
Multiple objective optimization of an airfoil
shape

by

Antoine Dymond

A dissertation submitted in partial fulfillment

of the requirements for the degree

Master of Engineering

in the

Department of Mechanical and Aeronautical Engineering
Faculty of Engineering, the Built Environment and Information

Technology

University of Pretoria
Pretoria

February 15, 2011

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Abstract

An airfoil shape optimization problem with conflicting objectives is handled using two

different multi-objective approaches. These are an a priori scalarization approach where

the conflicting objectives are assigned weights and summed together to form a single

objective, and the Pareto-optimal multi-objective approach.

The optimization formulations for both approaches contain challenging numerical

characteristics which include noise, multi-modality and undefined regions. Gradient-,

surrogate- and population-based single objective optimization methods are applied to

the a priori formulations. The gradient methods are modified to improve their perfor-

mance on noisy problems as well as to handle undefined regions in the design space. The

modifications are successful but the modified methods are outperformed by the surrogate

methods and population based methods.

Population-based techniques are used for the Pareto-optimal multi-objective approach.

Two established optimization algorithms and two custom algorithms are implemented.

The custom algorithms use fitted unrotated hyper ellipses and linear aggregating func-

tions to search the design space for non-dominated designs. Various multi-objective

formulations are posed to investigate different aspects of the airfoil design problem. The

non-dominated designs found by the Pareto-optimal multi-objective optimization algo-

rithms are then presented.
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CHAPTER 1

INTRODUCTION

Unmanned Aerial Vehicles, UAVs, have different flight requirements depending on their

application. The aim of the UAV’s design team is to determine the best design for

their application, given time and monetary constraints. Computer-based simulation and

optimization routines greatly aid this process. In this work, various optimization routines

are implemented, tested and then applied to a subsonic UAV airfoil drag minimization

problem.

The airfoil shape optimization has multiple conflicting objectives which are handled

using two different approaches. The a priori approach reduces the problem to a single

objective form by assigning weights to each objective and summing them together. The

a priori approach is popular amongst users who are familiar with single objective opti-

mization as it allows them to tackle multi-objective optimization problems using single

objective methods. The other approach implemented is Pareto-optimal multi-objective

optimization.

The primary focus of this work is the optimization algorithms and not the aerody-

namic modeling. The problem’s modeling has been done by the CSIR [6, 7, 3], with the

aerodynamic analysis performed by well-tested software packages. The objective of this

dissertation is to replicate and extend the results produced by the CSIR. These extensions

are primarily implementing Pareto-optimal multi-objective techniques, and implementing

techniques capable of handling the maximum lift constraint. The maximum lift constraint

sets the minimum value for the maximum lift coefficient that can be generated by the

airfoil, and proved particularly problematic in earlier work at the CSIR.

Practical optimization problems often exhibit challenging characteristics. These chal-

lenging characteristics include noise, multi-modality, high computational cost and unde-

fined regions, all of which are present in this application. Two approaches can be used

when tackling badly behaved functions; the first is to eliminate the bad behavior, and the
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second is to apply robust optimization techniques. Eliminating the bad behavior requires

the simulation software be re-written and re-compiled which is not always possible. In

this work, the simulation software is treated as a “black-box” with the focus on imple-

menting robust algorithms. Chapter 2 describes the optimization problem’s formulation

and characteristics in further depth.

Chapter 3 discusses the single objective gradient-based techniques implemented and

the results they obtained for the a priori airfoil optimization formulations. The optimiza-

tion problem does not meet the requirements for which gradients method are developed,

but gradient methods can still be employed to improve the function value. Certain parts

of the gradient methods are customized in order to improve their performance on the

optimization problems. This chapter also includes the results from two surrogate based

methods.

Chapter 4 presents the single objective population-based methods implemented and

their results for a priori optimization formulations. These stochastic methods are more

expensive than the gradient methods but are also more robust. The methods are in-

vestigated as an alternative to the gradient-based algorithms, as they are developed to

handle optimization problems with challenging characteristics such as those exhibited in

this drag minimization problem.

The Pareto-optimal approach for multiple objective optimization of the 2D UAV airfoil

is documented in Chapter 5. One of the difficulties of the a priori approach is choosing

the objective weights [20]. Using Pareto-optimal multi-objective optimization eliminates

this problem by allowing the practitioner to select designs a posteriori [35] from the

non-dominated solutions found.

The algorithms are documented by presenting the theory relevant for both under-

standing and application, followed by the testing of that algorithm’s code. The testing

is important as it ensures that the algorithms, most of which have been programmed by

the author, are working correctly and that their results can be trusted.
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CHAPTER 2

PROBLEM DESCRIPTION

The problem’s modeling involves performing an aerodynamic analysis on a generated

airfoil shape. Optimization algorithms use the model in order to determine the optimal

design variables, in terms of given objective function/s and constraints. The success of

the optimizer depends on how well suited the algorithm and its chosen parameters are

for the model’s characteristics. The model and its behavior is discussed in this chapter.

An aircraft’s wing redirects the air that it passes through, generating both a lift

force and a drag force. These forces are functions of the wing geometry, and the flight

conditions. One of the functions of an aircraft’s wing is generating lift to counteract the

gravitational force applied to it. When an aircraft flies at a different angle of attack,

different drag and lift forces are generated.

The software package, PROFOIL [30, 29], specializes in airfoil generation and makes

use of inverse methods. Direct airfoil methods generate the airfoil’s geometry first, and

then computes the velocity distribution around the airfoil. In contrast, the inverse meth-

ods transform a velocity distribution into an airfoil. PROFOIL makes use of conformal

mapping to achieve this. The direct and inverse methods are illustrated in Figure 2.1.

XFOIL[15, 16] is another open-source aerodynamics program, that amongst other

�����������
�����������
�����������

�����������
�����������
�����������

position

velocity

inverse

direct

Figure 2.1: Direct and inverse methods for airfoil generation
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Design variable(s) Description

x1 distribution of control-points along top of airfoil
x2 distribution of control-points along bottom of airfoil
x3, x4, . . . , x14 velocity at control-points
x15 finite trailing edge angle
x16 trailing edge recovery parameter
x17 thickness ratio

Table 2.1: Description of the optimization design variables. For further information on PRO-
FOIL’s parameters refer to [28].

features, allows the viscous analysis of subsonic isolated airfoils. XFOIL is used to deter-

mine the profile drag created by an airfoil for the angle of attack required to generate a

specified lift coefficient.

PROFOIL together with XFOIL are used for the aerodynamic analysis. The design-

variables are passed into PROFOIL which generates the shape of the 2-D airfoil. The

optimization design variables which are used by PROFOIL to generate the airfoil are

listed in Table 2.1. XFOIL then determines the drag coefficients (CD) for specified lift

coefficients (CL) and Reynolds numbers. The drag coefficient is solved for a constant

Re
√
CL which is set to 375 000 and for a transition criterion amplification factor of e9.

The two different single objective optimization formulations are discussed in the next

section, after which the numerical nature of the model is described. The multi-objective

formulations are discussed in Chapter 5 and not in this section, as they are based upon

the multi-objective context which is only introduced in Chapter 5.

2.1 A priori scalarization single objective formula-

tions

The a priori cost function, f , which is a single objective aims to minimize a drag bucket

for the required flight envelope. Three drag coefficients CD1 , CD2 and CD3 are used

to approximate the drag bucket. CD1 corresponds to the drag coefficient generated for

creating the lift required for the UAV in cruise condition. CD2 and CD3 are the drag

coefficients for loiter and high speed dash lift requirements. f is a function of the 17

design variables x ∈ <17, and is constructed by blending the three drag coefficient values.

For the a priori approach CD1 is given higher importance than CD2 and CD3 as the UAV

is likely to spend the majority of its flight time in a cruise mode. The a priori single

objective function is defined as

f(x) = 3CD1(x) + CD2(x) + CD3(x). (2.1)

6

 
 
 



Figure 2.2: The 2D sections of a blended wing-body UAV which can be optimized using the
avionics box and maximum lift single objective formulations

The two a priori formulations focus on different 2D sections of a blended wing-body

UAV. The avionics box height formulation aims to minimize f such that an unrotated

box can fit inside the airfoil. This 2D section will be used for the 50 % chord section of

the UAV which houses the control box. The maximum lift formulation aims to minimize

f so that a maximum lift constraint is met, generating a 2D profile that can be used

on the wing tip. Figure 2.2 shows the 50 % chord and wing root sections on a fictitious

flying wing UAV.

The avionics box constraint is calculated by determining the maximum height of an

unrotated box placed inside the airfoil. This constraint only fails when the airfoil shape

cannot be generated by PROFOIL. The height constraint does not contain noise like the

objective function (demonstrated in Section 2.2) and is considered “well behaved”.

The maximum lift of an airfoil cannot be directly determined from the model. The

work-around implemented is that the maximum lift constraint first checks if the airfoil

can generate the required lift. If the airfoil can generate the required lift a violation of

zero is returned. If the required lift could not be generated, the minimum solver residual

is used as the violation. The solver residual gives a rough estimate of the maximum lift

constraint violation, as shown in Figure 2.3.

The maximum lift work-around is noisy and discontinuous which increases the diffi-

culty of the optimization problem. Additional work on the analysis side should reduce

these unfavourable characteristics. However this is not done as this goes against the

“black-box” approach which is followed for this work.

The maximum lift formulation is more challenging than the avionics box height for-

mulation due to the demonstrated characteristics as well as the fact that it steers the

optimizer towards undefined region of the design space. Besides the difficulties associ-

ated with undefined regions, the model’s nature, in which multiple solver settings are

tried until a solution is determined, also increases the computational expense of each
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Figure 2.3: The minimum residuals from the XFOIL solver for different coefficients of lift

function evaluation. The numerical behavior exhibited by the model is discussed further

in the next section.

2.2 Problem characteristics

In optimization with expensive cost functions, the aim is to determine the optimum in the

least amount of time. In most cases where function evaluation time is design-independent,

this translates to the least number of function evaluations. Successful methods use char-

acteristics of the function’s behavior in order to enhance performance. If a method is

applied to a problem in which the method’s assumptions are false, the method will proba-

bly perform poorly. Inspection of an optimization problem’s characteristics grants insight

on which methods are expected to perform well. The drag functions exhibit the following

behavior:

• undefined sections in the design space

• multi-modal

• noisy

• expensive evaluations
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airfoil

Figure 2.4: Objective function evaluation

• no direct gradient information

The model’s characteristics suggest that stochastic-based methods are better suited

than gradient-based methods. Gradient methods are proven to work when the function

is infinitely differentiable, convex, uni-modal and defined throughout the design space.

When these prerequisites are not met, gradient methods are not guaranteed to converge

to a minimum or to even perform well. The stochastic population-based methods do not

assume smoothness/infinite differentiability, and as such are expected to perform better.

Examining the airfoil modeling reveals where most of the problem behavior originates.

The objective function first unscales the design variables, as the design variables have

been scaled so that they are all approximately in the domain of 0 to 1. Then PROFOIL

attempts to model an airfoil to meet the condition specified by those design variables.

Upon success, XFOIL is used to determine the drag coefficients for the specified lift

coefficients. A diagrammatic representation of the inner working of the objective function

is shown in Figure 2.4.
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XFOIL often requires different solver settings to obtain a valid solution. The settings

vary the number of steps, step direction, and the viscous acceleration parameter used by

XFOIL’s Newton solver. The viscous acceleration parameter is used by XFOIL’s modified

Newton-solver to eliminate smaller entries in the tangent matrix which decreases the

computational cost of each iteration [16]. The undefined sections in the design space

originate when all the drag coefficients cannot be calculated. The drag analysis also

contains high-frequency noise which is artificial and not normally present in XFOIL. A

line section through the design space, shown in Figure 2.5, demonstrates these properties.

The function evaluation is undefined when either the airfoil physically cannot achieve

the required flight conditions, or the solution exists but the solvers have failed. The

solvers rarely fail because the airfoil could not be generated, but mainly because the drag

could not be calculated.

Part of the noise on the objective function is artificial and originates from an im-

properly compiled version of XFOIL and not due the physical nature of the problem.

This noise component is deliberate and not removed as it is often present in practical

optimization problems.

The computational cost of the function evaluation varies largely. In the majority of

cases, XFOIL solves the drag with the first solver settings tried. For more complicated

airfoils, multiple XFOIL settings need to be tried before a solution is obtained. When

no solution is found after all the settings are tried an exception is raised and passed to

the optimizer. The ratio of quickest time to the longest time required for a function

evaluation is about 500. A quick evaluation takes about half a second on a single CPU

of a T7200 2.00 GHz Intel® Core™ 2 Processor [1].

The next chapter gives details on the gradient-based single objective optimization of

the airfoil.
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CHAPTER 3

A PRIORI SCALARIZATION

OPTIMIZATION USING GRADIENT-BASED

METHODS

Different gradient-based techniques are implemented and applied to the airfoil single

objective a priori optimization formulations. In addition to the gradient methods two

surrogate methods are also used. The techniques implemented and the results achieved

are presented in this chapter.

The chosen airfoil optimization formulations do not meet the conditions required for

gradient-based optimization. Large sections of the design space are undefined, the prob-

lem is multi-modal and the gradient is discontinuous and not smooth. However gradient

methods can still be employed to improve the function value, but are not guaranteed to

converge to a local minimum.

Gradient methods begin their search of the design space from a starting point, x0.

The design space x consists of n dimensions each in the real set, x ∈ <n. Gradient

information is then used to improve the function value and to attempt to determine the

objective function minimum. The objective function’s gradient f ′, expressed as a column

vector is:

f ′ =


∂f
∂x1
∂f
∂x2
...
∂f
∂xn

 x ∈ <n. (3.1)

For this airfoil optimization problem the gradient information is not available and
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the gradients are estimated using finite differences. Due to the nature of the problem,

a custom finite difference scheme is implemented which records the gradient approxima-

tion error. Second order gradient based optimization methods also require the second-

derivative (Hessian) of the objective function. The Hessian is also approximated using a

finite difference method.

Many gradient methods make use of a line search, which performs a one-dimensional

optimization. A custom line search is used for our application. The line search is cus-

tomized to handle the problem’s nature and to allow for task-parallelism. Task-parallelism

is where independent/uncoupled tasks are performed by different processors.

The customized finite-difference scheme is discussed first in this chapter followed by

the line search section. Take note that the customized methods focus on robustness

instead of efficiency, using more evaluations in an attempt to increase the probability of

determining a lower function value.

Unconstrained gradient techniques are then discussed, followed by constrained opti-

mization techniques. Among the constrained optimization techniques are off-the-shelf

surrogate methods. The chapter concludes with the results from the single objective

airfoil optimization.

3.1 Finite differences

Finite difference methods are used to approximate gradients when no direct gradient

information is available. Quadratic methods require, in addition to the gradient of the

objective function, the constraint gradients and the second derivative (Hessian) of the

objective function. For this application all gradients need to be determined numerically.

The finite difference methods implemented are discussed and tested on sample prob-

lems. A finite-difference size investigation is then performed on the single objective

formulation.

3.1.1 Gradient of the objective function

The finite difference method proposed here determines both the gradient approximation

as well as the approximation error. This error is used to select which finite difference size

should be used when approximating the airfoil single objective formulation’s gradient.

A linear polynomial is fitted to each dimension to determine its gradient component.

The polynomials gradient, b, and its offset, c, are determined by performing a least-square

error fit on three sample points. The sample points have function values of y1, y2 and y3
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and offsets of ε1, ε2 and ε3, which gives the linear system ε1 1

ε2 1

ε3 1

[ b

c

]
=

 y1

y2

y3

 (3.2)

A

[
b

c

]
= b. (3.3)

The least-square error solution to the over-determined linear system is

x =
(
ATA

)−1
(ATb), (3.4)

which can be expressed as[
b

c

]
=

1

3ζ + η2

[
3 −η
−η ζ

][
y1ε1 + y2ε2 + y3ε3

y1 + y2 + y3

]
(3.5)

where

ζ = ε21 + ε22 + ε23 (3.6)

η = ε1 + ε2 + ε3. (3.7)

The gradient approximation presented in (3.5) gives the same gradient values as the

well-known central difference approximation when ε1 = ε, ε2 = 0 and ε3 = −ε. The

central difference approximation is:

b =
(y1 − y3)

2ε
. (3.8)

The gradient term of (3.5) is also the same as when a quadratic function is fitted to

the three points, with ε1 = ε, ε2 = 0 and ε3 = −ε: ε2 ε 1

0 0 1

ε2 −ε 1


 a

b

c

 =

 y1

y2

y3

 , (3.9)

giving  a

b

c

 =
1

2ε3

 ε −2ε ε

ε2 0 −ε2
0 2ε3 0


 y1

y2

y3

 . (3.10)

As the perturbation size tends to zero the function’s behavior becomes linearly dom-

inated, and the true gradient can be obtained (if it exists). This can be illustrated by
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examining the Taylor series expansion. The Taylor series expansion of a one-dimensional,

infinitely differentiable function f about a point h is

f(x) = f(h) +
f ′(h)

1!
(x− h) +

f ′′(h)

2!
(x− h)2 +

f ′′′(h)

3!
(x− h)3 + . . . (3.11)

As the spacing for the three sample points decreases, the error for the gradient ap-

proximation will decrease. Two forms of linear fit error can be generated, the error-sum

ê and the normalized error e, i.e.

ê =

∣∣∣∣∣
∣∣∣∣∣A
[
b

c

]
− b
∣∣∣∣∣
∣∣∣∣∣ (3.12)

e =
ê

max(y)−min(y)
. (3.13)

These fit errors are of interest as it gives an indication of how successful the finite

difference approximation is. These values are used when deciding which perturbation

size to use for the gradient approximations required by the airfoil single objective opti-

mization problem. Figure 3.1 illustrates how the errors decrease for a smooth infinitely-

differentiable function.

Both error metrics (3.12) and (3.13) should be examined when deciding on the quality

of a fit. For example, when a smooth function approaches its minimum and the gradient

tends to zero, the function’s linear component will approach zero and only its higher

order derivatives will affect the sample points leading to a high normalize linear fit error,

ē. But examination of the error-sum ê will show that the high normalized error is the

result of the near-zero linear component.

The least-square error linear fit (3.2) can be used for any combinations of perturbations

ε, not being limited to evenly spaced sets. This feature is useful if one of the initial sample

points has an undefined function value, in which case a new sample point can be generated

and used with the old sample points.

2n+1 function evaluations are required to determine f ′ when a common central point

is used. The function evaluations are uncoupled and thus can be computed independently

of each other. This allows for Task-parallelism, reducing computing time. The dimension-

fit finite difference algorithm is described in Algorithm 1.
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Figure 3.1: (a) Gradient approximation and (b) gradient fit errors of the first dimension of
the 2D Rosenbrock Function at x1 = 1.001, x2 = 1.001 where f(x1, x2) ≈ 10−4.

16

 
 
 



Algorithm 1 Dimension-fit finite difference pseudo code

procedure Dimension-fit finite difference(f ,x,ε)
yc = f(x) . evaluate common central point
for j ∈ {1, 2, .., n} do . for each dimension

y1 . attempt to evaluate forward perturbation for dim.
y3 . attempt to evaluate backward perturbation for dim.
if sufficient points generated then

bj . fit linear polynomial (3.2)
else

bj = 0.0 . ignore dimension
end if
∂f/∂xj = bj

end for
end procedure

3.1.2 Hessian approximation

The Hessian approximation is excessively expensive, requiring 4n+ 2n2 function evalua-

tions for the central difference approximations. However a robust Hessian approximation

method is desired due to the function’s characteristics. Since the custom gradient-based

method’s focus is on obtaining a better final function value, the large number of function

evaluations can be tolerated.

The number of entries (nh) in the Hessian for n dimensions, is the number of variables

plus the number of two-variable combinations that can be made between the variables

nh = n+ Cn
2

= n+
n!

2!(n− 2)!

= n+
1

2
n(n− 1). (3.14)

A central difference fit is used for Hessian approximations. If insufficient points are

available for the central differences approximation, forward difference and backward dif-

ference are attempted. The following finite differences from [4] are used:

• Central difference approximations for second-order terms,

∂2f

∂x2i
=
−f(x+ 2εi) + 16f(x+ εi)− 30f(x) + 16f(x− εi)− f(x− 2εi)

12ε2
(3.15)

∂2f

∂xixj
=
f(x+ εi + εj)− f(x+ εi − εj)− f(x− εi + εj) + f(x− εi − εj)

4ε2
(3.16)

17

 
 
 



• forward difference approximations for second-order terms,

∂2f

∂x2i
=
−f(x+ 2εi)− 2f(x+ εi) + f(x)

ε2
(3.17)

∂2f

∂xixj
=
f(x+ εi + εj)− f(x+ εi)− f(x+ εj) + f(x)

ε2
(3.18)

• backward difference approximations for second-order terms,

∂2f

∂x2i
=
−f(x− 2εi)− 2f(x− εi) + f(x)

ε2
(3.19)

∂2f

∂xixj
=
f(x− εi − εj)− f(x− εi)− f(x− εj) + f(x)

ε2
(3.20)

The offset vector εi, is a zero-vector except for the i’th dimension where the component

is equal to the difference size, ε.

3.1.3 Testing

Test functions are used to check that the algorithms are implemented correctly. The

finite difference test functions are

t1(x1, x2) = (x1 − 4)3 + (2− x2)2 (3.21)

t2(x1, x2) =

t1(x1, x2) 80% of the time

undefined otherwise
(3.22)

t3(x1, x2) = t1(x1, x2) + r(0, 0.001) (3.23)

The first test function is uncoupled, with one of the components being cubic and the

other quadratic. Since the second component is quadratic the finite-difference should

yield the exact solution. The gradient’s first component error should decrease as the

perturbation size decreases. The second function adds random failure. The third test

function adds a noise component to the first test function, with r(0, 0.001) returning a

random number between 0 and 0.001 with a uniform probability density.

The gradient approximations of all the test functions are compared to the analytical

gradient of t1. The analytical gradient of the first test function is

t′1(x1, x2) =

[
3(x1 − 4)2

−2(2− x2)

]
. (3.24)

Testing functions t2 and t3 do not have analytical gradients, but as the test functions
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t′1(3, 3) t′2(3, 3) t′3(3, 3)

ε = 10−1
[
3.0100
2.0000

] [
3.0100
2.0000

] [
3.0101
2.0015

]
ε = 10−2

[
3.0001
2.0000

] [
3.0301
2.0000

] [
2.9730
1.9699

]
ε = 10−3

[
3.0000
2.0000

] [
3.0000
2.0000

] [
2.9466
2.2010

]
ε = 10−6

[
3.0000
2.0000

] [
3.0000
0.0000

] [
24.5554
109.5661

]
Table 3.1: Gradient approximations for various difference sizes

were designed to obscure the first test function’s behavior, they are bench-marked by how

close they approximate the gradient of t1. Due to the stochastic nature of test functions

two and three, their results will change every time the gradient approximations (shown

in Table 3.1) are calculated.

When the t2 function randomly “crashes” it can have two effects on the gradient

approximation. If one sample point fails to generate, the accuracy is decreased to that

of a forward-difference approximation. If insufficient points are generated, the gradient

cannot be estimated, in which case the algorithm returns 0 for that component.

t3’s gradient approximations are of special interest, as the function exhibits noise

similar to that of the airfoil single objective cost function. The test demonstrates the

negative effect noise has on the gradient approximation as ε decreases, when the function

changes become dominated by the superimposed noise.

Note that the error in gradient approximation for t3 forms a probability distribution

for a given ε. The error’s probability distribution changes for different ε, with the mean

of the distribution approaching 0 as ε decreases, and the probability variance increasing

as the ε decreases. These effects are illustrated in Figure 3.2 which shows the error

distribution generated from 105 gradient approximations.

The test functions for the Hessian approximation are:

t4(x1, x2) = (x1 − 4)3 + (2− x2)2 − x1x22 (3.25)

t5(x1, x2) =

t4(x1, x2) 80% of the time

undefined otherwise
(3.26)

t6(x1, x2) = t4(x1, x2) + r(0, 0.001) (3.27)

Similarly to the test functions used for the gradient approximation, t5 and t6 are designed
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Figure 3.2: The effect of noise on gradient approximations for t3.
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t′4(2,−4) t′5(2,−4) t′6(2,−4)

ε = 10−1
[
−12.00 8.00

8.00 −2.00

] [
−12.00 8.00

8.00 −2.00

] [
−12.01 8.01

8.01 −2.09

]
ε = 10−2

[
−12.00 8.00

8.00 −2.00

] [
−12.00 8.00

8.00 −2.00

] [
−23.36 7.68

7.68 −6.79

]
ε = 10−3

[
−12.00 8.00

8.00 −2.00

] [
−12.00 8.00

8.00 −2.00

] [
681.30 14.12
14.12 −411.98

]
ε = 10−4

[
−12.00 8.00

8.00 −2.00

] [
−12.00 8.00

8.00 −2.00

] [
139982.32 12599.14
12599.14 82128.20

]
Table 3.2: The effect of the offset size on Hessian approximations

to obscure t4. The Hessian of t4 is

t′′4(x1, x2) =

[
6(x1 − 4) −2x2

−2x2 −2

]
. (3.28)

Despite the central difference oversampling the Hessian approximation is still sensitive

to the effect of random noise. Table 3.2 shows the results for the Hessian approximations

for a single instance.

3.1.4 Analysis of the single objective cost function’s gradient

An investigation is conducted to determine the best choice of finite difference size when

optimizing the single objective function. A point in the design space is selected and

the gradient value plus the linear dominance errors, for each dimension, are recorded for

different values of ε.

The results show there is no obvious choice of finite-difference size to use. The linear fit

error’s minima occur between 10−3 and 10−1 depending on which dimension is examined.

The investigation for dimension 5 is shown in Figure 3.3, and the results for dimension

15 in Figure 3.4.

The investigation further demonstrates that the problem formulations are not well-

suited for gradient-based optimization. The error of the linear fit does not decrease with

the offset size. The amplitude of the function noise is large and has a significant effect

on the gradient approximations.

The avionics box’s height constraint behaves well but the maximum lift constraint

does not. The numerical noise seems to come from the XFOIL drag analysis, which

explains why the height constraint which only depends on the airfoil shape (generated

by PROFOIL) does not experience any noise. Figure 3.5 shows the approximation of a

component of the height constraint’s gradient vector for different ε.
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Figure 3.3: Approximation of the 5th component of the gradient of the single objective cost
function for different finite difference sizes

22

 
 
 



10−4 10−3 10−2 10−1

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

G
ra

di
en

tc
om

po
ne

nt
di

m
en

si
on

15

10−4 10−3 10−2 10−1

Offset size (ε)

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Li
ne

ar
ap

pr
ox

im
at

io
n

er
ro

rs

e

ê

Figure 3.4: Approximation of the 15th component of the gradient of the single objective cost
function for different finite difference sizes

23

 
 
 



10−4 10−3 10−2 10−1

Offset size (ε)

0.00276

0.00278

0.00280

0.00282

0.00284

0.00286
A

pp
ro

xi
m

at
io

n
of
∂
g 1
/∂
x

2

Figure 3.5: Approximation of the second component of the gradient of the avionics box’s
height for different finite difference sizes

An investigation of the Hessian approximation of the single objective formulation is

not done since the Hessian approximation sensitivity to noise is already demonstrated in

the testing functions. The noise evident from the gradient finite-difference investigations

should compromise the Hessian calculations for any offset size.

Based on the presented results, an ε size of 0.05 is chosen for the airfoil optimization

gradient approximations. For the Hessian approximation (only used by the SQP method)

an ε of 0.1 is used. A possibly more accurate approach would be to determine an ε for

each dimension, but this approach is not investigated here.

3.2 Line Searches

Robust, exact, derivative-free lines searches which can handle functions with undefined

regions are implemented. Line search methods that require gradients are not considered

as function gradient information is unreliable. A line search searches along a direction,

α, from a starting point xi. The line search scalar variable λ maps to the design space

as follows:

x = xi +αλ. (3.29)

Exact and inexact line searches have different termination criteria. Inexact line

searches seek only to make an improvement which is deemed acceptable subject to certain
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conditions. Exact line searches try to find λ∗ as to satisfy:

f(xi +αλ∗) ≤ f(xi +αλ) for all λ ∈ <. (3.30)

Exact methods, for properly conditioned functions, converge to minima but require

more function evaluations than inexact methods, which in general decrease the total

function evaluations required during the optimization [25]. Inexact methods have different

termination criteria, such as the Wolfe conditions or Goldstein conditions [25]. Exact

line search methods have been chosen since the problem does not have reliable gradients,

which are normally required for the termination criteria of inexact line searches.

The exact line search requirements for the single objective airfoil optimization are:

• Ability to handle non-smooth functions with undefined regions.

• Given an initial search length, the algorithm can extend beyond this area in order

to locate a minimum.

A golden section search algorithm and a custom section populating method are inves-

tigated. Each method is discussed and then benchmarked on a set of test functions.

3.2.1 Golden section search

The golden section search is a robust method, that refines the line search space until the

section size is less than the user specified tolerance. At each line search iteration j, the

values at four positions λj,1, λj,2, λj,3 and λj,4 are used to approximate the location of the

minimum [17]. Given an initial section size Λ0, the starting points are

λ0,1 = 0, (3.31)

λ0,2 = φ2Λ0, (3.32)

λ0,3 = φΛ0, (3.33)

λ0,4 = Λ0. (3.34)

The points are spaced by using the golden ratio, φ = −(1 −
√

5)/2, so that for

every search-space refinement only one new function evaluation is required. The section

refinement is illustrated in Figure 3.6.

The section size at iteration j, Λj reduces at a rate proportional to the golden ratio.

The section size when the line search does not extend, as a function of j is

Λj = φjΛ0. (3.35)

The extending ability of the line search allows a small Λ0 to be chosen. This is

beneficial in a line search as the majority of the steps are small, with only a few large
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λj,1 λj,2 λj,3 λj,4

if min(f(λj,1), f(λj,2), f(λj,3), f(λj,4)) = f(λj,2) or f(λj,1)

λj+1,1 λj+1,2 λj+1,3 λj+1,4

if min(f(λj,1), f(λj,2), f(λj,3), f(λj,4)) = f(λj,3)

λj+1,1 λj+1,2 λj+1,3 λj+1,4

if min(f(λj,1), f(λj,2), f(λj,3), f(λj,4)) = f(λj,4)

λj+1,1 λj+1,2 λj+1,3 λj+1,4

Figure 3.6: Golden Section algorithm progression

steps. If the line search could not extend, two undesirable scenario’s can occur. One

scenario is when Λ0 is too small and the minimum cannot be found as it is outside the

initial search region. The other scenario is when a large Λ0 is used, in which case the

minimum is more likely to be found but at the cost of extra function evaluations.

When a point in the line search is in undefined space, it is treated as if the function

value is larger than a defined point. Since the method only requires function value

comparisons between different points, this is sufficient to handle the function failure

scenario.

The termination criteria is the section size limit δx. The number of iterations jmax is

determined by using δx and the initial section size Λ0 as follows:

jmax =

⌈
log(δx/Λ0)

log φ

⌉
. (3.36)

3.2.2 Section populating line search

The section populating line search is a custom method, developed here by the author for

multi-modal line functions with undefined regions. The method focuses on robustness

over efficiency, making use of over sampling in order to escape local minima. The over

sampling and intelligent point selection increases the probability that the line function’s

minimum will be determined. Its advantages over the golden section method is that it is
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spline fit through generation 0
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intelligent guess (generation 0)

Figure 3.7: Process of point selection used by section populating line search

more robust and it allows for task parallelism.

The first iteration involves populating the initial section with N points. The algorithm

then uses a spline to approximate where the minimum is. The suspected minimum,

together with further populating points (in a refined search area) are then evaluated.

This process is repeated until either the maximum number of iterations is exceeded or

the solution appears to be within the required tolerance. The process is illustrated in

Figure 3.7.

After each iteration, j, the search section is refined. The search bounds for the current

iteration are the lower bound, λj,l, and the upper bound λj,u. The minimum evaluation

location so far λk, is used to determine the refined section. The index k is the index of

minimum function value in a list sorted by λ values. The new bounds are then chosen to

be the evaluations adjacent to λk. Should the minimum point be at the largest λ so far,

the search area is expanded by a factor β. Summarizing the above,

λj+1,l =

λk−1 if k > 0

λ0 otherwise,
(3.37)

λj+1,u =

λk+1 if λk < max(λ)

λk + β(λj,u − λj,l) otherwise.
(3.38)
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The populating points are generated using the golden ratio as a basis. An irrational

basis is chosen, as this will ensure that no two points will have the same λ value. The

modulus of the golden ratio multiplied by points generated count q, is used as the seed

generating new sampling points,

λ = λj,l + mod(qφ, 1)(λj,u − λj,l) where q ∈ 0, 1, 2, . . . (3.39)

After the initial generation, intelligent point selection is implemented. This involves

taking the points from the previous generation and fitting a response surface to them.

The minimum of the response surface is then assumed to be an improved approximation

of the actual minimum location. In this case, a 3rd-degree piece-wise polynomial is used

as the response surface. The m’th section of the spline pm, defined between λmσ and λmτ

is expressed as

pm(z) = am0 + am1 z
1 + am2 z

2 + am3 z
3, (3.40)

where

am0 , a
m
1 , a

m
2 , a

m
3 − spline coefficients

m− the piece-wise polynomial index

z − co-ordinate from origin of piece-wise polynomial, λ− λmσ

Enforcing that the piecewise polynomial value is equal to the function value at its

origin ym, and continuity between the gradient and second derivative, gives:

pm(0) = ym, (3.41)

pm(λmτ − λmσ ) = pm+1(0), (3.42)

∂pm

∂λ
(λmτ − λmσ ) =

∂pm+1

∂λ
(0), (3.43)

∂2pm

∂λ2
(λmτ − λmσ ) =

∂2pm+1

∂λ2
(0). (3.44)

The continuity conditions leave two unknowns, as the continuity of the spline’s gradient

and second derivative cannot be applied at the ends. If the natural spline formulation [8]

is applied, then the second derivative at both ends are set to zero. If the clamped spline [8]

boundary conditions are applied, then the gradient at both ends are specified.

For this implementation, the four data points closest together, are merged into one

part of the piecewise polynomial. This merged part consists of four points, and hence

all the coefficients for this piece can be solved directly using conventional curve fitting

routines. The rest of the pieces are then determined using (3.41) - (3.44).

The maximum number of iterations, jmax, is determined by approximating when the

section size will be below a specified tolerance δx. The section size Λj is the difference
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between the current boundaries:

Λj = λj,u − λj,l. (3.45)

We define the reduction ratio rj as the proportion between two consecutive refine-

ments:

rj =
Λj

Λj−1
. (3.46)

If the intelligent point selection process completely fails, then the section size after j

iterations is:

Λj = Λ0

j∏
i=1

ri, (3.47)

Λj ≈ Λ0(2/(N + 1))j. (3.48)

Thus the maximum number of iterations is:

jmax = ceil

(
log(δx/Λ0)

log (2/(N + 1))

)
. (3.49)

After each iteration the minimum point evaluated so far, is recorded. If the change

in λ between two consecutive points is less than δx the search is terminated. The only

exception to this is if the minimum point is at the starting point, in which case the search

will not be terminated. This is important as it eliminates premature terminations.

At generation 0, N populating points are evaluated. For each generation after that

N − 1 populating points and one intelligent point are evaluated. For parallel computing,

task parallelism allows each iteration to be split into N tasks, each which can be handled

by worker processes.

3.2.3 Testing

The two line search techniques are tested on a set of test functions. This is done to

check that the algorithms are coded correctly and to confirm that the algorithms meet

the design criteria mentioned earlier in this section.

A quadratic one-dimensional function is used as the first test function t1, with later

test functions having additional complexity added-on. The second test function t2 has

discontinuities in the gradient information and is multi-modal. The third test function

t3 contains undefined regions. The fourth test function t4 is a combination of t2 and t3.
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Figure 3.8: Line search test functions

Figure 3.8 depicts the functions used. The test functions are:

t1(x) = (x− 0.8)2 (3.50)

t2(x) = t1(x)− 0.2 sin
(
mod(10(x− 0.8) + π/2), π)

)
(3.51)

t3(x) =

t1(x) if mod(x, 0.6) > 0.3

undefined otherwise
(3.52)

t4(x) =

t2(x) if mod(x, 0.6) > 0.3

undefined otherwise
(3.53)

The starting point for each of the test functions is 0, and the number of populating

points for the section populating search is 10. The section size limit is 10−6, and section

initial size Λ0 is 1.0. The minimum returned from the algorithms and the number of

evaluations made for all of the test functions is shown in Table 3.3.

Both line searches are implemented correctly, with the minimum being found in every

case except one. The golden section search failed to determine the minimum of t2 as

the method is developed under the assumption that an uni-modal function is minimized.

Since t2 is multi-modal, it is possible to generate sequences that reduce the section in-

correctly. Further detail on the line search performances, including the golden section

failure, can be found in Appendix A.
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Golden Section Section Populating

evals. λ∗ evals. λ∗

t1 36 0.800293 30 0.799844
t2 33 0.854102 50 0.800000
t3 36 0.800293 30 0.800000
t4 36 0.800293 50 0.800000

Table 3.3: The number of function evaluations used (evals.) and the approximate minimum
location found (λ∗) by the implemented line searches on the set of test functions

The section populating line search is used for the airfoil single objective optimization.

The line search algorithm is more robust compared to the golden section search. It also

allows for task parallelism since the populating points evaluated every generation of the

line search are independent of each other. More than one processor can therefore be used

in the line search of the sequential airfoil single objective optimization problem.

3.3 Unconstrained optimization methods

Unconstrained optimization methods, used in conjunction with the Augmented Lagrangian,

are implemented in the airfoil optimization. The primary text from which these algo-

rithms were implement is Practical Mathematical Optimization [32]. The unconstrained

optimizers applied are

• BFGS - a quasi-newton method,

• CGPR - a conjugate gradient method with Polak-Ribiere search directions and

• LFOP - a dynamic particle trajectory method.

The unconstrained optimization problem is to determine the location of the function

minimum x∗,

f(x∗) ≤ f(x) for all x ∈ <n. (3.54)

Provided that the line searches and gradient functions can handle the undefined re-

gions in the design space, so should the BFGS and CGPR methods. “Handle” in this

context does not imply “perform as if there where no undefined regions” but rather,

run without crashing. Section 3.3.3 discusses the LFOP method and the work-around

implemented to allow the method to handle undefined regions.
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3.3.1 BFGS

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is a quasi-newton method which

makes use of an approximated Hessian to minimize a function. After each iteration the

inverse of the Hessian is updated using a rank-2 update. The inverse Hessian is used to

determine the line search directions.

At a local minimum x̂, the gradients are zero and the Hessian f ′′, is positive-definite.

f ′(x̂) = 0, (3.55)

yTf ′′(x̂)y > 0 for any y ∈ Rn,f ′′(x̂) ∈ Rn×n. (3.56)

Newton methods use the Hessian and the gradient information to determine a cor-

rective step xc to approach the minimum. At each iteration i, the design xi is therefore

updated by

xi+1 = xi + xc, (3.57)

with xc determined to solve the subproblem,

f ′′(xi)xc + f ′(xi) = 0. (3.58)

The corrective step, xc, is used as a line search direction as this increases stability.

The BFGS method does not determine the Hessian directly (which is very expensive if not

directly available), but uses a second-order update method to approximate the Hessian

inverse Gi. The update equation is given by

Gi = Gi−1 +

[
1 +

yTi Gi−1yi
vTi yi

] [
viv

T
i

vTi yi

]
−
[
viy

T
i Gi−1 +Gi−1yiv

T
i

vTi yi

]
(3.59)

where

vi = xi − xi−1
yi = f ′(xi)− f ′(xi−1).

The termination criteria implemented are a step limit, δx, and maximum allowable

number of iterations imax. The method is outlined in Algorithm 2.

3.3.2 CGPR

The conjugate gradient methods use mutually conjugate search directions during opti-

mization. The method that is implemented makes use of Polak-Ribiere search directions.

Consecutive exact line searches using mutually conjugate search directions, will converge

to the exact minimum of a quadratic function, in a number of steps less than or equal to
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Algorithm 2 BFGS pseudo code

procedure BFGS(x0, imax, δx)
G = I . use identity matrix for first G
for i ∈ {1, 2, ..., imax} do

if i > 1 then
Gi . (3.59)

end if
ui = −Gf ′(xi) . new search direction
xi = xi−1 + λ∗ui . where λ∗ minimizes f(xi−1 + λui)
if termination criteria met then exit

end for
end procedure

the number of dimensions of the function.

The Polak-Ribiere search directions ui at each iteration i after the first, is calculated

using the following update rule

ui = −f ′(xi−1) + ui−1

(
(f ′(xi−1)− f ′(xi−2))Tf ′(xi−1)

||f ′(xi−1)||2
)
. (3.60)

The method has the same termination criteria as the BFGS method, namely a step-

size limit and a maximum number of iterations. The CGPR method is described in

Algorithm 3.

Algorithm 3 CGPR pseudo code

procedure CGPR(x0, imax, δx)
for i ∈ {1, 2, ..., imax} do

if i > 1 then
ui . next search direction (3.60)

else
ui = −f ′(xi−1)

end if
xi = xi−1 + λ∗ui . where λ∗ minimizes f(xi−1 + λui)
if termination criteria met then exit

end for
end procedure

When testing the conjugate gradient methods on quadratic test functions, it should

be noted that exact gradients and line searches are required to converge to a minimum

in a number of steps less than or equal to the dimension of the test problem.

3.3.3 LFOP

The leap-frog method for unconstrained optimization (LFOP) is a dynamic trajectory

method. The method is robust for applications where the objective functions contain
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noise [31]. A particle’s dynamics is simulated, with the negative gradient of the objective

function used to accelerate the particle towards the function minimum.

LFOP requires only function gradient evaluations, and does not make use of line

searches. The particle’s acceleration ẍi at iteration i, is the negative gradient of the

objective function at its current position xi,

ẍi = −f ′(xi). (3.61)

The particle’s acceleration and velocity (ẋi) are integrated numerically over a time

step ∆t. The particle’s velocity and position for next iteration i+ 1 is therefore,

ẋi+1 = ẋi + ẍi∆t (3.62)

xi+1 = xi + ẋi∆t. (3.63)

When the euclidean norm of the particle’s velocity increases, an interference strategy

is implemented to remove energy from the system. The velocity and position are then

altered as follows

ẋi+1 =
1

4
(ẋi+1 + ẋi) (3.64)

xi+1 =
1

2
(xi+1 + xi) . (3.65)

The method contains other heuristics to govern parameters such as the time step, and

the termination criteria. Further information on the heuristics can be found in Figure

4.1 of [32].

The airfoil optimization formulations contain large undefined regions which the LFOP

algorithm cannot handle without modification. Two approaches to handle the undefined-

regions are

1. continue to travel through the undefined region, hoping to come out in defined space

or

2. steer the particle back towards defined space.

Which approach will work best depends on the problem. In this work, if the particle

ends up in undefined space, a distance based function is used to generate an artificial

gradient to steer the particle towards its last defined point. The artificial function P ,

depends on the last defined design found xj and is stated as

P = ζ

n∑
k=1

(xi,k − xj,k)2 . (3.66)
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The gradient P ′ is then given by

P ′ =
∂P

∂x
= 2ζ(xi − xj). (3.67)

ζ is chosen to normalize the gradient of P such that

‖P ′(xi)‖ = ρu‖f ′(xj)‖ (3.68)

ζ =
ρu‖f ′(xj)‖
2‖xi − xj‖

. (3.69)

The undefined penalty factor ρu is problem specific and determines how aggressive

the particle is steered away from the undefined space. If ρu is chosen less than zero the

particle will be attracted to the undefined region, and hence will try to push through.

ρu should not be chosen close to zero, as this activates the gradient-norm termination

criteria. The modified acceleration rule used in place of (3.61) is

ẍi =

−f ′(xi) if xi is defined

−P ′(xi) otherwise
(3.70)

The leap-frog algorithm for constrained optimization (LFOPC) is discussed in Section

3.4.1. The testing of the unconstrained gradient-based algorithms follows in the next

subsection.

3.3.4 Testing

Five standard test functions are used to check that the methods are implemented cor-

rectly. The test functions together with their starting points and optima are

• Rosenbrock’s parabolic valley:

t1(x1, x2) = 100(x2 − x21)2 + (1− x1)2. (3.71)

Starting point [−1.2, 1.0], minimum at [1, 1].

• Quadratic function:

t2(x1, x2) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2. (3.72)

Starting point [0, 0], minimum at [1, 3].
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• Powell’s quartic function:

t3(x1, x2, x3, x4) = (x1 + 10x2)
2 + 5(x3 − x4)2+ (3.73)

(x2 − 2x3)
4 + 10(x1 − x4)4.

Starting point [3,−1, 0, 1], minimum at [0, 0, 0, 0].

• Fletcher and Powell’s helical valley:

f(x1, x2, x3) = 100(x3 − 10θ(x1, x2))
2 (3.74)

+ 100

(√
x21 + x22 − 1

)2

+ x23,

where 2πθ(x1, x2) =

arctan x2
x1

if x1 > 0

π + arctan x2
x1

if x1 < 0
. (3.75)

Starting point [−1, 0, 0], minimum at [1, 0, 0].

• Freudenstein and Roth function:

f(x1, x2) = (−13 + x1 + ((5− x2)x2 − 2)x2)
2 (3.76)

+ (−29 + x1 + ((x2 + x1)x2 − 14)x2)
2. (3.77)

Starting point [−0.5,−2], local minimum at [11.414141,−0.8968], minimum at [5, 4].

The optimization methods are tested with the step tolerance and finite difference size

set to 10−6. The section populating search was used for the line searches with a populating

size of 10, and the dimension-fit finite difference method was used to approximate the

gradients. The number of function evaluations and minima returned by the unconstrained

gradient-based algorithms are shown in Table 3.4.

The BFGS and CGPR methods should find the minimum of the quadratic test func-

tion in two or less iterations. They each take three iterations (50-60 evaluations per

iteration) but actually locate the minima after the second iteration, with the final itera-

tion occurring due the termination criteria used.

All the methods converge to the minimum of the convex test functions. The perfor-

mance of the CGPR function on t3, Powell’s quartic function, is poor but the method

finds the minimum given enough iterations.

For the Freudenstein and Roth function t5, all the methods converge to the function’s

local minimum, not the global minimum. Although the methods are shown to converge to

the minimum of a convex function, they are unlikely to converge to the global minimum

of a multi-modal function such as t5.
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Table 3.4: The number of function evaluations and the minima returned, for the implemented
unconstrained gradient-based optimization techniques on the test functions.

BFGS CGPR LFOP

evals xMin evals xMin evals xMin

t1 1065

[
1.0000
1.0000

]
1095

[
1.0000
1.0000

]
1040

[
1.0001
1.0002

]
t2 155

[
1.0000
3.0000

]
155

[
1.0000
3.0000

]
600

[
1.0000
3.0000

]

t3 1574


−0.0000
0.0000
−0.0000
−0.0000

 4314


0.0001
−0.0000
−0.0002
−0.0002

 2403


−0.0068
0.0007
−0.0000
−0.0000


t4 1174

1.0000
0.0000
0.0000

 2147

1.0000
0.0000
0.0000

 1701

1.0000
0.0000
0.0000


t5 355

[
11.4128
−0.8968

]
365

[
11.4128
−0.8968

]
1295

[
11.4116
−0.8969

]

It is rare that optimization problem have no constraints. The next section deals with

the optimization of constrained functions using gradient-based techniques.

3.4 Constrained gradient-based methods

The constrained optimization problem is expressed as follows: Minimize an objective

function f , such that all inequality constraints g and equality constraints h are satisfied:

minimize f(x)

such that h(x) = 0

and g(x) ≤ 0.

(3.78)

The constrained gradient-based methods used on the single objective airfoil optimiza-

tion problem are

• LFOPC - Leap-Frog Algorithm for Constrained Optimization.

• LMM - Lagrangian Multiplier Methods, in conjunction with the unconstrained

gradient-based techniques discussed in the previous section.

• SQP - Sequential Quadratic Programming method.

Surrogate methods [5] were also used on the a priori single objective airfoil optimiza-

tion formulations. The methods considered here construct non-local approximations to
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the objective and constraints and sequentially solve the approximate problems. Since

the approximations are non-local and do not require gradient evaluations they are less af-

fected by the presence of noise. The surrogate based methods used on the single objective

airfoil optimization problem are

• COBYLA - Constrained Optimization BY Linear Approximation, applied without

modification directly from the Scipy Python package [2].

• SLSQP - Sequential Least SQuares Programming optimization algorithm applied

without modification directly from the Scipy Python package[2].

3.4.1 LFOPC

The constrained version for the leap-frog optimizer (LFOPC) is implemented in a similar

manner as it was presented by Snyman [31]. The method consists of three phases, in

which three separate unconstrained optimization problems are formulated and optimized

using the LFOP algorithm.

The first unconstrained formulation F0, used for phase 0, makes use of the weak

penalty-factor ρ0 giving

F0(x) = f(x) + ρ0

(
h(x)Th(x) + 〈g(x)〉T 〈g(x)〉

)
, (3.79)

with the “〈 〉” operator defined as

〈a〉 = max(ai, 0) for i ∈ {1, 2, . . . n}. (3.80)

The second LFOP optimization continues from the optimum found in phase 0 (x̂0)

but on a stricter penalty formulation ρ1 � ρ0. The second sub-problem used in phase 1,

F1, is

F1(x) = f(x) + ρ1

(
h(x)Th(x) + 〈g(x)〉T 〈g(x)〉

)
. (3.81)

The final unconstrained problem F2 is used to approximate the function optimum x∗.

The last phase involves satisfying the active constraints ga. The active constraints are

determined by examining the constraint values at the solution to F1, x̂1, which should

be close to the true solution. All the inequality constraints violated at x̂1 form ga.

ga ∈ g where g(x̂1) > 0. (3.82)

F2 uses only constraint information and no objective function information,

F2(x) = ρ1
(
h(x)Th(x) + ga(x)Tga(x))

)
. (3.83)
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In this implementation the step size parameter passed to the LFOP algorithm δ, is

different for each phase. This is as the average solution update required by the optimizer

in each iteration decreases for each phase. Given a starting point x0 the following relation

normally holds

‖x0 − x̂0‖ � ‖x̂0 − x̂1‖ ≥ ‖x̂1 − x∗‖. (3.84)

A heuristic is used to determine the step size parameter to pass to the LFOP optimizer

for each phase. It depends on the initial step size parameter δ0 and the step tolerance εx.

δ0 user specified (3.85)

δ1 = min(δ0, 50εx) (3.86)

δ2 = δ1 (3.87)

The LFOPC pseudo code is shown in Algorithm 4.

Algorithm 4 LFOPC pseudo code

procedure LFOPC(x0, ρ0, ρ1, δ0, δ1)
x̂0 = LFOP(F0,x0, δ0) . minimize F0 using LFOP, starting at x0

x̂1 = LFOP(F1, x̂0, δ1)
x̂∗ = LFOP(F2, x̂1, δ1)

end procedure

3.4.2 Lagrange multiplier method

The classical Lagrange multiplier method [32] solves the constrained optimization problem

by creating a Lagrangian function L such that the minimum of this unconstrained function

occurs at the minimum of the original problem. A Lagrangian has equality constraint

multipliers µ, and inequality constraint multipliers λ. The Lagrangian is

L(x,µ,λ) = f(x) + λTg(x) + µTh(x). (3.88)

The Lagrangian multipliers λ, µ need to be chosen as to satisfy the definition of

the constrained optimization problem (3.78). The inequality multipliers are zero for the

inactive inequality constraints at the solution. The challenge when using the classical

method is to determine what Lagrangian weights are required. The Lagrangian problem
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is

minimize L(x,µ,λ) (3.89)

such that
∂L(x,µ,λ)

∂µ
= 0 (3.90)

and
∂L(x,µ,λ)

∂λ
= 0. (3.91)

The penalty formulation of the constrained optimization problem adds a penalty to

the function value related to the amount by which the constraints are violated. A typical

penalty formulation is given below,

P (x) = f(x) + ρ
(
h(x)Th(x) + 〈g(x)〉T 〈g(x)〉

)
. (3.92)

The amount by which the constraints are violated at the solution to P (x) depends

on the magnitude of the penalty factor ρ, if the constraints are active at the minimum.

As the value of ρ increase the closer the minimum of the penalty formulation comes to

the original problem. The gradients also become ill-conditioned as the penalty factor

increases.

The penalty formulation is easy to implement, but struggles to obtain a solution

with high accuracy on the constraints without creating an ill-conditioned function. The

Lagrangian function’s minimum is the same as the constrained problem minimum, given

that multiplier weights can be accurately determined.

The augmented Lagrangian techniques [32], or Lagrange multiplier methods (LMMs),

make use a combination of a penalty and a Lagrangian formulation. The method makes

use of successive approximations of the Lagrangian multipliers µ̂j and λ̂j to estimate the

true Lagrangian multipliers. The augmented Lagrangian is as follows

L̂j(x) = f(x) + µ̂Tj h(x) + ρh(x)Th(x) + ρ

〈
λ̂j
2ρ

+ g(x)

〉T

〈g(x)〉 . (3.93)

When the augmented Lagrangian multipliers have the same values as the true La-

grange multipliers, the minimum of the function will be at the solution to the constrained

optimization problem x∗, i.e.

min L̂j(x) ≈ min L(x). (3.94)

The augmented Lagrangian multipliers are updated by examining the stationary point
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of the function. The gradient at the minimum of the augmented Lagrangian x̂∗j is

∂L̂j
∂x̂∗j

=
∂f

∂x̂∗j
+
〈
λ̂
T

j + 2ρ
〉
g′(x̂∗j) +

(
µ̂Tj + 2ρ

)
h′(x̂∗j) = 0 (3.95)

and the gradient for the Lagrangian is

∂L

∂x̂∗j
=

∂f

∂x̂∗j
+ λTg′(x̂∗j) + µTh′(x̂∗j) ≈ 0. (3.96)

The multipliers are updated so that the penalty function will not have an effect on

the gradient. At the solution to the constrained optimization problem, no constraints

are violated and hence there will be no penalty. Hence the method for updating the

multipliers of the augmented Lagrangian is

µ̂j+1 = µ̂j + 2ρh(x̂∗j) (3.97)

λ̂j+1 =
〈
λ̂j + 2ρg(x̂∗j)

〉
. (3.98)

The multiplier method hence consists of consecutive unconstrained optimizations,

where any unconstrained optimizer can be used. The method continues to update the

augmented Lagrangian until the solution of the constrained optimization problem is ob-

tained. The method terminates when either the maximum iteration count is exceeded, or

when the solution from the augmented Lagrangian returns a valid solution. The pseudo

code for the Lagrange multiplier method (LMM) is shown in Algorithm 5.

Algorithm 5 LMM pseudo code

procedure LMM(x0)
µ̂1 = 0 . first optimize pure penalty function
λ̂1 = 0
for j = 1, 2, ..., jmax do

determine x̂∗j , by minimizing L̂j
µ̂j+1 = µ̂j + 2ρh(x̂∗j) . update multipliers

λ̂j+1 =
〈
λ̂j + 2ρg(x̂∗j)

〉
Exit if all constraints are satisfied

end for
end procedure

3.4.3 SQP

The Sequential Quadratic Programming (SQP) method solves successive quadratic pro-

gramming problems in order to solve the constrained optimization problem. The quadratic

programming (QP) problem determines the minimum of a quadratic function consisting

41

 
 
 



of a HessianA, and plane component b, such that the linear equality and linear inequality

constrains are satisfied i.e.

minimize 1
2
xTAx+ bTx

such than Cx+ d = 0

and Ex+ f ≤ 0

(3.99)

where

C ∈ <n×k − the equality constraint gradient

E ∈ <n×j − the inequality constraint gradient

n − number of design variables

k − number of equality constraints

j − number of inequality constraints.

In this implementation an “off-the-shelf” QP solver from the Python package, Cvxopt

[13] is used. For each quadratic programming problem, a quadratic representation of the

function and linear representation of the constraints are generated.

The SQP method moves from its starting point, x0, by solving successive QP prob-

lems. The optimizer’s current location xi and the solution to the QP problem xq are

used to determine the line search direction at each iteration. The search direction at the

i’th iteration, ui is

ui = xq − xi. (3.100)

The line searches are done on an augmented Lagrangian (3.93), with multipliers taken

from the QP problem’s solution. A line search is used instead of moving directly to the

solution to the QP problem to increase stability.

In the event that the QP programming fails, the line search is performed on the

penalty formulation. The penalty function is:

P (x) = f(x) + ρ
(
h(x)Th(x) + 〈g(x)〉T 〈g(x)〉

)
. (3.101)

The line search direction ui is chosen in the steepest descent direction:

ui = −P ′ (3.102)

P ′ =
∂P

∂x
= f ′(x) + 2ρhT (x)h(x) + 2ρ

∂

∂x
〈g(x)〉T 〈g(x)〉 . (3.103)

Substituting the QP problem approximations of the objective function and constraints
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functions gives the steepest descent search direction as

P ′ = b+ 2ρ(CT
ada +ETf), (3.104)

with Ca and da consisting of the active inequality constraints only.

The termination criteria for this SQP method are a minimum step-size and maximum

number of iterations. The pseudo code for the SQP method is given in Algorithm 6.

Algorithm 6 SQP pseudo code

procedure SQP(x0)
for i = 1, 2, ..., imax do

if QP problem has a solution then
ui . (3.100)
xi = xi−1 + λ∗ui . where λ∗ minimizes L̂(xi + λui)

else
ui . use steepest descent (3.104)
xi = xi−1 + λ∗ui . where λ∗ minimizes P (xi + λui)

end if
if termination criteria met then exit

end for
end procedure

3.4.4 COBYLA

Constrained Optimization BY Linear Approximation (COBYLA) is a successive linear

programming algorithm. It is a derivative free method developed for nonlinearly con-

strained functions by M.J.D. Powell [27]. During each iteration linear approximations of

the objective function and constraints are constructed. The linear approximations are

used to determine an update step through linear programming.

A simplex of n+ 1 vertexes is used for the linear approximations. The change in the

simplex is governed by the solution of a linear programming problem, and the quality of

its shape. A trust-region is used to control the changes of variables recommend from the

solution to the linear programming problem. The vertexes are also adjusted in order to

improve the simplex shape.

The starting value of the trust region size τ , is decreased during the optimization until

it is smaller than a desired trust region size, at which stage the optimization terminates.

The user specifies the initial trust region size τi and desired final trust region size τf .

The method has the desirable property that is does not require smoothness, but it

does require that the entire design space be defined. The work around implemented is

that if the objective function or constraints are undefined, then they would be assigned
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a value larger than any in the design space. The modified single objective function fc is

fc =

f(x) if f(x) defined

0.06 otherwise,
(3.105)

and the modified constraint violation function gc, is

gc =

−g(x) if g(x) defined

−0.1 otherwise
(3.106)

The COBYLA algorithm is used “off-the-shelf’ from the Scientific Tools for Python

package[2]. gc is the negative of g due the constraint sign convention in Scipy.

3.4.5 SLSQP

The sequential least square quadratic programming (SLSQP) algorithm [21] uses a mod-

ified version of the non negative least squares (NNLS) algorithm from [22] as its core

routine. The NNLS routine is used to solve the generalized nonlinear optimization prob-

lem as described in [22].

Successive quadratic problems are solved using non localized approximations of the

optimization problem. Second-order approximations of the objective function are made

using BFGS second order updates and first-order approximations are made of the con-

straint functions.

The undefined design work around and modified constraint functions are applied as

described in the COBYLA subsection.

3.4.6 Testing

Problems from [19] were used to test the implementations of the constrained-optimization

algorithms. The summary of results from eight test problems are shown is Table 3.5. The

complete set of test functions used can be found in Appendix B.

The first test problem, t1, is the Rosenbrock function with only one constraint that is

not active at the minimum. Every optimization routine managed to solved this effectively

unconstrained problem except for the COBYLA method. This method struggles to travel

through the valley, terminating after 17000 evaluations with a distance of 0.0016 from

the optimum.

The fourth test problem, t4, is an uncoupled cubic function of two variables, with

two inequality constraints both of which are active at the optimum. All the optimization

methods successfully determine the minimum.
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COBYLA LFOPC LMM-BFGS LMM-CGPR LMM-LFOP SQP SLSQP

t1 17391x 1281 1296 1196 1856 885 78x
t4 17v 2313 552v 562v 6552 239 8

t10 84v 2338x 3552 2442v - - 45v

t25 - - - - - - -

t100 355v - - - - 6843v 124v

t113 337v - - - - 3312 147v

The number of function evaluations required to obtain the solution x, with ‖x−x∗‖ ≤ 10−4, max(g(x)) ≤
0 and max(|h(x)|) < 10−4 .
v the constraint criteria is loosely satisfied: 0 < max(g(x)) ≤ 10−6 or 10−4 < max|h(x)| < 10−2
x the distance criteria is loosely satisfied : 10−4 < ‖x− x∗‖ ≤ 10−2

- the returned solution is outside the required tolerances.

Table 3.5: Testing results of the constrained optimization algorithms.

The tenth test function, t10, consists of a linear objective function with a quadratic in-

equality constraint. Note that the LMM-LFOP method returns a solution with a distance

0.007 from the optimum after about 1900 iterations.

All the algorithms were run on the test batch with the same settings. t25 is an

example where the penalty factor, which worked well on the majority of functions, traps

the optimizer at its starting point. If the penalty factor is reduced, all the optimizers can

find the solution. Penalty factor sensitivity is also present in the single objective airfoil

formulations.

The t100 test problem consists of seven variables and four inequality constraints. The

LMM methods terminate falsely due to the step-limit termination criteria. This has

a detrimental effect as it leads to incorrect Lagrange multipliers being selected. This

happens as the LMM method assumes that the unconstrained optimizer terminates at

the augmented Lagrangian, and updates the Lagrangian multipliers accordingly. The

LFOPC method gets close to the solution but not within the required tolerances.

The t113 test problem has ten variables and eight constraints. Similar to t100, only

the SQP method, SLSQP method and the COBYLA methods are able to determine the

solution. The LMM method’s sub-problems are not solved correctly, and the LFOPC

method returns a solution that is outside the required tolerances.

All the methods can, given the correct settings, determine the test problem’s optima.

The testing results for the entire test-set are located in Appendix C. The implemented

methods are able to handle the test functions. In the next section their performance on

the single objective airfoil optimization formulations are presented.
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3.5 Airfoil optimization

The gradient-based methods implemented and the surrogate methods are applied to the

two different single objective formulations from multiple starting points. The earlier

investigation into the model’s characteristics indicate that the prerequisites for gradient-

based optimization are not met. But all the methods are still expected to improve the

function value and the customized methods have been modified in order to enhance their

performance on noisy partially defined functions. The results indicate the success of these

modifications, and give insight into the applicability of gradient-based method for these

types of optimization formulations.

The two a priori airfoil formulations are:

1. The avionics box height, or fixed volume variant,

f(x) = 3CD1(x) + CD2(x) + CD3(x), (3.107)

g(x) =

[
0.75−maxLift(x)

73mm−Bh(x)

]
. (3.108)

where maxLift is the maximum lift coefficient of the airfoil and Bh is the height

available for an unrotated avionics box.

2. The maximum lift variant,

f(x) = 3CD1(x) + CD2(x) + CD3(x), (3.109)

g(x) =

[
0.75−maxLift(x)

10mm−Bh(x)

]
. (3.110)

Each optimization algorithm is benchmarked from the same ten starting points which

are distributed around the design space. The starting points xc were generated by first

attempting to generate 150 candidate designs. Each design’s dimension values are gen-

erated using random numbers uniformly distributed between 0 and 1.

From those initial points only 20 points were defined and valid. The final points were

then selected to generate the most distributed set. This was achieved by rejecting the

candidate points with the highest crowding value. The crowding value for each point ci

is determined using,

ci =

20,j 6=i∑
j=1

1

(xjc − xic)T (xjc − xic)
. (3.111)

The elimination process involves discarding the most crowded point until the desired set

size is achieved. The crowding values are recalculated after each point is discarded.

The majority of the settings used are the same as those in the constrained optimization

testing section. The most significant is the increased finite-difference size as to reduce
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evals. < 500 evals. < 2000 2000 < evals.

sp f0 method fmin method fmin method fmin

1 0.0571 SLSQP 0.0563 LMM-BFGS 0.0396 LMM-LFOP 0.0367

2 0.0552 CObyLA 0.0382 CObyLA 0.0382 CObyLA 0.0382

3 0.0548 SLSQP 0.0493 LMM-BFGS 0.0391 LMM-LFOP 0.0369

4 0.0532 SLSQP 0.0532 LMM-CGPR 0.0482 LMM-LFOP 0.0466

5 0.0561 SLSQP 0.0561 CObyLA 0.0385 LMM-LFOP 0.0370

6 0.0589 CObyLA 0.0416 CObyLA 0.0416 LMM-LFOP 0.0366

7 0.0611 CObyLA 0.0541 LMM-CGPR 0.0491 LMM-LFOP 0.0452

8 0.0600 CObyLA 0.0545 CObyLA 0.0545 CObyLA 0.0545

9 0.0572 CObyLA 0.0437 CObyLA 0.0437 LMM-LFOP 0.0365

10 0.0539 CObyLA 0.0394 LMM-CGPR 0.0388 LMM-BFGS 0.0374

Table 3.6: Best Optimization Results from various starting points (sp) for the avionics box
height formulation.

the effect of the noise. The gradient finite difference size is increased to ε = 0.05, and the

step-size termination criteria of δx = 0.001 is used. The algorithm specific settings are

• COBYLA: initial trust region τi = 0.1, maximum function evaluations 10 000.

• LFOPC: undefined space avoidance factor ρu = 1.0. 500 iterations per phase.

• LMM-BFGS: BFGS Imax = 150, LMM It = 6, ρ = 15.0

• LMM-CGPR: same as LMM-BFGS

• LMM-LFOP: LFOP Imax = 500, LMM It = 6, ρ = 50.0, initial step 0.05, undefined

space avoidance factor ρu = 1.0

• SQP: Hessian finite difference perturbation size ε = 0.1, line search penalty function

parameter ρ = 100.0

The customized methods, in general achieved lower function values than the “off-the-

shelf” surrogate methods but also required more function evaluations. The results from

the avionics box height formulation are summarized in Table 3.6 and the results from the

maximum lift formulation are summarized in Table 3.7.

The COBYLA and the SLSQP off-the-shelf surrogate methods which performed well

in testing failed to significantly decrease the function value for the avionics box height

formulation. The off-the-shelf methods terminated after few function evaluations at a cost

function value higher than those achieved by the customized methods. For the COBYLA

method in the maximum lift formulation it is the opposite, with the method in general

being more expensive but returning lower function values.
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evals. < 500 evals. < 2000 2000 < evals.

sp f0 method fmin method fmin method fmin

1 0.0571 LMM-CGPR 0.0300 LMM-CGPR 0.0300 SQP 0.0296

2 0.0552 CObyLA 0.0299 LMM-CGPR 0.0266 LMM-CGPR 0.0266

3 0.0548 LMM-CGPR 0.0356 LMM-BFGS 0.0299 SQP 0.0260

4 0.0532 LMM-CGPR 0.0302 LMM-CGPR 0.0302 LMM-CGPR 0.0302

5 0.0561 LMM-BFGS 0.0392 CObyLA 0.0258 CObyLA 0.0258

6 0.0589 LMM-BFGS 0.0281 LMM-CGPR 0.0258 SQP 0.0247

7 0.0611 CObyLA 0.0278 CObyLA 0.0278 CObyLA 0.0278

8 0.0600 CObyLA 0.0545 CObyLA 0.0545 CObyLA 0.0545

9 0.0572 LMM-BFGS 0.0312 LMM-BFGS 0.0312 LMM-BFGS 0.0312

10 0.0539 SLSQP 0.0391 LMM-CGPR 0.0249 LMM-CGPR 0.0249

Table 3.7: Best Optimization Results from various starting points (sp) for the maximum lift
formulation.

The results suggest that certain methods are well-suited for rough estimates due to

their economy. These rough estimations should not however be expected to return a

solution near to the minimum of the airfoil formulations.

The COBYLA method results are presented in Table 3.8. The best run (lowest cost

function value with no constraint violation) and the most expensive run for the avionics

box height formulation began at the first starting point. The best run for the maximum

lift formulation begins from the tenth point. Besides the first run for the avionics box

height formulation, the number of function evaluations are low. The method does not

always return valid designs for the avionics box height formulation, with half of the

designs returning minor constraint violations.

The SLSQP method is the most economical of the methods, each time terminating

in under 100 function evaluations. The method does not achieve a large function value

decrease though. Table 3.9 shows the SLSQP results.

The LMM-BFGS and the LMM-CGPR optimization results for avionics box height

formulation are comparable to each other. The number of function evaluation ranges from

over one-hundred to almost 7000. Both methods performed well from the 5th starting

point, obtaining a function value of 0.0373 in about 4000 function evaluations.

For the maximum lift formulation the LMM-CGPR method performed better than the

LMM-BFGS method. The LMM-BFGS method returned 0.0249 from the tenth starting

point which is the second lowest values obtained by the gradient-based methods. The

results from LMM-BFGS methods are shown in Table 3.10 and the results from the

LMM-CGPR in Table 3.11.

The SQP method could not solve any QP problems for the avionics box height for-

mulation and hence performed poorly. This is because the determined Hessian matrices
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Avionics box height formulation

sp‡ f V† evals.

1 0.0391 0 2025

2 0.0382 < 10−4 315

3 0.0402 0 514

4 0.0449 0.0002 220

5 0.0385 < 10−4 545

6 0.0416 0 359

7 0.0541 < 10−4 208

8 0.0545 0 156

9 0.0437 0 281

10 0.0394 < 10−4 390

Maximum lift formulation

sp‡ f V† evals.

1 0.0346 0 272

2 0.0299 0 295

3 0.0304 0 960

4 132

5 0.0258 0 784

6 0.0284 0 254

7 0.0278 0 362

8 0.0545 0 156

9 245

10 0.0258 0 553

When the optimiser returns a design which is undefined, the row is left blank.
‡ starting point
† maximum constraint violation

Table 3.8: COBYLA Optimization Results

Avionics box height formulation

sp‡ f V† evals.

1 0.0563 0 19

2 0.0552 0 28

3 0.0493 0 76

4 0.0532 0 19

5 0.0561 0 19

6 0.0589 0 19

7 0.0611 0 19

8 0.0601 0 27

9 0.0572 0 19

10 0.0484 0.0002 76

Maximum lift formulation

sp‡ f V† evals.

1 0.0563 0 19

2 0.0552 0 28

3 0.0493 0 76

4 0.0532 0 19

5 0.0561 0 19

6 0.0589 0 19

7 0.0475 0 58

8 0.0601 0 27

9 0.0572 0 19

10 0.0391 0 94

‡ starting point
† maximum constraint violation

Table 3.9: SLSQP Optimization Results
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Avionics box height formulation

sp‡ f V† evals.

1 0.0396 0 1825

2 0.0402 0 3485

3 0.0391 0 1905

4 0.0495 0 640

5 0.0376 0 4160

6 0.0404 0 4550

7 0.0511 0 900

8 0.0571 0 120

9 0.0470 0 1055

10 0.0374 0 3235

Maximum lift formulation

sp‡ f V† evals.

1 0.0334 0 585

2 0.0371 0 510

3 0.0299 0 640

4 0.0354 0 260

5 0.0392 0 390

6 0.0281 0 445

7 0.0332 0 380

8 0.0571 0 120

9 0.0312 0 390

10 0.0405 0 185

‡ starting point
† maximum constraint violation

Table 3.10: LMM-BFGS Optimization Results

Avionics box height formulation

sp‡ f V† evals.

1 0.0402 0 2170

2 0.0377 0.0008 6225

3 0.0376 0 6570

4 0.0482 0 1150

5 0.0372 0 3670

6 0.0383 0 3325

7 0.0491 0 770

8 0.0571 0 120

9 0.0458 0 2020

10 0.0388 0 1030

Maximum lift formulation

sp‡ f V† evals.

1 0.0300 0 315

2 0.0266 0 1020

3 0.0356 0 325

4 0.0302 0 370

5 0.0423 0 195

6 0.0258 0 510

7 0.0291 0 455

8 0.0571 0 120

9 0.0313 0 390

10 0.0249 0 1215

‡ starting point
† maximum constraint violation

Table 3.11: LMM-CGPR Optimization Results
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Avionics box height formulation

sp‡ f V† evals.

1 0.0403 0.0018 9639

2 0.0385 0.0023 7696

3 0.0394 0.0018 9605

4 0.0433 0.0023 5899

5 0.0405 0.0026 9733

6 0.0401 0.0018 9595

7 0.0538 0.0018 4506

8 0.0570 0 1944

9 0.0520 0 2562

10 0.0376 0.0022 9017

Maximum lift formulation

sp‡ f V† evals.

1 0.0296 0 8310

2 0.0283 0 8346

3 0.0260 0 9019

4 0.0303 0 7213

5 0.0291 0 10045

6 0.0247 0 9638

7 0.0304 0 5800

8 0.0570 0 1944

9 0.0520 0 2562

10 0.0275 0 9762

‡ starting point
† maximum constraint violation

Table 3.12: SQP Optimization Results

in this region of the design space is not positive-definite. The result is that the SQP

algorithm resorted to its fail-safe and used steepest-descent on the penalty function to

determine the search directions. Table 3.12 shows the performance of the SQP method

from the starting points.

The SQP methods achieved better results for the maximum lift formulation. The QP

problems could be solved in the regions of the design space which had a lower avionics

box height, allowing the SQP method to perform better. Although more expensive than

the other gradient-based methods, it achieved the lowest function value of 0.0247 after

9638 function evaluations.

The LMM leap frog constrained optimizer obtained the lowest function value of the

gradient-based optimizers for the avionics box height formulation but at a high cost,

obtaining an objective function value of 0.0365 after 25 292 function evaluations. The

LMM-LFOP results, captured in Table 3.13, show the cost of this method where the

average number of function evaluations is over 10 000.

This implementation of the LFOPC method struggles to determine a valid solution

for the avionics box height formulation. The method often fails at the second phase of

the method. The second phase of the method assumes that a higher penalty factor would

successfully steer the particle to a more valid region of the design space. In the avionics

box height formulation the particle often did not manage to navigate to a more valid

space. The LFOPC results are shown in Table 3.14.

The LFOP-based method’s maximum lift optimization runs were terminated before

completion due to their long running duration. The LFOPC and LMM-LFOP methods

are exceptionally slow as the maximum lift formulation steers the particle into undefined
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sp‡ f V† evals.

1 0.0367 0 13314

2 0.0399 0 13467

3 0.0369 0 17568

4 0.0466 0 2576

5 0.0370 0 8209

6 0.0366 0 13492

7 0.0452 0 3878

8 0.0602 0 977

9 0.0365 0 25292

10 0.0402 0 13932

‡ starting point
† maximum constraint violation

Table 3.13: LMM-LFOP avionics box height variant optimization results

sp‡ f V† evals.

1 0.0451 0 9367

2 0.0444 0 6368

3 0.0354 0.0047 11039

4 0.0373 0.0161 1056

5 0.0356 0.0046 8937

6 0.0353 0.0033 5135

7 0.0337 0.0090 4308

8 0.0600 0 1906

9 0.0529 0 5133

10 0.0543 0 3713

‡ starting point
† maximum constraint violation

Table 3.14: LFOPC avionics box height variant optimization results
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regions. Due to the exploratory nature of the algorithm, many function evaluations were

spent in costly undefined regions. Evaluating a point in the undefined region takes longer

than defined regions as each XFOIL setting needs to be tried in case one of them might

work.

As the function minimum is approached, the gradient methods increasingly struggle

to determine the correct search direction. Figure 3.9 shows the line search and gradient

calculation error at an algorithm termination point. The line search shows the magni-

tude of the noise amplitude present in the objective-function when minima regions are

approached.

The noise present in the design space decreases the accuracy of the gradient approx-

imations, as shown in section 3.1.3. As the optimizer approaches the minimum of the

objective function, the odds of this compromised search direction leading to descent de-

creases.

The CSIR in their optimization work obtained a blended drag value of 0.0367 for the

avionics box height formulation using the LFOPC algorithm. The gradient algorithms

here achieve similar results for the avionics box height formulation and have (with limited

success) been extended to handle the maximum lift formulation. The implemented gra-

dient methods also allow for task-parallelism. This allows for parallel computing which

reduces the time required to run the optimization algorithms. The best designs found

by the gradient methods for the maximum lift and avionics box height formulations are

shown in Figure 3.10.

The customized line search method improves the gradient-based methods final func-

tion value for avionics box height formulation but at a high number of function evalu-

ations. However, the a priori formulations are not suited for gradient-based methods

which assume characteristics not present and hence cannot perform as designed. The

next chapter presents single objective population-based methods which are better suited

to the optimization model’s characteristics.
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ê

(b) gradient calculation dimension linear fit errors (3.12)

Figure 3.9: Data from the termination point of the first BFGS sub optimization of the first
LMM-BFGS optimization.
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Figure 3.10: Lift-Drag curves for the best design determined by the gradient-based methods.
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CHAPTER 4

A PRIORI SCALARIZATION

OPTIMIZATION USING

POPULATION-BASED METHODS

Populations-based methods emulate group dynamics in order to search the design space

and locate the problem minimum. The dynamics are influenced by other members in the

population combined with stochastic effects. The methods have the favourable attributes

that they do not require gradient information or smoothness.

Population-based methods’ exploratory nature allows constraints to be handled easier

than gradient-based methods. Gradient-methods cannot handle discontinuities in the

objective space were population-based methods can. The populations-based methods

only need to determine if one solution is better than another, not by how much one

design is better than the other.

This chapter begins with the rules governing point selection. The Differential Evo-

lution (DE) method is then discussed followed by a description of the Particle Swarm

Optimization (PSO) method. The methods are then benchmarked on some popular

population-based testing functions. The chapter concludes with the results for the airfoil

a priori optimization using the population-based methods.

4.1 Rules governing point selection

Both the DE and PSO methods make use of the greedy selection criteria. DE uses the

greedy criteria when updating population member positions, and the PSO method uses

the greedy criteria when updating personal best and the global best designs.

The greedy criteria implies that when the algorithm needs to choose which design is
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All functions are 
defined at design A 

and at design B?

Select defined design

Both A and B 
satisfy the 

constraints?

yes

Select design with minimum f.

        yes       no

                                       no

Select least invalid design

Figure 4.1: The greedy selection criteria for single objective population-based methods

better, it selects the design with the lower cost function value. For our application the

greedy selection criteria is expanded to handle constraints as well as undefined regions in

the design space. The rules for selecting the preferred design between two candidates are

outlined in Figure 4.1.

The first criterion for comparison is to check if all the functions are defined at both

points in the design space. This rule assists the optimizer to handle the undefined regions

present in the design space, by giving preference to designs which are defined.

The second criterion is the validity of the design according to the optimization con-

straints. If both designs are valid then the design with the lowest function value will

be selected. If only one design is valid it will be selected. If both of the designs are

invalid the design which is more valid is selected. In this application the sum-square of

the constraint violations is used to determine which design is more valid.

This decision logic can be inserted into a design point programming class for easy

implementation. Implementing this logic in the “<” operator for the design point class

is recommend. In the Python programming language it allows the better point C to be

selected simply by C = min(A,B).

4.2 Differential Evolution

The stochastic method of DE was developed to handle non-differentiable, non-linear cost

functions which are multi-modal. The implementation done here is based upon [33].

DE makes uses of a population of designs from 1 to N . At each generation i, the

processes of mutation, cross-over and selection occur. The population is updated until

a maximum number of iterations imax, is reached or another termination criterion is

satisfied.

The population’s initial positions are randomly generated inside the design space. The

populating space typically takes the form of a hyper-rectangle. The unrotated hyper-

rectangle is defined by its upper and lower bounds, bu and bl. The j’th member of the
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population’s initial position, xj0, is generated as follows:

xj0 = bl + r()⊗ (bu − bl), (4.1)

where the random function r() returns a vector consisting of n random elements uniformly

distributed between 0 and 1, and the ⊗ operator is defined as

c = a⊗ b⇒ ci = aibi. for i ∈ 1, 2, . . . , n. (4.2)

The mutation process is calculated using difference vectors. The difference vectors

are determined using designs from the population members. For the one difference vector

mutation scheme, the mutation vector for the jth member of the population vji is

vji = xr1i−1 + F (xr2i−1 − xr3i−1), (4.3)

where the difference amplification F , is a real constant ranging between 0 and 2, and the

population members r1,r2 and r3, are randomly chosen such that they are each unique,

and that none are equal to j. The best variation of the mutation process replaces xr1i−1
with the population member with the best design xbest

i−1 :

vji = xbest
i−1 + F (xr2i−1 − xr3i−1). (4.4)

The bin crossover operation [33] is applied after the mutation stage. The crossover

takes place between the mutation vector and the population member’s current design.

The crossover probability CR ∈ [0, 1), is the same for each dimension except for one

dimension which is forced to change. The index q, which is forced to crossover is selected

randomly each time. The candidate vector uji produced from the crossover process is

thus

uji,k =

v
j
i,k CR probability OR k = q

xj−1i,k otherwise
for k ∈ 1, 2, . . . , n. (4.5)

The final stage for each generation is selection. The greedy decision logic, shown in

Figure 4.1, is used to determine if the population member is updated to its associated

candidate design:

xji = min(uji ,x
j−1
i ). (4.6)

The algorithm for the ‘/best/1/bin’ (mutation xbest
i−1 variant is used/1 difference vector

in mutation /bin crossover scheme) implementation of DE is shown in Algorithm 7.
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Algorithm 7 DE pseudo code

procedure DE(N , F , CR, imax, bl, bu )
for j ∈ {1, 2, . . . , N} do . initialize population
xj0 . (4.1)

end for
for i ∈ {1, 2, . . . , imax} do

for j ∈ {1, 2, . . . , N} do
vji . (4.3)
uji . (4.5)
xji = min(xji−i,u

j
i ) . Figure 4.1

end for
end for

end procedure

4.3 Particle Swarm

The PSO algorithm for optimization of nonlinear functions [18] is briefly presented in

this section. The algorithm partly originates from a modeling algorithm used to predict

the flocking behavior of birds. In the model each bird’s behavior is influenced by the best

location it has examined (its personal best) and by the best location the entire flock has

examined (the global best).

The swarm consists of N particles, which after initialization explore the design space

to determine the function minimum. The particle’s initial positions are determined in

the same manner as in (4.1). Each particle’s velocity vj is used to update its position.

The position update for a particle in the swarm at iteration i is as follows:

xji = xji−1 + vji . (4.7)

There are two main variations for the velocity update rules; the linear and classical

velocity strategies. The classical version was implemented as it maintains population

diversity better and hence searches the design space more thoroughly [37]. The classical

velocity update rule is

vji = ωvji−1 + c1r()⊗ (xjpb − xji−1) + c2r()⊗ (xgb − xji−1). (4.8)

The particle is attracted to both its personal best xjpb as well as the global best xgb,

which are updated after each iteration. The attraction to the personal best as well as the

global best are scaled by the personal belief constant c1 and global belief constant c2. c1

and c2 are user specified parameters which normally range between 0 and 2.

The inertia factor ω is used to remove energy from the swarm, controlling its collapse

rate. Low values of ω result in the swarm converging on what it believes to be the function

minimum rapidly. Higher values of ω increases the exploratory behavior of the swarm.
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ω is user specified with normal values ranging between 0 and 1. Also note that in this

implementation the particles start from rest,

vj0 = 0. (4.9)

The swarm continues to move as governed by the position update rule (4.7) and

velocity update rule (4.8) until the iterations exceed the allowed number of iterations

imax. The PSO pseudo-code is shown in Algorithm 8.

Algorithm 8 PSO pseudo code

procedure PSO(N , c1, c2, ω, bl, bu, imax )
for j ∈ {1, 2, ..., N} do . initialize population
xj0 . (4.1)
vj0 = 0
xjpb = xj0

end for
xgb = min(x1

pb,x
2
pb, . . . ,x

N
pb) . Figure 4.1

for i ∈ {1, 2, ..., imax} do
for j ∈ {1, 2, ..., N} do
vji . (4.8)
xji . (4.7)
xjpb = min(xjpb,x

j
i ) . Figure 4.1

end for
xgb = min(x1

pb,x
2
pb, . . . ,x

N
pb) . Figure 4.1

end for
end procedure

4.4 Testing

The testing functions serve both for checking the algorithm implementations and to

investigate which settings to use on the airfoil a priori . The test functions which are

unconstrained are chosen from [37] with the exception that the extended Rosenbrock

function is taken from [34]. The test functions are:

• The extended Rosenbrock function:

t1(x1, x2, . . . , xn) =
n−1∑
i=1

(
100(xi+1 − x2i )2 + (xi − 1)2

)
, (4.10)

with populating bounds of ±30 for each dimension.
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• The Quadric function:

t2(x1, x2, . . . , xn) =
n∑
i=1

(
i∑

j=1

xj

)2

, (4.11)

with populating bounds of ±100 for each dimension.

• The Rastrigin function:

t3(x1, x2, . . . , xn) =
n∑
i=1

(
x2i − 10 cos(2πxi) + 10

)
, (4.12)

with populating bounds of ±5.12 for each dimension.

• The Griewank function:

t4(x1, x2, . . . , xn) =
1

4000

n∑
i=1

x2i −
n∏
i=1

cos

(
xi√
i

)
+ 1, (4.13)

with populating bounds of ±600 for every dimension.

The minimum for the test functions occur at [0, 0, . . . , 0]T except for the extended

Rosenbrock function whose minimum is at [1, 1, . . . , 1]T . The population size for testing

is 50, which is the same size that is used for the airfoil a priori optimization. The

maximum number of allowed function evaluations is 200 000. A choice of 2 000 or 5 000

for the maximum number of allowed function evaluations may be more approximate as

this is the number of function evaluations that will be used for the airfoil optimization,

but 200 000 is used as it a standard testing amount allowing for comparison again other

results.

For each testing problem one parameter is varied to determine its effect on the algo-

rithm performance. The cross-over probability CR is swept for the DE algorithm and

the inertia factor ω is swept for PSO. The other algorithm setting remain constant, with

F = 0.31 for the DE method and c1 = 1 and c2 = 1 for the PSO method.

The algorithm’s performance is averaged over 100 runs for each setting used. This is

done as the algorithm returns a different result each time it is run. The results from these

stochastic algorithms form a probability distribution. The average gives an approximation

of the mean of this distribution.

The results indicate that the PSO algorithm performs best for ω values greater than

0.6. Figure 4.2 shows the results of the PSO algorithm on the testing functions. It is

likely due to the unconventional choice of c1, c2 that the best ω values are larger than

0.7298 which is a value often used in PSO literature such as [10].

1Initially a F value of 0.5 was chosen but reducing it to 0.3 produced better results for the airfoil
single-objective optimization.
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Figure 4.2: PSO performance on the testing functions for various ω.

The DE algorithm performs best on lower values of CR. Figure 4.3 shows the DE

results. This is expected as the testing functions are either loosely coupled or uncoupled.

For the airfoil optimization where the problem is coupled a higher CR is used.

The algorithms can handle constrained optimization problems successfully solving

many of the problem from [19]. The methods are however more expensive then the

gradient-based methods for these smooth differentiable function. This result is important

as it confirms that the algorithm’s selection can handle constraints. Appendix D presents

the results from these tests.

4.5 Airfoil optimization

The population-based method’s results on the a priori airfoil formulations are presented

in this section. Each setting tried was run multiple times to estimate how much variation

was present. The airfoil single objective population-based optimization formulations,

reproduced for convenience are:
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Figure 4.3: DE performance on the testing functions for various CR.

1. Avionics box height variant:

f(x) = 3CD1(x) + CD2(x) + CD3(x) (4.14)

g(x) =

[
0.75−maxLift(x)

73mm−Bh(x)

]
(4.15)

Bl = [0, 0, . . . , 0] (4.16)

Bu = [1, 1, . . . , 1] (4.17)

2. Maximum lift variant:

f(x) = 3CD1(x) + CD2(x) + CD3(x) (4.18)

g(x) =

[
0.75−maxLift(x)

10mm−Bh(x)

]
(4.19)

Bl = [0, 0, . . . , 0] (4.20)

Bu = [1, 1, . . . , 1] (4.21)

The function evaluations are limited to 5000 for the avionics box height formulation

and 2000 for the maximum lift formulation. The function evaluations for the maximum
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settings after 1000 evals. after 5000 evals.

CR F fbest V† fbest V†

0.60 0.3 0.03991 0 0.03612 0

0.60 0.3 0.03985 0 0.03596 0

0.60 0.3 0.03736 0 0.03625 0

0.70 0.3 0.03750 0 0.03621 0

0.70 0.3 0.04017 0 0.03614 0

0.70 0.3 0.03990 0 0.03636 0

0.80 0.3 0.03790 0 0.03630 0

0.80 0.3 0.03780 0 0.03632 0

0.80 0.3 0.04206 0 0.03659 0

† maximum constraint violation.

Table 4.1: DE optimization results for the avionics box height formulation.

lift formulation are limited to 2000 due to additional computation cost required to analyze

airfoils where the maximum lift constraint becomes active.

The optimization results for the DE and the PSO algorithms on the avionics box

height formulation are summarized in Tables 4.1 and 4.2 respectively. The best designs

after 1000 function evaluations are also presented to indicate the algorithms’ performances

at a lower number of function evaluations.

The DE algorithm consistently returns a low objective function value for the avionics

box height formulation. The worst run from the DE is only marginally worse than the

best run from all the gradient methods. Its best design after 1000 evaluation is 0.03736

and after 5000 evaluations is 0.03596.

The PSO algorithm does not perform as consistently as the DE algorithm but achieved

the lowest objective function value. The worst PSO run returns an airfoil with a blended

drag of 0.04 and the best airfoil’s blended drag is 0.03591. Figure 4.4 shows the best

design determined by the population-based methods.

Tables 4.3 and 4.4 summarizes the performance for the DE and PSO algorithms for

the maximum lift formulation. As in the avionics box height formulation the value after

1000 function evaluations are also presented in these tables. For reference the lowest

blended drag obtained by the gradient methods is 0.0247 after 9638 function evaluations.

The majority of the DE runs achieve a blended drag coefficient of lower than 0.022

for the maximum lift optimization. The two outlier points achieved a blended drag of

0.02856 and 0.0251. The lowest blended drag achieved after 1000 evaluations is 0.0212

which is slightly larger then the minimum value of 0.0203 after 2000 evaluations.
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settings after 1000 evals. after 5000 evals.

ω c1 c2 fgb V† fgb V†

0.60 1.0 1.0 0.04269 0 0.04036 0

0.60 1.0 1.0 0.03789 0 0.03720 0

0.60 1.0 1.0 0.03897 0 0.03748 0

0.70 1.0 1.0 0.04009 0 0.03804 0

0.70 1.0 1.0 0.03782 0 0.03720 0

0.70 1.0 1.0 0.03738 0 0.03635 0

0.80 1.0 1.0 0.03779 0 0.03591 0

0.80 1.0 1.0 0.03874 0 0.03601 0

0.80 1.0 1.0 0.03796 0 0.03683 0

† maximum constraint violation.

Table 4.2: PSO results for the avionics box height formulation.
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Figure 4.4: Lift-Drag curve for the best design from the PSO runs for the avionics box height
formulation.
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settings after 1000 evals. after 2000 evals.

CR F fbest V† fbest V†

0.60 0.3 0.02547 0 0.02108 0

0.60 0.3 0.02227 0 0.02151 0

0.60 0.3 0.02276 0 0.02038 0

0.70 0.3 0.02264 0 0.02149 0

0.70 0.3 0.02120 0 0.02107 0

0.70 0.3 0.02542 0 0.02131 0

0.80 0.3 0.02926 0 0.02856 0

0.80 0.3 0.02534 0 0.02518 0

0.80 0.3 0.02391 0 0.02153 0

† maximum constraint violation.

Table 4.3: DE optimization results for maximum lift formulation.

The PSO method obtains the best design for the maximum lift formulation. As in the

avionics box height formulation, there appears to be large variation for results generated

using the same settings. The design that corresponds to the best blended drag value of

0.01917 is shown in Figure 4.5.

Figure 4.6 shows a shape comparison between the lowest blended drag designs of the

gradient method and the population method. The population based design which has

the lower drag, has a rounder nose and a sharper trailing edge.

Examining the results from Chapters 3 and 4, the following statements are made

regarding the a priori airfoil optimization formulations:

• The population-based methods were able to handle the maximum lift formulation.

The poor quality of the maximum lift constraint inhibited the performance of the

gradient-based and surrogate methods.

• The population-based methods performed better than the modified gradient-based

methods obtaining better designs and using less function evaluations. This state-

ment does not hold for the normal, unaltered versions of the modified gradient

algorithms which use far less function evaluations then their modified counterparts,

which over-sample the design space as to produce a better ultimate answer.

• For the avionics box height formulation the population based methods and the

surrogate methods both performed well. Note that although the surrogate methods

produced worse designs they did it using less function evaluations.

The a priori optimization results are based upon a simplified formulation with blended

cost functions. The next chapter presents the Pareto-optimal multi-objective optimiza-
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settings after 1000 evals. after 2000 evals.

ω c1 c2 fgb V† fgb V†

0.60 1.0 1.0 0.02675 0 0.02643 0

0.60 1.0 1.0 0.02504 0 0.02379 0

0.60 1.0 1.0 0.02141 0 0.02075 0

0.70 1.0 1.0 0.02240 0 0.02139 0

0.70 1.0 1.0 0.02537 0 0.02264 0

0.70 1.0 1.0 0.02152 0 0.01581‡ 0

0.80 1.0 1.0 0.02755 0 0.02214 0

0.80 1.0 1.0 0.02241 0 0.01917 0

0.80 1.0 1.0 0.02249 0 0.02151 0

† maximum constraint violation.
‡ this result is ignored as it is a numerical artefact not corresponding to the physical
solution.

Table 4.4: PSO results for maximum lift formulation.
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Figure 4.5: Lift-Drag curve for the best design from the PSO runs for the maximum lift
formulation.
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LMM-LFOP
PSO

(a) nose

LMM-LFOP
PSO

(b) tail

Figure 4.6: Airfoil shape comparison between LMM-LFOP and PSO best designs for the
avionics box height formulation.
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tion which does not require such simplifications. Pareto-optimal multi-objective ap-

proaches provide the user with a more in-depth understanding of the problem’s char-

acteristics and the effect different trade-off choices will have during the design process.
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CHAPTER 5

PARETO-OPTIMAL MULTI-OBJECTIVE

OPTIMIZATION

Implementing Pareto-optimal multiple objective optimization allows for a more detailed

analysis. When problems with multiple objectives are reduced to a single objective for-

mulation, the user is forced to make simplifications. These simplifications can be done

by posing some of the objectives as constraints, or by giving weights to each objective

and summing them up. A detailed survey of multi-objective optimization methods can

be found in [24].

In this application of airfoil optimization, the a priori formulations are created by

blending the objectives. Since the UAV is likely to spend the majority of its flight time

in a cruise mode, the cruise drag coefficient (CD1) is given three times the importance of

the loiter and high-speed dash drag coefficients, (CD2) and (CD3):

f(x) = 3CD1(x) + CD2(x) + CD3(x). (5.1)

The choice of weights is difficult to justify, requiring prior knowledge about the influ-

ence of each objective. The following questions arise regarding the weight set of {3, 1, 1}
used in (5.1):

• How sensitive is the solution to the weights? Would weights of {2, 1, 1} yield a

significantly different solution?

• How would an optimized design focusing on loiter or high-speed dash performance

differ from the optimized design of (5.1)?

• To gain a small increase in loiter performance how much will the drag of the other

objectives increase?
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Performing a multi-objective analysis and determining the Pareto front allows for ques-

tions of this nature to be answered.

Direct multi-objective population-based algorithms have been receiving significant

attention since the mid-1980’s when the VEGA Algorithm was introduced [11]. The

methods are popular amongst engineering disciplines where objective trade-offs are com-

mon.

Direct multi-objective techniques have been successfully applied to airfoil shape op-

timization. One example is a multi-disciplinary shape optimization of aerodynamics and

electromagnetics using genetic algorithms [23]. The paper presents work on a multi-

objective airfoil optimization, where the objectives are to minimize drag and to minimize

radar cross-section, subject to a maximum lift constraint. A genetic algorithm together

with parallel computing is used for the multi-objective optimization. Another more recent

example, is where a jet aircraft wing has been optimized for three conflicting objectives [9].

In this chapter multi-objective definitions and concepts are first discussed. Then the

MOPSO, MOSADE, and EPO algorithms which are used for the airfoil multi-objective

optimizations are presented. The chapter concludes with the multi-objective results ob-

tained for various airfoil multi-objective formulations.

5.1 Definitions

The multi-objective function F , is a vector of k objective functions. Each objective

function depends on n design variables.

F (x) =


f1(x)

f2(x)

. . .

fk(x)

 x ∈ <n, (5.2)

subject to equality constraints and inequality constraints, h(x) and g(x), respectively.

For practical consideration a tolerance, εh, is applied to the equality constraint. The set

of all valid designs X is defined as

X =
{
x if all

(
g(x) ≤ 0

)
and all

(
−εh ≤ h(x) ≤ εh

)
∀x ∈ <n

}
, (5.3)

where the “all” operator returns true if all the elements in a vector pass the logical

criterion.

A design y dominates another design z if it is better or equal, for every objective.

Another requirement is that at least one of the objectives of y is less than the corre-

sponding objective of z. Since in this text the aim is to minimize all the objectives, the
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f1

f2

F (x) ∀ x ∈ X

<3

X

P

Figure 5.1: Illustrating the concept of feasible design space X, objective space and the Pareto
front P.

dominance logical operator is defined as

y ≺ z if all
(
F (y) ≤ F (z)

)
and any

(
F (y) < F (z)

)
, (5.4)

where the “any” operator returns true if any of the elements in a vector passes the logical

criterion.

If y does not dominate z (y ⊀ z), it does NOT imply that z ≺ y. It often occurs

that y is better in some objectives but worse in others when compared to z, with neither

design dominating the other. A design is non-dominated if no other designs exist (in the

valid design space) that dominates it. A non-dominated design χ is defined as:

χ ⊀ x for all x ∈ X. (5.5)

The Pareto front P is the set of all non-dominated designs. For many applications

there are infinite points on the Pareto front. The goal of a multi-objective optimizer is

to determine P i.e. to find the Pareto-optimal non-dominated designs. The concepts of

design space, objective space and the Pareto front are illustrated in Figure 5.1.

5.2 MOPSO

The multi-objective particle swarm optimization (MOPSO) algorithm makes use of an

external archive or repository and a mutation operator. The implementation here is based

upon [12].

The repository serves both to store the Pareto front and as a reference for the op-

timization. The repository, also commonly referred to as the archive, stores the set

of non-dominated designs (Xr) discovered by the algorithm. Each function evaluation
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which is valid, is passed to the repository for inspection. Should the candidate design xc

not be dominated by any design in the repository it is added, otherwise it is discarded.

Also, if any designs are dominated by xc then they are discarded from the repository.

These mechanics ensure that only non-dominated solutions are added to the repository.

Formally,

add xc to Xr if not any x ≺ xc ∀x ∈ Xr, (5.6)

discard from Xr all x where xc ≺ x. (5.7)

The MOPSO repository makes use of an adaptive grid to space the non-dominated

designs. The grid consists of d divisions along each objective dimension. The grid’s upper

and lower boundaries, ru and rl, are determined to fit the smallest possible unrotated

hyper-rectangle around Xr. The grid boundaries are updated every time a solution is

added which falls outside the current bounds.

Each design in Xr has grid indexes assigned to it according to its objective function

values. The grid location z for a design x ∈ Xr as a function of the grid boundaries is

zj =

⌊
Fj(x)− rl,j
ru,j − rl,j

d

⌋
j ∈ 1, 2, . . . , k. (5.8)

The repository is limited to a maximum size of rm. Should the size of Xr exceed rm

the oldest design from the most densely populated grid division rdp is discarded. The

user’s selection of rm should be linked to d so that the grid is not too sparsely populated

or over-populated.

The pseudo code for adding a point to the repository is given in Algorithm 9.

Algorithm 9 MOPSO pseudo code for adding a point to the repository

procedure Rep Inspect(xc)
if xc valid then . does not violate any constraints

update Xr . (5.6) and (5.7)
if xc added and xc outside bounds then
ru, rl
re-calculated Xr grid locations

end if
if size(Xr) > rm then

eliminate oldest non-dominated solution from rdp
end if

end if
end procedure

The particle swarm, consisting of N particles, is randomly spawned inside a hyper-

rectangle bound between bl and bu. This is done in the same manner as in the PSO and

DE algorithms (4.1). After initialization each particle’s design is passed to the repository
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Figure 5.2: MOPSO selecting between two designs, A and B

for inspection. At each iteration i, position xji , and the velocity vji , of the j’th member

of the swarm’s population are updated.

Each particle is influenced by that particle’s personal best design xjpb, and by xh()

which is a non-dominated design selected from Xr. The MOPSO velocity and position

update-rules are

vji = ωvji−1 + r1()
(
xjpb − xji−1

)
+ r2()

(
xh()− xji−1

)
(5.9)

xji = xji−1 + vji . (5.10)

The velocity update rule is linear with r1() and r2() generating random scalars bound

between 0 and 1 generated using a uniform probability density. xh() is selected from Xr

using roulette-wheel selection, with the designs in Xr whom solely occupy a repository

grid division given 10 times the likelihood of being selected.

The MOPSO criterion for selection of xjpb is the design which dominates the other,

unless neither dominates the other, in which case the design is selected randomly. The

implemented rules for updating xjpb are shown is Figure 5.2.

The MOPSO algorithm is designed such that the particles are boxed inside the pop-

ulating hyper-rectangle. The boxing occurs after each position and velocity update. For

each dimension m ∈ 1, 2, . . . , n, the position components xji,m and velocity components

vji,m of every particle are confined as follows:

vji,m =

v
j
i,m if bl,m < xji,m < bu,m

−vji,m otherwise,
(5.11)

xji,m =


bl,m if xji,m < bl,m

bu,m if bu,m < xji,m

xji,m otherwise.

(5.12)

A mutation operator is used to increase the diversity of the swarm. The likelihood
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of mutation decreases as i approaches the maximum number of iterations imax. The

likelihood of mutation taking place pm, as a function of the mutation rate η is

pm = (1− i/imax)5/η. (5.13)

When mutation takes place it affects a randomly selected dimension q. A uniform-

density random number generator function ru(bl, bu) (bound between bl and bu) is used

to assign a new value for dimension q according to

xji,q = ru

(
max

(
bl,q, x

j
i,q − (bu,q − bl,q)(1− i/imax)5/η

)
,

min
(
bu,q, x

j
i,q + (bu,q − bl,q)(1− i/imax)5/η

))
. (5.14)

The pseudo-code for MOPSO is give in Algorithm 10.

Algorithm 10 MOPSO pseudo code

procedure MOPSO(N , ω, η, imax, d, bl, bu)
for j ∈ {1, 2, . . . , N} do . initialize population
xj0 . (4.1)
vj0 = 0
xjpb = xj0
Rep Inspect xj0 . Algorithm 9

end for
for i ∈ {1, 2, ..., imax} do . main loop

for j ∈ {1, 2, . . . , N} do
vji . (5.9)
xji . (5.10)
box particle . (5.11) and (5.12)
mutation . (5.13) and (5.14)
xjpb = min(xjpb,x

j
i ) . Figure 5.2

Rep Inspect xji . Algorithm 9
end for

end for
end procedure
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5.3 MOSADE

The multi-objective self-adaptive differential evolution method (MOSADE) makes use

of an elitist archive and adaptive parameters to solve a multi-objective problem. The

archive (here after referred to as the repository) uses a crowding entropy-based diversity

measure to select which non-dominated solutions are given preference. The DE difference

factor F , and crossover rate CR are not constant as in normal DE implementations, but

are designed to adapt to the problem. The algorithm is implemented as described in [36].

Each design in the repository’s non-dominated design set Xr, has a crowding entropy

associated with it. The crowding entropy is used to determine which designs in Xr are

rejected when the repository exceeds its maximum size rm, and the crowding entropy also

aids in design selection.

The first step in determining a designs crowding entropy is to create a sorted list φm

of all the design components in the m’th objective function dimension

φm = sorted {Fm(x)} for x ∈ Xe m ∈ {1, 2, . . . , k}, (5.15)

where the design set Xe is defined as

Xe =

Xr if xi ∈ Xr

Xr + {xi} otherwise.
(5.16)

Xe is used to compute the crowding entropy for the design xi.

The crowing component cm for xi is then calculated using the entropy function shown

in Figure 5.3. The crowding entropy for xi is

cm(xi) = (φmp − φmp−1) log2

(
φmp − φmp−1
φmp+1 − φmp−1

)
+ (φmp+1 − φmp ) log2

(
φmp+1 − φmp
φmp+1 − φmp−1

)
(5.17)

where

• φmp = Fm(xi),

• φmp−1 is the lower neighbor of φmp in φm and

• φmp−1 is the upper neighbor of φmp in φm .

Should the φmp not have a upper or lower neighbor as it is on the boundary, a negative

infinite value is given to cm(xi). In this application we shall use −1000 which is sufficient

since φmp−1 − φmp+1 � −1000.
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Figure 5.3: MOSADE entropy crowding function Cji , for various φjp

The appeal c is obtained by adding the ci for every dimension

c(xi) = −
k∑

m=1

cm(xi). (5.18)

Designs are inspected by the repository in a similar way as MOPSO (5.6) and (5.7).

The repository trimming, unlike MOPSO, is not done immediately but at the end of each

iteration of MOSADE. As such the size of Xr may exceed rm by more than one. The

elimination strategy is: while len(Xr) > rm eliminate the design in Xr with lowest c.

The population behavior is similar to the original DE. It makes use of the rand/1/bin

scheme for the mutation and crossover operations. However, it has a different selection

mechanism and adaptive parameters. Each population member has an associated Fj and

CRj which are generated randomly between the user specified boundaries

Fj = ru(Fl, Fu) (5.19)

CRj = ru(CRl, CRu). (5.20)

If the jth member failure count αj reaches αmax, Fj and CRj are regenerated. The

parameters are considered to have failed if the generated candidate design is not better

than the population member’s current design.

The selection mechanism from [36] selects the preferred design C, by choosing between

77

 
 
 



designs A and B as follows

C =



A if F (A) ≺ F (B)

B if F (B) ≺ F (A)

A if F (A) ⊀ F (B) and F (B) ⊀ F (A) and c(A) < c(B)

B otherwise.

(5.21)

The MOSADE pseudo code is given in Algorithm 11.

Algorithm 11 MOSADE pseudo code

procedure MOSADE(N , Fl, Fu, CRl, CRu, imax, αmax, bl, bu,rm )
for j ∈ {1, 2, . . . , N} do . initialize population
xj0 . (4.1)
Repository Inspect cj0
Fj . (5.19)
CRj . (5.20)
αj = 0

end for
for i ∈ {1, 2, . . . , imax} do . main loop

for j ∈ {1, 2, . . . , N} do
vji . (4.3)
uji . (4.5)
if xji−i ⊀ u

j
i then

Repository Inspect uji
end if
if uji < x

j
i−i then . (5.21)

xji = uji
else

αj = αj + 1
if αj = αmax then

Fj . (5.19)
CRj . (5.20)
αj = 0

end if
end if

end for
end for

end procedure
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Figure 5.4: Single-objective minima for different w

5.4 EPO

The Elliptical Pareto front Optimization routine (EPO) aims to use established and

proven single objective methods to determine elliptical Pareto fronts. This a custom

method developed here to try and exploit the elliptical nature exhibited by the multi-

objective airfoil formulations. Linear aggregating functions [11] guide the optimization

algorithm.

The method makes use of objective weights to guide a single objective optimizer to

refine different sections of the Pareto front. The weights are generated by fitting a hyper

ellipse to the designs in the repository. The EPO repository makes use of radial functions

to determine crowding.

A weights vector w is used to cast the multi-objective function into a single objective

function. Different w will steer the single objective optimizer to different sections of the

Pareto front, as illustrated in Figure 5.4 . The single objective aggregating function f is

f(w,x) = w · F (x). (5.22)

When a new w is generated, it is done to target the oldest non-dominated design

in the repository. The repository stores the non-dominated designs Xr, together with

their corresponding objective-space values Fr, and ages Ar. After each single objective

iteration i, Ar is increased. A new w is determined by finding the center of a hyper-ellipse

fitted to Fr.
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Fr is scaled into Y to increase the accuracy of the ellipse fit for poorly-scaled objective-

function spaces:

Y = {s⊗ F for F ∈ Fr}, (5.23)

where the scaling vector s is calculated by determining the smallest hyper-rectangle that

encompasses all Fr. The top corner tc and the bottom corner bc of the bounding hyper-

rectangle are

tcj = max
{

Fj for F ∈ Fr
}

j = 1, 2, . . . , k (5.24)

bcj = min
{

Fj for F ∈ Fr
}

j = 1, 2, . . . , k (5.25)

giving

si = 1/(tci − bci) j = 1, 2, . . . , k (5.26)

Once the objective-space has been scaled, the hyper-ellipse can be fitted. An unrotated

hyper-ellipse as a function of y ∈ <k, has a radius component ri and a center component

ci for each dimension. The hyper-ellipse formula is:

k∑
i=1

(
yi − ci
ri

)2

= 1 (5.27)

∴
k∑
i=1

(
1

r2i
y2i −

2ci
r2i
yi +

c2i
r2i

)
= 1. (5.28)

Grouping the constant terms in (5.28) gives

k∑
i=1

(
1

r2i
y2i −

2ci
r2i
yi

)
+ Υ = 0. (5.29)

Eliminating the scaling variants by dividing through by the constant Υ, generates the

form that can be used for the least-square error fit:

k∑
i=1

(
aiy

2
i + biyi

)
+ 1 = 0. (5.30)

The over determined linear system for fitting Y , which has q observations, is given
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by


Y 2
1,1 Y 2

2,1 . . . Y 2
k,1 Y1,1 Y2,1 . . . Yk,1

Y 2
1,2 Y 2

2,2 . . . Y 2
k,2 Y1,2 Y2,2 . . . Yk,2

...
...

. . .
...

...
...

. . .
...

Y 2
1,q Y 2

2,q . . . Y 2
k,q Y1,q Y2,q . . . Yk,q





a1

a2
...

ak

b1

b2
...

bk


=



−1

−1
...

−1

−1

−1
...

−1


(5.31)

AE = B. (5.32)

The least-square error solution to (5.32) is obtained from

ATAE = ATB. (5.33)

Once the linear system of order 2k is solved, ci and ri can be determined directly using

the least squares solution. The quadratic rule applied to (5.30) on objective function

dimension i gives

yi =

−bi ±
√
b2i − 4ai

[∑k,j 6=i
j=1

(
ajy2j + bjyj

)
+ 1
]

2ai
. (5.34)

Inspecting (5.34) shows that ci which is the value about which yi is mirrored, is

ci =
−bi
2ai

, (5.35)

with the center of the ellipse ec fitted to Fr being:

ec,i = ci/si i ∈ 1, 2, . . . ,m (5.36)

The center point formula (5.35) can be verified by substituting the value from (5.28)

into it. Formally
−bi
2ai

=
−(−2ci/r

2
i )/Υ

2(1/r2i )/Υ
= ci (5.37)

The radius ri, is determined by solving the maximization problem

ri = max


√
b2i − 4ai

[∑k,j 6=i
j=1

(
ajy2j + bjyj

)
+ 1
]

2ai

 . (5.38)
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For a hyper-ellipse we know the maximum of (5.38) will occur when all other yj = cj.

Thus the radius component is

ri =

√
b2i − 4ai

[∑k,j 6=i
j=1

(
ajc2j + bjcj

)
+ 1
]

2ai
. (5.39)

The ellipse fitted to Fr is valid when

all(tc < ec). (5.40)

w is calculated to refine Fr around a target point f t as follows:

w =

normalized(ec − f t) if (5.40) is valid,

normalized(tc − f t) otherwise.
(5.41)

f t is the oldest point in the repository. After a point is selected as the target point

its age is reset. This mechanism aims to ensure that all sections on the Pareto front

approximation receive attention.

If the Pareto front of the multi-objective problem does not resemble a hyper-ellipse

which satisfies (5.40), then the EPO technique is not expected to work well. The pseudo-

code for generating w is given in Algorithm 12.

Algorithm 12 EPO pseudo code to generate w

procedure EPO Generate w(Fr,Ar)
tc . (5.24)
bc . (5.25)
f t . oldest Fr according to Ar
if all(tc − bc > 0) and can fit ellipse then . eq. 5.33
ec . (5.36)
w . (5.41)

else if any(tc − bc > 0) then
w = normalized(tc − f t)

else
use old w . only one point on Pareto front

end if
end procedure

The size of the archive is limited to rm by using a distance based crowding rule. The

generalized crowding distance function C’s value for a point in the objective space, ξ ∈ <k,
is

C(ξ) =
∑{

1∑k
i=1

(
sk(ξi − Fi)

)2 ∀F ∈ Fr if ‖ξ − F‖ 6= 0

}
, (5.42)
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with the scaling factor s the same as the one used for the hyper-ellipse fit (5.33).

The crowding function (5.42) is the summation of sub functions emitted from every

design in the archive’s objective value. Figure 5.5 shows a 2D example of the crowding

function.

Since we need to determine which design in Xr has the highest crowding, only the

crowding values of Fr are of interest. The repository’s crowding value set Cr is

Cr =
{
C(F ) for F ∈ Fr

}
. (5.43)

Determining Cr directly as in (5.43) involves many repeated square distance calcu-

lations. This is due to symmetry in the distance calculations. The distance table C

is

C =



0 sym. . . .

δ1,2 0 . . .

δ1,3 δ2,3 0 . . .

δ1,4 δ2,4 δ3,4 0 . . .
...

...
...

...
. . .


, (5.44)

with

δi,j =

‖Fr,i − Fr,j‖−2 if ‖Fr,i − Fr,j‖ 6= 0

0 otherwise.
(5.45)

Note that Cr is determined by summing the columns of C which requires
(
len(Fr)−

1
)
/2 × len(Fr) square-distance calculations. The pseudo code for adding a point to the

EPO Repository is

Algorithm 13 EPO adding a point to the repository pseudo code

procedure Rep Inspect(xc)
if xc valid then . does not violate any constraints

update Xr . (5.6) and (5.7)
if len(Xr) > rm then

C . (5.43)
remove the point with highest C from the repository.

end if
end if

end procedure

The EPO algorithm consists of main loop and a sub loop. In every iteration of the

main loop:

• the objective blending weight vector (w) is recalculated,
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(a) Sub function emitted from designs in the archive

(b) Crowding function which is the summation of the sub functions

Figure 5.5: 2D illustration of the crowding function
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• selected population member’s designs are regenerated as to avoid diversity loss

(shown later in (5.47)) and

• the single objective optimizer sub loop is run with the new w.

The single objective optimizers used in this implementation are the PSO and DE

population-based methods. Figure 5.6 show the expected EPO algorithm progression for

a bi-objective function with an elliptical Pareto front.

The main loop continues a total of Imax times, resulting in Imax subproblems (sin-

gle objective optimizations runs). Imax depends on the number of function evaluations

allowed evals and the number of iterations allocated to the single objective optimizer,

isub. In the case of the PSO or DE single objective optimizers the maximum number of

iterations is

Imax =

⌊
evals

N · isub

⌋
. (5.46)

At the start of every main iteration calculated past the first, there is an α probability

that a population member will be re-spawned around the target objective function value

F t. This is done to ensure that the diversity is maintained and also to speed up conver-

gence to the aggregate function’s suspected minimum xt. The target design f t is used as

the center point for the new position. The size of the re-spawn hyper-rectangle is based

upon the populating boundaries bl and bu and increases as I grows larger:

xj0 = xt +
I

Imax
(ru(0, 1)− 0.5)(bu − bl). (5.47)

If isub is very large, then the population of the single objective optimizer will all be

close to the minimum of f, and hence a large α is recommended. Alternatively, if isub is

low then the population will still be widely distributed at the end of the sub-optimization,

and a lower α should be used.

Every time the function is evaluated, the output is checked by the repository. The

DE variant of EPO is given in Algorithm 14, and the PSO variant in Algorithm 15.
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(a) Main iter. 2 (b) Main iter. 3

(c) Main iter. 6 (d) Main iter. 7

(e) Main iter. 8 (f) Main iter. 10

Figure 5.6: Progression of the EPO method under favorable circumstances. The cross shows
f t the design used to generate w whose ‘minimization’ direction is shown by the
arrow. The line that represents the fitted ellipse and ellipse center (triangle) is
only shown if the fit is valid.
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Algorithm 14 EPODE pseudo code

procedure EPODE(N , CR, F , Imax, isub, α, bl, bu)
for j ∈ {0, 1, . . . , N − 1} do . Initialize population
xj0 . (4.1)

end for
for I ∈ {0, 1, . . . , Imax − 1} do

calculate w . Algorithm 12
for i ∈ {0, 1, . . . , isub − 1} do

for j ∈ {0, 1, . . . , N − 1} do
if i = 0 and I > 0 and ru(0, 1) < α then
xj0 . (5.47)

else
vji . (4.3)
uji . (4.5)
xji = min(xji−i,u

j
i ) . Figure 4.1

end if
end for
Increase age counter for each designs in repository.

end for
end for

end procedure

Algorithm 15 EPOPSO pseudo code

procedure EPOPSO(N , ω, c1, c2, Imax, isub, α, bl, bu)
for j ∈ {0, 1, . . . , N − 1} do . Initialize population
xj0 . (4.1)
xjpb = xj0

end for
for I ∈ {0, 1, . . . , Imax − 1} do

calculate w . Algorithm 12
for i ∈ {0, 1, . . . , isub − 1} do

for j ∈ {0, 1, . . . , N − 1} do
if i = 0 and I > 0 and ru(0, 1) < α then
xj0 . (5.47)
xjpb = xj0
vj0 = 0

else
vji . (4.8)
xji . (4.7)
xjpb = min(xjpb,x

j
i ) . Figure 4.1

end if
end for
xgb = min(x1

pb,x
2
pb, . . . ,x

N
pb) . Figure 4.1

Increase age counter for each designs in repository.
end for

end for
end procedure

87

 
 
 



5.5 Testing

Assessing the performance of multi-objective algorithms is a multi-objective problem in

itself. This is as the criteria for assessing the non-dominated solutions are independent.

For example, the closeness of a set of non-dominated designs to the true Pareto front is

not coupled to the spread of this set. Zitzler [38] shows that the best way to determine

the performance of a MOEA is to compare its results to another MOEA’s results. In

the tests performed here the MOEA solutions for the test functions are plotted for visual

inspection as well as quantified using two performance indicators.

The quantitative performance indicators used are the generalized distance metric and

the hyper volume metric [26]. The indicators compare the two Pareto front approxi-

mations. Since the Pareto fronts for the test functions are known, the comparison is

done between the true Pareto front P , and the Pareto front points approximated by the

MOEA, P . The performance indicators are:

• The generational distance (GD) performance indicator returns the normalized sum

of the points’ in P shortest euclidean distance to P ,

GD =

√∑n
i=1 d

2
i

n
, (5.48)

where the distance d is the distance vector which consists of n elements.

• The Hyper-volume ratio (HVR) performance indicator uses the ratio of the volume

enclosed by the approximate Pareto front V (P,po), to the volume enclosed by the

True Pareto front V (P ,po)

HVR = 1− V (P,po)

V (P ,po)
, (5.49)

where po is the volume bounds. In this application po is chosen such that

po,i = max{pi ∀p ∈ P}. i ∈ 1, 2, . . . , k. (5.50)

If an element in P lies beyond po it is ignored. Figure 5.7 shows an example of the

hyper volumes for a bi-objective function.

Four testing problems are used to assess the MOEA implementations. The first two

are custom test problems which make use of the constraint surface approach [14], and the

other test problems are from literature. The test problems are:
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f1

f2

po

P

(a) Hyper-volume of Pareto front approxima-
tion, V (P,po)

f1

f2

po

P

(b) Hyper-volume of Pareto front, V (P,po)

Figure 5.7: Hyper-volumes used by the HVR performance indicator for a bi-objective function.

• Multi-objective test problem 1: the line

F (x1, x2) =

[
x1

x2

]
(5.51)

g(x1, x2) =

4− x1 − x2
−x1
−x2

 (5.52)

bl = [0.0, 0.0] (5.53)

bu = [4.0, 4.0] (5.54)

P =

{[
4− t
t

]
∀ t ∈ [0, 4]

}
(5.55)

The test function is basic with the objective space and design directly linked. It

consists of only 2 design variables and 2 objective functions.
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• Multi-objective test problem 2: the ellipse

F (x1, x2) =

[x1, x2]
T if x < 2 or x > 3

undefined otherwise
(5.56)

g(x1, x2) =


(
(x1 − 5)/4

)2
+ ((x2 − 1)/0.5

)2 − 1

−x1
−x2

 (5.57)

bl = [0.0, 0.0] (5.58)

bu = [4.0, 4.0] (5.59)

P =

{[
t

−0.5
√

1− ((t− 5)/4)2 + 1

]
∀ t ∈ [1, 2] + [3, 5]

}
(5.60)

The Pareto front for this test problem is two arcs of an ellipse. The undefined band

adds the risk that the multi-objective optimizer could get stuck on one side of the

undefined band and only solve part of the Pareto front.

• Multi-objective test problem 3: Kursawe as in [12]:

F (x1, x2, x3) =

[∑n−1
i=1

(
−10e−0.2

√
x2i+x

2
i+1

)
∑n

i=1

(
|xi|0.8 + 5 sin(xi)

3
) ] (5.61)

g(x1, x2, x3) =



−5− x1
−5− x2
−5− x3
x1 − 5

x2 − 5

x3 − 5


(5.62)

bl = [−5,−5,−5] (5.63)

bu = [5, 5, 5] (5.64)

P ≈
{[
−20

0

]}
+
{
F
(
[t, 0, 0]T

)
∀ t ∈ [−1.52,−0.51]

}
+
{
F
(
[t, 0, t]T

)
∀ t ∈ [−1.47,−1.0]

}
(5.65)

+
{
F
(
[−1.52 + 0.25t,−1.52 + 0.72t,−1.52 + 0.25t]T

)
∀ t ∈ [0, 1]

}
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• Multi-objective test problem 4: Deb as in [12]:

F (x1, x2, x3) =

[
x1

Fg(x2)

x1

]
(5.66)

Fg(x2) = 2.0− e−((x2−0.2)/0.004)2 − 0.8e−((x2−0.6)/0.4)
2

(5.67)

g(x1, x2, x3) =


0.1− x1
0.1− x2
x1 − 1

x2 − 1

 (5.68)

bl = [0.1, 0.1] (5.69)

bu = [1.0, 1.0] (5.70)

P =

{[
t

Fg(0.2)/t

]
∀ t ∈ [0.1, 1]

}
(5.71)

When testing the multi-objective algorithms, the maximum allowable number of func-

tion evaluations was set to 15 000 and the repository size to 50. Each optimization was

repeated 11 times to approximate MOEA consistency. Algorithm specific settings are

summarized in Table 5.1.

Note that the population members are not directly boxed inside the populating bound-

aries. This likely had a negative effect on the MOPSO algorithm which is designed with

particle boxing built-in. Boxing is turned off to create similar conditions as those of the

airfoil multi-objective formulations which do not have bound constraints.

The test results for the MOEAs on the testing problems are shown in Figures 5.8 to

5.11. Graphically it appears that all the MOEAs can successfully optimize the first three

test problems. But the algorithms appear to struggle on the forth test function with none

consistently and accurately approximating the Pareto front.

All algorithms managed to successfully approximate the Pareto front for the first test

function. Table 5.2 shows the performance indicator value for the first test function,

in which EPOPSO did the best according to the HVR measure. EPODE performed

marginally worse than the EPOPSO algorithm, followed by the MOSADE algorithm.

algorithm settings

EPODE N = 50, F = 0.5, CR = 0.6, isub = 10, α = 0.3
EPOPSO N = 50, ω = 0.6, c1 = 1, c2 = 1, isub = 10, α = 0.3
MOPSO N = 50, ω = 0.4, η = 0.5

MOSADE N = 50, Fl = 0.1, Fu = 0.9, CRl = 0.0, CRu = 1.0

Table 5.1: MOEA settings for testing problems.
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(a) EPODE
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(b) EPOPSO
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(c) MOPSO
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(d) MOSADE

Figure 5.8: Probability density plot over 11 runs for the MOEA Pareto front approximations
on the first test problem. The line in each diagram represents the true Pareto
front.

GD HVR

n̄ best median worst best median worse

EPODE 50.00 0.0021 0.0038 0.0896 0.0436 0.0626 0.0821
EPOPSO 50.00 0.0037 0.0046 0.0062 0.0383 0.0599 0.0728
MOPSO 50.00 0.0087 0.0486 0.1041 0.0556 0.0773 0.1318
MOSADE 50.00 0.0036 0.0058 0.0104 0.0443 0.0594 0.0782

Table 5.2: Performance indicators for MOEAs on the first test problem.
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(d) MOSADE

Figure 5.9: Probability density plot over 11 runs for the MOEA Pareto front approximations
on the second test problem. The line in each diagram represents the true Pareto
front.

GD HVR

n̄ best median worst best median worse

EPODE 50.00 0.0012 0.0024 0.0030 0.0629 0.1760 0.3042
EPOPSO 50.00 0.0005 0.0013 0.0059 0.0779 0.3019 0.8730
MOPSO 31.09 0.0021 0.0046 0.0151 0.0857 0.1258 0.2261
MOSADE 50.00 0.0007 0.0017 0.0029 0.0545 0.0804 0.1103

Table 5.3: Performance indicators for MOEAs on the second test problem.
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(d) MOSADE

Figure 5.10: Probability density plot over 11 runs for the MOEA Pareto front approximations
on the third test problem. The line in each diagram represents the true Pareto
front.

GD HVR

n̄ best median worst best median worse

EPODE 49.91 0.0106 0.0161 0.0230 0.0660 0.0864 0.1034
EPOPSO 49.82 0.0087 0.0143 0.0239 0.0663 0.0856 0.1004
MOPSO 36.91 0.0387 0.0506 0.0582 0.1217 0.2273 0.2902
MOSADE 44.45 0.0119 0.0209 0.0532 0.0565 0.1372 0.2876

Table 5.4: Performance indicators for MOEAs on the third test problem.
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Figure 5.11: Probability density plot over 11 runs for the MOEA Pareto front approximations
on the fourth test problem. The line in each diagram represents the true Pareto
front.

GD HVR

n̄ best median worst best median worse

EPODE 49.91 0.0964 0.1972 0.2847 0.0131 0.0281 0.2240
EPOPSO 49.91 0.2172 0.2603 0.3501 0.0115 0.1490 0.2235
MOPSO 39.73 0.2931 0.3856 0.6673 0.0642 0.1630 0.5289
MOSADE 48.73 0.2079 0.3006 0.4425 0.1554 0.2336 0.3439

Table 5.5: Performance indicators for MOEAs on the fourth fourth problem.
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The MOPSO and EPODE algorithm have the largest variance on the GD metric. The

MOPSO algorithm is the outlier for this test problem with its performance indicators

significantly worse than the other MOEAs.

No algorithm clearly performed the best on the second test function according to the

performance indicators shown in Table 5.3. What should be noted is that the MOPSO

algorithm does not fill its repository to the maximum allocated size of 50, but averages

a repository size of 31.

The performance indicator results for the third test problem are listed in Table 5.4. As

for the second test problem, the EPO variants and the MOSADE algorithm have similar

performance. The MOPSO implementation has the poorest performance indicators, and

also does not fill the repository to its maximum size limit.

The performance indicators for the fourth function are shown in Table 5.5. The

EPODE algorithm performs best on the GD indicator, and EPOPSO performs best on

the HVR indicator.

The MOEAs have been implemented to a limited level of success. They are able to

approximately determine the problem Pareto fronts but less successfully than the values

reported for the original implementations. This poorer performance is probability caused

by a minor implementation error or misinterpretation by the Author.

The airfoil multi-objective formulations are more difficult than the test functions used.

The airfoil formulations each consists of 17 design variables and two or more objectives.

But according to the MOEAs test results the implementations, although probably not

operating at peak efficiency, should be able perform the airfoil multi-objective optimiza-

tions.

The airfoil multi-objective formulations are presented in the next section together

with their optimization results.

5.6 Airfoil optimization

Three Pareto-optimal multi-objective formulations are chosen, each of which investigate

different aspects of the physical problem. The first formulation is designed to investigate

and quantify the effect of the avionics box height constraint. The second formulation has

an objective for each of the three drag coefficients and the third formulation combines

the first and second formulations. The airfoil Pareto-optimal multi-objective formulations

are:

• Multi-objective formulation 1 (MOF1): avionics box height vs. blended drag coef-
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ficients,

F (x) =

[
3CD1(x) + CD2(x) + CD3(x)

−Bh(x)

]
(5.72)

g(x) =

[
0.75−maxLift(x)

Bh(x)− 100mm

]
(5.73)

bl = [0, 0, . . . , 0] (5.74)

bu = [1, 1, . . . , 1] (5.75)

• Multi-objective formulation 2 (MOF2): cruise drag vs. loiter drag vs. high-speed

dash drag for 50 % semi-span wing section,

F (x) =

CD1(x)

CD2(x)

CD3(x)

 (5.76)

g(x) =

[
0.75−maxLift(x)

73mm(x)−Bh

]
(5.77)

bl = [0, 0, . . . , 0] (5.78)

bu = [1, 1, . . . , 1] (5.79)

• Multi-objective formulation 3 (MOF3): avionics box height vs. cruise drag vs.

loiter drag vs. high-speed dash drag,

F (x) =


CD1(x)

CD2(x)

CD3(x)

−Bh(x)

 (5.80)

g(x) =

[
0.75−maxLift(x)

Bh(x)− 100mm

]
(5.81)

bl = [0, 0, . . . , 0] (5.82)

bu = [1, 1, . . . , 1] (5.83)

The MOEA settings used are the same as those used in the testing section which are

shown in Table 5.1, with the exception of the allowable function evaluations. The function

evaluations required are expected to be larger than those of the a priori formulations, as

a more detailed analysis is done. The number of function evaluations is set to 15 000 for

MOF1, 20 000 for MOF2 and 40 000 for MOF3.
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a priori formulations

avionics box height MOF1 population-based gradient-based

73 mm 0.0365 0.0358 0.0367
10 mm 0.0240 0.0192 0.0249

Table 5.6: The minimum blended drag values for two different avionics heights determined
through optimization methods.

MOF1 investigates the effect that the avionics box’s height constraint has on the

blended drag value. Determining this relationship assists the design engineer to quantify

the cost associated with changing the avionics box height, as well as to give insight into

how the shape of the Pareto optimal airfoil changes for different heights. MOF1 is also

used for verification, since the results can be checked against the values obtained from

the a priori formulations, whose solutions should lie on its Pareto front.

Figure 5.12 shows the results obtained from MOF1. The four designs plotted in this

figure show the shape trend of the airfoil as the avionics boxes height is reduced. It

appears that the shape trend mostly involves the thinning of the airfoil and changing the

trailing edge angle.

The MOPSO algorithm clearly performed the best out of the MOEAs on MOF1. The

majority of MOPSO’s approximated Pareto front dominates the approximations of the

other algorithms. This is contrary to the performance on the test functions, where the

MOPSO implementation was worse then the other MOEAs.

Checking the approximated Pareto front for MOF1 against the values obtained in

the a priori optimization allows for the estimation of the accuracy of the approximated

Pareto front. Table 5.6 shows the results from MOF1 together with the results obtained

using the a priori formulations.

The approximated Pareto front dominates the values of the modified gradient-based

and surrogate methods but not those from the population-based methods on the a priori

formulations. The Pareto front distance error appears to be the largest for a thin avionics

box decreasing as the avionics box becomes thicker. Increasing the maximum number of

function evaluations to 20 000 or 30 000 should help to decrease these errors.

A multi-objective optimization presents the user with a family of solutions which they

can choose from. Users can select the design/s which suit their criteria best. Appendix

E shows the family of solutions determined for MOF1.

The MOPSO algorithm performed the best on MOF2 as well and generated the most

non-dominated points when compared to the other MOEAs. To summarize,

• the MOPSO algorithm generated 53 designs,
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Figure 5.12: Results from avionics box height vs blended drag coefficients multi-objective
formulation.

99

 
 
 



C
D 1

7.0
7.5

8.0

CD
2

7.2

7.4

7.6

7.8

8.0

C
D

3

8.5

9.0

9.5

10.0

10.5

11.0

(a) EPODE

C
D 1

6.5
7.0

7.5
8.0

CD
2

7.0
7.2

7.4
7.6

7.8
8.0

8.2

C
D

3

9

10

11

12

(b) EPOPSO

C
D 1

6.5
7.0

7.5

CD
2

7.0

7.5

8.0

8.5

C
D

3

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

(c) MOPSO

C
D 1

7.0
7.5

8.0

CD
2

7.4
7.6

7.8
8.0

8.2
8.4

8.6

C
D

3

6

8

10

12

14

(d) MOSADE

note: drag coefficient values are multiplied by 1000.

Figure 5.13: Multi-objective results for the minimization of three drag coefficients for different
lift requirements.

• the EPOPSO algorithm generated 11 designs,

• the MOSADE algorithm generated one non dominated design and

• the EPODE algorithm generated no non dominated designs

As the number of objectives increase it becomes more difficult to visually gauge the

MOEAs performance. The second formulation’s results are shown in Figure 5.13.

At the start of the chapter the choice of blending weights used in the a priori formula-

tions was questioned. The questions included what effect the blending weight had on the

final design, and how would a design optimized for loiter or high-speed dash drag differ

from one created using a blended drag. The results from MOF2 allow these questions to

be answered.
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CD1 (cruise) CD2 (loiter) CD3 (dash)
description image (×102) (×102) (×102)

best dash 0.896 1.200 0.613

best cruise 0.682 1.001 0.767

best loiter 0.877 0.515 0.824

best for weights:
{1,1,1}

0.714 0.834 0.668

best for weights:
{2,1,1}

0.691 0.896 0.648

best for weights:
{3,1,1}

0.691 0.896 0.648

best for weights:
{4,1,1}

0.691 0.896 0.648

Table 5.7: Selected designs from the approximated Pareto front for the second multi-objective
formulation.
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Designs selected from the solution to MOF2 are presented in Table 5.7. The Pareto

front approximations give solutions for the best design if only one of the drag coefficients is

considered. Comparison of the “best high-speed dash” and “best loiter” design show that

both have a high cruise drag and that they differ largely in loiter and dash performance.

The “best cruise” design appears to be more flattened out than the “best loiter” and

“best high-speed dash” designs.

The airfoil seems to be relatively insensitive to the choice of blending weights used.

The best solutions for the blending-weights of {2, 1, 1}, {3, 1, 1} and {4, 1, 1} are the same

airfoil. The design with the minimum blended drag for the weights of {1, 1, 1} does not

differ significantly form the design corresponding to blending-weights of {3, 1, 1}.
The error in the Pareto front approximation is small. The design, from the family of

solutions returned from MOF2, with the minimum blended drag for the weights {3, 1, 1}
has the blended drag value of 0.03617. This blended drag value is only 0.72% larger than

the best solution obtained from the corresponding a priori formulations.

MOF3 results indicate that the MOEAs are unsuccessful in approximating the Pareto

front. Visual inspection of the results, which are shown in Appendix G, shows this.

Amongst the Pareto Front for MOF3 should be the results from MOF1, and MOF2. But

these designs or equivalent designs are not present.

As the number of objective functions increase so does the Pareto Front complexity.

MOF3 has an additional order of complexity due to the addition of the avionics box height

objective function. It also appears that settings which are successful for MOF1 and MOF2

should be adjusted for MOF3. Perhaps allocating additional function evaluations, and

increasing the repository size would improve the Pareto Front approximations.

The Pareto-optimal multiple objective optimizations provided the user with detailed

insight which can be used to create a superior design. The Pareto-optimal multiple-

objective methods are more costly than the a priori approach as they perform a more in

depth analysis, but yield richer results.
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CHAPTER 6

CONCLUSION

The optimization algorithms implemented have reproduced and extended the CSIR op-

timization results. The a priori avionics box height formulation results were reproduced

and slightly improved, and the maximum lift formulations have been successfully imple-

mented. Direct multi-objective optimization analysis has also been preformed to supple-

ment the findings.

The optimization problem’s characteristics prevent gradient-based methods from suc-

cessfully minimizing the a priori formulations. The various work-arounds of over-sampling,

averaging gradients and excessive line searches were implemented to handle noise, poor

gradient information and undefined space. Although the customized gradient methods

managed to improve performance it came at the cost of many extra function evaluations,

and it did not eliminate the algorithm parameter sensitivity. The gradient methods’ in-

adequate performance is due to the optimization problem’s characteristics that do not

meet the prerequisites that gradient-based methods are developed to exploit.

The population-based methods are successful in optimizing the a priori formulations.

For the avionics box height formulation they produce better designs in the high number

of function evaluation domain. As for the maximum lift formulation, they produce sig-

nificantly better designs as they are able to handle the bad characteristics inherent in the

maximum lift constraint.

The Pareto-optimal multi-objective analysis provided further insight into the 2D UAV

airfoil optimization problem. They have the advantage over the a priori approach as

they allow the user to select a design(s) from the non-dominated designs set, removing

the burden of having to assign importance to each objective before the optimization. The

population-based multi-objective methods, just as the single objective methods, were first

tested on sample problems to assure that they have been implemented successfully. Three

different multi-objective formulations are implemented:
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• the avionics box height vs. blended drag coefficient formulation,

• the cruise drag vs. the loiter drag vs. the high-speed dash drag formulation inves-

tigates the drag relationships and

• the third airfoil formulation combines the first and the second multi-objective for-

mulations attempting to solve the drag performance for various avionics box heights.

The correct use of optimization techniques is important for a successful and com-

petitive design process. For engineering application where trade-offs are common multi-

objective optimization is especially important.
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Appendix A - Further discussion on line search algo-

rithm testing results

Figures 1 and 2 show additional detail regarding the line search behavior. The test

functions used were:

t1(x) = (x− 0.8)2 (1)

t2(x) = t1(x)− 0.2 sin
(
mod(10(x− 0.8) + π/2), π)

)
(2)

t3(x) =

t1(x) if mod(x, 0.6) > 0.3

undefined otherwise
(3)

t4(x) =

t2(x) if mod(x, 0.6) > 0.3

undefined otherwise
(4)

For each function the starting point was x = 0, with a positive search direction and

an initial section size of 1. The step tolerance was set to 10−6. Figures 1 and 2 show

the search performed by the golden section search and the populating section search

respectively.

The performance of the golden section search on the second test function is explained

as follows. In the first generation, the last point is the minimum and as such the search

is expanded by adding a point at 1.618. In the next iteration the local minimum located

at 1.1 causes the search section to be reduced incorrectly.

The golden section search reduces its search size quicker than the section populat-

ing search, but is less robust. The section populating search explores the space more

thoroughly, which in simple cases such as the first test function is unnecessary. In more

complicated scenarios such as the forth test function and airfoil single objective optimiza-

tion problems it is advantageous.
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Figure 1: Golden section search, points evaluated during search
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Figure 2: Section populating search, points evaluated during search
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Appendix B - Constrained optimization single objec-

tive test functions

Selected problems from Lecture Notes in Economics and Mathematical Systems 187 [19]

where used to benchmark the gradient-based and population-based optimizers. The prob-

lem used are presented in this section.

• Test function 1 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (5)

g(x1, x2) =
[
−1.5− x2

]
(6)

starting at xs [-2.0, 1.0] (feasible) , minimum at x∗ [1.0, 1.0]. f(xs) = 909.0000 and

f(x∗) = 0.0000

• Test function 2 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (7)

g(x1, x2) =
[
1.5− x2

]
(8)

starting at xs [-2.0, 1.0] (infeasible) , minimum at x∗ [1.224371, 1.5]. f(xs) = 909.0000

and f(x∗) = 0.0504

• Test function 3 :

f(x1, x2) = x2 + 10.0−5(x2 − x1)2 (9)

g(x1, x2) =
[
−x2

]
(10)

starting at xs [10.0, 1.0] (feasible) , minimum at x∗ [0.0, 0.0]. f(xs) = 1.0008 and

f(x∗) = 0.0000

• Test function 4 :

f(x1, x2) = 1.0/3.0(x1 + 1)3 + x2 (11)

g(x1, x2) =

[
1− x1
−x2

]
(12)

starting at xs [1.125, 0.125] (feasible) , minimum at x∗ [1.0, 0.0]. f(xs) = 3.3236 and

f(x∗) = 2.6667
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• Test function 5 :

f(x1, x2) = sin(x1 + x2) + (x1 − x2)2 − 1.5x1 + 2.5x2 + 1 (13)

g(x1, x2) =


−1.5− x1
x1 − 4

−3− x2
x2 − 3

 (14)

starting at xs [0.0, 0.0] (feasible) , minimum at x∗ [-0.547198, -1.547198]. f(xs) =

1.0000 and f(x∗) = −1.9132

• Test function 6 :

f(x1, x2) = (1− x1)2 (15)

h(x1, x2) =
[
10(x2 − x21)

]
(16)

starting at xs [-1.2, 1.0] (feasible) , minimum at x∗ [1.0, 1.0]. f(xs) = 4.8400 and

f(x∗) = 0.0000

• Test function 7 :

f(x1, x2) = log(1 + x21)− x2 (17)

h(x1, x2) =
[
(1 + x21)

2 + x22 − 4
]

(18)

starting at xs [2.0, 2.0] (infeasible) , minimum at x∗ [0.0, 1.732051]. f(xs) = −0.3906

and f(x∗) = −1.7321

• Test function 8 :

f(x1, x2) = −1.0 (19)

h(x1, x2) =

[
x21 + x22 − 25

x1x2 − 9

]
(20)

starting at xs [2.0, 1.0] (feasible) , minimum at x∗ [4.601595, 1.955844]. f(xs) =

−1.0000 and f(x∗) = −1.0000

• Test function 9 :

f(x1, x2) = sin(πx1/12) cos(πx2/16) (21)

h(x1, x2) =
[
4x1 − 3x2

]
(22)
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starting at xs [0.0, 0.0] (feasible) , minimum at x∗ [-3.0, -4.0]. f(xs) = 0.0000 and

f(x∗) = −0.5000

• Test function 10 :

f(x1, x2) = x1 − x2 (23)

g(x1, x2) =
[
−(−3x21 + 2x1x2 − x22 + 1)

]
(24)

starting at xs [-10.0, 10.0] (infeasible) , minimum at x∗ [0.0, 1.0]. f(xs) = −20.0000

and f(x∗) = −1.0000

• Test function 11 :

f(x1, x2) = (x1 − 5)2 + x22 − 25 (25)

g(x1, x2) =
[
−x2 + x21

]
(26)

starting at xs [4.9, 0.1] (infeasible) , minimum at x∗ [1.234741, 1.524584]. f(xs) =

−24.9800 and f(x∗) = −8.4985

• Test function 12 :

f(x1, x2) = 0.5x21 + x22 − x1x2 − 7x1 − 7x2 (27)

g(x1, x2) =
[
4x21 + x22 − 25

]
(28)

starting at xs [0.0, 0.0] (feasible) , minimum at x∗ [2.0, 3.0]. f(xs) = 0.0000 and

f(x∗) = −30.0000

• Test function 13 :

f(x1, x2) = (x1 − 2)2 + x22 (29)

g(x1, x2) =

x2 − (1− x1)3
−x1
−x2

 (30)

starting at xs [-2.0, -2.0] (infeasible) , minimum at x∗ [1.0, 0.0]. f(xs) = 20.0000 and

f(x∗) = 1.0000
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• Test function 14 :

f(x1, x2) = (x1 − 2)2 + (x2 − 1)2 (31)

g(x1, x2) =
[
0.25x21 + x22 − 1

]
(32)

h(x1, x2) =
[
−1− x1 + 2x2

]
(33)

starting at xs [2.0, 2.0] (infeasible) , minimum at x∗ [0.822876, 0.911438]. f(xs) =

1.0000 and f(x∗) = 1.3935

• Test function 15 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (34)

g(x1, x2) =

1− x1x2
−x1 − x22
x1 − 0.5

 (35)

starting at xs [-2.0, 1.0] (infeasible) , minimum at x∗ [0.5, 2.0]. f(xs) = 909.0000 and

f(x∗) = 306.5000

• Test function 16 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (36)

g(x1, x2) =


−x1 − x22
−x21 − x2
−0.5− x1
x1 − 0.5

x2 − 1

 (37)

starting at xs [-2.0, 1.0] (infeasible) , minimum at x∗ [0.5, 0.25]. f(xs) = 909.0000 and

f(x∗) = 0.2500

• Test function 17 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (38)

g(x1, x2) =


x1 − x22
−x21 + x2

−0.5− x1
x1 − 0.5

x2 − 1

 (39)

starting at xs [-2.0, 1.0] (infeasible) , minimum at x∗ [0.0, 0.0]. f(xs) = 909.0000 and
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f(x∗) = 1.0000

• Test function 18 :

f(x1, x2) = 0.01x21 + x22 (40)

g(x1, x2) =



25− x1x2
25− x21 − x22

2− x1
x1 − 50

−x2
x2 − 50


(41)

starting at xs [2.0, 2.0] (infeasible) , minimum at x∗ [15.811388, 1.581139]. f(xs) =

4.0400 and f(x∗) = 5.0000

• Test function 19 :

f(x1, x2) = (x1 − 10)3 + (x2 − 20)3 (42)

g(x1, x2) =



100− (x1 − 5)2 − (x2 − 5)2

−82.81 + (x2 − 5)2 + (x1 − 6)2

13− x1
x1 − 100

−x2
x2 − 100


(43)

starting at xs [20.1, 5.84] (infeasible) , minimum at x∗ [14.095000, 0.842961]. f(xs) =

−1808.8583 and f(x∗) = −6961.8139

• Test function 20 :

f(x1, x2) = 100(x2 − x21)2 + (1− x1)2 (44)

g(x1, x2) =


−x1 − x22
−x2 − x21

1− x21 − x22
−0.5− x1
x1 − 0.5

 (45)

starting at xs [-2.0, 1.0] (infeasible) , minimum at x∗ [0.5, 0.866025]. f(xs) = 909.0000

and f(x∗) = 38.1987
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• Test function 21 :

f(x1, x2) = 0.01x21 + x22 − 100 (46)

g(x1, x2) =


10− x2 − 10x1

2− x1
x1 − 50

−50− x2
x2 − 50

 (47)

starting at xs [-1.0, -1.0] (infeasible) , minimum at x∗ [2.0, 0.0]. f(xs) = −98.9900 and

f(x∗) = −99.9600

• Test function 22 :

f(x1, x2) = (x1 − 2)2 + (x2 − 1)2 (48)

g(x1, x2) =

[
x1 + x2 − 2

x21 − x2

]
(49)

starting at xs [2.0, 2.0] (infeasible) , minimum at x∗ [1.0, 1.0]. f(xs) = 1.0000 and

f(x∗) = 1.0000

• Test function 23 :

f(x1, x2) = x21 + x22 (50)

g(x1, x2) =



−x1 − x2 + 1

−x21 − x22 + 1

−9x21 − x22 + 9

−x21 + x2

−x22 + x1

−50− x1
x1 − 50

−50− x2
x2 − 50


(51)

starting at xs [3.0, 1.0] (infeasible) , minimum at x∗ [1.0, 1.0]. f(xs) = 10.0000 and

f(x∗) = 2.0000

117

 
 
 



• Test function 24 :

f(x1, x2) = 1/(2730.5)((x1 − 3)2 − 9)x32 (52)

g(x1, x2) =


−x1/30.5 + x2

−x1 − 30.5x2

x1 + 30.5x2 − 6

−x1
−x2

 (53)

starting at xs [1.0, 0.5] (feasible) , minimum at x∗ [3.0, 1.732051]. f(xs) = −0.0134

and f(x∗) = −1.0000

• Test function 25 :

f(x1, x2, x3) =
100∑
i=1

fi (54)

where fi = −0.01i+ exp(−1/x1(ui − x2)x3) (55)

and ui = 25 + (−50 log(0.01i))2/3 (56)

g(x1, x2, x3) =



0.1− x1
x1 − 100

−x2
x2 − 25.6

−x3
x3 − 5


(57)

starting at xs [100.0, 12.5, 3.0] (feasible) , minimum at x∗ [50.0, 25.0, 1.5]. f(xs) =

32.8350 and f(x∗) = 0.0000

• Test function 26 :

f(x1, x2, x3) = (x1 − x2)2 + (x2 − x3)4 (58)

h(x1, x2, x3) =
[
(1 + x22)x1 + x43 − 3

]
(59)

starting at xs [-2.6, 2.0, 2.0] (feasible) , minimum at x∗ (multiple) [-1.810536, -1.810536,

-1.810536],[1.0, 1.0, 1.0]. f(xs) = 21.1600 and f(x∗) = 0.0000

• Test function 27 :

f(x1, x2, x3) = 0.01(x1 − 1)2 + (x2 − x21)2 (60)

h(x1, x2, x3) =
[
x1 + x23 + 1

]
(61)
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starting at xs [2.0, 2.0, 2.0] (infeasible) , minimum at x∗ [-1.0, 1.0, 0.0]. f(xs) = 4.0100

and f(x∗) = 0.0400

• Test function 28 :

f(x1, x2, x3) = (x1 + x2)
2 + (x2 + x3)

2 (62)

h(x1, x2, x3) =
[
x1 + 2x2 + 3x3 − 1

]
(63)

starting at xs [-4.0, 1.0, 1.0] (feasible) , minimum at x∗ [0.5, -0.5, 0.5]. f(xs) = 13.0000

and f(x∗) = 0.0000

• Test function 29 :

f(x1, x2, x3) = −x1x2x3 (64)

g(x1, x2, x3) =
[
x21 + 2x22 + 4x23 − 48

]
(65)

starting at xs [1.0, 1.0, 1.0] (feasible) , minimum at x∗ [4.0, 2.828427, 2.0]. f(xs) =

−1.0000 and f(x∗) = −22.6274

• Test function 30 :

f(x1, x2, x3) = x21 + x22 + x23 (66)

g(x1, x2, x3) =



−x21 − x22 + 1

1− x1
x1 − 10

−10− x2
x2 − 10

−10− x3
x3 − 10


(67)

starting at xs [1.0, 1.0, 1.0] (feasible) , minimum at x∗ [1.0, 0.0, 0.0]. f(xs) = 3.0000

and f(x∗) = 1.0000
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• Test function 31 :

f(x1, x2, x3) = 9x21 + x22 + 9x23 (68)

g(x1, x2, x3) =



1− x1x2
−10− x1
x1 − 10

1− x2
x2 − 10

−10− x3
x3 − 1


(69)

starting at xs [1.0, 1.0, 1.0] (feasible) , minimum at x∗ [0.577350, 1.732051, 0.0].

f(xs) = 19.0000 and f(x∗) = 6.0000

• Test function 32 :

f(x1, x2, x3) = (x1 + 3x2 + x3)
2 + 4(x1 − x2)2 (70)

g(x1, x2, x3) =


−6x2 − 4x3 + x31 + 3

−x1
−x2
−x3

 (71)

h(x1, x2, x3) =
[
1− x1 − x2 − x3

]
(72)

starting at xs [0.1, 0.7, 0.2] (feasible) , minimum at x∗ [0.0, 0.0, 1.0]. f(xs) = 7.2000

and f(x∗) = 1.0000

• Test function 33 :

f(x1, x2, x3) = (x1 − 1)(x1 − 2)(x1 − 3) + x3 (73)

g(x1, x2, x3) =



−x23 + x22 + x21

−x21 − x22 − x23 + 4

−x1
−x2
−x3
x3 − 5


(74)

starting at xs [0.0, 0.0, 3.0] (feasible) , minimum at x∗ [0.0, 1.414214, 1.414214].

f(xs) = −3.0000 and f(x∗) = −4.5858
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• Test function 34 :

f(x1, x2, x3) = −x1 (75)

g(x1, x2, x3) =



−x2 + exp(x1)

−x3 + exp(x2)

−x1
x1 − 100

−x2
x2 − 100

−x3
x3 − 10


(76)

starting at xs [0.0, 1.05, 2.9] (feasible) , minimum at x∗ [0.834032, 2.302585, 10.0].

f(xs) = −0.0000 and f(x∗) = −0.8340

• Test function 35 :

f(x1, x2, x3) = 9− 8x1 − 6x2 − 4x3 + 2x21 + 2x22 + x23 + 2x1x2 + 2x1x3 (77)

g(x1, x2, x3) =


−3 + x1 + x2 + 2x3

−x1
−x2
−x3

 (78)

starting at xs [0.5, 0.5, 0.5] (feasible) , minimum at x∗ [1.333333, 0.777778, 0.444444].

f(xs) = 2.2500 and f(x∗) = 0.1111

• Test function 36 :

f(x1, x2, x3) = −x1x2x3 (79)

g(x1, x2, x3) =



−72 + x1 + 2x2 + 2x3

−x1
x1 − 20

−x2
x2 − 11

−x3
x3 − 42


(80)

starting at xs [10.0, 10.0, 10.0] (feasible) , minimum at x∗ [20.0, 11.0, 15.0]. f(xs) =

−1000.0000 and f(x∗) = −3300.0000
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• Test function 37 :

f(x1, x2, x3) = −x1x2x3 (81)

g(x1, x2, x3) =



−72 + x1 + 2x2 + 2x3

−x1 − 2x2 − 2x3

−x1
−x2
−x3

x1 − 42

x2 − 42

x3 − 42


(82)

starting at xs [10.0, 10.0, 10.0] (feasible) , minimum at x∗ [24.0, 12.0, 12.0]. f(xs) =

−1000.0000 and f(x∗) = −3456.0000

• Test function 38 :

f(x1, x2, x3, x4) = 100(x2 − x21)2 + (1− x1)2 + 90(x4 − x23)2 + (1− x3)2

+ 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1) (83)

g(x1, x2, x3, x4) =



−10− x1
−10− x2
−10− x3
−10− x4
x1 − 10

x2 − 10

x3 − 10

x4 − 10


(84)

starting at xs [-3.0, -1.0, -3.0, -1.0] (feasible) , minimum at x∗ [1.0, 1.0, 1.0, 1.0].

f(xs) = 19192.0000 and f(x∗) = 0.0000

• Test function 39 :

f(x1, x2, x3, x4) = −x1 (85)

g(x1, x2, x3, x4) =

[
−x2 + x31 + x23

−x21 + x2 + x24

]
(86)

starting at xs [2.0, 2.0, 2.0, 2.0] (infeasible) , minimum at x∗ [1.0, 1.0, 0.0, 0.0]. f(xs) =

−2.0000 and f(x∗) = −1.0000
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• Test function 40 :

f(x1, x2, x3, x4) = −x1x2x3x4 (87)

h(x1, x2, x3, x4) =

−x
3
1 − x22 + 1

−x21x4 + x3

−x24 + x2

 (88)

starting at xs [0.8, 0.8, 0.8, 0.8] (infeasible) , minimum at x∗ [0.793701, 0.707107,

0.529732, 0.840896]. f(xs) = −0.4096 and f(x∗) = −0.2500

• Test function 41 :

f(x1, x2, x3, x4) = 2− x1x2x3 (89)

g(x1, x2, x3, x4) =



−x1
−x2
−x3
x1 − 1

x2 − 1

x3 − 1

−x4
x4 − 2


(90)

h(x1, x2, x3, x4) =
[
x1 + 2x2 + 2x3 − x4

]
(91)

starting at xs [2.0, 2.0, 2.0, 2.0] (infeasible) , minimum at x∗ [0.666667, 0.333333,

0.333333, 2.0]. f(xs) = −6.0000 and f(x∗) = 1.9259

• Test function 42 :

f(x1, x2, x3, x4) = (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2 + (x4 − 4)2 (92)

h(x1, x2, x3, x4) =

[
x1 − 2

x23 + x24 − 2

]
(93)

starting at xs [1.0, 1.0, 1.0, 1.0] (feasible) , minimum at x∗ [2.0, 2.0, 0.848528, 1.131371].

f(xs) = 14.0000 and f(x∗) = 13.8579
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• Test function 43 :

f(x1, x2, x3, x4) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4 (94)

g(x1, x2, x3, x4) =

−8 + x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4
−10 + x21 + 2x22 + x23 + 2x24 − x1 − x4
−5 + 2x21 + x22 + x23 + 2x1 − x2 − x4

 (95)

starting at xs [0.0, 0.0, 0.0, 0.0] (feasible) , minimum at x∗ [0.0, 1.0, 2.0, -1.0]. f(xs) =

0.0000 and f(x∗) = −44.0000

• Test function 44 :

f(x1, x2, x3, x4) = x1 − x2 − x3 − x1x3 + x1x4 + x2x3 − x2x4 (96)

g(x1, x2, x3, x4) =



−8 + x1 + 2x2

−12 + 4x1 + x2

−12 + 3x1 + 4x2

−8 + 2x3 + x4

−8 + x3 + 2x4

−5 + x3 + x4

−x1
−x2
−x3
−x4



(97)

starting at xs [0.0, 0.0, 0.0, 0.0] (feasible) , minimum at x∗ [0.0, 3.0, 0.0, 4.0]. f(xs) =

0.0000 and f(x∗) = −15.0000

• Test function 45 :

f(x1, x2, . . . , x5) = 2− 1.0/120x1x2x3x4x5 (98)

g(x1, x2, . . . , x5) =



−x1
−x2
−x3
−x4
−x5
x1 − 1

x2 − 2

x3 − 3

x4 − 4

x5 − 5



(99)
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starting at xs [2.0, 2.0, 2.0, 2.0, 2.0] (infeasible) , minimum at x∗ [1.0, 2.0, 3.0, 4.0,

5.0]. f(xs) = 1.7333 and f(x∗) = 1.0000

• Test function 46 :

f(x1, x2, . . . , x5) = (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6 (100)

h(x1, x2, . . . , x5) =

[
x21x4 + sin(x4 − x5)− 1

x2 + x43x
2
4 − 2

]
(101)

starting at xs [0.707107, 1.75, 0.5, 2.0, 2.0] (feasible) , minimum at x∗ [1.0, 1.0, 1.0,

1.0, 1.0]. f(xs) = 3.3376 and f(x∗) = 0.0000

• Test function 47 :

f(x1, x2, . . . , x5) = (x1 − x2)2 + (x2 − x3)2 + (x3 − x4)4 + (x4 − x5)4 (102)

h(x1, x2, . . . , x5) =

x1 + x22 + x33 − 3

x2 − x23 + x4 − 1

x1x5 − 1

 (103)

starting at xs [2.0, 1.414214, -1.0, 0.585786, 0.5] (feasible) , minimum at x∗ [1.0, 1.0,

1.0, 1.0, 1.0]. f(xs) = 12.4954 and f(x∗) = 0.0000

• Test function 48 :

f(x1, x2, . . . , x5) = (x1 − 1)2 + (x2 − x3)2 + (x4 − x5)2 (104)

h(x1, x2, . . . , x5) =

[
x1 + x2 + x3 + x4 + x5 − 5

x3 − 2(x4 + x5) + 3

]
(105)

starting at xs [3.0, 5.0, -3.0, 2.0, -2.0] (feasible) , minimum at x∗ [1.0, 1.0, 1.0, 1.0, 1.0].

f(xs) = 84.0000 and f(x∗) = 0.0000

• Test function 49 :

f(x1, x2, . . . , x5) = (x1 − x2)2 + (x3 − 1)2 + (x4 − 1)4 + (x5 − 1)6 (106)

h(x1, x2, . . . , x5) =

[
x1 + x2 + x3 + 4x4 − 7

x3 + 5x5 − 6

]
(107)

starting at xs [10.0, 7.0, 2.0, -3.0, 0.8] (feasible) , minimum at x∗ [1.0, 1.0, 1.0, 1.0,

1.0]. f(xs) = 266.0001 and f(x∗) = 0.0000
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• Test function 50 :

f(x1, x2, . . . , x5) = (x1 − x2)2 + (x2 − x3)2 + (x3 − x4)4 + (x4 − x5)4 (108)

h(x1, x2, . . . , x5) =

x1 + 2x2 + 3x3 − 6

x2 + 2x3 + 3x4 − 6

x3 + 2x4 + 3x5 − 6

 (109)

starting at xs [35.0, -31.0, 11.0, 5.0, -5.0] (feasible) , minimum at x∗ [1.0, 1.0, 1.0, 1.0,

1.0]. f(xs) = 17416.0000 and f(x∗) = 0.0000

• Test function 100 :

f(x1, x2, . . . , x7) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7 (110)

g(x1, x2, . . . , x7) =


127− 2x21 − 3x42 − x3 − 4x24 − 5x5

282− 7x1 − 3x2 − 10x23 − x4 + x5

192− 23x1 − x22 − 6x26 + 8x7

−4x21 − x22 + 3x1x2 − 2x23 − 5x6 + 11x7

 (111)

starting at xs [1.0, 2.0, 0.0, 4.0, 0.0, 1.0, 1.0] (feasible) , minimum at x∗ [2.330499,

1.951372, -0.477541, 4.365736, -0.624487, 1.038131, 1.594227]. f(xs) = 714.0000 and

f(x∗) = 680.6297

• Test function 113 :

f(x1, x2, . . . , x10) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2 + (x5 − 3)2

+ 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

(112)

g(x1, x2, . . . , x10) =



105− 4x1 − 5x2 + 3x7 − 9x8

−10x1 + 8x2 + 17x7 − 2x8

8x1 − 2x2 − 5x9 + 2x10 + 12

−3(x1 − 2)2 − 4(x2 − 3)2 − 2x23 + 7x4 + 120

−5x21 − 8x2 − (x3 − 6)2 + 2x4 + 40

−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x25 + x6 + 30

−x21 − 2(x2 − 2)2 + 2x1x2 − 14x5 + 6x6

3x1 − 6x2 − 12(x9 − 8)2 + 7x10


(113)

starting at xs [2.0, 3.0, 5.0, 5.0, 1.0, 2.0, 7.0, 3.0, 6.0, 10.0] (feasible) , minimum at

x∗ [2.171996, 2.363683, 8.773926, 5.095984, 0.990655, 1.430574, 1.321644, 9.828726,

8.280092, 8.375927]. f(xs) = 753.0000 and f(x∗) = 24.3062
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Appendix C - Performance of gradient-based algo-

rithms on the single objective constrained test prob-

lems

This Appendix presents the complete results of the constrained gradient-based algorithms

performances on the test problems given in Appendix B. The constrained algorithm

parameters, which are the same for every test problem, are

• COBYLA: initial trust region τi = 0.1, maximum function evaluations 10 000.

• LFOPC: undefined space avoidance factor ρu = 1.0. 500 iterations per phase.

• LMM-BFGS: BFGS Imax = 150, LMM It = 6, ρ = 15.0

• LMM-CGPR: same as LMM-BFGS

• LMM-LFOP: LFOP Imax = 500, LMM It = 6, ρ = 50.0, initial step 0.05, undefined

space avoidance factor ρu = 1.0

• SQP: Hessian finite difference perturbation size ε = 0.1, line search penalty function

parameter ρ = 100.0

• SLSQP: Imax = 1000

Table 1 and Table 2 give a summary of the algorithm performances. The summary

tables are followed by tables giving further detail on each of the algorithms’ performance.

In Problem 2 and Problem 15 only the SLSQP method manages to find the function

minimum, with the rest of the algorithms converging to the local minimum. Lowering the

penalty factor for Problem 2 allows other methods to also find the problem minimum.

Problem 25 is an example where having a large penalty factor restricts the optimiza-

tion algorithms excessively, making them unable to search the design space. Changing ρ

to 1 gives the LMM method enough freedom to move around and find the solution.

The LMM-CGPR (Table 3) and LMM-BFGS (Table 4) come close to problem mini-

mum on the majority of functions.

When examining the performance of the LFOP methods, LMM-LFOP (Table 5) and

LFOPC (Table 6), the reader is reminded that these methods are designed for engineering

analysis. These methods focus on robustness, not high accuracy.

The COBYLA method (Table 7) cannot handle equality constraints, hence the blank

results for the COBYLA algorithm are where the test problems contained equality con-

straints.

The SQP (Table 8) and SLSQP (Table 9) methods are the most successful in terms

of finding the function minimum. Note however that the SLSQP algorithm is far more

efficient than the implemented SQP method.
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COBYLA LFOPC LMM-BFGS LMM-CGPR LMM-LFOP SQP SLSQP

t1 17391x 1281 1296 1196 1856 885 78x
t2 - - - - - - 80v

t3 56v - 582v 627 - 249 -

t4 17v 2313 552v 562v 6552 239 8

t5 47 486 291 321 476 335 26

t6 - 11881v 12296v - 1429v 38v

t7 - 1732v 1732v - 972v 42v

t8 556v 341v 371v 1172v 272v 18v

t9 - 564v 573v - 282v 24vx
t10 84v 2338x 3552 2442v - - 45v

t11 73v - 1862v 1997v - 885 33v

t12 60v 5272 2902 3138 - 3054 42v

t13 69v 20693v - - - - 113vx
t14 1963 602 772v 1162 368 24v

t15 - - - - - - 21v

t16 - 1413vx 722v 722v - - -

t17 35v 1683v 1297 1462 2332v 511v 55

t18 80v - - - - 3276 32vx
t19 35 - 4029v 4690v - - 25v

t20 - - 1243v 1263v - - 51v

t21 55v - 747 827 - 322v 16v

t22 21v 1008x 1572v 2699x - 365 26v

t23 23 2078v 1197v - 6994 531 24

t24 18v 1088x 893v 2307v - - 20v

t25 - - - - - - -

t26 - 11652vx - - 4090v 118vx

The number of function evaluations required to obtain the solution x, with ‖x−x∗‖ ≤ 10−4, max(g(x)) ≤
0 and max(|h(x)|) < 10−4 .
v the constraint criteria is loosely satisfied: 0 < max(g(x)) ≤ 10−6 or 10−4 < max|h(x)| < 10−2
x the distance criteria is loosely satisfied : 10−4 < ‖x− x∗‖ ≤ 10−2

- the returned solution is outside the required tolerances.

Table 1: Constrained optimization algorithm performances on test functions, part A.
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COBYLA LFOPC LMM-BFGS LMM-CGPR LMM-LFOP SQP SLSQP

t27 5259vx 8868v - - 12080v 109vx
t28 2619vx 246v - - 220v 21v

t29 92v - - - - 4025 67v

t30 91v 1683vx 1494 25245v - 1145 56vx
t31 89v - 2555 40696x - 865 37v

t32 5302x 1283 3728v - 275 15

t33 31v - - - - - -

t34 40v - - 19131x - 8770v 40v

t35 79v 1262x 1045v 2082vx - 180 31

t36 37v - 1742v 5093v 19350v - 10

t37 96v - - 820 - - -

t38 - 2494 2138 10362x 2269 2367 469

t39 166v - - - - - 73v

t40 2090vx 1710v - - - 31v

t41 4061x - - - - 36vx
t42 4206v 2487v 7424vx - 2719v 39vx
t43 132v 2640x 3825 24469vx - 3518v 62v

t44 41v - 2789v 14200v 24140 - 36

t45 48v 4216v - 9072 - - 56

t46 - - - - 8191v -

t47 3048vx 14503v - - 5016v 98v

t48 2861vx 409v 470vx - 505v 31v

t49 - 1781vx - - 3046v -

t50 9791vx 785v - - 434v 95vx
t100 355v - - - - 6843v 124v

t113 337v - - - - 3312 147v

The number of function evaluations required to obtain the solution x, with ‖x−x∗‖ ≤ 10−4, max(g(x)) ≤
0 and max(|h(x)|) < 10−4 .
v the constraint criteria is loosely satisfied: 0 < max(g(x)) ≤ 10−6 or 10−4 < max|h(x)| < 10−2
x the distance criteria is loosely satisfied : 10−4 < ‖x− x∗‖ ≤ 10−2

- the returned solution is outside the required tolerances.

Table 2: Constrained optimization algorithm performances on test functions, part B.
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tf ‖x− x∗‖ V † evals

1 0 0 1196

2 2.4454 0 842

3 0 0 627

4 0 0 562

5 0 0 321

6 0 0 12296

7 0 0 1732

8 0 0 371

9 0 0 573

10 0 0 2442

11 0.0001 0 1997

12 0 0 3138

13 0.4797 0 2169

14 0 0 772

15 3.5090 0 1594

16 0 0 722

17 0 0 1462

18 10.3935 0 1192

19 0 0 4690

20 0 0 1263

21 0 0 827

22 0.0014 0 2699

23 0.0000 0.0001 4760

24 0 0 2307

25 51.5606 0 88

26 0.1621 0 250350

tf ‖x− x∗‖ V † evals

27 0.0938 0 157854

28 0.0996 0 140980

29 1.5280 0 384

30 0 0 25245

31 0.0002 0 40696

32 0 0 3728

33 1.5261 0 921

34 0.0003 0 19131

35 0.0063 0 2082

36 0 0 5093

37 0 0 820

38 0.0005 0 10362

39 3.6866 0 49643

40 0.0151 0 37211

41 1.6899 0 296

42 0.0037 0 7424

43 0.0032 0 24469

44 0.0000 0 14200

45 0 0 9072

46 0.1234 0 131516

47 1.7365 0.0001 182883

48 0.0007 0 470

49 0.6784 0 5581

50 0.0176 0 23365

100 1.6756 0 473

113 1.3244 0.0000 53533

† maximum constraint violation

Table 3: LMM-CGPR performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0 0 1296

2 2.4454 0 822

3 0 0 582

4 0 0 552

5 0 0 291

6 0 0 11881

7 0 0 1732

8 0 0 341

9 0 0 564

10 0 0 3552

11 0.0001 0 1862

12 0 0 2902

13 0.1744 0 4532

14 0 0 602

15 3.5090 0 1594

16 0 0 722

17 0 0 1297

18 0.1874 0 10887

19 0 0 4029

20 0 0 1243

21 0 0 747

22 0 0 1572

23 0 0 1197

24 0 0 893

25 51.5606 0 88

26 0.0069 0 11652

tf ‖x− x∗‖ V † evals

27 0 0 8868

28 0 0 246

29 1.5284 0 145

30 0 0 1494

31 0 0 2555

32 0 0 1283

33 0.8171 0 679

34 0.0004 0 19635

35 0 0 1045

36 0 0 1742

37 10.1913 0 145

38 0 0 2138

39 3.2388 0 2033

40 0 0 1710

41 1.6948 0 345

42 0 0 2487

43 0 0 3825

44 0 0 2789

45 1.8433 0 4277

46 0.0578 0 7562

47 0 0 14503

48 0 0 409

49 0.0002 0 1781

50 0 0 785

100 0.0422 0 9227

113 0.0279 0.0000 72457

† maximum constraint violation

Table 4: LMM-BFGS performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0.0000 0 1856

2 2.4454 0 3542

3 9.9851 0.0217 15015

4 0 0 6552

5 0 0 476

6 2.0354 0 342

7 0.1285 0 592

8 0 0 1172

9 4.9704 0 2330

10 0.0712 0 1982

11 1.0432 0 161

12 0.0471 0 15015

13 0.7583 0 532

14 0 0 1162

15 3.5090 0 2704

16 1.0995 0 1448

17 0 0 2332

18 11.2877 0 141

19 4.7759 0 1444

20 1.0000 0 1828

21 2.5801 0 221

22 1.1761 0 86

23 0 0 6994

24 0.1864 0 15015

25 39.6414 0 806

26 3.7442 0.0000 10167

tf ‖x− x∗‖ V † evals

27 0.9503 0 3522

28 2.8644 0.0001 21021

29 0.0343 0 21021

30 0.0403 0 21021

31 0.0575 0 21021

32 0.0022 0.0000 94608

33 1.5320 0.0005 21021

34 6.9110 0 17637

35 0.1189 0 21021

36 0 0 19350

37 0.0222 0 10943

38 0.0000 0 2269

39 4.6825 0 487

40 0.0789 0 1874

41 0.2824 0 1928

42 0.1065 0.0001 27027

43 0.0553 0 27027

44 0.0000 0 24140

45 3.7428 0 266

46 0.6461 0.0000 85241

47 0.8494 0 56420

48 0.3126 0.0000 56288

49 4.5745 0.0001 33033

50 1.1747 0.0000 33033

100 0.2130 1.1130 45045

113 0.3915 0 63063

† maximum constraint violation

Table 5: LMM-LFOP performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0.0001 0 1281

2 2.4420 0 1488

3 9.9998 0 708

4 0.0000 0 2313

5 0 0 486

6 0.2261 0.0000 18536

7 0.1189 0 522

8 0.0000 0.0000 556

9 0.1503 0 16062

10 0.0009 0 2338

11 1.0055 0 241

12 0.0001 0 5272

13 0 0 20693

14 0 0 1963

15 0.6524 0.1578 25593

16 0.0049 0 1413

17 0 0 1683

18 1.0436 0 25077

19 2.9734 1.7401 26248

20 1.0000 0 22708

21 2.5858 0 311

22 0.0007 0 1008

23 0 0 2078

24 0.0015 0 1088

25 49.3209 0 3172

26 0.0217 0 8128

tf ‖x− x∗‖ V † evals

27 0.0004 0.0000 5259

28 0.0008 0 2619

29 0.0134 0 10334

30 0.0007 0 1683

31 0.0220 0 3258

32 0.0010 0 5302

33 1.5307 0 13723

34 1.4306 0.0000 35248

35 0.0013 0 1262

36 0.2819 0 36452

37 0.1731 0 35892

38 0.0000 0 2494

39 2.5679 0 496

40 0.0006 0.0000 2090

41 0.0042 0 4061

42 0.0000 0 4206

43 0.0033 0 2640

44 0.0000 0 13521

45 0 0 4216

46 0.2036 0.0000 4500

47 0.0002 0 3048

48 0.0002 0 2861

49 0.3653 0 8845

50 0.0002 0 9791

100 0.1412 0 75046

113 0.1026 0 35661

† maximum constraint violation

Table 6: LFOPC performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0.0016 0 17391

2 2.4454 0 50

3 0 0 56

4 0 0 17

5 0 0 47

6

7

8

9

10 0 0 84

11 0.0001 0 73

12 0 0 60

13 0 0 69

14

15 3.5090 0 143

16 1.0995 0 22

17 0 0 35

18 0 0 80

19 0 0 35

20 1.0000 0 22

21 0 0 55

22 0 0 21

23 0 0 23

24 0 0 18

25 49.9910 0 50000

26

tf ‖x− x∗‖ V † evals

27

28

29 0 0 92

30 0 0 91

31 0 0 89

32

33 0 0 31

34 0 0 40

35 0 0 79

36 0 0 37

37 0 0 96

38 2.8641 0 50000

39 0 0 166

40

41

42

43 0 0 132

44 0 0 41

45 0 0 48

46

47

48

49

50

100 0.0000 0 355

113 0 0 337

† maximum constraint violation

Table 7: COBYLA performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0 0 885

2 2.4454 0 378

3 0 0 249

4 0 0 239

5 0 0 335

6 0 0 1429

7 0 0 972

8 0 0 272

9 0 0 282

10 0.0001 0.0002 14710

11 0.0001 0 885

12 0 0 3054

13 2.6979 0.9019 5544

14 0 0 368

15 0.7914 0.2262 3068

16 2.6101 1.5000 103

17 0.0000 0 511

18 0 0 3276

19 0.1310 0.0748 13670

20 1.0870 0.0845 1798

21 0 0 322

22 0 0 365

23 0 0 531

24 2.1582 0 156

25 19.9799 0 200

26 0 0 4090

tf ‖x− x∗‖ V † evals

27 0.0001 0.0000 12080

28 0 0 220

29 0 0 4025

30 0 0 1145

31 0 0 865

32 0 0 275

33 1.5307 0.0055 6215

34 0 0 8770

35 0 0 180

36 0.0542 0.0552 13210

37 1.3555 0.0540 11360

38 0 0 2367

39 2.1590 0.0002 19500

40 0.0614 0.0003 19100

41 0.0233 0.0001 484

42 0 0 2719

43 0 0 3518

44 7.0711 0 374

45 3.8214 0 252

46 0 0 8191

47 0 0 5016

48 0 0 505

49 0 0 3046

50 0 0 434

100 0 0 6843

113 0 0 3312

† maximum constraint violation

Table 8: SQP performance on test functions.
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tf ‖x− x∗‖ V † evals

1 0.0003 0 78

2 0 0 80

3 9.9996 0 12

4 0 0 8

5 0.0001 0 26

6 0 0 38

7 0 0 42

8 0 0 18

9 0.0001 0 24

10 0 0 45

11 0.0001 0 33

12 0 0 42

13 0.0006 0 113

14 0 0 24

15 0 0 21

16 1.0995 0 30

17 0 0 55

18 0.0002 0 32

19 0 0 25

20 0 0 51

21 0 0 16

22 0 0 26

23 0 0 24

24 0 0 20

25 51.5606 0 5

26 0.0019 0 118

tf ‖x− x∗‖ V † evals

27 0.0004 0 109

28 0 0 21

29 0 0 67

30 0.0005 0 56

31 0.0000 0 37

32 0 0 15

33 1.5307 0 25

34 0 0 40

35 0 0 31

36 0 0 10

37 0 0 83

38 0.0001 0 469

39 0 0 73

40 0 0 31

41 0.0007 0 36

42 0.0003 0 39

43 0 0 62

44 0 0 36

45 0 0 56

46 0.1037 0 80

47 0.0001 0 98

48 0 0 31

49 0.2074 0 45

50 0.0003 0 95

100 0.0000 0 124

113 0.0000 0 147

† maximum constraint violation

Table 9: SLSQP performance on test functions.
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Appendix D - Performance of the population-based al-

gorithms on the single objective constrained test prob-

lems

The population-based routines performances on the constrained optimization test prob-

lems are presented in this section. The methods are stochastic, so each problem was run

11 times. The population bounds for both DE and PSO was the test problem starting

point xs ± 0.5.

The PSO particle count was set to 60 and the inertia factor, ω, to 0.7. The belief

factors c1 and c2 where both set to 1.0 as done in the main text.

The DE population size was set to 60, using a difference vector strength F of 0.5 and

a cross-over rate CR of 0.7. The best/1/bin scheme was used.

A heuristic is implemented for determining the number of function evaluations allo-

cated to each testing problem. The number of function evaluations fe, is based upon the

problem dimension, n as follows:

fe =


5000 if N ≤ 4

10000 if N = 5

20000 if N ≥ 6

(114)

All the algorithms run until fe as no other termination criteria are implemented.

This Appendix shows that the population based algorithm design selection criteria

used successfully handles constraints, albeit with less efficiency when compared to the

gradient based methods.

Tables 10 and 11 show a summary of the algorithms’ performance on the test problems.

This is followed by Table 12 which gives more detail on the DE optimization runs, and

Table 13 which presents additional detail on the PSO runs.
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Table 10: Constrained optimization algorithm performances, part A.

DE PSO

max evals. worst median best worst median best

t1 5000 4260 4080 3180 - - 4980x
t2 5000 - - - - - -

t3 5000 4980x 4980x 4980x - - -

t4 5000 4560 3900 3240 4560 3780 3180

t5 5000 2520 2460 2220 4080 3840 3060

t6 5000 - - - - - -

t7 5000 - - - - - -

t8 5000 - 4980x 4980x 4980x 4980x 4980x
t9 5000 4980x 4980x 4980x - - -

t10 5000 - 4980x 4980x - - 4980x
t11 5000 4980x 4980x 4980x - - 4980x
t12 5000 4980x 4980x 4980x - - 4980x
t13 5000 - - - - - -

t14 5000 4980x 4980x 4980x - - -

t15 5000 - - 4920 - - -

t16 5000 4980x 4500 3900 4980x 4980x 3780

t17 5000 4980x 4980x 4980 4980x 4980x 4920

t18 5000 - 4980x 4980x - - 4980x
t19 5000 - - 4980x - - -

t20 5000 - - 4980x - 4980x 4020

t21 5000 4980x 4500 3480 4980x 4980x 4800

t22 5000 4740 4560 4080 4500 4380 3900

t23 5000 4980x 4980x 4980x 4980x 4980x 4980

t24 5000 4980x 4440 3660 4620 4380 3840

t25 5000 - - - - - -

t26 5000 - - - - - -

The number of function evaluations required to obtain the solution x, with ‖x−x∗‖ ≤ 10−6, max(g(x)) ≤
0 and max(|h(x)|) < 10−4 .
x the distance criteria is loosely satisfied : 10−6 < ‖x− x∗‖ ≤ 10−3

- the returned solution is outside the required tolerances.
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Table 11: Constrained optimization algorithm performances on test functions.

DE PSO

max evals. worst median best worst median best

t27 5000 - - - - - -

t28 5000 4980x 4980x 4980x - - -

t29 5000 - - - - - -

t30 5000 4980x 4980x 4980x 4980x 4980x 4980x
t31 5000 4980x 4980x 4980x - - -

t32 5000 - - - - - -

t33 5000 - 4980x 4980x 4980x 4980x 4980x
t34 5000 - - - - - 4980x
t35 5000 4980x 4980x 4980x - - 4980x
t36 5000 - - 4980x - - 4980x
t37 5000 - - - - - -

t38 10000 - 9960x 9960x - - -

t39 10000 - - 9960x - - -

t40 10000 - - - - - -

t41 10000 - - 9960x - - -

t42 10000 - - - - - -

t43 10000 - - - - - -

t44 10000 - 9960x 9960x - 7500 6720

t45 20000 17520 16200 15300 19320 8160 7260

t46 20000 - - - - - -

t47 20000 - - - - - -

t48 20000 19980x 19980x 19980x - - -

t49 20000 - - 19980x - - -

t50 20000 - 19980x 19980x - - -

t100 20000 - - - - - -

t113 20000 - - - - - -

The number of function evaluations required to obtain the solution x, with ‖x−x∗‖ ≤ 10−6, max(g(x)) ≤
0 and max(|h(x)|) < 10−4 .
x the distance criteria is loosely satisfied : 10−6 < ‖x− x∗‖ ≤ 10−3

- the returned solution is outside the required tolerances.
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Table 12: DE median performance on test functions.

tf ‖x− x∗‖ f − f ∗ V † evals

1 0 0 0 4080

2 2.4454 4.8908 0 4980

3 0.0001 0 0 4980

4 0 0 0 3900

5 0 0 0 2460

6 2.0084 4.0333 0 4980

7 0.5855 0.4719 0 4980

8 0 0 0 4980

9 0 0 0 4980

10 0.0002 0 0 4980

11 0.0001 0 0 4980

12 0 0 0 4980

13 0.0094 0.0189 0 4980

14 0 0 0 4980

15 3.5090 53.8798 0 4980

16 0 0 0 4500

17 0 0 0 4980

18 0.0007 0 0 4980

19 0.0118 11.9254 0 4980

20 1.0000 2.0001 0 4980

21 0 0 0 4500

22 0 0 0 4560

23 0 0 0 4980

24 0 0 0 4440

25 0.0113 0 0 4980

26 3.7293 15.7074 0 4980

tf ‖x− x∗‖ f − f ∗ V † evals

27 0.5096 0.0133 0 4980

28 0.0002 0 0 4980

29 0.0035 0 0 4980

30 0 0 0 4980

31 0.0004 0 0 4980

32 0.0098 0.0005 0 4980

33 0.0005 0.0005 0 4980

34 0.0072 0.0007 0 4980

35 0.0002 0 0 4980

36 0.0024 0.1961 0 4980

37 0.0133 0.0025 0 4980

38 0 0 0 9960

39 0.0018 0 0 9960

40 0.3291 0.0762 0 9960

41 0.0035 0 0 9960

42 0.1744 0.1074 0 9960

43 0.0029 0.0005 0 9960

44 0 0.0002 0 9960

45 0 0 0 16200

46 1.9305 5.0692 0 19980

47 2.1495 6.2340 0 19980

48 0 0 0 19980

49 0.0020 0 0 19980

50 0 0 0 19980

100 0.0250 0.0032 0 19980

113 0.2807 0.4427 0 19980

† maximum constraint violation
All values below 10−4 are represented as 0
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Table 13: PSO median performance on test functions.

tf ‖x− x∗‖ f − f ∗ V † evals

1 0.0014 0 0 4980

2 2.4454 4.8908 0 4980

3 8.8373 0.0008 0 4980

4 0 0 0 3780

5 0 0 0 3840

6 1.8740 3.4392 0 4980

7 0.6721 0.5964 0 4980

8 0 0 0 4980

9 4.9989 0.4998 0 4980

10 0.0066 0 0 4980

11 0.0171 0.0004 0 4980

12 0.0074 0.0002 0 4980

13 0.0046 0.0093 0 4980

14 0.3224 0.8084 0 4980

15 3.5093 53.8802 0 4980

16 0 0 0 4980

17 0 0 0 4980

18 0.0248 0 0 4980

19 0.0621 62.5341 0 4980

20 0 0.0003 0 4980

21 0 0 0 4980

22 0 0 0 4380

23 0 0 0 4980

24 0 0 0 4380

25 48.9923 0.0056 0 4980

26 3.7822 21.9671 0 4980

tf ‖x− x∗‖ f − f ∗ V † evals

27 0.6860 0.2180 0 4980

28 4.5323 9.8031 0 4980

29 0.0232 0.0026 0 4980

30 0.0002 0 0 4980

31 0.0049 0.0002 0 4980

32 0.7907 1.5551 0 4980

33 0 0 0 4980

34 0.0037 0.0006 0 4980

35 0.0018 0 0 4980

36 0.0017 0.1478 0 4980

37 1.1089 9.8203 0 4980

38 0.3147 0.0373 0 9960

39 0.0155 0.0002 0 9960

40 0.2086 0.0338 0 9960

41 0.4492 0.0481 0 9960

42 0.4733 0.7914 0 9960

43 0.0612 0.0168 0 9960

44 0 0 0 7500

45 0 0 0 8160

46 1.8493 4.8674 0 19980

47 2.3710 9.4146 0 19980

48 7.0583 91.1838 0 19980

49 11.5855 > 100 0 19980

50 48.3291 > 100 0 19980

100 0.1519 0.2548 0 19980

113 1.4715 5.3733 0 19980

† maximum constraint violation
All values below 10−4 are represented as 0
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Appendix E - Optimization results for first airfoil multi-

objective formulation

This appendix contains the results for the first airfoil multi-objective formulation. The

first multi-objective formulation’s objectives are the avionics box height vs. blended drag.

The complete formulation is:

F (x) =

[
3CD1(x) + CD2(x) + CD3(x)

−Bh(x)

]
(115)

g(x) =

[
0.75−maxLift(x)

Bh(x)− 100mm

]
(116)

bl = [0, 0, . . . , 0] (117)

bu = [1, 1, . . . , 1] (118)

The results presented in this Appendix are a combination of the results from all the

MOEAs. The results are created by combining the MOEAs Pareto front approximations.

The combined Pareto front approximation consists of:

• 0 designs from EPODE,

• 11 designs from EPOPSO,

• 42 designs from MOPSO,

• 0 designs from MOSADE.
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Bh drag
thumbnail (mm) (×102)

100.00 4.945

100.00 4.896

98.89 4.863

98.20 4.815

97.67 4.789

97.63 4.783

96.61 4.749

95.89 4.713

94.72 4.691

94.61 4.640

Bh drag
thumbnail (mm) (×102)

93.59 4.620

91.86 4.595

91.30 4.454

88.56 4.424

88.53 4.414

88.22 4.321

86.81 4.269

85.86 4.267

85.02 4.210

84.15 4.116

Table 14: Family of results for multi-objective formulation 1, where the avionics box height
(Bh) is in mm, and the blended drag coefficients is multiplied by 100. Table (1 of
3)
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Bh drag
thumbnail (mm) (×102)

82.63 4.110

82.36 4.095

80.86 4.007

79.06 3.905

76.36 3.796

74.27 3.786

73.27 3.685

72.20 3.674

71.74 3.633

70.91 3.623

Bh drag
thumbnail (mm) (×102)

69.58 3.602

67.81 3.586

66.60 3.463

65.42 3.432

65.40 3.405

62.21 3.299

59.69 3.237

57.97 3.206

56.65 3.109

55.16 3.070

Table 15: Family of results for multi-objective formulation 1. Table(2 of 3)
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Bh drag
thumbnail (mm) (×102)

53.77 3.048

52.08 3.012

49.74 2.999

47.50 2.911

43.99 2.849

41.89 2.814

41.03 2.799

39.02 2.737

36.35 2.691

33.66 2.621

Bh drag
thumbnail (mm) (×102)

30.13 2.519

28.68 2.474

21.29 2.411

Table 16: Family of results for multi-objective formulation 1. Table (3 of 3)
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Appendix F - Optimization results for the second air-

foil multi-objective formulation

This appendix contains the results for the second multi-objective formulation. The drag

coefficients are uncoupled in this formulation. The objectives are the cruise drag CD1 vs.

the loiter drag CD2 vs. the high-speed dash drag CD3 . The complete formulation is:

F (x) =

CD1(x)

CD2(x)

CD3(x)

 (119)

g(x) =

[
0.75−maxLift(x)

73mm(x)−Bh

]
(120)

bl = [0, 0, . . . , 0] (121)

bu = [1, 1, . . . , 1] (122)

The results presented in this Appendix are a combination of the results from all the

MOEA’s. The results are created by combining the MOEAs Pareto front approximations.

The combined Pareto front approximation consists of:

• 0 designs from EPODE,

• 11 designs from EPOPSO,

• 53 designs from MOPSO,

• 1 design from MOSADE.
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drags Bh

thumbnail (×102) (mm)0.682
1.001
0.767

 73.03

0.686
0.930
0.661

 73.61

0.687
0.925
0.662

 73.56

0.687
1.045
0.656

 74.81

0.688
0.966
0.659

 73.89

0.689
0.912
0.683

 73.66

0.689
0.957
0.658

 74.28

0.689
0.943
0.661

 73.61

0.690
0.932
0.658

 73.60

0.691
0.904
0.655

 73.50

drags Bh

thumbnail (×102) (mm)0.691
0.940
0.642

 73.94

0.691
0.875
0.707

 73.43

0.691
0.911
0.648

 73.45

0.691
0.896
0.648

 73.25

0.693
0.889
0.679

 73.82

0.693
0.920
0.636

 73.40

0.693
0.895
0.677

 73.99

0.694
0.885
0.657

 73.50

0.699
0.869
0.692

 74.37

0.699
0.858
0.680

 73.76

Table 17: Family of results for multi-objective formulation 2. The drag order is cruise, loiter
and then high-speed dash. Table (1 of 4)

147

 
 
 



drags Bh

thumbnail (×102) (mm)0.700
0.864
0.664

 73.84

0.701
0.905
0.647

 73.17

0.703
0.854
0.785

 73.69

0.703
0.864
0.660

 73.50

0.704
1.020
0.624

 74.31

0.705
0.852
0.736

 73.24

0.705
0.855
0.675

 73.59

0.705
0.849
0.697

 73.47

0.705
0.841
0.682

 74.03

0.706
0.837
0.684

 74.21

drags Bh

thumbnail (×102) (mm)0.706
0.908
0.646

 73.25

0.706
0.840
0.675

 73.48

0.706
0.876
0.652

 73.73

0.708
0.828
0.744

 73.47

0.708
0.889
0.651

 73.71

0.710
0.836
0.681

 74.01

0.711
0.843
0.668

 73.45

0.711
0.854
0.657

 73.69

0.712
0.831
0.713

 74.68

0.713
0.846
0.665

 73.73

Table 18: Family of results for multi-objective formulation 2. Table (2 of 4)
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drags Bh

thumbnail (×102) (mm)0.713
0.823
0.696

 73.87

0.714
0.834
0.668

 73.43

0.714
0.833
0.678

 73.94

0.718
0.829
0.684

 73.95

0.719
0.825
0.692

 73.89

0.720
0.824
0.690

 73.99

0.722
0.820
0.719

 73.80

0.722
0.827
0.684

 73.95

0.723
1.017
0.628

 73.19

0.724
0.819
0.683

 73.15

drags Bh

thumbnail (×102) (mm)0.727
0.818
0.688

 73.79

0.727
0.812
0.696

 73.38

0.728
0.811
0.710

 73.34

0.732
0.817
0.681

 73.09

0.734
0.807
0.703

 73.30

0.736
0.812
0.701

 73.59

0.737
1.019
0.622

 73.72

0.738
0.811
0.688

 73.30

0.744
0.989
0.627

 73.50

0.744
0.805
0.717

 73.52

Table 19: Family of results for multi-objective formulation 2. Table (3 of 4)
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drags Bh

thumbnail (×102) (mm)0.746
0.805
0.697

 73.32

0.749
0.804
0.722

 73.62

0.749
0.804
0.702

 73.41

0.877
0.515
0.824

 74.55

0.896
1.200
0.613

 73.70

Table 20: Family of results for multi-objective formulation 2. Table (4 of 4)
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Appendix G - Optimization results for the third airfoil

multi-objective formulation

This appendix contains the results for the third multi-objective formulation which has

four objectives. The objectives are the cruise drag CD1 vs. the loiter drag CD2 vs. the

high-speed dash drag CD3 and the avionics box height. The complete formulation is:

F (x) =


CD1(x)

CD2(x)

CD3(x)

−Bh(x)

 (123)

g(x) =

[
0.75−maxLift(x)

Bh(x)− 100mm

]
(124)

bl = [0, 0, . . . , 0] (125)

bu = [1, 1, . . . , 1] (126)

The results presented in this Appendix are a combination of the results from all the

MOEA’s. The results are created by combining the MOEAs Pareto front approximations.

The combined Pareto front approximation consists of:

• 32 designs from EPODE,

• 45 designs from EPOPSO,

• 17 designs from MOPSO,

• 4 designs from MOSADE.

It should be noted that designs are not evenly distributed according to the avionics

box height, with a large proportion having avionics box height close to 100 mm.

Some of the thinner airfoils are also suspicious, appearing to be aerodynamically

infeasible.
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drags Bh

thumbnail (×102) (mm)0.386
0.771
1.005

 10.91

0.829
0.797
0.370

 20.19

0.480
0.700
0.663

 22.84

0.486
0.697
0.429

 24.25

0.527
0.575
0.591

 24.88

0.740
0.565
0.751

 25.54

0.542
0.571
0.802

 26.52

0.523
0.723
0.713

 29.60

0.534
0.610
0.479

 33.05

0.567
1.042
0.474

 34.51

drags Bh

thumbnail (×102) (mm)0.736
0.640
0.766

 36.52

0.605
0.861
0.516

 38.06

0.568
0.673
0.596

 38.99

0.870
0.795
0.818

 39.36

0.703
0.705
1.136

 40.08

1.057
1.121
0.510

 40.28

1.193
0.707
1.163

 40.52

0.632
0.809
0.835

 43.22

0.592
1.252
0.845

 43.80

0.605
0.790
0.858

 46.69

Table 21: Family of results for multi-objective formulation 3. The drag order is cruise, loiter
and then high-speed dash. Table (1 of 5)
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drags Bh

thumbnail (×102) (mm)0.637
0.894
0.523

 47.57

1.035
0.728
0.620

 47.96

0.639
0.831
0.572

 50.64

0.659
0.800
0.648

 53.29

0.614
0.831
0.907

 54.48

0.802
1.282
0.615

 54.61

0.890
0.725
0.843

 54.84

0.683
0.942
0.637

 60.60

0.703
1.510
0.635

 60.80

0.719
1.494
0.653

 61.26

drags Bh

thumbnail (×102) (mm)1.003
1.323
0.731

 78.52

0.888
0.968
1.059

 79.65

0.805
2.105
0.762

 80.41

0.836
1.349
0.753

 80.64

1.347
1.949
0.702

 80.70

1.343
1.790
0.729

 81.41

0.801
2.031
0.884

 82.04

0.864
1.992
0.751

 82.73

0.874
2.485
0.770

 82.87

0.899
0.972
1.097

 83.81

Table 22: Family of results for multi-objective formulation 3. Table (2 of 5)
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drags Bh

thumbnail (×102) (mm)1.003
1.323
0.731

 78.52

0.888
0.968
1.059

 79.65

0.805
2.105
0.762

 80.41

0.836
1.349
0.753

 80.64

1.347
1.949
0.702

 80.70

1.343
1.790
0.729

 81.41

0.801
2.031
0.884

 82.04

0.864
1.992
0.751

 82.73

0.874
2.485
0.770

 82.87

0.899
0.972
1.097

 83.81

drags Bh

thumbnail (×102) (mm)0.948
1.255
0.753

 84.84

0.847
1.183
0.937

 84.95

1.368
1.806
0.771

 85.09

0.879
0.985
0.824

 86.08

0.861
1.046
0.835

 86.74

1.264
0.679
1.211

 87.86

1.457
1.949
0.774

 88.03

1.144
0.709
1.123

 88.38

0.890
2.505
0.889

 88.49

0.921
1.035
0.860

 89.43

Table 23: Family of results for multi-objective formulation 3. Table (3 of 5)
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drags Bh

thumbnail (×102) (mm)1.642
2.036
0.810

 89.51

0.940
2.255
0.833

 90.25

0.892
1.117
0.941

 90.46

0.938
1.026
1.051

 91.37

0.969
1.116
1.200

 91.51

0.880
1.698
1.074

 91.61

1.423
2.131
0.793

 92.21

1.122
1.652
0.829

 92.72

0.900
2.604
0.871

 92.90

1.592
2.265
0.799

 93.40

drags Bh

thumbnail (×102) (mm)0.918
1.536
0.862

 93.85

0.922
1.801
0.882

 94.62

0.927
1.391
0.844

 96.81

0.948
1.214
0.872

 97.14

1.117
0.776
1.212

 97.36

0.970
1.971
0.893

 97.48

1.005
3.276
0.873

 97.51

0.528
1.135
1.084

 98.52

1.159
1.669
0.920

 98.68

1.008
1.134
1.125

 98.98

Table 24: Family of results for multi-objective formulation 3. Table (4 of 5)
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drags Bh

thumbnail (×102) (mm)0.993
2.363
0.875

 99.10

0.998
1.138
0.964

 99.12

1.044
3.353
0.846

 99.23

2.533
3.351
0.863

 99.40

0.979
2.103
0.900

 99.46

1.674
2.134
0.897

 99.68

1.041
1.188
0.980

 99.70

1.384
1.861
0.904

 99.72

1.354
1.496
1.260

 99.85

2.641
1.917
1.049

 99.87

drags Bh

thumbnail (×102) (mm)1.708
1.973
1.299

 99.87

1.409
5.548
1.288

 99.90

1.921
2.378
0.894

 99.94

1.506
2.206
1.030

 99.94

1.815
2.899
1.129

 99.95

1.030
1.498
1.489

 99.99

2.265
2.722
1.487

 100.00

2.287
2.438
2.211

 100.00

Table 25: Family of results for multi-objective formulation 3. Table (5 of 5)
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