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SYNOPSIS

The aim of this study was to propose a nonlinear multiscale principal component
analysis (NLMSPCA) methodology for process monitoring and fault detection based
upon multilevel wavelet decomposition and nonlinear principal component analysis via
an input-training neural network.

Prior to assessing the capabilities of the monitoring scheme on a nonlinear industrial
process, the data is first pre-processed to remove heavy noise and significant spikes
through wavelet thresholding. The thresholded wavelet coefficients are used to
reconstruct the thresholded details and approximations. The significant details and
approximations are used as the inputs for the linear and nonlinear PCA algorithms in
order to construct detail and approximation conformance models. At the same time
non-thresholded details and approximations are reconstructed and combined which are
used in a similar way as that of the thresholded details and approximations to construct
a combined conformance model to take account of noise and outliers. Performance
monitoring charts with non-parametric control limits are then applied to identify the
occurrence of non-conforming operation prior to interrogating differential contribution
plots to help identify the potential source of the fault.

A novel summary display is used to present the information contained in bivariate
graphs in order to facilitate global visualization. Positive results were achieved.
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SINOPSIS

Die hoofdoel van hierdie ondersoek was om In nuwe metode voor te stel vir nie-lineere
multivlak hoofkomponent-analise vir prosesmonitering en foutopsporing. Die beginsel is
gebaseer op multivlak "wavelet"-ontbinding en nie-lineere hoofkomponent-analise deur
middel van In inset-verandering neurale netwerk.

Normale bedryfsdata vanaf In nie-lineere industriele proses word eers vooraf verwerk
om hewige geraas en beduidende uitskietpieke in die data te verwyder. Dit word
gedoen deur eers die data deur middel van "wavelet"-analise te ontbind in detail- en
benaderings- "wavelet"-koeffisiente en dan die "wavelet"-koeffisiente groter as In
sekere limiet uit te filter. Die gefilterde "wavelet"-koeffisiente word dan gebruik vir die
hersamestelling van gefilterde details en benaderings. Die beduidende details en
benaderings word gebruik as insette vir die Iineere en nie-Iineere hoofkomponent-
analise-algoritmes sodat detail- en benadering-konformasiemodelle saamgestel kan
word. Terselfdertyd word ongefilterde details en benaderings herkonstrueer vanaf
ongefilterde detail- en benaderingskoeffisiente wat dan gekombineer word om In
gekombineerde konformasiemodel saam te stel met die hoofdoel om geraas en
uitlopers in nuwe data in ag te neem.

Werkverrigtingsmoniteringsgrafieke met nie-parametriese beheerlimiete word dan
gebruik om die voorkoms van nie-konformerende of abnormale bedryf op te spoor.
Nadere ondersoek mbv differensiele bydrae grafieke word gebruik om te help met die
opsporing van die moontlike oorsaak van die fout.

In Nuwe metode om die inligting in bivariate grafieke in In kompakte en eenvoudiger
wyse voor te stel is gebruik en gee In beter geheelbeeld van die prosesverloop. Die
geskiktheid van die moniteringstelsel is getoets op nuwe data en positiewe resultate is
verkry.

Prosesmonitering; Foutopsporing, Nie-lineere Hoofkomponent-
Analise
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If a tool could do its job
after obeying a command or its own feeling

neither the architects (experts) would require assistants
nor the masters slaves.
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LIST OF DEFINITIONS

Cross-validation - Cross-validation is widely used as an automatic procedure to
choose a smoothing parameter in many statistical settings. The classical cross-
validation method is performed by systematically expelling a data point from the
construction of an estimate, predicting what the removed value would have been and
comparing the prediction with the value of the expelled point.

Covariance matrix - For a given data matrix X with m rows and n columns the
covariance matrix of X is defined as

XTX
cov(X)=--

m-l

This assumes that the columns of X have been 'mean centered', i.e. adjusted to have a
zero mean by subtracting of the original mean of each column.

Correlation matrix - Referring to the definition of covariance matrix, if the columns of
X have been 'autoscaled', i.e. adjusted to zero mean and unit variance by dividing each
column by its standard deviation, the equation for calculating the covariance gives the
correlation matrix of X.

Details - Details, generally known as the wavelet coefficients, are coefficients that
capture the details of the signal lost when moving from an approximation at one scale
to the next coarser scale.

Epochs - One training cycle after which the neural network parameters (weights and
biases) are updated.

FMH - Finite impulse response median hybrid filter (Heinonen and Neuvo, 1987). A
FMH is a median filter which has a pre-processed input from M linear FIR filters. Thus,
the FMH filter output is the median of only M values, which are the outputs of M FIR
filters. FMH filters are nonlinear filters, are most effective when applied to piecewise
constant signals contaminated with white noise, require careful selection of the filter
length, and are limited to off-line use.

Hessian Matrix - For a given data matrix X, the hessian matrix is given by Equation
8.25 (see Chapter 8).

 
 
 



Jacobian Matrix - The jacobian matrix is a matrix that contains the first derivatives of
the network errors with respect to the weights and biases of a neural network and is
given by Equation 8.26 (see Chapter 8).

Loadings - The loadings of a data matrix X containing n variables (columns) with m
samples (rows) each are transformed variable vectors containing information on how
the variables in X relate to each other and are the eigenvectors of the covariance
matrix of X.

Orthonormal - An orthonormal matrix A is a square matrix with the following
properties:

1. IAI= ±1 , where IAI is the determinant of A.

p p

2. I a~ = I a~ = 1 for al i = j .The sum of squares of any row or column is equal to
i;1 j;1

p

3. I aijaik = 0 for all j '* k. The sum of crossproducts of any two columns is equal to
i;1

zero and implies that the coordinate axes, which these two columns represent,

intersect at an angle of 90° .

This implies that AA' = I. If A is orthonormal, A -I = A' where A -I is the inverse of

A.

Orthogonal- Referring to the definition of a orthonormal matrix, a matrix is orthogonal
if it satisfies Condition 3 of orthonormality but not Conditions 1 and 2.

peA - Principal Component Analysis finds combinations of variables that describe
major trends in a data set. It also summarises the data in terms of a smaller number of
latent variables which are linear combinations of the original variables.

Rotation - Rotation is a method by which a set of data vectors is converted to what is
called simple structure. The object of simple structure is to produce a new set of
vectors, each one involving primarily a subset of the original variables with as little
overlap as possible so that the original variables are divided into groups somewhat

 
 
 



independent of each other. This is, in essence, a method of clustering variables that
might aid in the examination of the structure of a multivariate data set.

Scales - The scales or extend of the time-frequency localisation corresponds to the
wavelet decomposition level and is the contribution in different regions of the time-
frequency space into which a signal is decomposed by varying the scaling parameter of
the scaling function. The scaling functions are smoother versions of the original signal
and the degree of smoothness increases as the scale increases. As the scaling
parameter changes, the wavelet covers different frequency ranges (large values of the
scaling parameter correspond to small frequencies, or large scale; small values of the
scaling parameter correspond to high frequencies, or very fine scale).

Scores - The scores of a data matrix X with n variables (columns) with m samples
(rows) each are vectors containing information on how the samples in X relate to each
other. They are thus individual transformed observations of X and weighted sums of
the original variables.

Threshold - A threshold is certain chosen or calculated limit that has the effect of
zeroing a value, variable or coefficient if it is larger than the specified threshold and
leaving it unchanged if it smaller or equal to the threshold.

Wavelet - The wavelet transform is a tool that cuts up data, functions or operators into
different frequency components, and then studies each component with a resolution
matched to its scale. It is an extension of the Fourier transform that projects the original
signal down onto wavelet basis functions, providing a mapping from the time domain to
the time-scale plane. In general wavelets have the following three properties:
1. Wavelets are building blocks for general functions
2. Wavelets have space-frequency localisation
3. Wavelets have fast transform algorithms
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