07019 0.1007 0.1102 0.1129 
9,G*-1 T / SA 0.07001 0.09981 0.1099 0.1128 
Jaamei [17] 0.094 

Table 5.8: T hick pinched cylinder with open ends: R adial displacement -U3A 
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Element 2 x 2 4 x 4 8 x 8 16 x 16 
5(3 /SA 0.01562 0.02196 0.02383 0.02440 
QC9D/SA 0.01561 0.02194 0.02380 0.02439 
8(3-NCjSA 0.01562 0.02200 0.02387 0.02442 
8(3-NT/SA 0.01561 0.02194 0.02381 0.02439 
9(3-NC/SA 0.01562 0.02200 0.02387 0.02442 
9;3-NT/SA 0.01561 0.02194 0.02380 0.02439 
QC9D*/SA 0.01561 0.02194 0.02380 0.02440 
8(3*- C/SA 0.01562 0.02197 0.02389 0.02443 
8(3*­ fTjSA 0.01561 0.02194 0.02381 0.02440 
9(3*-NCjSA 0.01562 0.02197 0.02389 0.02443 
9(3*-NT j SA 0.01561 0.02194 0.02380 0.02440 
Jaamei [17] 0.01548 

Table 5.9: Thin pinched cylinder with open ends : Radial displacement - U3A 

Element 4 x 4 8 x 8 16 x 16 
5(3jSA 0.7175E-05 1.376E-05 1.792E-05 
QC9D/ SA 0.6824E-05 1.396E-05 1. 787E-05 
8(3-NC/ SA 0.8138E-05 1.412E-05 1.802E-05 
8(3­ T /S 0.6888E-05 1.355E-05 1. 787E-05 
9,6-1 CjSA 0.8138E-05 1.412E-05 1.802E-05 
9(3-NTjSA 0.6831E-05 1. 35 1E-05 1. 787E-05 
QC9D*jSA 0.6930E-05 1.350E-05 1.785E-05 
8(3*-NCjSA 0.8078E-05 1.411E-05 1.801E-05 
8(3*­ T/SA 0.6956E-05 1.354E-05 1.786E-05 
9,6*-NCjSA 0.8078E-05 1.411E-05 1.801E-05 
9(3*-NT/SA 0.6938E-05 1.352E-05 1.786E-05 
Jaamei [17] 1.8248E-05 

Table 5.10: P inched cylinder with end membranes: Radial displacement -U3A 
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Element 1 x 6 2 x 12 4 x 24 8 x 48 
In-plane shear: 'U3A 

QC9D/SA 5.387E-03 5.405E-03 5.412E-03 5.416E-03 
8,B-NC/SA 5.387B-03 5.405E-03 5.412E-03 5.41GE-03 
8,B-NT/SA 5.388E-03 5.405E-03 5.412E-03 5.416E-03 
9/3-NC/SA 5.387E-03 5.405E-03 5.412E-03 5.416E-03 
9/3-NT/SA 5.388E-03 5.405E-03 5.412E-03 5.416E-03 
QC9D*/SA 5.387E-03 5.405E-03 5.412E-03 5.416E-03 
8/3*-NC/SA 5.387E-03 5.405E-03 5.412E-03 5.416E-03 
8/3*-NT/ SA 5.388E-03 5.405E-03 5.41 2E-03 5.416E-03 
9/3*-NC/SA 5.387E-03 5.405E-03 5.412E-03 5.416E-03 
9/3*-NT / SA 5.388E-03 5.405E-03 5.412E-03 5.416E-03 
Analytical [45] 5.429E-03 
Out-of-plane shear: 'U2A 

QC9D/SA 1.758E-03 1.755E-03 1.752E-03 1.753E-03 
8/3-NC/SA 1.757E-03 1.755E-03 1.752E-03 1.753E-03 
8,8­ T/SA 1.761E-03 1.756E-03 1.753E-03 1.753E-03 
9,B-NC/SA 1. 757E-03 1. 755E-03 1. 752E-03 1.753E-03 
9/3­ T/SA 1.761E-03 1.756E-03 1.753E-03 1.753E-03 
QC9D* / SA 1.758E-03 1.754E-03 1.752E-03 1.753E-03 
8/3*-1 C/SA 1.757E-03 1.754E-03 l.752E-03 1.753E-03 
8/3*-NT / SA 1.761E-03 1.755E-03 1.753E-03 1.753E-03 
9/3*- -CI S 1.757E-03 1.754E-03 1.752E-03 1.753E-03 
9/3*-NT/SA l.761E-03 1.755E-03 1.753E-03 1.753 -03 
Analytical [45] 1.750E-03 

Table 5.ll: Thick pre-twisted beam: Numerical results 
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Element 1 x 6 2 x 12 4 x 24 8 x 48 
In-plane shear: U3 A 

QC9DjSA l.383 l.384 l.386 l.387 
8(3­ CjSA l.383 1.384 1.386 l.387 
8(3-- IT jSA 1.383 1.384 l.386 l.387 
9(3-NC j SA 1.383 1.384 1.386 1.387 
9(3-NTjSA l.383 1.384 l.386 1.387 
QC9D*jSA 1.383 l.384 1.386 1.387 
8(3* -NCjSA l.383 1.384 1.386 1.387 
8(3 *-NTjSA 1.383 l.384 l.386 1.387 
9(3 *-NC j SA l.383 l.384 1.386 l.387 
9(3 *-NTjSA l.383 l.384 l.386 1.387 
lsoparametric solid elements [16] 1.3857 
Out-of-plane shear: U2A 

QC9D j SA 0.3442 0.3434 0.3429 0.3429 
8(3-NCjSA 0.3442 0.3434 0.3429 0.3429 
8(3-NTjSA 0.3443 0.3434 0.3429 0.3429 
9(3-NCjSA 0.3442 0.3433 0.3429 0.3429 
9(3­ T jSA 0.3443 0.3434 0.3429 0.3429 
QC9D* j SA 0.3442 0.3432 0.3429 0.3429 
8(3 *-NCj SA 0.3442 0.3432 0.3429 0.3429 
8(3 *-, TTjSA 0.3443 0.3432 0.3429 0.3429 
9(3*-NC j SA 0.3442 0.3432 0.3429 0.3429 
9(3 *-NTj SA 0.3443 0.3432 0.3429 0.3429 
Isoparametric solid elements [16] 0.3427 

Table 5.12: Thin pre-twisted beam: Numerical results 

Element 4 x 4 8 x 8 16 x 16 
5(3 jSA 0.3162 0.3052 0.3074 
QC9DjSA 0.3159 0.3038 0.3016 
8(3-NC j SA 0.3417 0.3107 0.3034 
8(3­ T jSA 0.3159 0.3038 0.3016 
9(3-1 CjSA 0.3417 0.3107 0.3034 
9(3­ T jSA 0.3159 0.3038 0.3016 
QC9D*jSA 0.3168 0.3041 0.3017 
8(3*-NCjSA 0.3428 0.3110 0.3034 
8(3*-NTjSA 0.3169 0.3041 0.3017 
9(3 *-NCjSA 0.3428 0.3110 0.3034 
9(3 *-NTj SA 0.3169 0.3041 0.3017 
Analytical 0.3024 

Table 5.13: Scordelis-Lo roof: Center displacement U 3A 
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Unit extensional In-plane shear Out-of-plane shear Twisting forces 
Element UI A U2A U 3A VJIA 

Regular mesh 
5,8 / 8A 0.3000E-04 0.1073 0.4235 0.03015 
QC9D/SA 0.3000E-04 0.1055 0.4235 0.03015 
8,8-NC/ SA 0.3000E-04 0.3794 0.4235 0.03015 
8,8­ T/S 0.3000E-04 0.1072 0.4235 0.03015 
9,8-NC/S 0.3000E-04 0.3794 0.4235 0.03015 
9,8-NT/SA 0.3000E-04 0.1072 0.4235 0.03015 
QC9D*/SA 0.3000E-04 0.1055 0.4235 0.03015 
8,8*-NC/SA 0.3025E-03 0.3794 0.4235 0.03015 
8,8*­ T /SA 0.3000E-04 0.1072 0.4235 0.03015 
9,8*-NC/SA 0.3543E-03 0.3794 0.4235 0.03015 
9,8*­ T /SA 0.3000E-04 0.1072 0.4235 0.03015 
Parallelograms 
5,B/SA 0.3000E-4 0.06858 0.4226 0.02722 
QC9D/SA 0.3000E-4 0.05519 0.4226 0.02722 
8,8-NC/SA 0.3000E-4 0.1530 0.4226 0.02722 
8,8-NT/SA 0.3000E-4 0.06640 0.4226 0.02722 
9,8-NC/SA 0.3000E-4 0.1519 0.4226 0.02722 
9,8-NT /SA 0.3000E-4 0.06169 0.4226 0.02722 
QC9D* / SA 0.3000E-4 0.09868 0.4226 0.02722 
8,B *-NC/SA 0.3000E-4 0.2838 0.4226 0.02722 
8,8 *-NT/ SA 0.3000E-4 0.1061 0.4226 0.02722 
9,8*-NC/SA 0.3000E-4 0.2837 0.4226 0.02722 
9,B*-NT /S A 0.3000E-4 0.1048 0.4226 0.02722 
Trapezoidal 
5,8/SA 0.3000E-4 0.005859 0.4163 0.02834 
QC9D/SA 0.3000E-4 0.004612 0.4163 0.02834 
8,8-NC/SA 0.3000E-4 0.01685 0.4163 0.02834 
8,8-NT/ SA 0.3000E-4 0.005226 0.4163 0.02834 
9,8-NC/SA 0.3000E-4 0.01685 0.4163 0.02834 
9,8-NT /SA 0.3000E-4 0.005022 0.4163 0.02834 
QC9D*/SA 0.3000E-4 0.09494 0.4163 0.02834 
8,B*-NC/S A 0.3000E-4 0.2611 0.4163 0.02834 
8,8*-NT/SA 0.3000E-4 0.1064 0.4163 0.02834 
9,8*-NC/SA 0.3000E-4 0.2610 0.4163 0.02834 
9,8*-NT/ SA 0.3000E-4 0.1063 0.4163 0.02834 
Beam theory 0.3000E-4 0.1081 0.4321 0.03208 

Table 5.14: Slender cantilever: Numerical results 

 
 
 



Chapter 6 

Orthotropic flat shell elements 

In this chapter, the constitutive relationship is extended to incorporate orthotropy. 


Layered or tho tropic materials are particularly demanding in terms of the kinematic require­

ments of finite elements, since the transverse shear flexibility could be significant. herefore, 

a shear flexible through-thickness formulation is called for. The Mindlin theory includes 

shear deformations, and CO continuity of the shape functions only is required. 


Hence, the 5/3 /SA, 8/3 / SA and 9/3/ SA elements developed in previous chapters are suitable 

candidates for orthotropic problems. 


6. 1 Constitutive relationship 

The linear elastic three-dimensional stress-strain relation defined by 

(6.1) 


is used as the basic building brick for laminated orthotropic materials. It is assumed in 
the plate theory of laminated orthotropic materials that the normal stress in each laminate 
vanishes, i.e . it is assumed that (6. 1) reduces to 

(lxx 

(l yy 

(lxy 

(lx z 

(ly z 

Qll Q12 Q16 0 0 
Q22 Q26 0 0 

Q66 0 0 
Q44 Q45 

Symm Q55 

Exx 

Eyy 

Exy (6.2) 
Exz 

Eyz 

where the stress-strain relations are written with respect to the reference coordinate system. 
The laminate staking convention is depicted in Figure 6.l. 

Since the orthotropic layers are generally rotated with respect to the reference coordinate 
axis (see Figure 6.2), Q ij relates the principal directions of the material orthotropy to the 
reference coordinate system. Qij is defined by 
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Figure 6.1: Laminat e staking convention 
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where c and s respectively ind icate cos e and sin e, while e indicates t he fi ber p ly angle in 
respect to the positive x l-axis (See Figure 6. 2). 

T 

F igure 6. 2: Local coordinate system for laminated structures 

For orthotropic layered laminates E i Jk l are obt ainab le as 
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ET 
E2222 

(1 - VLT VTd 

VLTET 
Ell22 

(1 - VLTVTL) 

E1212 GLT 

E1313 GLO 

E 2323 GTO (6.4) 

where the subscripts L and T indicate the in-plane longitudinal and transverse directions 
of the fib ers, and 0 indicates the out-of-plane transverse direction. Ei denote the Young's 
moduli, Gij denote the shear moduli and Vij denote the Poisson's ratio 's. 

Integration of the shell stresses yields the shell resultants as 

h 

N ij J!h (Jij dz i ,j = 1, 2 
?, 

filLlJ · J2-h z(Ji j dz i,j = 1,2 (6 .5) 
~ 

Vij J!h (Jij dz i = 1,2 ; j = 3 
2 

For isotropic materials the relevant constitutive relationships are given in (2.13), (4.1 8) and 
(4 .24) respectively. For orthotropy the constitutive relationships are given by [59] 

I:~=l(Q ijh(hk+l - hk) i, j = 1,2,6 
~ I:~=l(Qijh(hk+l - hk) i,j=l,2,6 (6.6) 
I:~=l(Qijh(hk+l - hk) i , j = 4,5 

6.2 Compliance matrix 

Complementary to the general relationship between stress and strain, (6.1), one can define 
the inverse relationships as: 

(6.7) 

where Sijkl is the 'compliance tensor'. (6.1) and (6.7) can be rewritten in matrix form 

0' = EE (6.8) 

E = 8 0' (6.9) 

This means that 8 is the inverse of E. Therefore, Sijkl has the same symmetries as B ijkl . 

(6.7) now reduces to 
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Exx 

Eyy 

Exy 

Ex z 

Eyz 

5 11 512 516 0 0 
522 526 0 0 

566 0 0 
544 545 

5ymm 555 

O"xx 

O"yy 

O"xy (6. 10) 
O"xz 

O"yz 

Sij relates the principal directions of the material orthotropy to the reference coordinate 
system and are defined by 

2511 c451111 + 2C2S25u22 + s452222 + S2c 5 1212 


2 2 2
C 8 - 82C251212512 5 1111 + 8 
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252323 

545 CS51313 CS52323-

555 s251313 + c2 52323 (6 .11) 

where c and s respectively indicate cos 0 and sin 0, while e indicates the fib er p ly angle in 
respect to the positive x l-axis (See Figure 6.2). 

For orthotropic layered laminates Sij kl are obtainable as 

1 
5 llU 

E L 

1 
S222 2 E'r 

511 22 
-vLT 

ET 

1 
51212 

GLT 

1
51313 

Gw 
1

52323 (6 .12)
GTO 

where the subscripts Land T indicate the in-plane longitudinal and transverse directions 
of the fib ers, and 0 indicates the out-of-plane transverse direction. Ei denote the Young's 
moduli, G ij denote the shear moduli and Vij denote the Poisson's ratio's. 

 
 
 



Chapter 7 

Numerical results: Orthotropic 
problems 

7. 1 	 Plane stress membrane cantilever under transverse 
t ip loading 

T he plane stress membrane cantilever is depicted in Figure 7.l. -U2A represents the reference 
displacement. Beam theory need not be exact. 

10 10 10 10P~ 	 I" - I" - I- - I" - I 
:J----------.A 

P D } I~lI-------L..--..J\I:J-----------~~ 

l ib = 40 p = l.0 Irregular mesh 
hlb = 0.10 

Figure 7.1: Can Lilever under transverse tip loading and irregular mesh 

7.1. 1 Stacking sequence [0] 

Table 7. 1 reveals that for the regular mesh the 5,B-NT element outperforms the other ele­
ments. For the irregular mesh the 8,B*-NT element is by far the most accurate. The 5,B-NT 
element performs badly for this highly distorted mesh. For the irregular mesh the QC9D* 
element also outperforms the 5,B-NT element. 
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For this stacking sequence, Table 7.2 reveals that small values of , predict more accurate 
displacements. For values of, > G12 the accuracy decreases drastically. T he results with 
the choice of, = G12 are acceptable. 

From the results presented in Table 7.3 it is clear that there is no significant influence of 
the integration schemes for the regular meshes. However , for the irregular mesh the 8,B*-NT 
element with full integration is the most accurate. 

7.1.2 Stacking sequence [30] 

As before, the 5{3-1 T element performs very well for the regular mesh, but for the irregular 
mesh the 8,B*-NT element is the most accurate (See Table 7.4). Note that the QC9D* and 
the 5,B-NT elements yield results an order of magnitude lower that the beam theory solution. 

This stacking sequence is very sensitive to the value of , (see Table 7.5) . The bes t accuracy 
is obtained when , is very small. \iVith, = G12 , the results are acceptable. 

Table 7.6 reveals that for the regular meshes, the 5-point and 8-point integration schemes 
in combination with the locking correction outperform the other combinations without the 
locking correction. However, for the irregular mesh the 8,B *<\fT element with full integration 
is again the most accurate. 

7.1.3 Stacking sequence [0/ 90]8 

Numerical results for this stacking sequence are tabulated in Table 7.7. For the regular mesh 
all the elements are very accurate, except Q4. For the irregular mesh the 8,B*- T element is 
the most accurate. Note that the 5,B-NT element again yield results an order of magnitude 
lower that the beam theory solution. QC9D* yields accurate results for this problem. 

7.1.4 Stacking sequence [30/ - 30]8 

For this staking sequence the 5,B-NT, 8,B*-NT and 9,B*-NT all yields very accurate results 
(See Table 7.8) . For the irregular mesh the 8,B*-NT element is again the most accurate with 
the 5,B-NT formulation an order of magnitude lower than the theoretical solution. 

7.1.5 Stacking sequence [0/45/ - 45/90]8 

For the coarse meshes Table 7.9 reveals that the QC9D* element is the most accurate, and 
for the refined meshes the 5,B- T element is the most accurate. For the irregular mesh 
the 8{3*- NT element is again the most accurate with the 5{3-NT formulation an order of 
magnitude lower than the theoretical solution. 
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7.2 Clamped cylinder under internal pressure 

Depicted in Figure 7.2 , this problem was proposed by Haas and Lee [60] . VI A at l / 2 is the 
reference displacement of interest. 

1 
Ell = 7.5 X 106 

X3 6 E22 = 2.0 x 10 
G I 2 = 1.25 X 106 

@ G13 = G2: = 0.625 x 106 

.~ V12 = 0.20 
Pi = 6.4/7f 
r = 20 
l = 20 

Figure 7.2: Clamped cylinder under internal pressure 

7.2.1 Stacldng sequence [90] 

umerical results for this stacking sequence are tabulated in Table 7.10. For r /t = 20 
all the elements yields accurate results, with the 8,8*-NT /SA results slightly superior. For 
r /t = 100 the Q4/SA element yields highly accurate results. 8,8*-NT /SA compares very 
well with Q4/SA for all the meshes. 

7.2.2 Stacking sequence [-45/45]s 

Numerical results for this stacking sequence are tabulated in Table 7.11. For r /t = 20 the 
8,8*- T ISA element yields the most accurate results. For r It = 100 the 8,8*-NT IS element 
with the 4 x 4 mesh is virtually converged . All the other elements yields comparable results 
for the 8 x 8 mesh. 

7.2.3 Stacking sequence [90/0] s 

Numerical results for this stacking sequence are tabulated in Table 7.12. For rlt = 20 the 
Q4/SA element is the most accurate. All the elements converge from above . For r It = 100 
a ll the elements, except 8,8*-NT ISA , converge from above . The 8,8*-NT / SA element results 
are virtually converged for the coarse 4 x 4 mesh. 

7.2 .4 Stacking sequence [0 / 90]s 

Numerical results for this stacking sequence are tabulated in Table 7.13. Haas and Lee [60] 
did not perform this stacking sequence. For r /t = 20 all the elements converges mono-
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tonically from above. For r It = 100 all t he elements, except Q4/SA, oscillate around 
approximately 0.0008450. Q4/ SA converge monotonically from above. 

7.2.5 Stacking sequence [0] 

Numerical results for stacking sequence are tabulated in Table 7.14. Again, Haas and Lee 
[60] did not perform this test. For r It = 20 all the elements converge monotonically from 
above. For r-jt = 100 QC9D* ISA and 8p'*-NT ISA converge monotonically from above. 
Q4/SA and 9p'*-NT ISA oscillate around approximately 0.0005364. 

7.3 Clamped hemisphere with 30° hole 

T his problem was suggested by Moser and Schmid [61], and is depicted in Figure 7.3 , showing 
the graded mesh proposed by Moser and Schmid. In this study, the benefit of the graded 
mesh is not exploited. Instead , the meshes are constructed using bisection. 

7.3.1 Ply orientation Ee = Ell 

umerical results for this ply orientation are tabulated in Table 7.18. For the coarse mesh 
the 8p'*- T I SA element is the most accurate at points A and C. At point B the Q4/SA 
element is the most accurate. Note that the Q4/S A element is the most accurate for the 
refined mesh at points A and C. 

Table 7.16 reveals that for small values of J the displacement at points A and B are the most 
accurate, while the best results are obtained at point C when J is large. 

Results in Table 7.17 shows that at point A the 8p'*-NT I SA element vvith the 8-point inte­
gration scheme is the most accurate for the coarse mesh. The performance of the elements 
with the locking correction is improved with the use of reduced integration. At points Band 
C the 8p'-NT ISA element with the 8-point integration scheme is the most accurate for the 
coarse mesh. In general, the 8,8-NT ISA element with the 8-point integration scheme is the 
most accurate . 

7.3.2 P ly orientation E ¢ = Ell 

Numerical resu lts for this ply orientation are tabulated in Table 7.18. For the coarse mesh 
the Q4/ SA element yields the most accurate results. For the refined meshes 8,8*-NT I SA is 
the most accurate at point C. 

T his ply orientation is insensitive to the value of J. However, note that for both large and 
small values of J the best displacement at point C is obtained (see Table 7.19). 

Results in Table 7.20 shows that the 8,6-NT ISA with the 8-point integration scheme gives 
the most accurate results in points A, Band C. 
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Ell = 7.5 X 106 


E 22 = 2.0 X 106 


G12 = 1.25 X 106 


V1 2 = 0.25 

V23 = 0.45 


y Clamped 

P = 2.0 
t = 1.0 
r = 100.0 

Case 1 : Ee = Ex' = Ell 
2 


Case 2 : E (I) = Ex~ = E ll 

\ \ \ 
\ \ \ I 

" 'I I 
\ \ \ I 

\I 
" \ 11 

/ 
/ 

' ~--

4 x 4 mesh 


Figure 7.3: Clamped hemisphere with 30° hole 
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7.4 Pre-twisted beam 

The pre-twisted beam depicted in Figure 5.9 is used to illustrate the capability of the elements 
for warped geometries. For this new problems there are no known exact solutions. (Ell 
30 x 106

, E22 = 0.75 X 106 
, Vl2 = 0.28, G 12 0.45 X 106

, G13 0.45 X 106 and G23 = 0.375 x 106) 

7.4.1 Stacking sequence [0/90]s 

Kumerical results for this stacking sequence are tabulated in Table 7.21. All the elements 
converge monotonically from below for the in-plane shear loading condition (~ 0.3545). 
For the out-of-plane shear loading condition all the elements converge monotonically from 
above. All the elements yield approximately converged results for the coarse 1 x 6 mesh 
(~ 0.009544). 

7.4.2 Stacking sequence [-45/45]s 

Numerical results for this stacking sequence are tabulated in Table 7.22. All the elements 
converge monotonically from below. In addition, the results predicted by the elements are 
very similar (~0.08723 for U3A and ~ 0.03006 for U2A)' 

7.4.3 Stacking sequence [30/60]s 

Numerical results for this stacking sequence are tabulated in Table 7.23. All the elements 
converge monotonically from below to roughly 0.08939 for the in-plane shear and to roughly 
0.02878 for the out-of plane shear. 

Element 1 x 4 2x8 4 x 16 8 x 32 Irregular Mesh 
Q4 0.03447 0.06269 0.07893 0.08440 0.01545 
QC9D* 0.08485 0.08607 0.08632 0.08637 0.07768 
5!3-NT 0.08489 0.08588 0.08626 0.08636 0.03069 
8!3*-NT 0.08489 0.08620 0.08637 0.08638 0.08217 

0.08488 0.08612 0.08635 0.08638 0.08184 

Table 7.1: Plane stress membrane cantilever (Stacking sequence [0]): Tip displacement -U2A 
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Irregular mesh 
0 12 X 10 3 0.02992 
0 12 X 1O~2 0.02990 
0 12 X 1O~2 0.02972 
0 12 X 100 0.02855 
0 12 X 101 0.02549 
0 12 X 102 0.02019 
0 12 X 103 0.01750 
Beam theory 0.08533 

Table 7.2: Plane stress membrane cantilever (Stacking sequence [0]): Influence of 'yon 
irregular mesh 

Element 1 x 4 2x8 4 x 16 Irregular mesh 
5 point integration 
8th-NT 0.08489 0.08620 0.08637 0.07810 
8/3-NT 0.08488 0.08588 0.08626 0.02692 
8 point integration 
8/3*-NT 0.08489 0.08620 0.08637 0.07968 
8/3-NT 0.08488 0.08588 0.08626 0.02707 
Full integration 
8/3*-NT 0.08489 0.08620 0.08637 0.08217 

0.08488 0.08588 0.08626 0.02855 

Table 7.3: Plane stress membrane cantilever (Stacking sequence [0]): Effect of integration 
scheme order 

Element 1 x 4 2 x 8 4 x 16 8 x 32 Irregular Mesh 
Q4 0.004815 0.01734 0.06465 0.2221 0.002128 
QC9D* 0.6114 0.9179 1.160 1.250 0.2938 
5/3-NT 1.300 1.296 1.293 1.295 0.1133 
8/3*-NT 1.230 1.130 1.220 1.270 1.250 

1.137 1.080 1.210 1.267 1.194 

Table 7.4: Plane stress membrane cantilever (Stacking sequence [30]): Tip displacement 
-U2A 
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Irregular mesh 
G12 X 10-3 0.09082 
G12 X 10--2 0.08417 
G12 X 10-2 0.07596 
G12 X 10° 0.05908 
G12 X 101 0.03975 
G12 X 102 0.03509 
G12 X 103 0.03456 

1.320 

Table 7.5: Plane stress membrane cantilever (Stacking sequence [30]): Influence of r on 
irregular mesh 

Element 1 X 4 2 X 8 4 X 16 Irregular mesh 
5 point integration 
8,B*-NT 1.230 1.130 1.220 1.137 

1.299 1.262 1.259 0.06053 

8,B*-NT 1.230 1.130 1.220 1.182 

8,B-NT 1.299 1.262 1.259 0.06076 

Full integration 
8,B*-NT 1.230 1.130 1.220 1.250 

1.290 1.254 1.257 0.05908 

Table 7.6: Plane stress membrane cantilever (Stacking sequence [30]): Effect of integration 
scheme order 

Element 1 X 4 2x8 4 x 16 8 x 32 Irregular Mesh 
Q4 0.04261 0.09658 0.1414 0.1600 0.01660 
QC9D* 0.1645 0.1665 0.1671 0.1673 0.1407 
5,B-NT 0.1646 0.1665 0.1671 0.1673 0.04056 
8{3*-NT 0.1646 0.1668 0.1672 0.1673 0.1576 

0.1646 0.1665 0.1672 0.1673 0.1556 

Table 7.7: Plane stress membrane cantilever (Stacking sequence [0/90l s ): Tip displacement 
-U2A 
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Element 1 x 4 2 x 8 4 x 16 8 x 32 Irregular Mesh 
Q4 0.004276 0.01651 0.05879 0.1654 0.001777 
QC9D* 0.3126 0.3707 0.3998 0.4136 0.1021 
5,B-NT 0.4226 0.4034 0.4143 0.4208 0.03139 
8th-NT 0.4081 0.4181 0.4151 0.4184 0.3831 
9th-NT 0.4081 0.4067 0.4128 0.4180 0.3752 

Table 7.8: Plane stress membrane cantilever (Stacking sequence [30/ - 30]s): Tip displace­
ment -'U2A 

Element 1 x 4 2 x 8 4 x 16 8 x 32 Irregular Mesh 
Q4 0.006177 0.02293 0.07128 0.1510 0.002386 
QC9D* 0.2329 0.2380 0.2399 0.2405 0.1052 
5p-NT 0.2373 0.2382 0.2397 0.2404 0.02269 
8p*-NT 0.2373 0.2400 0.2406 0.2408 0.2229 

0.2373 0.2392 0.2403 0.2407 0.2141 

Table 7.9: Plane stress membrane cantilever (Stacking sequence [0/45/ - 45/90]s): Tip 
displacement -'U2A 

Element 4x4 8x8 16 x 16 
r'lt = 20.0 
Q4/SA 0.0003596 0.0003699 0.0003727 
QC9D*/SA 0.0003641 0.0003736 0.0003738 
8p*-NT/SA 0.0003764 0.0003744 0.0003739 
9p*-NT/SA 0.0003643 0.0003737 0.0003738 
Haas and Lee 0.0003781 

= 100.0 
Q4/SA 0.002040 0.002055 0.002051 
QC9D*/SA 0.002225 0.002077 0.002052 
8p*-NT/SA 0.002081 0.002055 0.002050 
9p*-NT/SA 0.002225 0.002076 0.002052 
Haas and Lee 0.002044 

Table 7.10: Clamped cylinder under internal pressure (Stacking sequence [90]): Radial dis­
placement 'UI A 
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Element 4x4 8 x 8 
r/t = 20.0 
Q4/SA 0.0002250 0.0002307 
QC9D*/SA 0.0002352 0.0002334 
8.B*-;';T/SA 0.0002369 0.0002335 
9.B*-NT/SA 0.0002355 0.0002335 
Haas and Lee 0.0002402 
r/t 100.0 
Q4/SA 0.001088 0.001068 
QC9D*/SA 0.001137 0.001063 
8.B*-NT/SA 0.001063 0.001061 
9.B*-NT/SA 0.001129 0.001062 
Haas and Lee 0.001068 

Table 7.11: Clamped cylinder under internal pressure (Stacking sequence [-45/45Js): Radial 
displacement UIA 

8x 16 x 

Q4/SA 0.0001797 0.0001788 0.0001786 
QC9D*/SA 0.0001797 0.0001791 0.0001787 
8.B*-NT/SA 0.0001811 0.0001792 0.0001787 
9.B*-NT/SA 0.0001797 0.0001791 0.0001787 
Haas and Lee 0.0001783 

Q4/SA 0.0008455 0.0008447 0.0008441 
QC9D*/SA 0.0008904 0.0008450 0.0008439 
8.B*-NT/SA 0.0008435 0.0008439 0.0008439 
9.B*-NT/SA 0.0008900 0.0008450 0.0008439 
Haas and Lee 0.0008422 

Table 7.12: Clamped cylinder under internal pressure (Stacking sequence [90/ols): Radial 
displacement UI A 
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Element 4x4 8x8 16 x 16 

Q4/SA 0.0001841 0.0001822 0.0001818 
QC9D*/SA 0.0001856 0.0001825 0.0001819 
8p*-NT/SA 0.0001854 0.0001825 0.0001818 
9p*-NT/SA 0.0001856 0.0001825 0.0001819 
T/t = 100.0 
Q4/SA 0.0008630 0.0008462 0.0008453 
QC9D*/SA 0.0008817 0.0008444 0.0008452 
8p*-NT/SA 0.0008442 0.0008459 0.0008453 

0.0008812 0.0008444 0.0008452 

Table 7.13: Clamped cylinder under internal pressure (Stacking sequence [0/90]s): Radial 
displacement UI A 

Element 4x4 8x8 16 x 16 
= 20.0 

Q4/SA 0.0001141 0.0001123 0.0001119 
QC9D*/SA 0.0001147 0.0001123 0.0001119 
8p*-NT/SA 0.0001139 0.0001122 0.0001119 
9p*-NT/SA 0.0001146 0.0001123 0.0001119 
T/t - 100.0 
Q4/SA 0.0005340 0.0005370 0.0005364 
QC9D*/SA 0.0005630 0.0005371 0.0005364 
8p*-NT/SA 0.0005417 0.0005371 0.0005364 

0.0005340 0.0005370 0.0005364 

Table 7.14: Clamped cylinder under internal pressure (Stacking sequence [0]): Radial dis­
placement UI A 
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x4 8x8 16 x 16 
Radial displacement at A 
Q4/SA 0.7099E-04 1.034E-04 1.151E-04 
QC9D*/SA 0.7151E-04 1.035E-04 1.141E-04 
8!3*-NT/SA 0.7268E-04 1.036E-04 1.142E-04 
9!3*-NT/SA 0.7170E-04 1.035E-04 1.141E-04 
Moser and Schmid ~ 1.15E ­ 04 

Q4/SA -0.3804E-04 -0.4316E-04 -0.4463E-04 
QC9D*/SA -0.3535E-04 -0.4285E-04 -0.4428E-04 
8!3*-NT/SA -O.3563E-04 -0.4287E-04 -0.4429E-04 
9!3*-NT/SA -0.3543E-04 -O.4286E-04 -O.4428E-04 
Moser and Schmid ~ -0.44E 04 

Q4/SA 0.04328E-04 0.1242E-04 0.1208E-04 
QC9D*/SA 0.08398E-04 0.1283E-04 0.1213E-04 
8!3*-NT/SA 0.08456E-04 0.1280E-04 0.1212E-04 

0.08442E-04 0.1283E-04 0.1212E-04 
~O. 04 

Table 7.15: Clamped hemisphere with 30° hole (Ply orientation Eo = E11): Radial displace­
ment 
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Element 4x4 
Radial displacement at A 
G12 X 10-3 0.6929E-04 
G 12 X 10-2 0.6928E-04 
G12 

2X 10­ 0.6917E-04 
G12 X 10° 0.6879E-04 
G 12 X 101 0.6843E-04 
G 12 X 102 0.6836E-04 
G12 X 103 0.6834E-04 

Radial displacement at B 
G 12 

G12 

G12 

G 12 

G 12 

G12 

G 12 

X 10 3 

X 10-2 

X 10-2 

X 10° 
X 101 
X 102 

X 103 

-0.3580E-04 
-0.3580E-04 
-0.3577E-04 
-0.3567E-04 
-0.3561E-04 
-0.3561E-04 
-0.3561E-04 

Moser and Schmid ;::::: -0.44E - 04 

Radial displacement at C 
G12 

G12 


G12 


G 12 

G12 

G12 

G12 

X 10-3 

2X 10­
X 10-2 

X 10° 
X 101 

X 102 

X 103 

0.1033E-04 
0.1033E-04 
0.1037E-04 
0.1052E-04 
0.1073E-04 
O.1079E-04 
0.1080E-04 

Moser and Schmid ~ 0.12E 04 

Table 7.16: Clamped hemisphere with 300 hole (Ply orientation Eo = Ell): Influence of T 
on 4 x 4 mesh 
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x8 

5 point integration 
8,B*-NT/SA 0.7470E-04 1.039E-04 
8,B-NT/SA 0.7150E-04 1.032E-04 
8 point integration 
8,B*-NT/SA 0.7472E-04 1.039E-04 
8,B-NT/SA 0.7152E-04 1.032E-04 
Full integration 
8t1*-NT/SA 0.7268E-04 1.036E-04 
8l3-NT/SA 0.6879E-04 1.029E-04 
Moser and Schmid ~ 1.15E 04 
Radial displacement at B 
5 point integration 
8,B*-NT/SA -0.3691E-04 -0.4301E-04 
8,B-NT/SA -0.3765E-04 -0.4384E-04 
8 point integration 
8,B*-NT/SA 	 -0.3693E-04 -0.4301E-04 

-0.3766E-04 -0.4284E-04 

8,B*-NT/SA -0.3563E-04 -0.4287E-04 

8,B-NT/SA -0.3567E-04 -0.4268E-04 

Moser and Schmid 	 ~ -0.44E 04 

Radial displacement at C 
5 point integration 
8{J*-NT/SA 0.09401E-04 0.1290E-04 
8,B-NT/SA 0.1203E-04 0.1266E-04 
8 point integration 
8,B*-NT/SA 0.09410E-04 0.1289E-04 
8,B-NT/SA 0.1203E-04 0.1266E-04 
Full integration 
8,B*-NT/SA 0.08456E-04 0.1280E-04 
8,B-NT/SA 0.1052E-04 0.1260E-04 
.Moser and Schmid ~ 0.12E ­ 04 

Table 7.17: Clamped hemisphere with 30° hole (Ply orientation Eo = Ell): Effect of inte­
gration scheme order 
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Q4/SA 1.102E-04 
QC9D*/SA 0.9654E-04 
8{-J*-NT/SA 1.041E-04 
9p*-NT/SA 0.9743E-04 
Moser and Schmid 

Q4/SA 
QC9D*/SA 
8p*-NT/SA 
9p*-NT/SA 

-0.6605E-04 
-0.5242E-04 
-0.5705E-04 
-0.5301E-04 

8x 

1.600E-04 
1.617E-04 
1.627E-04 
1.617E-04 
~ 1.8E 04 

-0.6850E-04 
-0.6950E-04 
-0.7004E-04 
-0.6953E-04 

16 x 

1.766E-04 
1.769E-04 
1.769E-04 
1. 769E-04 

-0.7056E-04 
-0.7074E-04 
-0.7078E-04 
-0.7075E-04 

Moser and Schmid ~ -0.7E 04 

Q4/SA 0.3680E-04 0.3952E-04 0.3792E-04 
QC9D*/SA 0.2594E-04 0.3791E-04 0.3833E-04 
8p*-NT/SA 0.2972E-04 0.3996E-04 0.3836E-04 
9p*-NT/SA 0.2636E-04 0.3954E-04 0.3833E-04 
Moser and Schmid ~ OAE 04 

Table 7.18: Clamped hemisphere with 30° hole: (Ply orientation E</> Ell): Radial dis­
placement 

 
 
 



90 CH.APTER 7. NUMERICA.L RESULTS: ORTHOTROPIC PROBLEMS 

Radial displacement at A 
x4 

G12 X 10-3 l.094E-04 
G12 X 10-2 l.094E-04 
G12 X 10-2 l.093E-04 
G12 X 10° l.090E-04 
G12 X 101 l.088E-04 
G12 X 102 1.088E-04 
G12 X 103 1.088E-04 
Moser and Schmid ;:::) 1.8E ­ 04 

Radial displacement at B 
X 10--3G12 

G12 X 10-2 

X 10-2G12 

G12 X 10° 
G12 X 101 

G12 	X 102 

X 103G12 

-0.6335E-04 
-O.6333E-04 
-0.6329E-04 
-0.6315E-04 
-0.6307E-04 
-0.6306E-04 
-0.6305E-04 

Moser and Schmid 

X 10-2G12 

10-2G 12 X 

G12 X 10° 
101G12 	 X 

G12 X 	 102 

103G12 	 X 

X 

;:::) -0.7E 04 

0.3641E-04 
0.3639E-04 
0.3637E-04 
0.3642E-04 
0.3643E-04 
0.3643E-04 

Moser and Schmid ;:::) O.4E - 04 

Table 7.19: Clamped hemisphere with 30° hole (Ply orientation E¢ Ell): Influence of 'Y 
on 4 x 4 mesh 
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4x 8x8 
Radial displacement at A 
5 point integration 
8,B*-NT/SA 1.067E-04 l.631E-04 
8l5-NT/SA 1.144E-04 1.632E-04 
8 point integration 
8p*-NT/SA 1.068E-04 1.631E-04 
8p-NT/SA 1. 144E-04 l.632E-04 
Full integration 
8p*-NT/SA 1.041E-04 1.627E-04 
8p-NT/SA 1.090E-04 l.626E-04 
Moser and Schmid 	 ~ 1.8E 04 

Radial displacement at B 
5 point integration 
8,B*-NT/SA -0.5882E-04 -0.7026E-04 
8p-NT/SA -0.6696E-04 -0.6999E-04 
8 point integration 
8p*-NT/SA 	 -0.5884E-04 -0.7026E-04 

-0.6699E-04 -0.6999E-04 

8p*-NT/SA -0.5705E-04 -0.7004E-04 
8p-NT/SA -0.6315E-04 -0.6973E-04 
Moser and Schmid 	 ~ -0.7E - 04 

8 

0.3113E-04 OA009E-04 
0.3922E-04 0.3981E-04 

8p*-NT/SA 
8p-NT/SA 

0.3114E-04 0.4009E-04 

0.3924E-04 0.3981E-04 


Full integration 
8p*-NT/SA 0.2972E-04 0.3996E-04 
8p-NT/SA 0.3637E-04 0.3974E-04 
Moser and Schmid ~ OAE ­ 04 

Table 7.20: Clamped hemisphere with 30° hole (Ply orientation E¢ Ell): Effect of inte­
gration scheme order 
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In-plane shear: U3A 

QC9D*/SA 0.03525 0.03533 0.03535 0.03535 
8,8*-KT/SA 0.03532 0.03542 0.03544 0.03545 

0.03532 0.03541 0.03544 0.03545 
U2A 

QC9D*/SA 0.009570 0.009548 0.009520 0.009518 
8p*-NT'/SA 0.009594 0.009574 0.009547 0.009544 
9p*-NT/SA 0.009594 0.009573 0.009546 0.009544 

crable 7.21: Pre-twisted beam (Stacking sequence [0/90]s): Numerical results 

In-plane shear: U3A 

QC9D*/SA 0.06968 0.07973 0.08489 0.08721 
8p*-NT/SA 0.07000 0.07990 0.08495 0.08723 

0.06998 0.07990 0.08495 0.08723 
U2A 

QC9D*/SA 0.02445 0.02763 0.02928 0.02997 
8p*-NT/SA 0.02542 0.02838 0.02956 0.03006 
9p*-NT/SA 0.02542 0.02836 0.02955 0.03006 

Table 7.22: Pre-twisted beam (Stacking sequence [-45/45Js): Numerical results 

Element 1 x 6 2 x 12 4 x 24 8 x 48 
In-plane shear: U3A 

QC9D*/SA 0.08230 0.08779 0.08899 0.08938 
8p*-NT/SA 0.08552 0.08815 0.08903 0.08939 
9p*-NT/SA 0.08487 0.08809 0.08902 0.08939 
Out-of-plane shear: U2A 

QC9D*/SA 0.02669 0.02834 0.02867 0.02877 
8th-NT/SA 0.02823 0.02857 0.02872 0.02878 
9p*-NT/SA 0.02794 0.02855 0.02872 0.02878 

Table 7.23: Pre-twisted beam (Stacking sequence [30/60]s): Numerical results 

 
 
 



Chapter 8 

Conclusions and recommendations 

In this chapter the capabilities of the newly implemented elements are summarized. A 
proposed formulation for general use is also suggested. 

8.1 Isotropic membrane elements 

The 8[3 and 9[3 families perform almost identical. However, since the formulation of the 8p 
family is simpler than that of the 9[3 family, the 8/3 family is preferable to the 9[3 family. 

The difference between the mixed and displacement formulations is, (in terms of numerical 
accuracy) insignificant, and is a result of the rank one update of the mixed formulation. 
Once again, since the displacement formulation is simpler, this formulation is preferred above 
the mixed formulation. 

In general, the NT-formulations outperform the other formulations and are, therefore, the 
preferred formulation for constraining the higher order stress field. 

In general, the performance of the elements is increased if the locking correction is excluded, 
albeit at the cost of additional complexity in the formulation of the consistent nodal loads. 
In particular, exclusion of the locking correction increases the accuracy for highly distorted 
meshes. Kotwithstanding the foregoing, the results are still acceptable if the correction is 
included, and membrane-bending locking is prevented. Hence, it is suggested that the locking 
correction is in general included. This has the additional advantage that the consistent nodal 
loads reduce to those of a 'standard' quadrilateral finite element with only two (translational) 
degrees of freedom per node. 

Reduced integration improves the behavior of the elements when the locking correction is 
used, due to the introduction of a soft higher order deformation mode. However, for highly 
distorted geometries, full integration can be beneficial. 

Finally, the formulation reveals some sensitivity to the numerical value of the stability pa­
rameter ,. However, the results obtained with the choice of ~( - G for the large range of 
problems evaluated are all acceptable, and this value is suggested for practical analyses. It is 
reiterated that the patch test is passed for any, > O. Hence, the value of, b > 0) becomes 
irrelevant in the limit of mesh refinement. 
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8.2 Isotropic plate elements 

The assumed strain plate element proposed by Bathe and Dvorkin is highly accurate, and 
almost free from locking. The element has extensively been used and tested by numerous 
researchers previously, and is relatively problem-free. Hence this element is an ideal plate 
component for flat shells which require a first order shear deformation theory, as is the case 
with orthotropic laminates. 

For one-dimensional problems, (e.g. a simple cantilever), the residual bending flexibility 
(RBF) correction can be included to raise the capability of the elements to exactly the linear 
strain level. 

However, for two-dimensional problems, selection of the characteristic lengths is not simple, 
and some over displacement is noted for meshes of intermediate refinement. Hence, and 
notwithstanding the fact that the effect of the correction disappears in the limit of mesh 
refinement, it is suggested that the formulation of Bathe and Dvorkin is in general used 
without the residual bending flexibility correction. 

8.3 Isotropic shell elements 

The S(3/SA and 9(3/SA families perform very well for the test problems considered in this 
study, with the settings for the S,B and 9(3 membrane elements suggested in Section S.l. Viz, 
the membrane locking correction is included, the displacement formulation is used and full 
integration is used. 

The competing 5(3/SA family proposed by Di and Ramm performs very well for the regular 
meshes, and in general even outperforms the S(3/SA and 9(3/SA families. However, the 
5(3/SA family becomes increasingly inaccurate for distorted meshes. In addition, the 5(3/SA 
family is ineffective for warped geometries, since the lack of drilling degrees of freedom 
complicates the use of this family for warped geometries. 

8.4 Orthotropic formulation 

For an orthotropic constitutive relationship, the S(3/SA and 9(3/SA families proposed herein 
perform very well. However, the sensitivity to the value of "(, and the effect of the membrane 
locking correction become more pronounced. Nevertheless, the value of f G12 suffices, and 
is recommended for general use. 

As opposed to the isotropic formulation, it is suggested that the membrane locking correction 
may be excluded for the combination of computationally expensive orthotropic problems and 
highly distorted meshes. Viz, if the S(3/SA family is used in a global optimization infras­
tructure, it might well be beneficial to accept the increased complexity in the formulation of 
the consistent nodal loads when the locking correction is excluded, at the gain of a dramatic 
increase in accuracy. 

Finally, it is noted that the superiority of the S(3/SA and the 9(3/SA families over the 
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5/3 jSA family for distorted geometries becomes even more pronounced for orthotropy than 
for isotropy. 

8.5 Recommendations 

As opposed to the general trend to use higher order finite elements for the analysis of 
orthotropic structures, it is demonstrated that the relatively simple flat shell finite elements 
with an assumed stress membrane interpolation, drilling degrees of freedom and an assumed 
strain plate interpolation recommended in this study, suffice. This, potentially, significantly 
reduces the cost of orthotropic analyses. 

• It is recommended that the 8{-3 jSA element proposed herein is used for the analysis 
of orthotropic shell problems, with 'Y = G12 , full integration, and inclusion of the 
membrane locking correction. 

For coarse, highly distorted meshes, the locking correction could be excluded to increase 
accuracy (e.g. when using the elements in an optimization algorithm). 

• An investigation into low order enhanced strain formulations is suggested as a fruitful 
research area to further investigate the efficiency of low order finite elements for the 
analysis of orthotropic structures. 

• The formulation of a non-flat shell element with in-plane drilling degrees of freedom, 
and a formulation for geometric and material non-linearity would be desirable. 
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Appendix A 

Element operators 

A.I Membrane element operators 

In (2.71), the operators Bi and G'l/Ji are given as 

z 1,2,3,4 (A. 1) 

with N i , i = 1,2,3,4, the Lagrangian interpolation functions. The strain operator associated 
with the drilling rotation is defined by 

1 
- (A.2)
8 

where ljk represent the lengths of sides jk and, using a FORTRAN pseudo language, 

i = 1,2,3,4; rn i + 4; l = rn - 1 + 4 int(1/i); 

k mod(rn,4) + 1; j = l 4 (A.3) 

The functions Nil i = 5,6,7,8 are serendipity mid-side interpolation functions. 

The operators associated with the penalty stiffness (r/ne)heheT and p~ are 

1 1 

2Ni,2 2Ni,1 >; i = 1,2,3,4 (A.4) 


and 

(A.5) 
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with indices j, k, l, m again defined by (A.3). In (2.69), a FORTRAN-like definition of 
adjacent corner nodes is also employed: 

J = ~ 4; k = mod( i, 4) + 1 (A.6) 

A.2 Plate element operators 

In (4.40) the element curvature-displacement matrix is given by [38] 

(A.7) 

and in (4.42) the element shear strain-displacement matrix is given by [38] 

(A.8) 

 
 
 



Appendix B 

Classification of stress modes 

After Feng et al., the following constant and linear stress modes are defined 

i.e. {O"d {I 0 O}T, etc. Four alternative stress modes are defined as 

[ ~ 
1 0 

~< 1 [{ 0"1O}{ O"ll}{ 0"12}{ 0"13} 1 -1 -T] 

0 C, 

while the higher order terms are here defined as 

[e 0 0 'ry' 0 0 c,T] 0 0 r;2 

e 1 [{ 0"14}{ 0"15}{ 0"16} ... {0"24} 1 o e 0 0 T]2 0 0 (T} 0 _T]2 

o 0 e 0 0 T]2 0 0 c,T] 0 0 

For the 513 family, modes 20 through 24 belong to the zero-energy stress mode. For the 
8f3(M), 8f3(D), 9f3(M) and 9f3(D) families however, these modes contribute energy. 
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Appendix C 

Constraining the assumed stress field 

The transformation operators To, T and Q are given below: 

(C.1) 


with the parameters ai and bi defined by 

(C.2) 

Also, 
Ji1 2J1I[ Jfl J'I 1

T = Ji2 Ji2 2J1Z J22 (C.3) 
J11 J12 J21 J22 J11 hz + J1Z Jz1 

with oxi 

t kJki (i, k 1,2) (C.4)
O~k 

Finally, 

1 [P 
0 J221 + J222 (C.5)Q lip p= 

Jf1 + Jf21JT~ 0 ~ 1 
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Appendix D 

Red need integration 

D.I Derivation of numerical integration schemes[l] 

Consider the area integral given by 

(D.l) 

where F(~, TJ) is any polynomial function of ~ and TJ. Any polynomial expression of two 
variables can be expressed in the form 

F(~, TJ) L Aij~ir/ (D.2) 
i,j 

No limits are placed on the summation indices i and j as any arbitrary polynomial is being 
considered. 

Let any N-point rule be written as 

N 

1* L WnF(~, TJ) (D.3) 
n=l 

where I* represents the numerical approximation to I. Integration point n is given by (~n' TJn) 
and the associated weight is given as vVn . 

Each term of (D.2) may be trivially integrated as follows 

i, j both even 

otherwise 
(DA) 

Application of the quadrature rule of (D.3) to the function F(~, TJ) in the form of (D.2) gives 
the following result which is expressed in terms of the coefficients Aij as 
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N N N N 

1* = Aoo L Wn + AlO L Wn~n + AOl L Wn1]n + A20 L Wn~~ + ... (D.5) 
n=l n=l n=l n=l 

Two points are to be noted: 

• Symmetry of the rule in each coordinate implies that the coefficients corresponding to 
all odd powers will vanish in (D.5). This of course corresponds to the vanishing of the 
integral of odd powers over this region. 

• Symmetry with respect to both coordinates is required to ensure invariance of the rule. 

Equating the coefficients of Aj between (DA) and (D.5) gives a series of equations in the 
weights Wn and the coordinates ~n and 1]n' Evidently the number of equations that are 
satisfied for a particular set of weights and coordinates indicate which polynomial terms are 
integrated exactly by that particular rule. Also, the degree to which each remaining equation 
is not satisfied gives the error in that polynomial term. Each equation has the form 

N 

L vVn~~rfn (D.6) 
n=l 

for the coefficient Aij . Clearly all equations containing odd values for either i or j are satisfied 
identically for symmetric rules. 

The maximum number of equations needed for (D.6) is determined by the order of the 
function F(~, 1]) which is to be integrated. If the maximum number of equations possible 
are satisfied for a particular configuration, then an optimal scheme for that configuration 
is obtained. However, if less than the maximum number are satisfied a less efficient rule 
is obtained, but freedom is available for arbitrary selection of some values of weights or 
coordinates. 

D.2 A 5-point integration scheme 

The first 5-point integration scheme presented by Dovey [1] is employed to selected problems. 
(See Figure D.1). 

Due to symmetry, the weights Wa are identical. The rule is indicated by 

1* = vVoF(O, 0) + WaF(±o:, ±o:) (D.7) 

The second term in (D.7) indicates four points when all combinations of positive and negative 
signs are taken. 

Employing (D.6) we obtain the first four equations for the appropriate terms Aij as 
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o 0 

-- -¢­

o 0 

;--­
I 0 
I 

Figure D.l: 5-point integration scheme 

Aoo Wo+4Wa 4 
:!A20, A02 4vVa0 2 

(D.8)~ A22 4Wa04 2A40, A04 4vVa0
4 

5 

The last two of these equations are directly inconsistent and so the last is discarded. Also, 
however, the first three are inconsistent if the center point is retained. 

Solving (D.8) leads to 

1 
(D.9)

v'3 

which is the 2 x 2 Gaussian product rule. The leading error term is defined by the last of 
(D.8) and gives the error (1* - 1), corresponding to the fourth power terms e and 7]4 as 

(D.lO) 

However, the center point may be retained by selecting the value of vVo, computing vVa and 
0: from the first two relationships in (D.8). This implies an error in the A22 term. The 
scheme is now defined by 

(D.ll) 

(D.12) 
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The scheme only has physical meaning while 0 ~ Wo ~ 4. The error in the .422 term is 
minimized as Wo -+ O. In practice this implies that the 5-point scheme converges to the 
2 x 2 Gaussian scheme as vVo -+ o. 

D.3 An 8-point integration scheme 

The 8-point rule is depicted in Figure D.2. 

p 

o o 
<i 

I 
I 

-- €)-- -¢-- -(7-­

6 
o 0 

I 
l a 

Figure D.2: 8-point integration scheme 

This rule was previously employed for membrane elements with in-plane rotational degrees 
of freedom by Stander and \Vilson [62] in the QC9(8) element and also by Ibraimbegovic et 
al. [23] in their drilling degree of freedom membrane element. The rule is described by 

1* Wa:F(±a, ±a) + TVj3[F(±p, 0) + F(O, ±p)] (D.13) 

Due to symmetry, the weights TVa: are identical as are the weights vVj3. The governing 
equations are given by 

.400 4TVa: + 4Wj3 4 
4

.420 , .402 4Wa:a2 + 2Wj3p2 
(D.14)~ 

.422 4TVa:a4 
9 

.440 ,.404 4Wa:a4 + 2TVj3p4 4 
5 

All four equations may be satisfied and the solution is 
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f3 ~ 
40 
49 

(D.15) 

This rule gives the same order of accuracy as the 3 x 3 Gaussian rule. A scheme of lower 
accuracy is defined by 

liVa 1 - liVB 
1 

( 1 )4 a 
9IVe< 

(~ 
J 

f3 
2Wa(2) 4 

We 

The bounds for liVe are 0 < Wp < 1. In [23, 62] the typical choice of liVo 
employed. 

(D.16) 

(D.17) 

(D.18) 

0.01 was 

 
 
 



Appendix E 

Code 

E.1 Subroutines for the isotropic 8/3 element 

C==============================================================SHL8 
C 

C ELEMENT STIFFNESS MATRIX FOR AN ASSUMED STRESS 
C FOUR NODE MEMBRANE ELEMENT WITH DRILLING DEGREES OF 
C FREEDOM - 8 BETA PARAMETERS 
C 

C (K+P)a = f - DISPLACEMENT FORMULATION 
C (K+h)a = f - MIXED FORMULATION 
C 

C------------------------------------------------------------------
SUBROUTINE SHL8(XYZ,ID,MAXN,NSHL8) 

IMPLICIT REAL*8 (A- H,O-Z) 
PARAMETER (NP=8) 

DIMENSION XYZ(4,MAXN) ,ID(6,MAXN) ,S(24,24) 
DIMENSION RS(2,16),GWS(2,16),B(3,14),BY(1,14) 
DIMENSION Tl(3,14) ,T4(14,14) ,T1Y(1,14),T2Y(14,14) 
DIMENSION BTAY(3,4),BTAY2(3,4) 
DIMENSION P(3,NP) ,Pl(3,NP) ,T2(NP,14),T3(NP,14) 
DIMENSION P2(NP,NP) ,XDU(NP,NP) ,CINV(3,3) 
DIMENSION NDOF(6) ,PPURE(3,NP) 
DIMENSION PTRANSO(3,3) ,PTRANS(3,3),QTRANS(3,3) 
DIMENSION IPVT(NP) ,WORK(NP) ,TEST1(NP,NP) 
DIMENSION NEIG(24),SEIG(24,24) 
DIMENSION BPL(3,12) ,BS(2,12),T1S(2,12) 
DIMENSION T1PL(6,12) ,T2PL(12,12) 
DIMENSION DB(3,3) ,DS(2,2) 

COMMON /CONSTR/ ICONSTR(9) 
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COMMON /VECT / V(4,3),XYL(3,5) 
COMMON /GENR / NAM,INE , INI,NIDENT 
COMMON /SIDE / ALPHA(4 ) ,XLENG(4) 
COMMON /TEMP / IDE,II,JJ,KK,LL,HH,EE,UU 
COMMON /WEIGHI/ WGHTO 
COMMON /IOLIST/ NTM,NTR,NIN,NOT,NSP,NFL,NT7,NT8 

DATA ZERO /O .DO/, ONE /1.DO/, TWO /2.DO/, FOUR /4.DO/ 
DATA NEIG 

& 

/1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 
19,20,21,22,23,24/ 

DATA NDOF 
DATA FF 

/1,2,3,4,5,6/ 

IAXIS=l 

ND=24 
NUMN==4 
NTOT=O 
NTELE=2 

/1. 2DO/ 

INT==9 
INTTAY==4 
INT2=4 
NWARP=O 
NPRINT=O 
NSTAT==l 
NEIGEN=O 
NLOCK=l 
WGHTO=O.Ol 
GG=-i. 
IMIXED=5 
ALPHACORR=ONE 
IPSTATE==2 

DEFAULT - DISPLACEMENT FORMULATION 
DEFAULT - FULL INTEGRATION 

DEFAULT - WARP CORRECTION NOT ACTIVE 

DEFAULT - LOCKING CORRECTION ACTIVE 

DEFAULT - GG=EE/ (H1D+TWO*UU) 
DEFAULT - NT-FORMULATION 

DEFAULT - P-MATRIX CLASSIFICATION 

C-----LOOP THROUGH ALL ELEMENTS------------------------ -----------­
DO 400 MM=1,NSHL8 

C-----READ NODE NUMBERS AND MATERIAL PROPERTIES-------------------­
C-------AND ELEMENT PARAMETERS-- - ---------------------------------­

NAM=O 
NIDENT=O 
CALL CFREE 
CALL CFREEPT 
CALL CFREEI(' ',IDE,l) 
CALL CFREEI('N' ,11,4) 
CALL CFREER('H' ,HH,l) 
CALL CFREER('E' ,EE,l) 
CALL CFREER('U' ,UU,l) 
CALL CFREEI('G' ,NAM,4) 
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CALL CFREEI('I' ,INT,l) 
CALL CFREEI('J' ,INTTAY,l) 
CALL CFREEI('K' ,INT2,1) 
CALL CFREER(' X' ,GG, 1) 
CALL CFREEI (' S' ,NSTAT,l ) 
CALL CFREEI('T' ,NTELE,l) 
CALL CFREEI('B' ,IPSTATE,l) 
CALL CFREEI('L' , NEIGEN,l) 
CALL CFREEI('Z' ,NLOCK,l) 
CALL CFREER('D',WGHTO,l) 
CALL CFREEI('W' ,NWARP,l) 
CALL CFREEI('A' ,IMIXED,l) 
CALL CFREER('Y' ,ALPHACORR,l) 
CALL CFREEI('F' ,ICONSTR,9) 

IF (GG.LT.ZERO) GG=EE!(TWO+TWO*UU) 
IF (GG.Eq.ZERO) NTELE=3 
IF (NAM.Eq.O) NIDENT=O 
NCHCK=NAM 

READ DIFFERENT P-MATRIX 

C-----PRINT ELEMENT DATA-------------------------------------------
10 IF (NPRINT.NE.O) GO TO 15 

CALL TOP 
WRITE (NOT,2003) IMIXED,INT 
WRITE (NOT,2000) 

15 WRITE (NOT,2001) IDE,II,JJ,KK,LL,HH,EE,GG,UU 
NPRINT=NPRINT+1 
IF(NPRINT .GT.50 ) NPRINT=O 

C-----SKIP FOR IDENTICAL ELEMENTS-------------- - ------------------­
IF (NIDENT.LT.0.OR . NI DENT . GT . 1) NIDENT=O 
IF (NIDENT.Eq.1.AND.NCHCK.GT.NAM) GOTO 295 

C-----LOCAL COORDINATES, SIDE LENGTHS & ANGLES--------------------­
CALL LOCAL(XYZ,MAXN ,IAXIS) 

DO 19 1=1,4 
CALL ANGLEN(I,ALPHA (I ) ,XLENG(I» 

19 CONTINUE 

C------------------------------------------------------------------
C 

C ELEMENT K MATRIX - MIXED AND DISPL. FORMULATION 
C 

C------------- -------------------------------- --------- - -----------

C-----CALCULATE COMPLIANCE MATRIX---------------------------------­
CALL MATLWINV(NSTAT,EE,UU,CINV) 
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C-----INITIALIZE MATRICES----------------- ------------------------­
DO 20 1=1,24 
DO 20 J=1,24 

20 S (I , J) =ZERO 

DO 22 J=l, 14 
B (1, J) =ZERO 
B(2,J)=ZERO 
B(3,J)=ZERO 
T1 Y (1, J) =ZERO 
BY(l,J)=ZERO 

22 CONTINUE 

DO 23 I=l,NP 
DO 23 J=l,NP 

23 P2 (I, J) =ZERO 

DO 24 1=1,14 
DO 24 J=1,14 
T2Y(I,J)=ZERO 

24 CONTINUE 

DO 25 I=l,NP 
DO 25 J=1,14 

25 T2(I,J)=ZERO 

DO 26 J=1,4 
BTAY (1, J) =ZERO 
BTAY(2,J)=ZERO 
BTAY(3,J)=ZERO 

26 CONTINUE 

DO 27 1=1,3 
DO 27 J=l,NP 

27 P (I, J) =ZERO 

CALL FORMTRANSC (PTRANSO) 
CALL MEMXB3 (BY,DETJO) 

C-----CALCULATE ELEMENT AREA--------------------------------------­
CALL ELAREA(AREA) 

C-----CALCULATE MEMBRANE LOCKING CORRECTION-----------------------­
IF (NLOCK.EQ.1) THEN 
CALL INTPTS(INTTAY,RS,GWS) 
DO 35 I=l,INTTAY 
CALL MEMLOK(I,RS,BTAY2,DETJ) 
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DO 35 K=1,3 
DO 35 L=1,4 
BTAY(K,L)=BTAY(K,L)+BTAY2(K,L)*GWS(1,I)*GWS(2,I)*DETJ!AREA 

35 CONTINUE 
ENDIF 

C-----DEFINE INTEGRATION POINTS-----------------------------------­
CALL INTPTS(INT,RS,GWS) 

C-----LOOP THROUGH THE INTEGRATION POINTS-------------------------­
DO 80 1=1, INT 
CALL MEMXBTJ (I,RS,B,DETJ,BTAY,NLOCK,AJM11,AJM12,AJM21,AJM22) 
IF (IPSTATE.EQ.2) THEN 

CALL HQ8P2 (I,RS,PPURE) DETERMINE P 
ELSEIF (IPSTATE.EQ.1) THEN 

CALL HQ8P 1 (I, RS , PPURE) DETERMINE P 
ELSE 

CALL HQ8PA (I,RS,PPURE) DETERMINE P 
ENDIF 

CALL FIXP (P,PTRANSO,PTRANS,QTRANS,AJM11,AJM12,AJM21,AJM22, 
& DETJ,DETJO,PPURE,IMIXED,3,NP) TRANSFORM P 

C-----EVALUATE INTEGRAL--------------------------------------------
C .... . C--1 x P ................................................... . 

DO 50 K=1,3 
DO 50 L=l,NP 
C1=CINV(K,1)*P(1,L)+CINV(K,2)*P(2,L)+CINV(K,3)*P(3,L) 
P1CK,L)=C1*DETJ*HH*GWS(1,I)*GWS(2,I) 

50 CONTINUE 

C ..... P-t x C--1 x P .. .............. ................ . .... .... .. ... . 
DO 54 K=l,NP 
DO 54 L=l,NP 
C1=P(1,K)*P1(1,L)+P(2,K)*P1(2,L)+P(3,K)*P1(3,L) 
P2(K ,L) =P2(K,L)+C1 

54 CONTINUE 

C ..... P-t x B ............. ........... , ...... . . ............... ..... . 
DO 60 K=l ,NP 
DO 60 L=1,12 
C1=P(1,K)*B (1,L)+P(2,K)*B (2,L)+P(3,K)*B (3,L) 
T2(K,L)=T2(K,L)+C1*DETJ*HH*GWS(1,I)*GWS(2,I) 

60 CONTINUE 

C-----END OF INTEGRATION LOOP--------------------------------------

80 CONTINUE 
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C-----DETERMINE INVERSE OF H -------------------------------------­
CALL XEQY(XDU,P2,NP,NP) 
CALL DGEFA(P2,NP,NP,IPVT,INFO) 
JOB=Ol 
CALL DGEDI(P2,NP,NP,IPVT,DETX,WORK,JOB) 
CALL TESTINVERSE(XDU,P2,NP,NP,TEST1) 

C .. . . . H--1 * G ......................... ...... . ..... ... .. . . ........ . 
DO 90 K=l,NP 
DO 90 L=1,12 
C1=P2(K,1)*T2(1,L)+P2(K,2)*T2(2,L)+P2(K,3)*T2(3,L) 

& +P2(K,4)*T2(4,L)+P2(K,5) *T2(5,L)+P2(K,6)*T2(6,L) 
& +P2(K,7)*T2(7,L)+P2(K,8)*T2(8,L) 

T3(K,L)=C1 
90 CONTINUE 

C .. .. . K = G-t * H--1 * G . .... . ..... .......... . .................... . 
DO 95 K=1,12 
DO 95 L=1,12 
C1=T2(1,K)*T3(1,L)+T2(2,K)*T3(2,L)+T2(3,K)*T3(3,L) 

& +T2(4,K)*T3(4,L)+T2(5,K)*T3(5,L)+T2(6,K)*T3(6,L) 
& +T2(7,K)*T3(7,L)+T2(8,K)*T3(8,L) 

T4(K,L)=C1 
95 CONTINUE 

C------------------------------------------------------------------
C 
C ELEMENT P MATRIX - DISPLACEMENT FORMULATION 
C 
C------------------------------------------------------------------

IF (NTELE.EQ.3) GOTO 280 
IF (NTELE.EQ.1) GOTO 200 

C-----EVALUATE INTEGRAL AND SUM K AND P MATRICES------------------­
DO 140 L=1,12 
T1Y(1,L)=BY(1,L)*DETJO*HH*FOUR 

140 CONTINUE 

DO 141 K=1,12 
DO 141 L=l, 12 
T2Y(K,L)=BY(1,K)*T1Y(1,L) 

141 CONTINUE 

DO 150 K=1,12 
DO 150 L=l, 12 
T4(K,L)=T4(K,L)+t2y(k,1)*GG 
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150 CONTINUE 
GOTO 280 

C-------------------------------------------------------- ----------
C 

C ELEMENT h MATRIX - MIXED FORMULATION 
C 
C------------------------------------------------------------------

C-----DEFINE INTEGRATION POINTS------------------------------------
200 CALL INTPTS(INT2,RS,GWS) 

C-----LOOP THROUGH THE INTEGRATION POINTS-------------------------­
DO 250 I=1,INT2 
CALL MEMXB2 (I,RS,BY,DETJ) 

C-----EVALUATE INTEGRAL-------------------------------------------­
DO 250 L=1,12 
T1Y(1,L)=T1Y(1,L)+BY(1,L)*DETJ*HH*GWS(1,I)*GWS(2,I) 

250 CONTINUE 

Co o 0 0 oh * hT 00000 0 00 •••• 0 0 • 0 0 0 0 0 0 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 00 0000000 

DO 260 1=1,12 
DO 260 J=1,12 
T2Y(I,J)=T1Y(1,I)*T1Y(1,J) 

260 CONTINUE 

Co 000 oK + ho 0 0 00000000 00 00 00 0000 000. o. 0 0 0 0 000 00 . 0 ••• 0 o. 0 0 ••••••• • 0. 

VOLEL=HH*AREA 
DO 270 1=1,12 
DO 270 J=1 , 12 
T4(I,J)=T4(I,J)+T2Y(I,J)*GG/VOLEL 

270 CONTINUE 

C-----SUM TO FORM MEMBRANE STIFFNESS-------------------------------
280 DO 290 K=1,4 

DO 290 L=1,4 
S(6*K- 5,6*L-5)=T4(3*K-2,3*L-2) 
S(6*K-4,6*L-4)=T4(3*K-1,3*L-1) 
S(6*K-5,6*L-4)=T4(3*K-2,3*L-1) 
S(6*K-4,6*L-5)=T4(3*K-1,3*L-2) 

C. 0 •• 0 DRILLING ROTATIONS ...... . 0 •• ••• 0 0 ••• 0 ••••••••• ••• ••• • 0 ••• •••• 

S(6*K-0,6*L-0)=T4(3*K-0,3*L-0) 
S(6*K-5,6*L-0)=T4(3*K-2,3*L-0) 
S(6*K-4,6*L-0)=T4(3*K- 1,3*L-0) 
S(6*K-0,6*L-5)=T4(3*K-0,3*L-2) 
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S(6*K-0,6*L-4)=T4(3*K-0,3*L-1) 
290 CONTINUE 

C------------------------------------------------------------------
C 

C ELEMENT K MATRIX (BENDING STIFFNESS) 
C 

C------------------------------------------------------------------

INT3=4 

C-----DEFINE INTEGRATION POINTS-----------------------------------­
CALL INTPTS(INT3,RS,GWS) 

C-----CALCULATE MATERIAL MATRIX------- - ---------------------------­
CALL MATPL(EE,UU,HH,FF,DB,DS) 

C-----INITIALIZE MATRICES----------------~------------------------­
DO 530 1=1,3 
DO 530 J=1,12 

530 BPL(I,J)=ZERO 

DO 531 1=1,2 
DO 531 J=l, 12 

531 BS(I,J)=ZERO 

DO 535 1=1,12 
DO 535 J=1,12 
T2PL(I,J)=ZERO 

535 CONTINUE 

C-----CALC. JACOBIAN MATRIX AT SAMP. POINTS-----------------------­
CALL JASAPM 

C-----LOOP THROUGH THE INTEGRATION POINTS-------------------------­
DO 590 I=1,INT3 
CALL CPT1B (I,RS,BPL,BS,DETJ) 

C-----EVALUATE INTEGRAL (MATRIX MULTIPLICATION)-------------------­
DO 550 K=1,3 
DO 550 L=l, 12 
C1=DB(K,1)*BPL(1,L)+DB(K,2)*BPL(2,L)+DB(K,3)*BPL(3,L) 
T1PL(K,L)=C1*GWS(1,I)*GWS(2,I)*DETJ 

550 CONTINUE 

DO 555 K=1,2 
DO 555 L=1,12 
C1=DS(K,1)*BS(1,L)+DS(K,2)*BS(2,L) 
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T1S(K,L)=Cl*GWS(1,I)*GWS(2,I)*DETJ 
555 CONTINUE 

DO 560 K=1,12 
DO 560 L=1,12 
Cl=BPL(1,K)*T1PL(1,L)+BPL(2,K)*T1PL(2,L)+BPL(3,K)*T1PL(3,L) 
C2=BS (1,K)*T1S (l,L)+BS (2,K)*T1S (2,L) 
T2PL(K,L)=T2PL(K,L)+Cl+C2 

560 CONTINUE 

590 CONTINUE 

C-----END INTEGRATION LOOP---------------------- - ------------------

C-----SUM TO FORM ELEMENT STIFFNESS MATRIX------------------------­
DO 580 K=1,4 
DO 580 L=1,4 
S(6*K-3,6*L-3)=T2PL(3*K-2,3*L-2) 
S(6*K-2,6*L-2)=T2PL(3*K-l,3*L-l) 
S(6*K-l,6*L-l)=T2PL(3*K-0,3*L- 0) 
S(6*K-3,6*L-2)=T2PL(3*K-2,3*L-l) 
S(6*K-2,6*L-3)=T2PL(3*K-l,3*L-2) 
S(6*K-3,6*L-l)=T2PL(3*K-2,3*L-0) 
S(6*K-l,6*L-3)=T2PL(3*K- 0,3*L-2) 
S(6*K-2,6*L-l)=T2PL(3*K-l,3*L-0) 
S(6*K-l,6*L-2)=T2PL(3*K-0,3*L-l) 

580 CONTINUE 

C-----CONVERT FROM FLAT TO WARPED---------------------------------­
IF (NWARP . NE.O) CALL TWIS TM (S) 

C-----ROTATE STIFNESS TO GLOBAL SYSTEM----------------------------­
CALL ROTATE(S) 

C-----IDENTIFY DOF WHICH HAVE STIFFNESS----------- -----------------
295 DO 320 K=1,6 

IF (S(K,K).NE.ZERO) ID(K,II)=l 
IF (S(K+6,K+6) . NE.ZERO) ID(K,JJ)=l 
IF (S(K+12,K+12) .NE.ZERO) ID(K,KK)=l 
IF (S(K+18,K+18) . NE.ZERO) ID(K,LL)=l 

320 CONTINUE 

C-----SAVE ELEMENT ARRAYS---------------------------------------- - ­
WRITE (NT7) IDE,NUMN,II,JJ,KK,LL,NDOF,ND 
WRITE (NT8) S 
WRITE (NSP) IDE,II,JJ,KK,LL,XYL,T3,IMIXED,PTRANSO,DETJO, 

& BTAY,NLOCK,ALPHACORR,NWARP 
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C-----SAVE STIFFNESS MATRIX TO SOLVE EIGENVALUES------------------­
IF (NEIGEN.NE.O) THEN 
NPRINT=O 
NEX=24 
DO 350 I=l,NEX 
DO 350 J=l,NEX 

350 SEIG(I,J)=S(NEIG(I),NEIG(J)) 
CALL CALJAC(SEIG,NEX,NEIGEN) 
ENDIF 

C-----CHECK FOR ELEMENT GENERATION--------------------------------­
IF (NAM.EQ.O) GOTO 400 
NAM=NAM-l 
IDE=IDE+INE 
II=II+INI 
JJ=JJ+INI 
KK=KK+INI 
LL=LL+INI 
NTOT=NTOT+l 
GOTO 10 

400 IF ((MM+NTOT).EQ.NSHL8) RETURN 

C------------------------------------------------------------------
2000 FORMAT (/,' EL. # I J K L H E' 

* G U ') 
2001 FORMAT (lI6,4I5,lF9.3,2E12.3,lF9.3) 
2002 FORMAT (5El0.3) 
2003 FORMAT (/,' ELEMENT TYPE: SHL8, Version: ' ,111,/, 

* ' INTEGRATION SCHEME: ', lI2,'-POINT') 
END 

C------------------------- - ----------------------------------------

C===========================================================MEMXBTJ 
C 

C 
C 

SUBROUTINE EVALUATES THE OPERATOR MATRIX 
[B-MATRI X] FOR THE ELEMENT K MATRIX OF A 

C FOUR NODE 8 DOF MEMBRANE ELEMENT WITH IN-
C PLANE DRILLING ROTATIONS. 
C 

C------------------------------------------------------------------
SUBROUTINE MEMXBTJ(I,RS,B,DETJ,BTAY,NLOCK, 

& AJMll,AJM12,AJM21,AJM22) 

IMPLICIT REAL*8 (A-H,O-Z) 

DIMENSION RS(2,16) ,QR(9),QS(9),B(3,14) ,BTAY(3,4) 

COMMON /VECT / V(4,3) ,XYL(3,5) 
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COMMON /TEMP / IDE,II,JJ,KK,LL,HH,EE,UU 
COMMON /SIDE / ALPHA(4),XLENG(4) 
COMMON /IOLIST/ NTM,NTR,NIN,NOT,NSP,NFL,NT7,NT8 

DATA ZERO /O.DO/, ONE /l.DO/, TWO /2.00/, 
& FOUR /4.DO/, EIGHT /8 .00/ 

RCOORO=RS(l,I) 
SCOORD=R.S (2,1) 

XYLll=XYL (1,1) 
XYL21=XYL(2,1) 
XYL12=XYL(1,2) 
XYL22=XYL(2,2) 
XYL13=XYL (1,3) 
XYL23=XYL(2,3) 
XYL14=XYL(1,4) 
XYL24=XYL(2,4) 

C-----CALCULATE SHAPE FCN. OERIVITIVES AT GIVEN POINT--------------
C ..... CALCULATE LINEAR FUNCTIONS .... . ... .. .... . ... . ..... . ..... . .. . . 

QR1=-(ONE-SCOORO)/FOUR 
QR2= (ONE-SCOORD)/FOUR 
QR3= (ONE+SCOORD)/FOUR 
QR4=-(ONE+SCOORD)/FOUR 
QR( 1)=QRl 
QR(2)=QR2 
QR(3)=QR3 
QR(4)=QR4 

C ..... CALCULATE QUADRATIC FUNCTIONS. , .. . , ... . ", .. .. . .. , ... '", "" 
QR(5)=-RCOORD* (ONE-SCOORD) 
QR(6)= (ONE-SCOORD)*(ONE+SCOORD)/TWO 
QR(7)=-RCOORD*(ONE+SCOORD) 
QR(8)=-(ONE-SCOORD)*(ONE+SCOORD)/TWO 
QR(9)=-TWO*RCOORD*(ONE-SCOORO**TWO) 

C ... . . CALCULATE LINEAR FUNCTIONS .. , . ,., ............. , ...... " ..... . 
QS1=-(ONE-RCOORD)/FOUR 
QS2=-(ONE+RCOORD)/FOUR 
QS3= (ONE+RCOORO)/FOUR 
QS4= (ONE-RCOORD)/FOUR 
QS(1)=QSl 
QS(2)=QS2 
QS(3)=QS3 
QS(4)=QS4 

C ..... CALCULATE QUADRATIC FUNCTIONS . . ... , .... ... ...... , ..... ... ... . 
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QS(5)=-(ONE+RCOORD) * (ONE-RCOORD ) /TWO 
QS(6)=-SCOORD*(ONE+RCOORD) 
QS(7)= (ONE+RCOORD)*(ONE- RCOORD)/TWO 
QS(8)=-SCOORD*(ONE-RCOORD) 
QS(9)=-TWO*SCOORD*(ONE-RCOORD**TWO) 

C-----CALCULATE JACOBIAN MATRIX-----------------------------------­
AJMll=QR1 *XYLll+QR2*XYL12 + QR3*XYL13+QR4*XYL14 
AJM12=QR1*XYL21+QR2*XYL22 + QR3*XYL23+QR4*XYL24 
AJM21=QS1*XYLll+QS2*XYL12 + QS3*XYL13+QS4*XYL14 
AJM22=QS1*XYL21+QS2*XYL22 + QS3*XYL23+QS4*XYL24 

C-----INVERT JACOBIAN MATRIX--------------------------------------­
DETJ=AJMll*AJM22-AJM12*AJM21 
IF (DETJ.LE.O . ) WRITE(NOT,2000)DETJ 
IF (DETJ.LE.O .) WRITE(NTM,2000)DETJ 
AJlll= AJM22/DETJ 
AJI22= AJMll/DETJ 
AJI12=-AJM12/DETJ 
AJI21=-AJM21/DETJ 

C-----CALCULATE SIDE LENGTHS AND ANGLES------------ - --------------­
DO 40 IC=1,4 
MC=IC+4 
TEMP=ONE/IC 
LC=MC-l+4*INT(TEMP) 
KC=MOD(MC,4)+1 
JC=LC-4 
XLENIJ=XLENG (JC) 
XLENIK=XLENG (IC) 
ALPHIJ=ALPHA (JC) 
ALPHIK=ALPHA(IC) 

C-----EVALUATE B-MATRIX------ ---- ---------------------------------­
B(1,3*IC-2)=QR(IC)*AJlll+QS(IC)*AJI12 
B(3, 3*IC-l)=B(1,3*IC-2) 
B(2,3*IC-l)=QR(IC)*AJI21+QS(IC)*AJI22 
B(3,3*IC-2)=B(2,3*IC-l) 
B(1,3*IC)=XLENIJ*DCOS(ALPHIJ)/EIGHT* 

& (QR(LC)*AJlll+QS(LC)*AJI12) 
& -XLENIK*DCOS(ALPHIK)/EIGHT* 
& (qR(MC)*AJlll+QS(MC)*AJI12) 

B(2,3*IC)=XLENIJ*DSIN(ALPHIJ)/EIGHT* 
& (QS(LC)*AJI22+QR(LC)*AJI21) 
& -XLENIK*DSIN(ALPHIK)/EIGHT* 
& (QS(MC)*AJI22+QR(MC)*AJI21) 

B(3,3*IC)=XLENIJ*DCOS(ALPHIJ)/EIGHT* 
& (QS(LC)*AJI22+QR(LC)*AJI21) 
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& -XLENIK*DCOS(ALPHIK)/EIGHT* 
& (QS(MC)*AJI22+QR(MC) *AJI2i) 
& +XLENIJ*DSIN(ALPHIJ)/EIGHT* 
& (QR(LC)*AJIii+QS(LC)*AJI12) 
& -XLENIK*DSIN(ALPHIK)/EIGHT* 
& (QR(MC)*AJIi1+QS(MC)*AJI12) 

C-----CORRECT SHAPE FUNCTIONS: MEMBRANE LOCKING-------------------­
IF (NLOCK.EQ.i) THEN 
B(1,3*IC)=B(1,3*IC)-BTAY(1,IC) 
B(2,3*IC)=B(2,3*IC)-BTAY(2,IC) 
B(3,3*IC)=B(3,3*IC)-BTAY(3,IC) 
ENDIF 

40 CONTINUE 

C-----ADD BUBBLE---------------------------------------------------
B(1,13)=QR(9)*AJIii+QS(9)*AJI12 
B(2,14)=QR(9)*AJI2i+QS(9)*AJI22 
B(3,13)=B(2,14) 
B(3,14)=B(1,13) 
RETURN 

C------------------------------------------------------------- -----
2000 FORMAT (] JACOBIAN=] ,E15.6, 

* ] NODE NUMBERS NOT IN ORDER ]) 
END 

C------------------------ ------------------------------------------

C============================================================HQ8PA 
C 
C SUBROUTINE EVALUATES THE P MATRIX OF A HYBRID FOUR NODE 
C MEMBRANE ELEMENT USING 8 BETA PARAMETERS. 
C 

C------------------------------------------------------------------
SUBROUTINE HQ8PA(I,RS,P) 

IMPLICIT REAL*8 (A-H,O-Z) 
PARAMETER (NPOSS=57) 

DIMENSION RS(2,16) ,P(3,8), SM(3,NPOSS) 

COMMON /IOLIST/ NTM ,NTR,NIN,NOT,NSP,NFL,NT7,NT8 
COMMON /CONSTR/ ICONSTR(9) 

DATA ZERO /O.DO/, ONE /l .DO/, TWO /2.DO/ 

C-----OBTAIN R & S COORDINATES------------------------------------­
R=RS(1, I) 
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S=RS (2, I) 

C-----INITIALIZE------------------------- - -------------------------
DO 10 K=1,3 
DO 10 L=1,8 

10 P (K, L) =ZERO 
DO 20 K=1,3 
DO 20 L=l,NPOSS 

20 SM(K,L)=ZERO 

C-----EVALUATE P---------------------------------------------------
SM (1, 1) =ONE 
SM(2, 2)=ONE 
SM(3, 3)=ONE 

SM(1, 4)=R 
SM(1, 5)=S 
SM(2, 6)=R 
SM(2, 7)=S 
SM(3, 8)=R 
SM(3, 9)=S 

SM(1,10)=ONE 
SM(2,10)=ONE 
SM(1,11)=ONE 
SM(2,11)=-ONE 

SM(2,12)=-S 
SM(3,12)=R 
SM(1,13)=-R 
SM(3,13)=S 

SM(1, 14) =R*R 
SM(2,15)=R*R 
SM(3,16)=R*R 
SM(1,l7)=S*S 
SM(2,18)=S*S 
SM(3,19)=S*S 

SM(1,20)=R*S 
SM(2,21)=R*S 
SM(3,22)=R*S 

SM (1,23) =-R*R 
SM(2,24)=-R*R 
SM(3,25)=-R*R 
SM(1,26)=-S*S 
SM(2,27)=-S*S 
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SM(3,28)=-S*S 

SM(1,29)=-R*S 
SM(2,30)=-R*S 
SM (3,31) =-R*S 

SM (1,32) =S*S 
SM(2,32)=-R*R 

SM(1,33)=S 
SM(2,33)=-R 
SM(1,34)=S 
SM(3,34)=-R 
SM(1,35)=-R 
SM(2,35)=S 
SM(2,36)=S 
SM(3,36)=-R 
SM (1,37) =-R 
SM(3,37)=S 

SM(2,38)=-R 
SM(3,38)=S 

SM(1,39)=R 
SM(2,39)=-S 
SM(1,40)=R 
SM(3,40)=-S 
SM(1,41)=-S 
SM(2,41)=R 
SM(2,42)=R 
SM(3,42)=-S 

SM(1 ,43) =-S 
SM(3,43)=R 

SM(2,44)=-S 
SM(3,44)=R 

SM(1,45)=S*S 
SM(3,45)=-R*R 
SM(1,46)=-R*R 
SM(2,46)=S*S 
SM(2,47)=S*S 
SM (3,47) =-R*R 
SM(1,48)=-R*R 
SM(3,48)=S*S 
SM(2,49)=-R*R 
SM(3,49)=S*S 
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SM(1,50 ) =R*R 
SM(2,50)=-S*s 
SM(1,51)=R*R 
SM(3,51)=-S*S 
SM(1,52 ) =-S*S 
SM(2,52)=R*R 
SM(2,53)=R*R 
SM(3,53)=-S*S 
SM(1,54)=-S*S 
SM( 3 ,54)=R*R 
SM(2,55)=-S*S 
SM(3,55 ) =R*R 

SM(1,56)=S*S 
SM(3,56) =-R*S 
SM (2,5 7) =-R*R 
SM(3,57)=R*S 

DO 50 K=1,8 
DO 40 L=1,3 
P(L,K)=SM(L,ICONSTR(K)) 

40 CONTINUE 
50 CONTINUE 

RETURN 

END 
C---------------------------- ------------------ --------------------

C==============================================================FIXP 
C 

C A-MATRIX FOR AN ASSUMED STRESS FOUR NODE MEMBRANE ELEMENT 
C WITH DRILLING DEGREES OF FREEDOM - 8 BETA PARAMETERS 
C 

C-- ----- ---- --------------- -------- --------------------------------
SUBROUTINE FIXP (P,PTRANSO,PTRANS,QTRANS,AJMll,AJM12, 

& AJM21,AJM22,DETJ,DETJO,PPURE,IMIXED,I,J ) 

IMPLICIT REAL*8 (A-H,O-Z ) 

DIMENSION P(I,J), PTRANSO(3,3 ) , PTRANS(3, 3) , QTRANS(3,3 ) 
DIMENSION PPURE(I,J ) 

DATA ZERO /0 .00/, ONE /1.00/, TWO /2.00/ 

GOTO (1 0 ,20, 30,40,50, 60) IMIXED 
STOP 'ILLEGAL MIXED ELEMENT FORMULATION SPECIFIED' 

C-----NC (OR I ) NOT CONSTRAINED--------- - --------------------------
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10 DO 15 K=l,I 
DO 15 L=4,J 
P(K,L)=PPURE(K,L) 

15 CONTINUE 
GOTO 500 

C-----EP EQUILIBRIUM CONSTRAINED-----------------------------------
20 DO 25 K=l,I 

DO 25 L=4,J 
Cl=PTRANSO(K,1)*PPURE(1,L)+PTRANSO(K,2)*PPURE(2,L)+ 

& PTRANSO(K,3)*PPURE(3,L) 
P(K,L)=Cl 

25 CONTINUE 
GOTO 500 

C-----OC ORTHOGONAL CONSTRAINED------------------------------------
30 DO 35 K=l,I 

DO 35 L=4, ,r 
Cl=PTRANSO(K,1)*PPURE(1,L)+PTRANSO(K,2)*PPURE(2,L)+ 

& PTRANSO(K,3)*PPURE(3,L) 
P(K,L)=Cl/(DETJ) 

35 CONTINUE 
GOTO 500 

C-----EC ELEMENT OPTIMALLY CONSTRAINED-----------------------------
40 STOP) 4: NOT IMPLEMENTED' 

GOTO 500 

C-----NT NORMALIZED TRANSFORMATION OF STRESS FIELD-----------------
50 DO 55 K=l,I 

DO 55 L=4,J 
CALL FORMTRANSJ (PTRANS,AJMll,AJM12,AJM21,AJM22) 
C2=PTRANS (K,l)*PPURE(l,L)+PTRANS (K,2)*PPURE(2,L)+ 

& PTRANS (K,3)*PPURE(3,L) 
P(K,L)=C2/(DETJ**2) 

55 CONTINUE 
GOTO 500 

C-----PH PHYSICAL COMPONENTS IN ISOPARAMETRIC SPACE----------------
60 DO 65 K=l,I 

DO 65 L=4,J 
CALL FORMTRANSJQ (QTRANS,AJMll,AJM12,AJM21,AJM22,DETJ) 
C3=QTRANS (K,l)*PPURE(l,L)+QTRANS (K,2)*PPURE(2,L)+ 

& QTRANS (K,3)*PPURE(3,L) 
P(K,L)=C3 

65 CONTINUE 
GOTO 500 
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C-----ASSIGN LOWER ORDER STRESS- --------------- --------------------
500 DO 550 K=1,3 

DO 550 L=1,3 
P(K,L) = PPURE(K,L) 

550 CONTINUE 
RETURN 

END 
C--- ---------------------------------------------------------------

C==========================================================MATLWINV 
C 

C INVERSE MATERIAL LAW FOR MEMBRANE ELEMENTS 
C COMPLIANCE MATRIX 
C 
C------------------------------------------------------------------

SUBROUTINE MATUJINV(NSTAT ,EE, UU, C) 

IMPLICIT REAL*8 (A-H,O-Z) 

DIMENSION C(3,3) 

DATA ZERO /0.00/, ONE /1 .00/, TWO /2.00/, HALF /0.5000/ 

C-----MEMBRANE PLANE STRESS---------------------------------------­
IF (NSTAT.EQ.2) GO TO 20 
ENTRY=ONE/EE 
C(1,l)=ENTRY 
C(2,2)=ENTRY 
C (1,2) =-UU/EE 
C(2,1 ) =-UU/EE 
C(3,3)=TWO*(ONE+UU)/EE 
GO TO 40 

C-----MEMBRANE PLANE STRAIN---------------------------------- ------
20 ENTRY=( (ONE+UU) * (ONE-TWO*UU) ) / ( TWO * EE * (UU-HALF) ) 

C(l,l)=-ENTRY*(ONE-UU) 
C(2,2)=-ENTRY*(ONE-UU) 
C(1,2)= ENTRY*UU 
C(2,1)= ENTRY*UU 
C(3,3)=-ENTRY*TWO 

40 C(1,3)=ZERO 
C(2,3)=ZERO 
C(3,1)=ZERO 
C(3,2)=ZERO 
RETURN 
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END 
C----- - ----- - ------- - ---- ---------------------- - - --------- - - -------

 
 
 



Appendix F 

List of definitions 

Advanced elements 

Finite elements with both drilling degrees of freedom and an assumed stress interpolation 
field. 

Composite materials 

Generally a composite material is a material with two or more constituents, combined by 
physical process on the macroscopic scale. 

Dirichlet problem [63] 

Boundary value problem: 

+ o ER 
(F.l) 

Finding a solution of Laplace's equation in a region R with given boundary values, is called 
a Dirichlet problem. It is known that, if the boundary curve C and the boundary value 
function are reasonably well behaved, then there exists a unique solution to the Dirichlet 
problem in (F.l). 

Drilling degrees of freedom 

In-plane rotational degrees of freedom of membrane elements. 

Finite elements [64] 

A geometrically complex domain of a problem is represented 3..'3 a collection of geometrically 
simple subdomains, called finite elements. 
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Interpolation functions [64] 

Over each finite element the approximation functions are derived using the basic idea that 
any continuous function can be represented by a linear combination of algebraic polynomials. 
The approximation functions are derived using concepts from interpolation theory, and are 
therefore called interpolation functions. 

Low order elements 

Finite elements with the least possible number of nodes per element. For example a quadri­
lateral element with only four nodes. 

Orthotropic materials 

Materials that posses different stiffnesses along three perpendicular axes. 

Strain-displacement relations [65] 


In small displacement theory the strain-displacement relations are given as follows: 


au] 
Ell 

OX1 

OU2 
E22 

OX2 

OU3 
E33 

OX3 

~f12 
01t2 OU1-+-. 
OX1 OX2 

OU3 OU1 
{13 

OX1 
+ 

OX3 

"'123 
OU3-+ OU2 

(F.2) 
OX2 OX3 

Stress [65] 


The state of internal force at a point of the body is defined by nine components of stress: 


0"11 712 713 

721 0"22 723 (F.3) 
731 732 0"33 

which should satisfy the equations of equilibrium: 

 
 
 



131 APPENDIX F. LIST OF DEFINITIONS 

o 

o 

o (F.4) 

and 

(F.5) 

where U1 , U2 and 0.3 are components of the body forces per unit volume. By eliminating 
721,731 and 732 by the use of (F.5), then (F.4) becomes: 

o 

o 

o (F.6) 

Strain [65] 

The state of strain at a point of the body is defined by six components of strain, namely: 

(F.7) 

Sobolev spaces of functions [38] 


Sobolev spaces of functions are defined as follows: 


(F.8) 

where 

(F.9) 

 
 
 



132 APPENDIX F. LIST OF DEFINITfONS 

In words, the Sobolev space of degree k, denoted Hk, consists of functions that possess 
square-integrable generalized derivatives through order k. A square-integrable function is 
called an L2-function, by virtue of (F.9). From (F.8), it can be seen that: 

(F.lO) 

and that 

(F.Il) 

Variational form [64] 

In the variational solution of differential equations, the differential equation is put into an 
equivalent variational form, and then the approximate solution is assumed to be a com­
bination, CjCPj, of given approximation functions CPj. The parameters Cj are determined 
from the variational form. The variational methods suffer from the disadvantage that the 
approximation functions for problems with arbitrary domains are difficult to construct. 

 
 
 


