
• INTRODUCTION

1. To develop a Nonlinear Multiscale Principal Component Analysis (NLMSPCA)
methodology for process monitoring that is able to effectively detect abnormal
situations during their early development stage and to give a preliminary diagnosis
of the cause of the problem.

2. To develop NLMSPCA monitoring software as a Matlab toolbox that incorporates
the whole NLMSPCA methodology for step-by-step development and easy
application.

3. Application of the NLMSPCA methodology to real nonlinear multivariate chemical
process data so that the performance of the NLMSPCA methodology can be tested
and validated.

In order to develop and explain the NLMSPCA methodology, an overview discussion is
given on the following topics:

During these discussions those features that make these topics so significant for
process monitoring will be highlighted since it is these features that will be combined to
form the final NLMSPCA methodology. A discussion on abnormal situation
management (ASM) is also included in order to emphasize and justify the need and
significance of this work and also to put it into perspective with the global ASM
methodology.

 
 
 



In modern process plants controlled by distributed control systems, the role of
operators has changed from being primarily concerned with control to a broader
supervisory responsibility: analyzing operational data, identifying unusual conditions as
they develop and responding rapidly and effectively by taking corrective actions.

Any action taken on a process operation generally relies on a description of the state of
the operation or events that are occurring. Timely and correct interpretation of data
through improved process monitoring and fault detection will lead to improved quality,
reduced cost, safer operations, and waste reduction (Kosanovich et aI., 1996; Davis et
aI., 1995). However, there are significant obstacles to using data for process monitoring
and fault detection, including the sheer volume of the data, large numbers of variables,
process noise, and the non-stationary tendency of the process data due to process and
monitoring sensor drift.

The role of the operator has become a more challenging task than before because of
the overwhelming volume of data operators have to deal with (Chen et aI., 1999) due to
chemical processes becoming increasingly measurement rich. Large volumes of data
are recorded and are often not used until the process has undergone a significant
upset. Although there may be hundreds of measurements in a typical chemical
process, there are relatively few events generating this information.

High dimensional data analysis is becoming increasingly common as new problems are
placing greater demands on computing resources. With high dimensional data, it is
difficult to understand the underlying structure: it is difficult to "see the wood for the
trees." Additionally, the storage, transmission and processing of high dimensional data
places great demands on systems. This data can be very useful for process monitoring
if the appropriate tools are applied. Hence, it is desirable to reduce the dimensionality
of the data, whilst maintaining as much of its original structure as possible.

Under ideal conditions a process would be stationary, i.e. retain the same mean and
covariance structure over time. However, this is rarely observed over a long period of
time so that most processes will exhibit non-stationary behavior over a long enough
period. The process data may exhibit large amounts of normal systematic variation on

 
 
 



several time scales. This normal process drift is continuous on some time scales and
discontinuous on others while variations due to faults can be relatively minor in
comparison.

When a process suffers an out-of-control situation, the process behavior and normal
process variation can be manifested in a variety of unnatural patterns such as cyclic,
trend, systematic and sudden shift patterns. The root causes of process deviations and
poor process data quality, as shown below are (Ghanim & Jordan, 1996):

 
 
 



Temporary unstable phenomena caused by condition changes (e.g., change of
crude oil or utility system)

The result is that it is normal for the process data to show considerable variation over
time. This variation is often much larger than changes due to process faults. It has also
been observed that the process mean shows more erratic behavior than the process
covariance, i.e. how the process variables co-vary.

 
 
 



Fault detection in the petrochemical industry is routinely done with preset upper and
lower limits for each variable in the petrochemical industry. However, the method
sometimes does not detect faults in a short time, and furthermore, some kinds of faults
are fully missed or are only found after a long delay. Operators usually take a
succession of plant data as a trend (Le. a slow-changing behavior) and unconsciously
neglect fast-changing components as noise. Furthermore, they neglect the fact that
significant information about faults is also contained in high-frequency components of
measured data (Daiguji et aL, 1997). The result is that most of these variations and
especially the root causes of these variations cannot be observed or detected by
current monitoring systems. Therefore, techniques are needed that are able to detect
any form of process variation and systematic changes, and are also able to guide in the
investigation of the root causes of these process deviations.

Without proper pre-treatment, the necessary interpretation is difficult, if not impossible.
Gross data must be eliminated or modified and noise levels reduced. In many cases,
critical information occurs over short duration, and hence, is difficult to detect. Rioul
and Vetterli have described how wavelets can be used to pre-process data in order to
better locate and identify significant events (Davis et aL, 1995). Combining this type of
data pre-processing with multivariate statistics holds great promise for generating
useful insights into the problem of process monitoring, data analysis, and data
interpretation.

A wide variety of data treatment methods and chemometrics techniques are available
for application to process data, however, it is often not apparent what methods will be
useful in meeting monitoring and fault detection goals (Wise, et. aL, 1996). These
applications can be roughly divided between those directed at maintenance of process
instruments, e.g. calibration, and those concerned with maintenance of the process
itself, e.g. statistical process control and fault detection. The focus of this study is on
the latter. For this study principal component analysis (PCA) modeling methods, which
are commonly used for multivariate statistical process control (MSPC), are used and
modified to be robust over long time periods in the presence of process drift while
remaining sensitive to faults.

1.6. Data Analysis and Process Mon~oring

The terms data analysis and process monitoring, as used in the context of process
applications, collectively refer to the interpretation and evaluation of sampled process
measurements. Data analysis as used in this work is intended to describe how data are
manipulated and used together with fundamental understandings to infer the state of a

 
 
 



physical process. Monitoring, on the other hand, refers to the classification of the data
based upon a calibration model of expected behavior so that abnormal situations can
be detected and fault modes isolated. Figure 1.1 is a simplified view of the on-line
process monitoring activity.
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Due to the aspects discussed in the precious sections of this chapter significant
research has been done in recent years in more advanced techniques for multivariate
process performance monitoring because of its increasing strategic importance. This
research delivered promising results and followed the approach of reducing the
dimensionality of the data by summarizing the data in terms of a smaller number of
latent variables which are linear and nonlinear combinations of the original variables
(Bakshi, 1998; Dunia and Quin, 1998; Dunia et aI., 1996; Jia et aI., 1998; Kosanovich
and Piovoso, 1997;. Nounou and Bakshi, 1998; Shao et aI., 1999; Tong and Crowe,
1995; Wang et aI., 1999). The most popular techniques are linear and nonlinear
principal component analysis (LPCA and NLPCA). However, these analyses only
concentrated on one or neither of the aspects of multiscale decomposition and NLPCA.

This study presents the non-linear multiscale principal component analysis
(NLMSPCA) methodology which is an effort to combine the best of these techniques,
with a few adjustments, to detect deterministic changes and extract those features that

 
 
 



represent abnormal operation. It combines the ability of non~linearPCA to decorrelate
the variables by extracting both linear and non-linear relationships with that of wavelet
analysis to extract deterministic features and approximately decorrelate autocorrelated
measurements.
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The NLMSPCA methodology (- Steps in the design phase; --- Steps in
the implementation phase)

The non-linear multiscale methodology illustrated in Figure 1.2 consists of first
decomposing each variable on a selected family of wavelets. Level dependent
thresholding is then applied to the wavelet coefficients to select a smaller subset of
wavelet coefficients. Thresholding of the coefficients at each scale identifies the region
of the time-frequency space and scale where there is a significant contribution from the
deterministic features of the signal. Details and approximations in the time domain are
reconstructed from the thresholded and nonthresholded wavelet coefficients. The
thresholded and nonthresholded details and approximations are treated separately.
The nonthresholded details and approximations are combined. PCA is performed
independently on the thresholded details and appoximations at each scale and consists
of both linear and non-linear PCA so that the process of extracting linear and non-linear
correlations from the data can be performed separately. The same procedure is
repeated on the combined nonthresholded details and approximations. For both linear
and non-linear PCA an appropriate number of loadings are selected. Applying linear
PCA results in a new set of uncorrelated ordinates. By retaining sufficient data
variability, the underlying non-linear structure is not compromised and only those linear
principal components associated with noise are discarded. Since the structure of the
noise is not known a-priori, cross-validation as discussed in Section 7.10 is generally
applied to assist in validating this.

Non-linear PCA is performed based upon the input-training neural network (IT-net)
approach. Internal network parameters are trained using the Levenberg Marquardt
algorithm while network inputs are updated using an extended backpropagation
algorithm. This combined training approach results in faster convergence than just
using backpropagation alone. After training the IT-net another network is trained that
maps the observed data to the reduced data. An autoassociative network is then

 
 
 



constructed by combining the mapping network and the IT-net. The non-linear principal
component scores are identified from the input layer of the IT-net. The advantage of
this method is that both linear and non-linear correlations can be extracted from the
process data to obtain a more parsimonious description of the original data. This
method results in a conformance and generalized conformance principal component
model.

Performance monitoring charts consisting of SPE and bivariate non-linear principal
component scores plots with data-driven, non-linear control limits are derived to
facilitate the comprehensive and robust occurrence of non-conforming operation.
Detection limits for the scores and model residuals are computed at each scale from
data representing normal operation and are calculated using the non-parametric
technique of kernel density estimation.

The signal is reconstructed to the time domain and the scores and residuals for the
reconstructed signal computed. The actual state of the process is confirmed by
checking whether the signal reconstructed from the coefficients violates the detection
limits of the PCA models. Since the reconstructed signal in the time domain is
generated from the large wavelet coefficients, this approach integrates the task of
monitoring with that of extracting the signal features representing abnormal operation,
with minimum distortion and time delay. Consequently, there is no need for a separate
step for prefiltering the measured variables. Furthermore, since the covariance matrix
for all the scales together contain all the scale dependent information, the final
detection limits to confirm the state of the process also adapt to the nature of the signal
features. NLMSPCA transforms conventional single-scale linear PCA to a nonlinear
multiscale modeling method, which is better suited for modeling data containing
nonlinear contributions that change over time and frequency.

For on-line monitoring, the NLMSPCA algorithm is applied to measurements in a
moving window of dyadic length.

A problem existing control chart displays are faced with is the space they occupy,
limiting the display to only a few graphs at a time. A new approach is presented which
allows the information to be displayed by univariate and bivariate control charts of the
principal component scores and time-series plot of the squared prediction error (SPE),
to be viewed in a compact manner so that the same information contained in multiple
graphs can be viewed on a single display.

This advanced on-line process performance monitoring scheme is illustrated through
application to a nonlinear multivariate chemical process. A complete toolbox has been
created in Matlab to facilitate the design and testing of the advanced process monitoring
scheme.

 
 
 



• ABNORMAL SITUATION MANAGEMENT

Process monitoring and fault detection forms part of a much larger topic called
Abnormal Situation Management (ASM). What follows may be regarded as an
unnecessary long introduction to abnormal situation management. However, it is very
important in the sense that it provides a background and bird's eye view over a subject
for which I find it impossible to determine even estimated boundaries and puts this
research topic of process monitoring in perspective to the global topic of ASM.
Furthermore, it also provides some ideas for further research topics. I'm sure another
ten years of intense research by a vast number of researchers can be spent on the
subject of Abnormal Situation Management. The ASM Solution Anatomy model
accompanying this work was developed from information collected from various
sources (Anderson and Vamsikrishna, 1996; Bullemer and Nimmo, 1998; Cochran and
Bullemer, 1996; Embrey, 1986; Harrold, 1998; Lorenzo, 1991; Musliner and
Krebsbach, 1998; Nimmo, 1995, 1996, 1998a, 1998b; Rothenberg and Nimmo, 1996;
Sticles and Melhem, 1998), including Internet searches, and represents a "generic"
ASM solution.

Abnormal Situations have always challenged operations personnel, and they likely
always will. Abnormal Situation Management is a particular challenge at this point in
history because increased demands for higher efficiency and productivity have
motivated the aggressive application of increasingly complex processes. The
tremendous increases in the sophistication of process control systems through the
development of advanced sensor and control technologies, and highly integrated
approaches to production planning have led to productivity levels only dreamed of by
previous generations of process engineers. The persistent paradox in the domain of
supervisory control is that as automation technology increases in complexity and
sophistication, operations professionals are faced with increasingly complex decisions
in managing abnormal situations. However, the capacity of human operators to deal
with this complexity, and the sophistication of their tools and user support technologies,
has remained essentially unchanged and has not kept pace with the task demands
imposed by abnormal situations. These sensor and control technologies have not
eliminated abnormal situations and will not in the future. Consequently, operations
personnel continue to intervene to correct deviant process conditions. Thus, the focus
of this program is to develop collaborative decision support technologies that will
significantly improve abnormal situation management practices.

Venkat Venkatasubramanian, professor at Purdue University's School of Chemical
Engineering (Lafayette, Ind.), compares chemical plants with people who have a very

 
 
 



complex illness."One or two doctorsare unableto diagnosethe illness.It takes a team of specialists
each looking at the symptoms, each developing an opinion, performing additional tests, and then
conferring \Nithteam members to reach a final condusion." Similar to an ill patient, diagnosing a
complex chemical process requirescombinationsof mathematicalmodels, expert systems, neural
networks,statisticaltechniques,and operationspersonnel,eachvvorkingto independentlydiagnosean
abnormalsituation,\NithfinaldiagnosesdevelopedthroughcooperativeproblemsoMng.

No standard definition of ASM exists. Although individual perceptions of abnormal
situation management vary, there is consensus that "normal" and "abnormal" represent
two distinct modes of operation. Abnormal Situations comprise a range of minor to
major process disruptions or series of disruptions that cause plant operations to deviate
from their normal operating state and in which operations personnel have to intervene
to correct problems with which the control systems cannot cope. The nature of the
abnormal situation may be of minimal or catastrophic consequence. A disturbance may
simply cause a reduction in production; in more serious cases it may endanger human
life.

Furthermore, abnormal operations are more likely during transition events such as
startup and shutdown. Errors in situation assessment can be a source of abnormal
situations, assumptions can direct plant personnel down the wrong diagnostic path and
due to the response times required to correctly deal with a situation the problem may
escalate.

To appreciate the significance of ASM one has to focus on the costs that accumulate
with plant "hiccups," interruptions, unscheduled shutdowns, equipment failures, small
losses of containment and quality problems. It is believed that solving these less
dramatic disturbances potentially could yield a very high payback for companies.
Estimates compiled by the ASM consortium (Harrold, 1998) indicate that elimination of
all abnormal situations in petrochemical plants alone could add 5% to profits.

The goal as explained here represents a long-term goal. The Abnormal Situation
Management approach is not just another attempt to introduce an "expert" artificial

 
 
 



intelligence device. Its success will hinge on its design as an embedded element in
industrial automation system technology-integration is not enough. This long term goal
is to drastically decrease the total costs of preventable process disruptions-saving
industry millions of rands-by developing technologies that will offer better methods for
informing operators, aiding operators during process disruptions, and preventing
process disruptions in the first place.

This system should improve operator performance and offer a new challenge to
operations by having the ability to interact with operations and production goals through
the control system. The system should understand operations and maintenance rather
than individual process variables. It should draw on other management techniques,
such as incident investigation reports and the plant's corporate memory, as sources of
knowledge. Useful design structures from process hazard analysis need to be captured
within the system and used as rules for maintenance and operations activities.

The system should also address the communication issues identified in the site studies
and provide solutions for plantwide communication, from the field to the control room.
The existing industrial automation system technology from a wide selection of suppliers
does not take into account casual users of the system. The same man-machine
interface is provided for all users. The Abnormal Situation Management System should
have the intelligence to recognize a user and provide information suitable for that
person's discipline and knowledge of the industrial automation system.

Research should also address issues such as the impact of using a predictive plant
state estimator on the alarm philosophy and man-machine interface. It should also
incorporate an understanding of process operations and production goals and their
relationship to safety, quality, environmental, and economic conflicts.

A comprehensive approach to the design of the human-machine system interaction is
needed so that operations personnel receive information appropriate to their needs,
while at the same time appropriate members of the operations staff are able to
collaborate to solve the problem as a team. Individual needs vary as a function of a
large number of variables: the current situation, the task being performed, individual
preferences and styles-and others yet to be determined. In order to serve these needs,
the information requirements need to be carefully assessed, not just for the current job
functions present in existing plants, but for the job functions that will evolve as better
decision aids become available and operators receive more support.

Systems must evolve so that the operator is not routinely swamped with information,
aggravated by the user interface, required to use error-prone techniques to enter data,
or exposed to situations in which being misled is even a remote possibility. The system
must completely prevent adverse consequences from happening when the interaction
of individuals predictably leads to misunderstandings, misperceptions, and mistakes. It

 
 
 



must also reduce, by orders of magnitude, the level of what post-incident review teams
always label "human error."

There should be no such thing as a break down in lock-out, tag-out procedures-the
user-machine system interaction model should utterly prevent such things from being
possible. There should never again be coloured text on clashing coloured backgrounds
on operational displays- the user interface development tools should make it very clear
to the developer why such a design is inappropriate. Users should never again have
difficulty in navigating from one display to another, should never again be able to enter
a value for a set point that is outside the controller's capabilities, or ever again perceive
the data from one unit as coming from another. And, looking to the future, decision
support systems must never act like a back-seat driver when what the user needs is a
helpful child-or vice versa.

When an abnormal situation is detected, operations and engineering teams must
dynamically diagnose the root cause and correct the failure whilst trying to continue to
meet the safety, environmental and production goals. At the same time they must track
the underlying chain of events that led to the root cause(s) of the abnormal situation.
As the abnormal situation evolves, some goals may need to be shed (that is, product
quality, throughput, efficiency) if they compete with more critical goals (environmental
or human safety).

The plant personnel should have a clear and up-to-date understanding of the types of
abnormal situations recently experienced by their plants, the identified root cause and
understanding of the incident investigation, and understanding of the correct steps to
resolve this problem. Some plants have a variety of opinions on what was the root
cause and generally lack understanding of the sources of abnormal situations and their
impact on plant productivity.

Another goal is to enhance the ASM initiative to provide ways to detect and correct
human errors before an undesired consequence occurs. Solution components for this
problem are also beginning to emerge, but there is little consensus yet as to how to
apply them. Operator intent recognition can help systems act in task-specific ways.
Task modeling can help online information systems provide relevant (as opposed to
canned) support. Tailored user interface displays can ensure that colour-deficient users
can differentiate key data, users preferring graphs can see lots of graphs, and users
needing quantitative information can see lots of appropriate numbers. And, user-
centered design methodologies can ensure that this whole problem area is addressed
in an empirically rigorous way when the analytically rigorous methods are lacking.

It is not a question of whether al these needs can be achieved, but rather a question of
how long before they are achieved. Most of the technology is already available and just
needs to be utilized and adapted.

 
 
 



A typical chemical plant will have of the order of 1000 readable "points" and a few
hundred writable "points". In addition to PID control loops, industries use distributed
control systems (DCS) to simultaneously control thousands of process variables such
as temperature and pressure and which can be programmed with numerous "alarms"
that alert the human operator when certain constraints are violated (e.g., minimax
values, rate limits). Control systems can be designed, programmed, and tuned to
provide automated control for normal or near-normal operation. The major human role
in this control is to supervise these highly automated systems. This supervisory activity
requires: monitoring plant status; adjusting control parameters; executing pre-planned
operations activities; and detecting, diagnosing, compensating and correcting for
abnormal situations. The operator has a view of the values of all control points, plus
any alarms that have been generated. The actions the operator is allowed to take
include changing set points, manually asserting output values for control points, and
turning on or off advanced control modules. Figure 2.1 gives an illustration of a typical
control approach without abnormal situation management.

Alarms,
Plant State

Plant
State

Chemical
Process

When the process becomes unsafe, safety instrumented systems designed to initiate a
process shutdown, take over. But between normal operation and shutdown, processes
can deviate into abnormal situations lasting a few minutes, or several days. Often
deviations are undetected because automatic control readjusts the process. When an
abnormal situation comes to the operator's attention, the common response is to place

 
 
 



loops in manual, reduce feed and energy streams, and manually attempt to return the
process to a normal (steady) state-all the time searching for the initial cause of the
problem. Frequently, the switch from automatic to manual control only worsens the
situation, and a shutdown follows.

Previous approaches using technologies to assist operations in identifying and
managing abnormal situations evolved large, specialized applications. These
applications compared theoretical process models to real-time plant operations and
generated alerts, recommendations, and predictions. Some success has been
achieved with these solutions, but a lot of "care-and-feeding" is required to keep them
current with ever-changing plant operations. Also, some systems use linear models
that can ignore the nonlinearity and limitations of real equipment, and results in
developing false predictions of equipment or process responses.

Attempts to integrate knowledge-based systems with plant operations have been few in
number and mildly successful, mainly due to the complexities associated with:

• Identifying and implementing models and methods best suited to handle the variety
of complex problems of chemical process plants; and

• Getting all the operations "experts" to agree on what actions to take once the
problem has been identified.

To address the problems associated with process disturbances, several industry
leaders have joined forces with Honeywell to form the Abnormal Situation Management
Consortium with the aid of a National Institute of Science & Technology Advanced
Technology Program (NIST-ATP). Participating in the consortium are: Amoco,
Chevron, Exxon, Mobil, Novacor Chemicals, Shell, Texaco and two software suppliers-
Gensym and Applied Training Resources. This group is the offspring of the Alarm
Management Task Force formed in the late 1980s to address problems associated with
alarm functions in industrial automation systems and to suggest alarm-management
enhancements. That group's work resulted in an important set of new features- defined
and requested by users of the system-being included in the latest software release for
Honeywell's TDC 3000X system, Release 500. The consortium estimates that by
addressing the situations that are directly preventable, the losses attributable to
abnormal situations can be reduced by 64 percent.

 
 
 



If we are to address the problem and prevent incidents and provide tools for operators
to perform more efficiently in abnormal situations we must understand the root causes
of these incidents and the steps that need to be taken to eliminate or prevent
escalation from an abnormal condition to a major catastrophe. The control system
design needs to move from a reactive mode to a predictive mode and a long time
before an alarm is initiated the system must predict the event using the latest state
estimation tools.

The methodology of this research field needs to involve studying plants, reviewing
previous years' history of plant incidents for different plants and sharing "best
management practices". A systematic and statistical review of these incidents, together
with interviews of operations personnel, can identify root causes of incidents, including
problems introduced by today's industrial automation system technology and enabling
technologies and the impact of system integration. Visits to sites also need to include
human factor and personal performance reviews and research into how people and
systems communicate. Today's offering of object-oriented software designs, relational
databases, modular software development and maintenance tools, open
communication standards, and acceptance of pes makes development and
deployment of knowledge-based ASM applications possible, but users still need to
understand what they need and want.

• Human-machine interaction: A comprehensive approach to the design of the
human-machine system interaction is needed so that a single user interface
environment provides operations personnel with information appropriate to their
needs, while at the same time supporting the collaboration of appropriate
members of the operations staff in solving the problem as a team.

• System architecture: To provide accurate, timely support in abnormal
situations, a system architecture needs to be developed composed of multiple
processing modules, data bases and knowledge bases. These various software
modules must communicate their conclusions with each other in real time and
must remain coordinated among themselves and with human operators. Many
past efforts have failed because this problem alone is so challenging.

• System customization: A major practical challenge in collaborative decision
support technologies is configuring their capabilities to the idiosyncratic and
dynamic nature of the plant processes and operations. Aspects of the software
modules will need to be customized with specific knowledge about the

 
 
 



operations, equipment, personnel, and procedures of a specific site. Acceptable
solutions will need to be self-adaptive or easily customized by plant personnel.

The system needs to be developed in a layered architecture based upon an opened
standard, and so to enable it to run on any DCS which supports that standard.

Applications need to work together to determine the current state of the plant, decide
upon the most appropriate goals to pursue, develop plans for pursuing those goals,
and for executing those plans and monitoring the execution process. In addition,
applications need to be responsible for communicating with plant personnel and for
monitoring the Abnormal Situation Management System itself.

Whilst major catastrophes are of concern they are fortunately infrequent and the major
costs can be attributed to loss in production, quality problems, economic and
conversion efficiency, equipment replacement and a collection of environmental issues.

The problems identified as contributing to abnormal situations falls into two major
areas: human performance and performance of the industrial automation system and
associated control equipment.

A lot of inspiration can be found in the excellent work done by Don Lorenzo for the
Chemical Manufacturers Association, Inc. in his work "A Manager's Guide to Reducing
Human Errors Improving Human Performance in the Chemical Industry". In this book
Lorenzo states:

"Historically managers in the CPI have found human errors to be significant factors in
almost every quality problem, production outage, or accidents at their facilities. One
study of 190 accidents in chemical facilities found the top three causes were insufficient
knowledge (34%), procedure errors (24%), and operator errors (16%). A study of
accidents in petrochemical and refining units identified the following causes: equipment
and design failures (41%), operator and maintenance errors (41%), inadequate or
improper procedures (11%), inadequate or improper inspection (5%), and
miscellaneous causes (2%). In systems where a high degree of hardware redundancy
minimizes the consequences of single component failures, human errors may
compromise over 90% of the system failure probability".

Safety groups estimate that human performance has been responsible for 80 percent
of catastrophic incidents. The consortium's study identified several key personnel areas
that hinder effective management of abnormal situations. These include: procedures
not being followed, procedures that are too complex or unusable, lack of knowledge or

 
 
 



understanding, insufficient time to make effective decisions, and "information overload."
In general, these are the results of poor context sensitivity and a lack of effective
communication between the system and the people interacting with it.

Errors in sensor reading and valve positions cause a significant burden on the
operations team. Operators have made poor judgment calls because the automated
system reflects one value and the local traditional instrumentation registered a different
value. The operator will often put trust in the device that is right most of the time
especially if the other has maintenance or historical problems. Often the correlation
between one process value and other variables are significantly complex, a good
engineer may be able to discern that a pressure variable is incorrectly reading low
given that a temperature is currently very high. Poor judgment on the part of the
operator may result in erroneous diagnostics with potential catastrophic consequences.

Often, varied opinions lead to the development of multiple uncoordinated initiatives to
address symptoms of a problem, whilst the root cause has not been correctly identified.
The operations team believes that problems are caused by mechanical failures and the
engineering teams are convinced that equipment failures are due to operational
problems.

A contributing factor that does not raise the profile of this situation, and in some ways
masks the problem, is the lack of measurement. This is especially true of the short
upset, that may affect quality or cause slight loss of production, but which has a
significant effect on net profit. Most large incidents are investigated, but the financial
losses are often not recorded, making it difficult to help see the true cost in loss of
product, quality restrictions, accident and injury expenses, and insurance
reimbursement for damaged equipment or property. Currently only the obvious process
variables are monitored like pressure, flow and temperature. However, there are other
non-process variables that could provide needed diagnostic information such as noise,
smell, real-time video images, infra red cameras for hot spots and many others that
good field operators use every day using their human sensors.

Often escalation is caused by a series of "hidden" multiple failures in different systems.
The skill level of the individual diagnosing and correcting these failures can have a
significant impact on the success or disaster scenario. During a disturbance, when the
highest degree of concentration is crucial, operators are currently faced with high noise
levels and interference from outside sources such as phone calls, people traffic through
the control room, unhelpful observers and lack of access to the control system due to
the heavy traffic generated by alarms.

The largest contributor still remains the problem of time. For example, normal operation
of a polyethylene process is relatively slow, but during abnormal operation a run-away
reaction can cause very fast actions and there is no room for delay or error in
correcting problems.

 
 
 



The Union Carbide's Bhopal Plant accident (Nimmo, 1996) started out as a minor
problem and eventually escalated. The operator was trained and understood the
actions needed to make the plant safe. As he implemented the procedures he soon
discovered that backup systems were not available, cooling systems had been stripped
down for use in other working parts of the plant, the flare stack was under maintenance
and he was not aware of the full extent of what was in commission and was not
available. When things went wrong it was not from the operators' wrong choices, but
from their inability to take the correct action. That incident was based on a series of
unfortunate circumstances and lack of management of change and coordination of

information.

Developing a complete ASM solution requires implementing two parts, or layers as
illustrated in Figure 2.2. The first layer validates incoming data and generates
advisories of what is happening during an abnormal situation. The second layer
predicts where the process is likely to go if current conditions persist. Some ASM
solutions describe "closing-the-Ioop" between the ASM solution and the process. This
is a form of supervisory control, with provision for the operations team to remain part of
the diagnosing and prescribing process. While not all ASM solutions include all pieces
of both layers, most provide the following pieces for constructing the advisory layer.

A control system interface that uses robust, real-time communication standards,
such as OPC (OLE for process control), gateways to proprietary systems, or custom
written application program interfaces, is necessary to obtain information from the
control system about process measurements, valve positions, device status, etc.

Sensor validation to quickly detect sensor malfunctions or failures is critical to the
integrity and acceptance of the ASM solution. For example, "failed" sensor input
signals remain below a minimum value longer than a defined period, while "frozen"
sensor input signals do not exceed the expected noise band for a period of time.

Jack Stout, president of Nexus Engineering (Kingswood, Tex.), explains, "The
advanced diagnostics available in 'smart' transmitters and digital valve controllers is
valuable in validating individual sensors. Many control systems can alarm, based on
these diagnostic errors. ASM solutions differ by requiring sensor validation to include
establishing sensor relationships to produce 'signatures' of equipment module and/or
process unit performance. Informing the operations team that a pump has tripped
because of cavitation, and that an empty vessel caused the cavitation, is a simple
example of ASM sensor validation, alarming, and messaging."

 
 
 



Point retrieval of real and calculated process variable information is important in
developing ASM solutions. Real process variables include temperatures, flows,
pressures, analyzer results, control valve positions, etc. Calculated process variables
include outputs to valves, totalized volumes, on-line material and energy balance
calculations, etc. Combining real and calculated information is critical in developing
performance "signatures".

Message handling and viewing must provide accurate, concise, and timely
information about the current and future state of the process. ASM solution message
complexity can vary from single line text messages to context sensitive help systems,
allowing the operations team to view the appropriate level of detail. Some ASM solution
message handlers automatically "pop" the initial alert on the operator's screen. After
that, navigation buttons for cause-and-effect, details, procedures, and trouble-shooting
are available.

Alarm handling that alerts the operations team of escalating circumstances during an
abnormal situation requires advanced alarm management. Merely generating alarms,
as many control systems do, is inadequate. As processes move through varying
operational states, the operations team must remain focused on the task at hand.
Spending time to work through complex alarm scenarios and then implementing
advanced alarm management techniques will help the operations team to be more
effective during a crisis.

Incident history archives are files of past process performance data. Initially the data
may come from an existing data historian and can be used to playback past situations
(good and bad) for testing the expertise of the ASM solution. Rolling data archives
combine information collected by the point retrieval module and the sensor validation
module into files that allow other modules to work with "smoothed" data.

Custom and generic displays are the operation team's window into the ASM
workings. Custom displays are one-of-a-kind displays created specifically for a
particular part of the process. Generic displays are templates for repetitive process
areas (Le., tank farms) with relevant data mapped into the display based on operator or
event occurrences.

Combined, these pieces form the advisory layer to provide the operations team with
early-warnings of a process' current health. However, the ASM solution requires
additional sophistication to predict where the process is going.

The ASM solution prediction layer should develop equipment and plant signatures
during normal operations and compare these to current operating signatures. Elements
of this layer especially benefit by mixing mathematical models, neural networks, and
statistical techniques to implement a solid ASM predictive layer.

 
 
 



For illustration purposes, the predictive layer consists of two parts: modeling, and
planning and executing.
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ASM problems are so complex that no single mathematical modeling technique is
appropriate for each piece of plant equipment. Applying the appropriate model is easier
when plant equipment is viewed as individual objects. For example, the model most
appropriate for centrifugal pumps may differ from the model chosen for gear pumps.
Developing models in an object-oriented programming environment to match plant
objects, makes assembly and maintenance of the larger, more complex process
models easier.

 
 
 



Control module (measurements, valve outputs, etc.) modeling allows development of
sensor related calculations. For example, a "rate-of-change" calculation may be a more
appropriate model for a temperature measurement than working directly with the
process variable.

Equipment module (pumps, on/off valves, exchangers, headers, etc.) modeling
combines control module models with equipment status to form mixed expression logic
formulas. For example, combining the process variable value of a flowmeter in a
calculation with the on/off status of a pump to determine if a flow rate should be
present, avoids a low flow "nuisance" alarm when the pump is stopped.

Unit modeling combines control and equipment module calculations to form
mathematical models of equipment, such as distillation columns, fluidic catalytic-
crackers, fractionators, waste-heat boilers, and compressors.

The top layer of the anatomy diagram introduces very innovative concepts, especially
for many chemical operations. But, as chemical complexity (and product value)
increases, as quality demands continue to toughen, as pressure to reduce emissions
builds, and as demands to "stay-on-line" echo through chemical operations, innovative
thinking transforms good performing companies into great performing companies.

"Closing-the-Ioop" of an ASM solution requires very specialized functions, such as
state-estimator, goal-setter, planner, executor, communicator and monitoring modules.

State estimator modules can determine the current process state, such as improving,
staying the same, or getting worse, based on information provided from the lower
layers of the anatomy at varying levels of abstraction, by fusing diverse sensor data
and other available information (e.g. prior control moves, known malfunctions, human
observations).

Goal-setter modules gather and maintain information relevant to quality and
production goals established prior to the abnormal situation occurrence. It decides
which of the currently-threatened operational goals should be addressed.

Planner modules develop and recommend recover-plans to address threatened goals
selected by Goal Setter after refining multiple test results from current and historic
knowledge of the process represented in the modeling and advisory layers.

Executor modules close-the-Ioop, monitor success, execute plans, and update other
Abnormal Situation Management System components in progress towards goals.

Communicator modules communicate effectively with multiple plant personnel
including DCS operators and field personnel located outside the control room.

 
 
 



Monitor modules observe the performance of the Abnormal Situation Management
System components and may adjust or adapt the system's behavior in response to
observed performance.
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These functions interact by exchanging information on shared blackboard data
structures. The Plant Reference Model blackboard captures descriptions of the plant at
varying levels of abstraction and from various perspectives, including the plant's
physical layout, the logical processing layout, the operational goals of each component
and the current state and suspected malfunctions. Figure 2.3 shows how the Abnormal
Situation Management System interacts with the existing system.

Abnormal situation management solutions are specialized applications of expert
systems designed to work like the plant's best operator, on their best day, every day.
These systems never get bored, distracted, or take a break; they remember what
happened last week, last month, and last year, and provide accurate, consistent
information, even in the heat of "battle".

One of the first initiatives within the solution proposal should be to provide a knowledge
base of previous incidents. This system should allow the capturing of operating
experience into a form of corporate memory. The learning and information from
experience constitutes a fundamental source of requirements complementing those
articulated by persons and organizations with an interest in the system and traditional

 
 
 



standards and regulations. It is well known that accidents often occur that could have
been prevented by knowledge lurking in the corporate memory but forgotten and not
applied. It is this knowledge that is to be fed back into the design process. The aim
would be to extract this knowledge and apply it into an incident recall module. Once we
have a better monitoring and investigation system we can apply the learning to design,
operations and maintenance. This information could only be of use if the system
understands the context of the operations:

Hence, one of the strengths of solution should be its planning and goal setting ability.
When contemplating ways to improve human performance Lorenzo (Lorenzo, 1991)
states" there are two basic types of errors that managers must address:

(1) Errors whose primary causal factors are individual human characteristics unrelated
to the work situation and

By providing resources necessary to identify and eliminate error-likely situations,
managers can improve the performance shaping factors (PSFs) and dramatically
reduce the frequency of human errors. This strategy Lorenzo calls the work-situation
approach, and it involves the following elements:

• Implementing good human factors engineering of control systems, process
equipment, and the work environment

• Providing ways to detect and correct human errors before an undesired
consequence occurs

 
 
 



Therefore, the solution approach should form an integrated part of the current control
system and have good human factors built into the control system. This will involve a
new way of implementing control schematic diagrams. A style guide and
implementation strategy needs to be developed for the next generation control system.
More attention is recommended in control room design and the integration of different
supplier's equipment. Also, we need to discover what new control screens are required
and which of the more traditional need to be suppressed.

Another key issue is the configuration of the alarm system and the use of colours,
symbols, priorities and how the alarm will be filtered e.g. context sensitive. In the past
little attention was given to the design of the alarm system. Without proper
consideration a process monitoring device is added to the control/monitoring system
and on the surface it is a logical and justifiable action. During normal operating
conditions this device does not cause any conflict, and may be a useful addition to the
operator. However, during an abnormal situation this device is low priority and often
becomes a nuisance to the operator trying to manage priority alarms.

What is required is some form of intelligence to put the alarm in context with the plant
situation, eliminate unnecessary information and forward meaningful information to the
operator and avoid information overload. For example, a temperature of 500 °C is
appropriate under normal operations and any deviation by plus or minus 10 degrees
should be annunciated but during plant shutdown the temperature may vary by new
parameters, hence, the rules associated with the alarm need to change. Some
processes actually cause the temperature to go outside the range of the transmitter
and a new alarm is generated (BAD PV). This message is not very helpful because the
operator now has to assume that the process is operating outside the range of the
transmitter. This message could also mean that the transmitter is not working correctly
and the temperature has not changed. To resolve this problem we need more sensor
diagnostic information and better maintenance tools. The introduction of SMART
Sensors has made a significant contribution to industry and has provided on-line
calibration services and better diagnostics, however, more is required.

Sensors have made a significant contribution to error detection, improved reliability,
and maintainability, however, what is really required is not just raw data but useful plant
information. Measurement devices that are always suspect should be removed as their
contribution may be only negative. When a loop shares different technology every effort
must be made to ensure consistency and common calibration.

If the control system is well designed it will anticipate and prevent many situations from
occurring. However, when the control system cannot maintain control, many plants are
equipped with safety devices to ensure that the plant can be shutdown to a safe state.
It is currently the job of the operations and engineering teams to identify the root cause
of the situation and execute compensatory or corrective action in a timely and efficient

 
 
 



manner. A disturbance may simply cause a reduction in production; in more serious
cases it may endanger human life, hence, the requirement for mechanical relief
systems and automatic shutdown equipment which will always mitigate any failure of
the control and ASM systems.

Training is recognized by most manufacturers as a major consideration in these
situations. However there is not always a good understanding of the impact of poor
training, hence the problems are not always eliminated. Manufacturers find it difficult to
justify high-fidelity simulators or find the time needed for adequate training. Hence,
operators lack confidence, gain experience in only normal operations which can
contribute to difficulty in taking the correct actions within the time constraints imposed
by an abnormal event.

DCSs are not incompatible with problem-based alarming: Indeed, mass balance
analyses, expert systems, and statistical diagnostic techniques are becoming more
widespread, albeit very slowly. What is needed to accelerate this trend is better ways to
combine and aggregate data, better tools for easier, perhaps even automatic,
development of such problem monitors, and higher-level, more comprehensive
representations for plant equipment and processes.

 
 
 



• PROCESS DESCRIPTION

Since every abnormal situation is unique, it is difficult to study abnormal situation
management, and in this case process monitoring, as a single subject. The best way to
approach abnormal situation management is to study the theory and to then address a
specific case. In this study process monitoring, as the first step to abnormal situation
management, will be applied to a single nonlinear process and will lay the foundation
for further investigation and development.

The advanced process monitoring methodology was applied to a real industrial process
in order to evaluate its application capabilities. Due to the proprietary nature of the
industrial example, only a cursory explanation of the industrial process is provided. The
sensitive names of the process have been substituted with imaginary names and only
normalised and standardised data are displayed. The data used, however, are real; the
results of applying the methods are presented and discussed for process monitoring.

For the purpose of investigation a current problem in the steam export system at
Company A was investigated since it contains all the interesting and important aspects
of a typical abnormal situation.

At the time of the investigation Company A was busy building a new plant that would
put a greater demand on the steam export system. The steam distribution system
currently provides in the complete steam demand at Company A. However, with the
new plant this demand will increase substantially. When any situation in the plant
causes a decrease in the steam production, the steam export system won't be able to
supply in the whole steam demand. Selective supply will then need to be applied since
some processes will be more sensitive to a decrease in steam supply. A decrease in
steam supply to the new plant for example will cause it to shut down.

The problem operators are faced with is the high nonlinearity that exists between

steam production and steam distribution. No current accurate model exists that can
relate the steam production to the steam distribution to a specific plant. This has the

 
 
 



effect that the influence of an upset in the steam production on a specific plant cannot
be accurately anticipated in order to take preventative action with the result that an
upset in the steam supply is only discovered when it is too late.

It will be to great advantage if any upset to the steam export system can be anticipated
in advance in order to either take the necessary preventative actions to prevent it, or if
it is not possible, to minimise the effect it would have on the whole system. In order to
do this the cause of the upset needs to be identified as early as possible. The effect of
the upset also needs to be quantified in order to quantify the preventative or impact
minimisation actions.

So the main objective of the Abnormal Situation Management scenario under
investigation would be to minimise any effect on the steam export from Process A.
However, since only the process monitoring part is investigated this will not be possible
yet. It should however be possible to identify the specific abnormal situation before it is
noticed by the current alarm system or operator and identify the root cause of this
abnormal situation in the steam export system. Quantification will also be partly
possible. Only single faults will be investigated. In this study the objective is to confirm
the abnormal situations identified since it was known prior to investigation from the
plant history data.

In order to understand the nonlinearity between steam production and steam
distribution and why it is so difficult to generate a process model or to detect abnormal
variation in the steam production or supply, one needs to look at least at an overview
process description. The steam production and supply form a network throughout the
whole factory. Appendix D gives an overview impression of the whole factory
illustrating that the factory consists of a magnitude of separate process units linked with
each other.

The most important fact to keep in mind is that during normal plant operation all the
units are monitored independently. From the process description one gets a general
idea of the multitude of interactions and the sheer magnitude of the process that needs
to be monitored. These interactions cause many variables to be highly correlated. A
general problem faced with observing such a magnitude of variables is deciding first
which abnormal situation objective needs to be met (Le. early detection of decrease in
steam availability) and secondly which variables to monitor to meet this objective.
These variables should be most representative of the whole process. Thirdly one
needs to decide where the central monitoring system is going to be located since it will
include variables from different process units. Although only a few variables are

 
 
 



selected in the end for monitoring purposes, there are many other factors that have an
effect on these variables and on the normal operation of the plant. Therefore, the
NLMSPCA system should be robust enough to detect abnormal operations despite
other changes or disturbances occurring.

Since each unit is controlled separately (lack of plant wide control) it is currently almost
impossible to determine when an abnormal situation is starting to occur. If two separate
situations are developing in Unit 1 and Unit 2, without affecting the normal operation of
these units, the effects will be carried over to unit 3 unnoticed. If, for example the two
situations together have an abnormal affect on Unit 3 it will only be noticed after being
carried over to Unit 3 which is some time after the initial 'symptoms' occurred in Unit 1
and Unit 2.

The advanced monitoring system was formally evaluated in five scenarios of which one
was selected for discussion. These scenarios included sudden and unexpected
malfunctions, problems originating in process equipment and the process itself.

The first set of influences investigated was that of a cutback in pure gas (PG) and
reformed gas or fresh feed to Process A. Its effect on the steam export and in
particularly its effect on the 43 bar steam export and export to gasification was
investigated. For this purpose five sets of data were used during the month of
November 1998. Firstly, data representing normal operation was gathered and used for
training the system. For investigation purposes each data set represented an upset
which caused a cutback in either the pure gas (PG), reformed (RG) gas or both.

 
 
 



15:22 Signal on Methane reforming compressor disappeared which caused train 5 to
trip. Pure gas was cut by 100 000 m3/h.

Loose compressors at cold separation (cooling compressors). This causes the feed to
methane reforming to be halved (cutback on reformed gas). The other half (90 000
m3/h) that does not go back to Process A is flared.

For discussion in this report, case study 3 was selected. A second case study chosen
for discussion did not involve an upset to the process itself, but involved the
identification of an error in some calculation procedures after replacement of two
control valves in the steam export system which influenced other parts of the system.

 
 
 



The overall objective of the steam system is to distribute steam at High, Medium and Low
pressure to consumers in the factory for use among other as an energy source. This is done
by producing high-pressure steam (40 bar and 43 bar) with boilers and Process A, and
letting this down to medium pressure (8 bar) and low pressure (4bar).

The boilers produces superheated steam at 40 bar and Process A produces saturated
steam at 43 bar. This is distributed to consumers and letdown to the 8 bar and 4 bar
headers. Most important to notice is that Process A needs a fixed amount of the steam that
it produces for internal use. Only the excess steam is exported. If an upset in the steam
production is caused, Process A will first satisfy its own internal demand before exporting
steam. This problem is addressed by example in Section 3.9 and will provide a better
understanding of how the steam distribution network operates. Figure 3.1 gives a schematic
that puts Process A and the steam production system in perspective to the rest of the plant.
Figure 3.2 gives an illustration of the steam distribution network.

The 40 bar superheated steam is letdown to 8 bar via two letdown stations each with a
desuperheater. The 40 bar also supplies the 4 bar with steam via three letdown stations
each with a desuperheater. The major consumers of 40 bar superheated steam are
Gasification, Oxygen plant, Power Generation and Process A.

The 43 bar saturated steam is letdown to the 8 bar header via 4 letdown stations and to the
4 bar header via 1 letdown station. Each of these letdown stations has a condensate
knockout-drum. The major consumers of 43 bar saturated steam are Chemical Work-up,
Phenosolvan and Gasification.

The 8 bar header receives steam from the 40 and 43 bar headers and supplies steam to the
4 bar header via three letdown stations each with two letdown valves in parallel and a
desuperheater. Consumers of 8 bar include Benfield, Phenolsovan, and Rectisol.

The 4 bar header receives steam from the 40 and 43 bar headers. In the case of a high
pressure on this header steam is vented to atmosphere via 4 vent valves. Consumers of 4
bar steam include Rectisol, Benfield and Chemical Work-up.
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3.6. Control Objective

The objective of controlling the steam letdown stations is to ensure a stable pressure on the
headers and reliable temperature control when desuperheating.

In the case of one letdown valve going out of operation no deadband must exist and when
the valve is brought back into operation bumpless transfer must be guaranteed.

Temperature needs to be controlled in such a way to ensure that as little as possible
condensate will be present in the headers.
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The system must also ensure that when pressure is lost on one header it must not affect the
other headers drastically.

The objective is to control the pressure on the 43 bar header by letting down to the 8 bar
and 4 bar headers. This is achieved by utilizing a pressure controller to which the operator
enters the desired pressure setpoint.

The steam is supplied by the Process B reactors at 43 bar and 256 ac. The steam is
letdown to the 8 bar header via 4 letdown stations (2 existing and 2 new) each with a
knockout drum and control valve. The letdown to the 4 bar header is accomplished with one
control valve with a knockout drum upstream from the control valve (1 new station).

A direct acting pressure controller operates in split range, first opening 3 of the 4 valves
letting down to 8 bar then switching back to the last valve letting down to 8 bar.

This scheme supplies all the excess steam available on the 43 bar header to the 8 bar and
4 bar headers.

The objective is to control the pressure on the 8 bar header by letting down from 40 bar and
to 4. This is achieved by utilizing a pressure controller to which the operator enters the
desired pressure setpoint.

The main steam supply is from the 43 bar header. The 40 bar header will supply any
additional steam needed via two letdown stations in split-range. The reverse acting pressure
controller operates in split-range between letting down to 4 bar (0-55%) and the letdown
from 40 bar (55-100%).

A feedforward signal from the outputs of the valves letting down from 43 bar to 8 bar via a
summation block is utilized to act when the pressure in the 43 bar header changes. When
this situation occurs pressure will be stabilized by either shutting the 8-4 letdown valves or
be made up from the 40 bar header.

 
 
 



Process Description

A. 43 to 8 bar letdown

B. 40 to 8 bar letdown

c. 8 to 4 bar letdown

D. 40 to 4 bar letdown

E. 43 to 4 bar letdown

F. 4 bar to atmosphere vent

If an under pressure situation occurs on the 40 bar an under pressure controller will override
the pressure controller via an override low selector and close the valves letting down from
40 bar.

 
 
 



An over pressure situation on the 8 bar will cause the 6 valves letting down to 4 bar to open
in split-range and relieve the situation. The valve on the northern side of the factory will be
placed first in the split-range to alleviate the pressure drop problem in the northern side of
the factory.

Temperature controllers on each of the letdown stations (except the new 8-4 letdown
station) are used to control the amount of desuperheating.

The output of two of the valves has been characterized because the valves do not have a
linear effect on the process Le. when the one valve is 90% open and it is closed by 10% the
other valves open 10% because of the bumpless transfer. When this occurs, a bump in the
process is experienced because of the non-linear characteristic of the valve.

If the pressure in the 40 bar header drops, an under pressure controller will override the 8
bar pressure controller via an override low selector. When this happens a direct acting
pressure controller will initialize to prevent windup. The output of one of the controllers is
limited between 55 and 100%. This is done because when the controller reaches 55% both
the valves letting down from 40 bar will be closed and any further reduction in output will
have no effect. It is also desired that this controller does not influence the 8-4 letdown
stations.

The objective is to control the pressure on the 4 bar header by letting down from 40 bar and
venting to atmosphere by utilizing two pressure controllers to which the operator enters the
desired pressure setpoint.

The 4 bar header receives feed from the 43 bar, 40 bar and 8 bar and vents to atmosphere.
The steam is letdown from the 43 bar via one letdown station (new), from the 40 bar via
three stations with desuperheating (existing), from 8 bar via three stations (two existing with
desuperheating, 1 new without desuperheating) with two valves on each station and vents
to atmosphere via four valves.

If the situation occurs where pressure on the 4 bar decreases, a reverse acting controller
will increase the letdown from 40 bar in split range to increase pressure. If however an
under pressure situation on the 40 bar system occurs at the same time a direct acting
controller will override the pressure controller and close the letdown valves.

In the situation where the pressure on the 4 bar header increases the reverse acting
controller will decrease the letdown from 40 bar until normal situation is reestablished.

 
 
 



The Process B reactor was designed as a replacement for the existing Train 8 CFB reactor
which remains as a standby "swing" reactor. The Process B reactor makes use of an
existing Train 8 quench column, product cooling train, and total feed compressor. The
existing cooling train is debottlenecked by a quench column top pumparound cooler that
preheats the total BFW to the Process A area. The Process B reactor has its own reactor
coolant system.

The Process B reactor takes its total feed from the existing Train 8 CFB reactor inlet line.
The gas enters the bottom of the Process B reactor through a gas sparger. It flows up
through a distributor grid that supports the fluid catalyst bed. As the feed gas flows through
the bed, hydrocarbons, water, and oxygenates are synthesized via the Fisher-Tropsch
reaction. All reactor products are in the vapor phase at reactor conditions. Water and carbon
dioxide are formed via the water-gas shift reaction. A mixture of water - and oil-soluble
oxygenated hydrocarbons are byproducts. The reaction is exothermic. A portion of the heat
of reaction heats the feed gas from the inlet temperature of the reactor to the operating
temperature. The excess heat of reaction is removed by generating high pressure steam in
the cooling coils.

Catalyst that is entrained from the bed with the gas stream is separated in internal cyclones
and returned to the bed. The cyclones discharge effluent gas into a plenum from which the
effluent gas exits the reactor. The effluent line ties into the existing Train 8 reactor effluent
line upstream of the existing hot quench tower.

The reactor coolant system removes the excess heat of reaction from the reactor by
generating high pressure steam. BFW is fed to the steam drum through a level control valve
to maintain the drum level. Saturated water is fed to the BFW circulation pumps. The BFW

is pumped to the reactor cooling coils which have on/off valves on the inlets.

The reactor temperature is controlled by the operator varying the number of cooling coils in
operation. Water is partially vaporized as it flows through the coils and a saturated
water/steam mixture returns to the steam drum. The generated steam is disengaged from
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the water in the top section of the drum. The steam exits through a demi~ter and flows
through a pressure control valve that maintains the steam generating pressure constant.

The steam separator separates any water that is carried over from the drum plus
condensate formed by dropping the pressure. The steam then goes to the high pressure
saturated steam header. Condensate is fed to the low pressure steam header. A continuous
blowdown stream (for conductivity control) goes to the blowdown header.

1. Fresh feed gas is taken in at the Process B plant. This gas consists of a mixture of the
following:

2. The fresh feed gas that is added to an internal recirculation stream, is then compressed
by the total feed gas compressor, heated and fed to the reactor.

1. The gas that enters the reactor picks up catalyst and carries it through a reaction
chamber where the Fisher-Tropsch synthesis takes place. Two banks of cooling coils
are provided to remove the heat from the reaction. High pressure steam is generated in
the cooling coils and then exported via the steam drum. The catalist is separated from
the gas by means of five sets of cyclones. The reactor outlet gas is separated
downstream into different products.

2. The reactor outlet gas is fed to the quenchtower, where a light oil stream as well as a
heavy oil circulation stream is injected into the gas stream.

3. Overhead vapours from the quench tower are now cooled and condensated in air
conditioners followed by a shell-and-tube heat exchanger. This stream is then
separated in the separations drum to form three main product streams.

 
 
 



Uncondensed gas which is partially used as the internal recirculation stream, and
partially as spare gas.

Light oil, of which a large portion is recirculated to the quench tower and the net oil
production, that is exported to the light oil stabilizing plant.
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The flue gas is compressed by means of a centrifugal compressor and washed with water
to remove the non-acid chemicals before it is transported to the plants further down.

Carbon monoxide is removed downstream from the Process A plant through the Benfield
plant. The Cold Separation plant divides the gas into hydrogen-rich and methane-rich
streams, as well as a C2-rich and three condensate streams.

A large part of the hydrogen-rich gas streams is recirculated from Cold Separation to
Process A. The methane-rich stream is reformed with oxygen to manufacture carbon
monoxide and hydrogen. This reformed gasstream is also recirculated to Process A. The
reformed gas and hydrogen-rich gas streams are called the external recirculation.

 
 
 



 
 
 



The figures in Figure 3.4 and Figure 3.5 will serve to illustrate the nonlinear relationships
that exist between the gasloads, steam production and steam export. All the figures
presented illustrate the relationship between various steam quantities and pure gas feed.
The dashed lines are regression models fitted to the data for interest.

From Figure 3.4(a) we can see that there is a nonlinear relationship between the total steam
being utilised in the system and the pure gas supply. This total steam is a summation of
Figure 3.4(b) and Figure 3.4(c). Figure 3.4(b) clearly illustrates the nonlinear relationship
between the PG-supply and the 43-bar steam export. Figure 3.4(c) illustrates the
relationship between the PG-supply and the 40-bar steam import and Figure 3.4(d) gives
the relationship between the PG-feed to and total steam generated by Process A. The
influence on the steam export is clearly illustrated in Figure 3.5 generated from the data in
Figure 3.4. From Figure 3.5(a) we can see that a 10% reduction in PG feed will cause a
24% reduction in 43-bar steam export and a 12% reduction in the total steam export.

A 50% reduction in PG feed will cause an 88% reduction in 43-bar steam export and a
reduction of 40% in the total steam export.

From this it is evident that the problem lies with the 43-bar steam export. Thus, a small
upset in the PG feed to Process A can have a huge effect on the 43-bar steam export,
which in turn can have a major influence on the rest of the system since so many
plants are dependent on the steam supply.

A list of all the process variables appear in Appendix C together with the calculated
variables used in the investigation. From this list eight variables were selected that
most accurately represent the system under investigation and is listed in Table 3.1.
More detail will be provided in Chapter 5.

Table 3.1. Process variables used in the investigation (See Appendix C)

Variable Variable Description Variable Variable Description
number number

Total Rectisol Feed
Total Pure Gas feed
Total Reformed Gas Feed
Total Fresh Feed

Total Tail gas
Total Steam Consumers
Total Steam Letdown
Total Steam Export (Measured)
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IISOFTWARE DEVELOPMENT & INSTALLATION

The software used in this research was developed using Matlab. The full functionality
of Matlab was implemented in order to create a toolbox that provides as much user-
friendliness as is currently possible with Matlab. The creation of a separate complete
NLMSPCA toolbox can be justified due to the following reasons:

• There is currently no software available for NLMSPCA since it is a new concept.
• Matlab does include a Wavelet Analysis Toolbox, but it does not contain any

boundary corrected wavelet filters, does not incorporate the necessary threshold
methods and cannot be used online.

• Matlab also includes a Neural Network Toolbox, but this toolbox does not allow
input training or modification of algorithms.

• Using Matab's toolbox functions makes it difficult to understand the mathematics
and concepts.

• The structure of the toolboxes is such that it is very difficult to make alterations to
the current software.

• It also would have been difficult to link the different toolboxes in order to form a
complete functional step-by-step procedure.

The significance of the toolbox lies in the fact that:
• It operates independently from other toolboxes;
• It is understandable so that modifications or alternative ideas can easily be

incorporated or linked to the current software;
• It is user-friendly;
• It automates the whole process allowing a step-by-step procedure for NLMSPCA;
• The complete toolbox can be used and accessed via user-interface;
• The flowcharting method used makes the various steps easy to follow;
• Help and background information are provided for quick reference.

The documentation provided here gives a thorough description of the toolbox and
Appendix B provides extra information on the setup of the programs for someone who
wishes to make alterations or use some of the applied methods in their own software
development.

 
 
 



1. Simply copy the \Monitor directory located on the supplied cd to an appropriate
directory on your hard drive for example c:\. For this example the directory
c:\Monitor will then exist on you hard drive.

and press enter. The setup may take a few seconds. While the setup is in progress
the message in Figure 4.1 will appear.

 
 
 



Path set up successfully.

8. Start the Matlab Path Browser from the Matlab workspace menu and save the path
as illustrated in Figure 4.3.

c: \asa'aonitor\ inter tacelJ\vave

:;~:::~:::~:::~~::::~:~::~::::~
c: \as.,aon1tor\1ntartac •• ,nlpc... ~~~:::~:::~~::~~::::~:~::~~~~~, .,

9. The setup is now complete. The setup will advance to the Database Setup, which is
discussed in the next section.

The application makes use of a database in which all the necessary variables are
stored. Each time the application is run, the variables in the database is updated. The
database:

1. ensures that data is not lost while the training phase is in progress since it can take
up to a few hours to generate this data,

2. saves the information generated during the training phase so that it is available for
the application phase,

3. ensures that the data is available for further processing, comparisons and
independent plotting.

 
 
 



The database is a Matlab mat-file. The system contains a default database called
data_base. mat. This database resides in the ... \monitor\database directory. Appendix
C contains a list of all the variables that are contained in the database. As discussed in
the previous section, after completion of the Path Setup, the setup will advance to the
Database Setup in by displaying the Database Setup Interface in Figure 4.4. It contains
the name of the default database. However, a new database can be created by
changing the name of the specified database.

data_base

Default: data_base

The default database can be selected by clicking on the OK-button. If the default
database is used the current variables that reside in the database can be used as
default or can be overwritten by choosing the Retain option where available. If a new
database is created no default options exist for the first time this database is used. The
results in different databases can be compared with each other. Note however that the
variables in the different databases will be the same so that if variables from two
different databases need to be compared with each other the variables in the first
database first need to be renamed before loading the second database. If not, the
variables from the second database will overwrite the variables in the workspace
loaded from the first database. After clicking the OK-button, creation of the database
will be acknowledged by displaying Figure 4.5.

r.j -rDatabase Setup Suc;;~s --- ~.. ---.- ~_. __.. - - ..~

Database created successfully.

 
 
 



After creation of the database has been acknowledged the introductory window in
Figure 4.6 will be displayed:

IVIASTERS OF ENGINEERING (CONTROL ENGINEERING)
i

FACULTY OF

After displaying the introductory interface the setup will advance to the main interface in
Figure 4.7. The main interface is a shortcut interface to all the main processing steps in
the process monitoring setup which includes the following:

 
 
 



(a) to (f) form part of the setup process which uses the normal operating process data.
(h) is the actual monitoring process with new data. Selecting button 6 will take you to
the first step in the process monitoring setup sequence. If you want to use current data
from the database, you can jump to any other step in the setup sequence by selecting
the appropriate button from the main menu. Thus, it is not necessary to start the whole
process all over again if you were unable to complete the whole NLMSPCA setup
process.

ADVANCED
MONITORING

SYS EM
by Steven Fourie

Universi~' of Pretoria
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IIDATASETUP

The joint implementation of multiresolution analysis, wavelet filtering and non-linear PCA for
process performance monitoring and fault detection is illustrated by application to a
nonlinear industrial process which, in this case, is applied to the process data from case
study 1 in Chapter 3 which is representative of that widely seen in the chemicals
manufacturing industries .. Details of the process, except the background information
provided in Chapter 3, are withheld for commercial confidentiality reasons. For the same
reason the data was standardized prior to illustration. The data setup procedure is the first
step in the process monitoring setup sequence and is accessed from the main menu as
discussed in chapter 4.

It has been pointed out several times in the recent literature that chemical processes are
becoming more heavily instrumented and the data is recorded more frequently (Wise et. ai,
1990; Kresta et. ai, 1991). This is creating a data overload, and the result is that a good deal
of the data is 'wasted', Le. no useful information is obtained from it. The problem is one of
both compression and extraction. Generally, there is a great deal of correlated or redundant
information in process measurements. This information must be compressed in a manner
that retains the essential information and is more easily displayed than each of the process
variables individually. A/so, often essential information lies not in any individual process
variable but in how the variables change with respect to one another, Le. how they co-vary.
In this case the information must be extracted from the data. Furthermore, in the presence
of large amounts of noise, it would be desirable to take advantage of some sort of signal
denoising. These concepts will be discussed in more detail in subsequent chapters.

5.3. Data Setup Interface

This interface is used to load the various data sets into the workspace and save it to the
database for further processing.

 
 
 



2. Testing data set - this data can be used for validation purposes when working with
neural networks.

 
 
 



The option exists to load the data from a mat-file by using button 4, a workspace
variable or from the database. After the data has been chosen it can be loaded using
button 7.

II databascfig.mat
l!l dbsuccess.mat
l!l introd.mat
l!l pathsuccess.mat
l!l simdat.mat
l!l simout.mat
ri1taBJ§·m;"Mi

If no option is chosen (edit box 5 is left empty) then the data is loaded from the default
database.

The original data can then be viewed prior to normalization or standardization using
button 6. This interface plots each individual variable separately as illustrated in Figure
5.3 and can be used to plot other variables in the workspace by changing the variable
name.

16. Toggle between hold and unhold. Use this if you need to plot more than one variable on
the same graph.



17. Variable name. When the display window is opened it displays the default variable, in
this case the variable traindata.

i Dala V,ewer I!lIiI Ei'
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~r Close ,I

The option exists to either normalise or standardise the data, The necessity for this
becomes more apparent when the issue of principal component analyis is addressed. The
normalised or standardised data can be viewed in a similar way as the original data using
button 10.

 
 
 



-j Data Viewer I!lIiI Ei
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The statistics viewer is accessed using button 12. Currently only the correlation coefficient
can be calculated. However, other empty buttons are provided should the necessity of more
statistic calculations be required.

 
 
 



Chapter 5 Data Setup

CifJ
_ OIX

file .Edit Iools It£indow J:le1p

l ~hD;lt;l~•.•.+•••.•• ~t~ti..,.+i,...,.•.

1 -0.062795 0.46058 0.46119 0.53199 0.16634 0.27636 0.48453 I Traindata l .:,
-0062795 1 0.85695 0.7483 0.062363 -0.15369 -0.12887 0.09154
0.46058 0.85695 1 0.90369 0.3302 -0.050792 0.0281 0.33164
0.46119 0.7483 0.90369 1 031561 -0.029944 0.044182 0.30561
0.53199 0.062363 0.3302 0.31561 1 0.19004 0.4053 0.99226
0.16634 -0.15369 -0.050792 -0.029944 0.19004 1 0.97455 0.20417
0.27636 -0.12887 0.0281 0.044182 0.4053 0.97455 1 0.41668
0.48453 0.09154 0.33164 0.30561 0.99226 0.20417 0.41668 1

Corr Coeff I I I I Help I Close I
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The first stage of the analysis was to manually carry out data pre-screening to identify and
handle outliers, in-fill missing data, etc. Time-series plots of the process variables indicated
that many of the measurements were corrupted by noise with some variables exhibiting
sharp spikes. The sharp spikes were treated as outliers and were assumed to be due to

missing data and faulty measurements. They were removed in Excel and replaced with the
average of the five preceding values and five values following the outliers. Without
appropriate pre-treatment of the data, the construction of a robust nominal process model
for process performance monitoring is problematical and potentially worthless. Figure 5.7 is
a plot of all eight variables on the same axes in order to show their relative values after
removal of the outliers. Figure 5.8 is a plot of the same variables, but standardized. Both
plots represent normal operation.
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• WAVELET ANALYSIS

Industrial data is synonymous with process measurement "noise". Noise associated with the
process measurements is known to have impact upon the robustness of the process model.
It is therefore desirable to extract the "true" signal from the noise-corrupted data prior to
carrying out any detailed statistical analysis. The most widely used forms of filtering
algorithm found in the process industries include exponential and polynomial filters and the
median filter. For data eXhibiting small signal-to-noise ratios, heavy filtering can result in
significant phase-shifts in the signal. A further limitation of some filters is that they cannot
handle signal spikes efficiently or effectively. Finally, to implement some filtering algorithms
it is necessary to have future values, e.g. in the median filter. In this respect they are
unsuitable for on-line application. The wavelet transform addresses some of these
limitations. In particular, through the application of wavelet de-noising, high-frequency noise
as well as sharp spikes in the data can be removed without smoothing out the important
features in the process data. The discrete wavelet transform is also an effective tool for
reducing the amount of data.

6.2. Previous work on feature extraction of dynamic transients

This section briefly reviews some of the previous work on feature extraction. Feature
extraction is basically a transformation of the data composing a dynamic trend to a
lower dimensionality. An important property of such a transformation is that it is
information preserving, that is, data is reduced by removing redundant components
while preserving, in some optimal sense, information which is crucial for pattern
discrimination (Chen et aI., 1999).

Some researchers have adapted the episode representation technique originated by
William (1986) to qualitative interpretation of transient signals. Janusz and
Venkatasubramanian (1991) developed an episode approach that uses nine primitives

to represent any plots of a function. Each primitive consists of the signs and the first
and second derivatives of the function. Therefore, each primitive possesses the
information about whether the function is positive or negative, increasing, decreasing,
or not changing and the concavity. An episode is an interval described by only one
primitive and the time interval the episode spans. A trend is a series of episodes that
when grouped together can completely describe the dynamic feature. The approach
automatically converts on-line sensor data to qualitative classification trees. Cheung

 
 
 



and Stephanopoulos (1990) developed the triangular-episode that uses seven triangle
components to describe a dynamic trend. Bakshi and Stephanopoulos (1994, 1996)
used wavelet decomposition of functions in different scales and zero-crossing of
wavelet derivatives to find the inflections of decomposition. In this way, episodes can
be identified automatically by computers. Based on episode analysis, dynamic trends
can be interpreted as symbolic representations. The main idea of dynamic trend
interpretation using episode approaches is to classify a trend such as increasing or
decreasing pieces. This interpretation is sometimes not enough and inadequate in
process analysis. Furthermore, there is no noise filtering in any of the episode based
approaches, which significantly limits the trend representation and identification
capability.

Whiteley and Davis (1992) applied back-propagation neural networks (BPNN) to
convert numerical sensor data into symbolic abstractions. The major limitation of this
approach is that it requires training data to train the model first.

The best known technique for signal analysis is probably the Fourier transform and it is
therefore necessary to mention it here.

a ~{ (nnx) . (nnx)}f(x) =-t+ f:t an cos p +bnsm p

1 C+2P ()an = - f F(x)cos nnx dx
PcP

1 C+2P ()b
n

= - f F(x)sin nnx dx
PcP

Fourier transform uses sine and cosine functions as its bUildingblocks to decompose a
function into a sum of frequency components. However, Fourier transform does not
show how frequency varies with time, therefore it is not able to detect when a particular
event took place. It means that the non-stationary feature of the signal is not captured.
The short-time Fourier transform is able to overcome this limitation by sliding a window
over the signal in time. However in time-frequency analysis of a non-stationary signal,
there are two conflicting requirements. The window width must be long enough to give
the desired frequency resolution but must also be short enough to lose track of time
dependent events. While it is possible to optimise the design of window shapes, or

 
 
 



trade-off time and frequency resolution, there is a fundamental limitation on what can
be achieved, for a given fixed window width (Dai, Joseph & Motard, 1994).

Only a very brief introduction to wavelet transformation for signal processing will be
presented. Only the main mathematical issues will be addresses to give some
background to its calculation since it is too broad to cover here and won't facilitate a
better understanding for this purpose.

According to Chen et al. (1999), wavelets can be viewed as an extension to Fourier
analysis that is well-suited and designed to address the problem of non-stationary
signals. Such signals are not well represented in time and frequency by the Fourier
transform methods. One major advantage afforded by wavelets is the ability to perform
local analysis - that is, to analyze a localized area of a larger signal. Wavelet analysis
is capable of revealing aspects of data that other signal analysis techniques miss,
aspects like trends, breakdown points, discontinuities in higher derivatives, and self-
similarity. Further, because it affords a different view of data than those presented by
traditional techniques, wavelet analysis can often compress or de-noise a signal
without appreciable degradation. Wavelets offer a technique to localise events in both
time and frequency and they can be applied to continuous and discrete-time problems
and to two-dimensional, and in principle, to higher-dimensional data.

Another useful property of wavelets is that although they are not known to be exact
eigenfunctions or principal components of any operators, they are approximate
eigenfunctions of a large variety of operators (Wornell, 1990; Dickerman and
Majumdar, 1994). ConsequentlY, the wavelet coefficients of most stochastic processes
are approximately decorrelated. The variance of the wavelet coefficients at different
scales represents the energy of the stochastic process in the corresponding range of
frequencies, and corresponds to its power spectrum. Thus, for an uncorrelated
Gaussian stochastic process or white noise, the variance of the wavelet coefficients is
constant at all scales, whereas for coloured noise, the variance decreases at finer
scales.

A wavelet is a waveform of effectively limited duration that has an average value of
zero. Compare wavelets with sine waves, which are the basis of Fourier analysis.
Sinusoids do not have limited duration - they extend from minus to plus infinity. And
where sinusoids are smooth and predictable, wavelets tend to be irregular and
asymmetric as illustrated in Figure 6.1.



Fourier analysis consists of breaking up a signal into sine waves of various
frequencies. Similarly, wavelet analysis involves the breaking up of a signal or time
function into simple, fixed building blocks, termed wavelets (Rioul & Vetterli, 1991;
Motard & Joseph, 1994; Chui, 1992). These building blocks are actually a family of
functions which are derived from a single generating function called the mother wavelet
by translation and dilation operations. Dilation, also known as scaling, compresses or
stretches the mother wavelet and translation shifts it along the time axis. That is, the
signal is mapped to a time-scale plane, as illustrated in Figure 6.2, that is analogous to
the time-frequency plane used in the short-time Fourier transform.

r:If/(t)dt = 0
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The parameter a is a scaling factor and stretches (or compresses) the mother wavelet.

The parameter b is a translation along the time axis and simply shifts a wavelet and so

delays or advances the time at which it is activated. Mathematically delaying a function

jet) by td is represented by j(t - td)' The factor 1/ ~ is used to ensure the energy

of the scaled and translated versions are the same as the mother wavelet.

The stretched and compressed wavelets through scaling operation are used to capture
the different frequency components of the function being analysed. The translation
operation, on the other hand, involves shifting of the mother wavelet along the time axis
to capture the time information of the function to be analysed at a different position. In
this way, a family of scaled and translated wavelets can be created using scaling and
translation parameters a and b. This allows signals occurring at different times and
having different frequencies to be analysed. In contrast to the short-time Fourier
transform, which uses a single analysis window function, the wavelet transform can use
short windows at high frequencies or long windows at low frequencies. Thus wavelet
transform is capable of zooming in on short-lived high frequency phenomena and
zooming-out on sustained low frequency phenomena. This is the main advantage of
the wavelet over the short-time Fourier transform.

6.4. Wavelet Analysis Methodology

In the introduction the effect of noise was mentioned. Noise is a phenomenon that
affects all frequencies and appears in different forms such as high-frequency
measurement noise and spikes due to process filters being purged and other process
operations. However, the "true" signal tends to dominate the low-frequency area,
especially in chemical processes. The traditional approach to filtering is to remove the
high-frequency components above a certain level since they are associated with noise.
Small wavelet coefficients at low scales (high-frequency area) are usually expected to
be mainly due to noise components. The procedure for wavelet de-noising is as
follows:

- Threshold those elements in the wavelet coefficients that are believed to be attributed to
noise,

- Apply the inverse wavelet transform to the thresholded wavelet coefficients to obtain a
de-noised signal.

 
 
 



Wavelet transforms can be categorized into continuous and discrete. Continuous, in
the context of wavelet transform, implies that the scaling and translation parameters a
and b change continuously. However, calculating wavelet coefficients for every
possible scale can represent a considerable effort and result in a vast amount of data.
Therefore a discrete parameter wavelet transform is often used where we choose only
a subset of scales and positions at which to make our calculations. The discrete
parameter wavelet transform (DWT) uses scale and position values based on powers
of two (so-called dyadic scales and positions) and makes the analysis much more
efficient, whilst remaining accurate. To do this, the scale and time parameters are
discretised as follows,

-m12 b b na = ao ' = n oao

( ) -m12 (-m b )If.'m,n t = ao If.' ao t - n 0

DWTf (m, n) = (I, If.'m,n)
= a~ml2 r: 1(t)If.'(a~mt - nbo)

An efficient way to implement this scheme using filters was developed in Mallat (1989).
This very practical filtering algorithm yields a fast wavelet transform - a box into which
a signal passes, and out of which wavelet coefficients quickly emerge.

For many signals, the low frequency content is the most important part that gives a
signal its identity. The high frequency content, on the other hand provides flavour or
nuance. In wavelet analysis the high-scale, low frequency content is called the
approximation and the low-scale, high frequency content is called the detail. The
filtering process uses lowpass and highpass filters to decompose an original signal into
the approximation and detail parts. The filtering process at its most basic level, which is
a single-level decomposition, is illustrated in Figure 6.3 where the original signal,

 
 
 



s = J(t) , passes through two complementary high- and lowpass filters and emerges as

two signals.

'\ /

Unfortunately, if we actually perform this operation on a real digital signal, we end up
with twice as much data as we started with. Suppose, for instance, that the original
signal s consists of 1000 samples of data. Then the approximation and the detail will
each have 1000 samples, for a total of 2000. However, it is not necessary to preserve
all the outputs from the filters and therefore, to correct this problem, we introduce the
notion of downsampling where we keep only the even components of the lowpass and
highpass filter outputs and throwaway every second data point. While doing this
introduces aliasing, which is a type of error (Strang and Nguyen, 1995), in the signal
components, it turns out we can account for this later on in the process. This procedure
is illustrated in Figure 6.4(a) and (b).

Figure 6.4(a) Wavelet decomposition without downsampling, and (b) with
downsampling.

 
 
 



The process in Figure 6.4(b), which includes downsampling, produces discrete wavelet
transform (OWT) coefficients. The detail coefficients will consist mainly of the high-
frequency noise,while the approximationcoefficientswill containmuch less noise than does
the originalsignal.

The actual lengths of the detail as well as the approximation coefficient vectors will be
slightly more than half the length of the original signal. This has to do with the filtering
process, which is implemented by convolving the signal with a filter. The convolution
"smears" the signal, introducing several extra samples into the result.

Multilevel decomposition tree (An octave band non-subsampled filter
bank.)

The decomposition process can be iterated, with successive approximations being
decomposed in turn, so that one signal is broken down into many lower-resolution
components. This is called the wavelet decomposition tree, illustrated in Figure 6.5,
which can yield valuable information.

Since the analysis process is iterative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the individual details consist of a
single sample or pixel. In practice, you'll select a suitable number of levels based on
the nature of the signal, or on a suitable criterion such as entropy.

After calculating the wavelet coefficients, these coefficients can be thresholded to
remove noise prior to reconstruction. Wavelet thresholding is discussed in more detail
in Section 6.6, but it is worth noting that this step is applied after calculating the wavelet
coefficients.

 
 
 



The process of assembling the components back into the original signal with no loss of
information is called reconstruction, or synthesis. The mathematical manipulation that
affects synthesis is called the inverse discrete wavelet transform (IOWT). Where
wavelet analysis involves filtering and downsampling, the wavelet reconstruction
process consists of upsampling and filtering. Upsampling is the process of lengthening
a signal component by inserting zeros between samples.

The filtering part of the reconstruction process is crucial since achieving perfect
reconstruction of the original signal depends on the choice of filters. In the case of a
discrete wavelet transform, reconstruction of the original signal is not guaranteed.
Recall that the downsampling of the signal components performed during the
decomposition phase introduces a distortion called aliasing. It turns out that by carefully
choosing filters for the decomposition and reconstruction phases that are closely
related (but not identical), we can "cancel out" the effects of aliasing. This was the
breakthrough made possible by the work of Oaubechies (1992) who developed

conditions under which {If/ m.n} forms an orthonormal basis. A technical discussion of

how to design these filters can be found in p. 347 of the book Wavelets and Filter

Banks, by Strang and Nguyen (1995). Usually, ao = 2 and bo = 1 are used, although

any values can be used. In this case, both the transform and reconstruction are
complete because the family of wavelets form an orthonormal basis. The low- and
high pass decomposition filters (L and H), together with their associated reconstruction
filters (L' and H'), form a system of what is called quadrature mirror filters.

So it is possible to reconstruct the original signal from the coefficients of the
approximations and details. It is also possible to reconstruct the approximations and
details themselves from their coefficient vectors. As an example, let's consider how we

would reconstruct the first-level approximation Al from the coefficient vector cAI• We

pass the coefficient vector cAI through the same process we used to reconstruct the

original signal. However, instead of combining it with the level-one detail cDI, we feed

in a vector of zeros in place of the details as in Figure 6.6.

The process yields a reconstructed approximation A1, which has the same length as
the original signal s and which is a real approximation of it. Similarly, we can

reconstruct the first-level detail 01, using the analogous process illustrated in Figure
6.7.
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The reconstructed details and approximations are true constituents of the original
signal. In fact, we find when we combine them that:

Note that the coefficient vectors cAI and cDI - because they were produced by

downsampling, contain aliasing distortion, and are only half the length of the original
signal - cannot directly be combined to reproduce the signal. It is necessary to
reconstruct the approximations and details before combining them.
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Extending this technique to the components of a multi-level analysis, we find that
similar relationships hold for all the reconstructed signal constituents. That is, there are
several ways to reassemble the original signal:

For an orthogonal wavelet, in the multiresolution framework, we start with the scaling

function ¢ and the wavelet function 1fI. One of the fundamental relations is the twin-

scale relation (dilation equation or refinement equation):

All the filters used in DWT and IDWT are intimately related to the sequence (Wn)nEZ'

Clearly if ¢ is compactly supported, the sequence (wn) is finite and can be viewed as

a filter. The filter W, which is called the scaling filter (non-normalized), is:

1
of norm .fi

From filter W, we define four FIR filters, of length 2N and of norm 1, organized as in
Table 6.1.

The four filters are computed using the scheme in Figure 6.8 where qmf is such that H'

and L' are quadrature mirror filters (i.e., H'(k)=(-1)kL'(2N-l-k). Note that wrev

flips the filter coefficients so Hand L are also quadrature mirror filters.

 
 
 



L'= W
norm(W)

6.6. Wavelet Denoising through Thresholding

To address the issue of noise, wavelet de-noising can be applied where the wavelet
coefficients cAj and cDj are thresholded in order to remove noise components

contained in the signal and thus also in the wavelet coefficients.

Multiscale rectification using wavelets is based on the observation that random errors
in a signal are present over all the coefficients, while deterministic changes get
captured in a small number of relatively large coefficients. Thus, stationary Gaussian
noise may be removed by suppressing coefficients smaller than a selected value
(Donoho et aI., 1995).

Donoho and coworkers have studied the statistical properties of wavelet thresholding
and have shown that for a noisy signal of length n, the rectified signal will have an
error of order log n of the error between the error-free signal and the signal rectified

with a-priori knowledge about the smoothness of the underlying signal (Donoho and
Johnstone, 1994).

 
 
 



Generally speaking, wavelet thresholding can be divided into two categories: global

thresholding and level-dependent thresholding. If the threshold value is denoted as A.,

then in global thresholding a single value of A. is selected and is applied globally to all
empirical wavelet coefficients above a certain frequency level. For leveldependent

thresholding, a different threshold value A.j can be selected for the wavelet coefficient

at level j. This approach is necessary when the noise in the data is non-stationary

and/or correlated and is the approach used in this study.

Selecting the proper value of the threshold is a critical step in the rectification process
and a number of different methods for selecting appropriate threshold values for
wavelet denoising have been proposed in the literature (e.g. Donoho and Johnstone,
1994,1995; Donoho, 1995; Donoho et aI., 1996; Hall et aI., 1996; Hall and Patil, 1996;
Nason, 1996).

Generally, wavelet denoising methods are based on either a hard or a soft thresholding
approach. If the threshold value is denoted as A., hard thresholding is given by
Equation 6.10, whilst soft thresholding is given by Equation 6.11. Soft thresholding
shrinks the value of the wavelet coefficients towards zero (eliminates coefficients) if
they are above a certain threshold and hard thresholding if they are smaller.

H {x if I x I> A.0), (x) = o otherwise

{

X -A.

of (x) = 0
x+A.

ifx>A.
if I x I::; A.
if x <-A.

Hard thresholding can lead to better reproduction of peak heights and discontinuities,
but at the price of occasional artifacts that can roughen the appearance of the rectified
signal, while soft thresholding usually gives better visual quality of rectification and less
artifacts. An artifact, which is not present in the original signal, is created in the
reconstructed signal when the wavelet function used to represent a feature in the signal
and the feature itself does not align. Such artifacts are due to a localized Gibbs
phenomenon which is caused by the lack of translational invariance in orthonormal
wavelet decomposition.

Two factors that can influence the performance of wavelet thresholding are considered
in the selection of the threshold values, these are the sample size N and the noise
level (j. For good visual quality of the rectified signal, the Visushrink method
determines the threshold as

 
 
 



where N is the signal length and a j is the standard deviation of the errors at scale

j.

In practice, the value of the standard deviation of the noise in the data, a, is unknown

and is replaced by an estimate a-. Donoho and Johnstone (1995) proposed the use of

the median of the absolute deviation (MAD) of the wavelet coefficients at the finest
level (level=1):

a- = median(1 WI'; D / 0.6745

where i = 0, ... , 2J
-
I -1, J = log2 (N). The median absolute deviation of the

coefficients is a robust estimate of a. When coloured noise is suspected, the noise

level a needs to be estimated level-by-Ievel using a similar kind of strategy and the

threshold values also need to be modified according to the level-dependent estimation
of the noise.

Wavelet de-noising is able to remove as much noise as required but not at the expense of
smoothing out any real fine-scale features (Ogden, 1997). The advantage of spatially
adaptive methods such as wavelet de-noising is that they perform close to the optimum
across the whole range of noise levels, no matter the smoothness of the signal. On the
other hand, the best performing median filter is almost as efficient as the wavelet de-noising
methods at relatively high signal to noise ratios, if the window size is selected appropriately.
However, for low signal-to-noise ratios, phase-shift may result. Moreover, future values are
needed to apply the median filtering algorithm, thus making it unsuitable for on-line
application and therefore wavelet de-noising remains a better alternative.

Wavelet-based multiscale rectification is a very effective approach for denoising signals
contaminated by white, as well as correlated Gaussian noise. If the traditional wavelet
decomposition algorithm is applied to a signal with non-Gaussian errors, outliers will be
present at multiple scales in both the scaled and detailed signals, and large coefficients
corresponding to outliers get confused with those corresponding to important features.
Thus, wavelet thresholding is not effective in eliminating non-Gaussian errors. This limitation
may be overcome by combining wavelet thresholding with multiscale median filtering as in
the robust multiscale rectification technique (Bruce et aI., 1994).

6.7. Algorithms

This section takes you through the most important steps of the wavelet analysis and
de-noising algorithms in view of the actual implementation. It considers in more detail
the magnitude and nature of the different calculated values and signals.

 
 
 



Starting out with a signal s of length N, the DWT consists of log2 N stages at most.

The first step produces, starting from s, two sets of coefficients: approximation

coefficients cAI and detail coefficients cDI• These vectors are obtained by convolving

s with the low-pass filter L for approximation, and with the high-pass filter H for
detail, followed by dyadic decimation. The first step is illustrated by Figure 6.9.

Low-pass filter downsample

F
L

Approximation
Coefficients

G
H

High-pass filter
downsample

The length of each filter is equal to 2N. If n = length(s) , the signals F and G, are of

length N + 2N - 1 and then the coefficients cAI and cDI are of length

(
n -1)floor-2- + N .

The next step splits the approximation coefficients cAI in two parts using the same

scheme, replacing s by cAI ' and producing cA2 and cD2 ' and so on as illustrated in

Figure 6.5. So the wavelet decomposition of the signal s analyzed at level j has the

following structure: leAj , cD j' •.. , cD! J.

The next step involves applying level-dependent thresholding to the coefficients so that
the wavelet decomposition of the signal s analyzed at level j now has the following

structure: [cA~, cD~, ... , cD~]. where cA~ and cD~ are the thresholded approximation

and detail wavelet coefficients.

Conversely, starting from cA~ and cD~, the IDWT reconstructs A~_l' the reconstructed

approximation signal, inverting the decomposition step by inserting zeros and
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convolving the results with the reconstruction filters as depicted in Figure 6.10 where
wkeep means taking the central part of U with the convenient length.

Existing nonlinear rectification techniques do perform better than linear filters for a
broad variety of signals. However, a significant disadvantage of these nonlinear
multiscale methods is that they cannot be implemented online. In general wavelet filters
are noncausal in nature and require future measured data for calculating the current
wavelet coefficient. This introduces a time delay in the computation that increases at
coarser scales and smoother filters. This time delay may be overcome in a rigorous
manner by using special wavelets at edges that eliminate boundary errors while being
orthonormal to the other wavelets (Cohen, et aI., 1993). These boundary corrected
filters are causal and require no information about the future to compute wavelet
coefficients at the signal end points. Another reason for restricting the wavelet-based
methods to off-line use is the dyadic discretization of the wavelet parameters, which
requires a signal of dyadic length for the wavelet decomposition.

A signal containing a dyadic number of measurements can be decomposed as shown
in Figure 6.11(a). In contrast, if the number of measurements is odd, the last point
cannot be decomposed without a time delay as shown in Figure 6.11(b). In many
applications such a time delay is unacceptable. Consequently, this section describes
an online method for multiscale rectification (OlMS), where absolutely no time delay is
allowed.

 
 
 



Figure 6.11. Time delay introduced due to dyadic length requirement in wavelet
decomposition

On-line multiscale rectification is based on multiscale rectification of data in a moving
window of dyadic length, as shown in Figure 6.12. The aLMS methodology can be
summarized as follows:

(1) Decompose the measured data within a window of dyadic length using a causal
boundary corrected wavelet filter.

(4) When new measured data are available, move the window in time to include the
most recent measurement while maintaining the maximum dyadic window length.
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The measurements in each window are rectified by the wavelet thresholding approach
of Donoho et al. (1995) decribed in the previous section. This simple approach is very
effective compared to the single-scale techniques and retains the benefits of the
wavelet decomposition in each moving window, while allowing each measurement to
be rectified on-line.

Any filtering method requires typical data or information about the underlying signal and
noise for selecting the filter parameters. In OLMS rectification the filter tuning
parameters are the value of the threshold and the maximum depth of the wavelet
decomposition. Other practical issues include selecting a wavelet and the maximum
length of the moving window.

The threshold may be estimated by applying the Visushrink method (Donoho et aI.,
1995; Nason, 1996; Nounou and Bakshi, 1999) to the available measurements. For
data corrupted by stationary errors, the threshold value stops changing much after and
adequate number of measurements are available. Consequently, for stationary noise,
the threshold may be estimated from the measurements until the change is below a
user-specified value. This approach for estimating the threshold cannot be performed
recursively due to the median operator used in Equation 6.9 and will require storage of
a large number of measurements.

Thresholding wavelet coefficients at very coarse scales may result in the elimination of
important features, whereas thresholding only at very fine scales may not eliminate
enough noise. Therefore, the depth of wavelet decomposition needs to be selected to
optimize the quality of the rectified signal. Empirical evidence suggests that a good
initial guess for the decomposition depth is about half of the maximum possible depth,
that is (log2(n))/2 where n is the moving window length. However, a smaller depth

might be more appropriate in aLMS rectification if a long boundary corrected filter with
a large support is used in the decomposition since the filters at the two edges might
overlap at very coarse scales. The depth may also be determined by cross-validation.

 
 
 



The type, length, and nature of the wavelet filer used in alMS affect the quality of the
rectification. Since the alMS rectification uses only the last rectified data point from
each translated signal, it is crucial that only boundary corrected causal wavelet filters
are used. If boundary corrected filters are not used, then the last point is among the
least accurate ones due to the end effect errors. alMS rectification using Daubechies
second-order boundary corrected filters was used and results in smaller mean-square
error than alMS rectification using other simpler wavelet filters like the Haar wavelet.

This background is a graphical
display of a continuous wavelet

transform

The wavelet analysis user interface is displayed by using the Next button on the data setup
interface or it can be accessed via the main user interface. The options are related to the

 
 
 



theory discussed in the previous sections. Normally one would have to play around with
different combinations of the parameters in order to select the best combination since there
are no definite rules.

1. Name of variable to which the wavelet transform should be applied. By default
traindatas from the database is used. Any other variable name may be specified.
However, it is important to know that the data should be normalized or standardized
prior to applying the wavelet analysis.

2. Maximum dyadic (power of two) window size. For this application a maximum window
size of 256 (28

) was used.

4. Variable number. The wavelet analysis is applied to one variable at a time. The specific
variable is specified via its column number in the data matrix.

6. Type of threshold to apply to the wavelet coefficients. Those methods with multi as
prefix refer to level dependent thresholding.

7. Toggle between real-time viewer on an off. If the viewer is on, one is able to view the
coefficients and reconstructed approximations and details as they are calculated as
illustrated in Figure 6.14 and Figure 6.15.
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12. Switch between multi resolution analysis (Figure 6.14) and wavelet coefficient (Figure
6.15) plot.

16. Reconstructed detail signal at finest scale/level before (cyan) and after (blue)
thresholding

17. Reconstructed detail signal at second scale/level before (cyan) and after (blue)
thresholding

18. Reconstructed detail signal at coarsest scale/level before (cyan) and after (blue)
thresholding
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Figure 6.16 is a completed version of Figure 6.14. This was the multiresolution wavelet
analysis of variable one.
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22. The name of the variable containing the thresholded multiresolution data for a
specific level. Here thmra_level_1 refers to the thresholded multiresolution data of
level one which is a data matrix containing the first detail level of all the variables
each in a separate column.

23. The nonthresholded (black) and thresholded (red) reconstructed detail level of the
level specified by tag 22 and variable number specified by tag 24. Here the
nonthresholded and thresholded detail of detail level one of variable one can be
viewed.

25. Here the effect of removing or adding the specific nonthresholded detail level can
be viewed. The black plot represents the original nonthresholded reconstructed
signal and the red plot the thresholded signal with the added effect of removal or
adding of a nonthresholded detail level. This is used if one wishes to override the
thresholding of a specific level. During thresholding a specific detail level may be
zeroed (removed) as in this example. The user may however decide that the
specific level is significant and that it contains important information. In such a case

the detail level may be replaced and the effect on the final signal can be viewed.

 
 
 



Thresholding may also retain some information in the detail levels that the user may
decide is insignificant, in which case it can be removed.
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The eight standardized variables from chapter 5 were decomposed into their
contributions in different regions of the time-frequency space by projection on the
corresponding wavelet basis function, as depicted in Figure 6.18 for variable one.

 
 
 



Wavelet Analysis

Figure 6.18 represents a moving window width of 256 data samples at a given time
instance.
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(a) Original signal; (b)-(e) wavelet coefficients (m=1 ,... , 4); (f) scaling function coefficients (L=4); (g)
extracted deterministic component.

Figure 6.18. Wavelet decomposition and separation of stochastic and deterministic
components.

The high-scale, low frequency content (approximation) of variable one is represented
on a set of scaling functions, as depicted in Figure 6.18(f). The low-scale, high
frequency content (detail) of variable one is illustrated by Figure 6.18(b)-(e).

 
 
 



Multiresolution decomposition based on wavelets was carried out for each variable to
observe both the general trend and the detailed features of the process data. The
discrete fast wavelet transform using a boundary-corrected Daubechies second order

filter at level L = 4 I which is half the maximum length, was used.

s·~~N~'~
D4~!~~~j
D3;~~~,.~
D2.~.~t~~~1
D1~~~~~~~~~~~

The length of the dyadic window was chosen as 256 which is a power of two (28
) since

classically the discrete wavelet transform is defined for sequences with length of some
power of two. Note that this initial window length is not a restriction. Theoretically,
OLMS rectification can start with any dyadic set of measurements, starting at two.
However, since the threshold is estimated from the data in the moving window, the
threshold estimate improves as the moving window length increases. When the noise
is assumed to be stationary, the threshold stops changing after a large set of
measurements are collected, and, thus, the moving window length can be held
constant. Figure 6.19 shows the multiresolution analysis plot for process variable one.
Approximation coefficients at scale 4 (A4) represent the underlying trend of the signal(s)

 
 
 



whilst wavelet coefficients (04 - 01) show the high-frequency details. Examining the
multiresolution analysis results for all eight process variables (see Paragraph 3.11 of
Chapter 3), the level of noise corruption was found to be different for each variable
necessitating level dependent thresholding.

This was repeated for each of the eight variables and provided similar results for each
of the variables.

Wavelet thresholding based on hard thresholding was then used to remove the high-
frequency noise as well as the spikes known to be outliers. Level-dependent threshold
values were derived from the Visushrink threshold strategy. In this manner both noise
and spikes were removed from the signal without affecting the underlying process
trends. The thresholding zeroed all the detail coefficients indicating that all the detail
could be attributed to noise. The approximation coefficients obtained in Figure 6.19 for
variable one and all the other variables preserve the process trend well in a compact
form since all high-frequency elements are omitted (Shimizu et aI., 1997).

The thresholded and non-thresholded wavelet coefficients were used to construct
thresholded and non-thresholded approximations and details. The non-thresholded
details and approximations were combined to form data set 2 from which the combined
principal component model was derived. At each level the thresholded details were
investigated to see if they contained any significant contributions. The significant
contributions were combined according to the level from which the detail principal
component model for each separate level was derived. The investigation revealed that
the current thresholded details did not contain any significant contributions so that no
need existed to derive detail principal component models. An approximation principal
component model was derived from the combined approximations (dataset 1). By
removing the undesirable high-frequency elements from the nominal data, the
possibility of input-training network overfitting (Chapter 8) is greatly reduced. If by
chance any desirable high-frequency elements were removed, it would be accounted
for in the combined model.

Figure 6.20 gives dataset 1 which contains the approximations of all eight variables.
Oataset 2 contains these approximations together with all the nonthresholded details of
all eight variables. The methodology explained in this section is illustrated by Figure
6.21.

 
 
 



Chapter 6 Wavelet Analysis
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Figure 6.21. Comparison between the original signal, de-noised signal and the
approximation coefficients used for model derivation
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