CHAPTER 7

REASONING ABOUT SLOOP PROGRAMS

7.1 Introduction

The assertions in a SLOOP program serve several purposes. Firstly they provide a means of
conveying the semantics of the specified classes. Secondly they facilitate reasoning about the
correctness of the program. Finally, they provide the necessary information to derive the
SLOOP statements. All of these aspects are covered in this chapter. It is also shown how
correctness reasoning benefits from two key characteristics of the SLOOP approach, viz.
reusability and the absence of control flow.

7.1.1 Conveying the semantics

When a designer seeks information about the behaviour of a class, the assertions associated with
a SLOOP class and its methods enable the designer to obtain this information without having to
study the code. Section 7.2 describes the nature of the information that is obtained from the
various parts of a SLOOP class specification.

7.1.2 Reasoning about correctness

Another important role of the assertions is to facilitate reasoning about correctness. Section 7.3
deals with this topic. An example of an informal proof of each type of correctness property as
listed in Chapter 5, Section 5.2.4, is given.

Each example also serves to cover some aspect of correctness reasoning. For example, in one of
the discussions a detailed account is given of the steps that are usually followed when an
informal proof is presented. The use of induction [MaPn81b] when proving invariance
properties and the use of eventuality chains [MaPn81b] when proving liveness properties are
described. Other issues that are covered are, inter alia, the responsibilities of the client of an
object and the significance of the postconditions: and postconditions:
withArguments: constructs. Some of the examples presented in Section 7.3 deal with various
reusability aspects of correctness reasoning and others cover the impact of the SLOOP
computational model on correctness reasoning. These topics are discussed in more detail below.

7.1.3 Reusability
The fact that the system is designed as a set of classes suggests that the procedure used to reason

about the correctness of the system should take advantage of this architecture. The aim is
therefore to prove the properties (informally) on a per class basis and then rely on those

207

properties to hold when the methods of such a class are invoked. This approach simplifies the
arguments and provides structure to the procedure.

In order to achieve this one needs to show that if each component behaves correctly in isolation,
then it behaves correctly in concert with other components [AbLa89]. In UNITY, the restricted
union rule of superposition' specifies that any statement r may be added to the underlying
program provided that r does not assign to the underlying variables [ChMi88]. If program
composition is performed according to this rule, every property of the underlying program is a
property of the transformed program [ChMi88].

In the SLOOP method it is argued that when a new class is added to an existing set of classes in
a SLOOP program, then the behaviour of the individual classes remains correct, provided the
new class does not violate any of the preconditions specified for the methods of the existing
classes. Since each class encapsulates its own data, the class itself controls the way in which
this data may be modified. The restricted union rule of superposition is therefore used in
SLOOP when new classes are added.

When specialization of a class is performed, the descendant class can modify the variables
inherited from its ancestors, so this is similar to the concept of union” used in UNITY programs.
The union of two UNITY programs F and G contains the statements from both programs and
these statements can access and modify the same variables. The union theorem given in
[ChMi88] specifies how unless and ensures properties, as well as fixed points are preserved
under union’.

The notion of a conditional property was included in [ChMi88] to deal with liveness properties
of the form p leads-to ¢ when considering the union of F and G. In short, a conditional property
of program F consists of a hypothesis and a conclusion, each of which is an unconditional
property. The hypothesis represents the specification of a system in which F can be embedded.
The conclusion describes the effect of embedding F.in the system. The union of F and G is the
result of embedding F in the system.

When a SLOOP class is being specialized, new methods are added or existing methods are
overridden. Thus, the original class can be viewed as F and the descendant can be viewed as the
union of F and G, where G represents the statements added by the descendant. The constraints
that must be satisfied by the descendant represent the hypothesis described above. These
constraints are the class and method properties (excluding liveness properties of the form p
leads-to g) of the descendant’s ancestors. By using these properties as hypotheses, conclusions
can be derived that are of the form p leads-to g and which represent the liveness properties of the
ancestors. In turn, these liveness properties can be used to derive new liveness properties for the
descendant.

Since the correctness properties of a descendant should not violate any correctness properties of
its ancestors, it implies that the specialization of a class should not cause any of the existing

! The concept of superposition in the UNITY context was described in more detail in Chapter 2,
Section 2.5 .4.
2 A brief discussion of the union concept was presented in Chapter 2, Section 2.5.4. More details are

available in [ChMi88].
3 The union theorem given in [ChMi88] is as follows:
1. punless g in F[] G = (p unless g in F A p unless g in G)

2. p ensures q in F [] G =
[p ensures g in F A p unless g in G] Vv
[p ensures g in G A p unless g in F]
3. (FP of F[] G) = (FP of F) A (FP of G)

208

classes in the system to behave incorrectly. Thus, any class that sends messages to the
descendant of the original class, can still rely on the pre- and postconditions of the original
methods. The preconditions of the descendant’s method will not be strengthened and
postconditions will not be weakened. This topic is discussed further in Section 7.3.1.4.

The correctness properties specified for a class and its methods are the responsibility of that
specific class. Each class is obliged to guarantee that the postconditions of each of its properties
hold, provided the preconditions are met. A property is therefore only proved once for a given
class and thereafter it may be reused by other classes as a lemma*. Whenever an object invokes
a method of another object, the client object has to ensure that the preconditions of the method
being invoked are met.

One of the features of a SLOOP program is the fact that the statements that are executed
infinitely often are encapsulated in parallel methods and therefore form part of the
appropriate classes comprising the system. Exactly the same principles that apply to the
sequential methods of a class therefore also apply to its parallel methods, i.e. the correctness
properties of the parallel methods can be reused in the same way as those of sequential methods.

The system itself can be viewed as a composite class. The correctness properties of this class
represent the required behaviour of the system’. Once the correctness properties of the classes
that form part of the system have been proved (informally), the behaviour of these classes may
be assumed to be guaranteed as specified in these correctness properties. When reasoning about
the correctness of the system, these assertions can be reused as lemmas.

The correctness properties of the composite class representing the system specify the
interactions of the objects that form part of the system. When a composite class is subclassed in
order to add a new class to the system, the effect of the resulting additional or modified object
interactions must be taken into account in the correctness properties of the subclass of the
composite class. This applies to any composite class; not only to the one representing the system
under development

A class might reuse the correctness properties of its ancestors, override them or add new
properties. The impact of the inheritance feature of the SLOOP method is discussed in Section
7.3.14.

Note that design patterns can also be reused and their correctness should also be shown.
However, that topic will not be dealt with in this chapter. All the issues surrounding the usage of
design patterns in the SLOOP method will be covered in Chapter 9.

7.1.4 Absence of control flow

The absence of control flow in the parallel methods allows one to reason in terms of the
conditions, operations and assignments of individual parallel statements. There is no need to
consider the various combinations of statement interleavings in a multi-process environment,
since the order in which these statements are executed is irrelevant. The sequential methods are
invoked from the parallel methods and are viewed as terminating functions. Each parallel
statement is executed atomically. In the correctness arguments one can rely on the fact that
each statement will be executed inifinitely often.

* A lemma is defined as an "assumed or demonstrated proposition used in argument or proof”
[Syke76].
> In the call centre example, the CC_SimulationActivation class represents the behaviour of the system.

209

7.1.5 Using correctness properties to derive SLOOP statements

The methods of the various classes of a system are defined once the design phase correctness
properties have been specified. The behaviour described by the correctness properties yields the
necessary information to derive the methods of the classes. The liveness and/or precedence
properties provide the basis for deriving the parallel methods, as will be seen in Section 7.4. The
infinitely often execution of the statements of the parallel methods of the various classes has to
result in the desired progress being made.

The sequential methods are also derived from the correctness properties. Some of them are even
referenced directly in the correctness properties themselves, as will be shown in Section 7.4.
Some correctness properties are used to refine statements that have been derived from other
correctness properties. This role of correctness properties will also be demonstrated in Section
74.

The above-mentioned features of the SLOOP method are now exemplified using the call centre
example introduced in the earlier chapters.

Note: The examples below are at a detailed level. In many cases the discussions of the issues at
hand are interspersed with various parts of the informal proofs. In order to highlight the points
being made, the relevant parts of the text appear in boxes.

7.2 Conveying the semantics

As stated earlier, one of the purposes of specifying the correctness properties of a class and its
methods is to enable the designers who wish to reuse the class to ascertain the behaviour of the
class without having to study the code. This is illustrated by the discussion of the
ServiceProviderSimulator class below. The purpose of this class is to simulate the
behaviour of a service provider. The class was first mentioned in Section 5.3.2 and its analysis
level properties were identified in Section 5.4.5.2. In Section 6.2.3 the EventSimulator class
was introduced as a parent class for simulator classes. Section 6.5 contained a summary of the
methods of the EventSimulator and ServiceProviderSimulator classes after the design
level refinements had been performed. The full SLOOP specifications of the EventSimulator
and ServiceProviderSimulator classes appear in Appendix B, Sections B.5 and B.13
respectively.

7.2.1 The static nature of a class

A designer seeking information on the static nature of the ServiceProviderSimulator
class should refer to the list of class and instance variable names of the class and its
ancestors. This list represents the attributes of the class and if the class is a composite class,
some of these variables will refer to the parts of the composite class. The
ServiceProviderSimulator class inherits the following variables from the Event=
Simulator class:

rand
"This variable refers to an instance of the Random class from
the Smalltalk library. The instance is created when the
EventSimulator subclass is instantiated. The instance of the
Random class maintains a seed from which the next random number
is generated. The random number is used to start a timer with a
random value.”

210

newEventRequired
"When the value is equal to true it means that a new event is
required. Once the variable has been set to true, a random
timer will be started at some point afterwards. When the timer
is started, newEventRequired is set to false. It is the
responsibility of the subclass to set this variable to true when
a new event is required, since each subclass will have its own
conditions for requiring a new event. Once the timer expires,
an event will be generated, as will be described in the comments
section of the generatingEvent variable.”

currentRandomTimeoutValue
"This variable contains the value of the random timeout
currently being requested. The purpose of this variable is to
provide a mechanism for referencing the current timeout wvalue in
the correctness arguments. Note that the SLOOP statements could
therefore have been rewritten without this variable while still
providing the same functionality. However, in that case it
would not have been possible to formalise certain correctness
properties (such as DL1-04 (EventSimulator), listed in Appendix
B, Section B.5)."

generatingEvent
"The value is equal to true if the timer has expired and an
event has to be generated, otherwise it is equal to false. The
subclass sets this variable to false at the time when the event
is generated. The actual event that is generated is also the
reponsibility of the subclass, since each subclass will generate
a different type of event.™

timerOutstanding
"This variable is set to true when a timer is started and it is
set to false when a timeoutElement is removed from the
timerEventQ (i.e. when an expired timer has been processed).
The purpose of this variable is to provide a mechanism for
reasoning about the uniqueness of outstanding timers in the
EventSimulator class. In this class only one timer requested by
the EventSimulator may be outstanding at a time. The
timerOutstanding variable is used in the preconditions of the
startRandomTimer:withMaximum: method as well as in the
postconditions of the resetTimerExpired: method. If subclasses
need to support multiple simultaneous timers, then the
preconditions of the startRandomTimer:withMaximum: method need
to be weakened and the postconditions of the resetTimerExpired:
method need to be strengthened. Since the purpose of the
timerOutstanding variable is to facilitate correctness
reasoning, the SLOOP statements could have been rewritten
without this variable while still providing the same
functionality."”

timerId
"This variable contains the identifier of the timer currently
being requested.

From the above description the designer learns that the EventSimulator is a composite class,
since the Random class forms part of it. The purpose of each variable is also gleaned from the
comment following each variable name. As pointed out in the relevant comments, some
variables are introduced solely for the purpose of reasoning about the correctness of the class.

For example, the statements
currentRandomTimeoutValue :=
(self nextRandomNumber: maximumValue)
| aTimerServices start: self id: timerId for:
currentRandomTimeoutValue

211

could have been replaced by
l aTimerServices start: self id: timerId for:
(self nextRandomNumber: maximumValue)

thereby eliminating the currentRandomTimeoutValue variable from the SLOOP statements
in the startRandomTimer : withMaximum: method. However, a similar replacement would
then have been required in the correctness properties referencing this variable. Unfortunately this
is not possible, since the (self nextRandomNumber: maximumValue) expression has side-
effects and may therefore not be used in correctness properties. The rationale for this restriction
is the fact that correctness properties are at a meta-level, i.e. they describe the behaviour of the
system and should never modify the system state.

The usage of the t imerOut standing variable is shown in Appendix B, Section B.5.

The ServiceProviderSimulator subclass adds a number of variables to the above list:
instance variable names

serviceRequest
"This variable refers to the service request currently being
serviced by the service provider simulator. Note that the

reference to the ServiceRequest instance is passed to the
simulator as a parameter, 1i.e. the ServiceRequest instance is
not created by the ServiceProviderSimulator instance and
therefore does not form part of it."

serviceProviderCategory
"This wvariable contains the name of the service provider
category to which the service provider simulator belongs."

categoriesServed
"This 1is an ordered collection containing the names of the
service request categories serviced by this service provider.
The purpose of +this array is to facilitate a round robin
servicing scheme of these categories. That prevents starvation
of a specific service category."

nrOfCategoriesServed
"This variable contains the number of service request categories
serviced by this service provider. It is used in the calculation
when the categoryIndex is updated.™

categoryIndex
"This wvariable is wused as index into the categoriesServed
collection. It 1is used to determine the next service request
category to be serviced by this service provider. It is
incremented modulo nrOfCategoriesServed. Its values range from 0
to nrOfCategoriesServed - 1"

The purpose of the categoriesServed, nrOfCategoriesServed and categoryIndex
instance variables is to prevent a ServiceProviderSimulator instance from ignoring one of
the service queues that it should be servicing for ever. The ServiceProviderSimulator
class is a composite class (it inherits the Random class from its EventSimulator parent class).
The categoriesServed instance variable contains a reference to another part of the composite
class, viz. OrderedCollection.

7.2.2 The dynamic nature of a class

To find out about the dynamic behaviour of a service provider simulator, one would have to
become acquainted with the various properties of a class and its ancestors. The properties
listed below are the class properties of the parent of the ServiceProviderSimulator class,
namely the EventSimulator class. Subsequently the method properties of the
EventSimulator class will be examined, followed by the inspection of the
ServiceProviderSimulator class and method properties. Note that the analysis level

212

properties are only specified informally. Where possible, the design level properties are
specified formally. The rationale for only giving informal specifications of some of the design
level properties is given later.

class properties
"Liveness"

"When a simulation event is required, a simulation timer is eventually started.”
"AL2-01 (EventSimulator)”

"Liveness"

"If a simulator timer expires, the simulator eventually has to generate an event.”
"AL2-02 (EventSimulator)"”

"Clean behaviour"”

<V anObject
invariant anObject class ~~ EventSimulator
> "DS2-01 (EventSimulator)"

"The EventSimulator class is an abstract class and should not be instantiated.”

"Clean behaviour"

invariant rand notNil A rand class = Random
"DS2-02 (EventSimulator)"

"Once rand has been initialized to refer to an instance of the Random class, it is never
set to nil while the instance of the EventSimulator subclass exists."”

"Clean behaviour”
"The currentRandomTimeout value is always within the range specified by the

precondition of the start:id.for: method of the TimerServices class.”
"DS2-03 (EventSimulator)"

"Global invariant"
"All outstanding timers requested by an EventSimulator subclass instance are identified

uniquely with respect to the requestor."
"DS3-01 (EventSimulator)"

The properties are organised first according to the development phase from which they
originated and next according to the property type. The analysis level properties are presented
first, since they provide the designer with the gist of the functionality of the class. Properties
AL2-01 and AL2-02 convey to the designer that a timer will be started if a new event is required
and when that timer expires, an event will be generated.

The last four properties are design level safety properties. By inspecting them, the designer is
able to learn about the design of the EventSimulator class. The first property reveals that the
EventSimulator class is an abstract class. The second property guarantees clean behaviour as
far as the composite and its parts are concerned: it ensures that subclass instances of the
EventSimulator class will never send messages to a non-existing instance of the Random
class.

The next clean behaviour property specifies that the method to start a new timer will always be
invoked with a requested timer value that is within the range as specified in the precondition of
the method being invoked. The reason why this property is not specified formally at this
point is because it refers to the requirements of another class. The reference to this other class
is passed as an argument to the p_simulate:timeoutEventsIn: method of the
EventSimulator class and the formal specification of this property is therefore given within
that method. The interested reader is referred to Appendix B, Section B.5 for details.

213

The fourth property is a global invariant which ensures that the notification of the expiry of an
EventSimulator timer can be correlated with the correct timer request. It specifies that each
outstanding timer requested by a subclass instance of the EventSimulator class is identified
uniquely with respect to its requestor. This property is specified informally only in this
example.

There are numerous ways in which this property can be specified formally. One possibility is
formulate it in terms of the currently outstanding timers and the identifiers associated with them.
That implies that several additional instance variables would have to be defined and maintained.
It is debatable whether the additional complexity is justified in the case of the
EventSimulator class, where only one timer may be outstanding at a time. Should a subclass
require multiple simultaneous outstanding timers, the modifications required to support those
timers might also, as a side-effect, yield the necessary additional variables to facilitate a formal
version of the above property. For these reasons, it was decided that the informal version of
property DS3-01 would suffice for the EventSimulator class.

As stated earlier, the identification of correctness properties during a specific software
development phase is not an ad hoc process. The checklist as presented in Section 5.2.4 is used
to aid the software designer in following a structured and systematic approach when first
recording these properties. When they are subsequently inspected in order to evaluate the class
for potential reuse in other systems, different designers may prefer different groupings of the
properties. One possibility is to group the properties according to functionality. For example, for
the EventSimulator class all properties related to starting a timer could be grouped together
and similarly all properties related to the expiry of a timer could be grouped together.
Combining the properties in a different way is especially useful during the familiarisation
process.

However, the SLOOP method favours the recording of the properties based on the checklist as
discussed above. One of the reasons for this preference is that it addresses one of the problems
associated with the conjunctive nature of logic-based methods, viz. the completeness of the
specification [JiZh96]. Although one cannot guarantee the completeness of such a specification
[Fran92], at least one is guided to consider each property type and to reflect whether or not there
are any useful properties that can be specified for each type.

In this example the next step is to inspect the properties of the individual methods of the
superclass (i.c. the EventSimulator class). That is followed by the inspection of the class
properties of the subclass (i.e. the ServiceProviderSimulator class), after which the
properties of the ServiceProviderSimulator methods are examined. However, the order in
which these steps are performed is not prescribed by the SLOOP method.

The following methods are defined for the EventSimulator class:
initialize

nextRandomNumber:

startRandomTimer :withMaximum:

timerExpired:

resetTimerExpired:

p_simulate:timeoutEventsIn:

A great deal can be learnt from the correctness properties of these methods. For brevity,
this information is summarised here. The interested reader is referred to Appendix B, Section
B.5 for the SLOOP specification of the correctness properties of the above methods.

The initialize method is executed when an EventSimulator subclass is created. It

ensures that all the instance variables of the EventSimulator class will have initial values.
The descendants may perform some additional initialisation, but the total correctness property of

214

the initialize method guarantees that at least the EventSimulator variables will not be
uninitialised.

The nextRandomNumber : method always returns a number ranging from 1 to maximumvalue,
where maximumValue is passed to the method as an argument. The startRandomTimer:
withMaximum: method guarantees that a timer is started with a value within the range from 1 to
the maximum value received as one of the arguments of the method. This method invokes the
nextRandomNumber : method in order to generate the timer value.

The timerExpired: method returns true if a timer requested by the EventSimulator
subclass instance has expired and false if not. This is determined by the presence or absence of
the relevant timeoutElement in the timerEventQ. The resetTimerExpired: method
removes a timeoutElement from the timerEventQ.

Finally, the liveness properties specified for the EventSimulator class are realised via its
parallel method. The p_simulate:timeoutEventsIn: method ensures that a timer is started
if newEventRequi red is true and it guarantees that generatingEvent will be set to true once
the timer has expired.

It is clear from these properties that the EventSimulator class has nothing to do with the actual
event that is generated. It also does not determine when a new event is required. These are
functions of the subclasses. In order to find out when a new is event is required and what type
of event is generated in the case of a ServiceProviderSimulator class, the properties of
that subclass are examined next.

class properties

<V categoryIndex where categoryIndex 2 0 A

categoryIndex < nrCategoriesServed - 1

invariant serviceRequest notNil = —self canAcceptNextSR:
(categoriesServed at: (categoryIndex + 1))

> "AS3-01 (ServiceProviderSimulator)"”

"A service provider simulator services a single service request at a time."

"If a service request is currently assigned to the simulator, no
other service request from any of the categories being served by
this simulator will be served by the latter.”

serviceRequest isNil A —newEventRequired unless
serviceRequest notNil A newEventRequired

"AS4-01 (ServiceProviderSimulator)"
"When a new service request is assigned to the service provider simulator then a new
service provider simulator event is required."

"Note: The parent class, viz. EventSimulator, contains a parallel method which monitors the value
of newEventRequired. If it detects that newEventRequired is true, it starts a timer and sets
newEventRequired to false.”

serviceRequest notNil A —newEventRequired unless
serviceRequest isNil A —newEventRequired

"AS4-02 (ServiceProviderSimulator)"
"If a service request is assigned to the service provider simulator and
newEventRequired is false, then newEventRequired remains false for at least as long
as the service request is still assigned to the service provider simulator.”

215

"This has the effect that this simulator will not start another
timer before the servicing of the current service request has
been completed.”

generatingEvent A serviceRequest notNil ensures
(serviceRequest connection) postconditions: (#terminate:)
withArguments: #('completed') A serviceRequest isNil A
—~generatingEvent "APl1-01 (ServiceProviderSimulator)"
"If a service provider simulator has to generate an event, it ensures that the service
provider simulator terminates the connection currently associated with it and becomes
available to service a new service request.”

"Note: The parent class, viz. EventSimulator, contains a parallel method which sets
generatingEvent to true when a timer has expired."

<V aServiceRequest where serviceRequest = aServiceRequest
serviceRequest = aServiceRequest ensures
(serviceRequest connection) postconditions: (#terminate:)
withArguments: #('completed') A serviceRequest isNil
> "AP1-02 (ServiceProviderSimulator)"
"4 service request remains assigned to a service provider simulator until the latter
completes the service and terminates the connection."”

"Clean behaviour"”
invariant categoryIndex 2 0 A
categoryIndex < nrOfCategoriesServed
: » "DS2-01 (ServiceProviderSimulator)"
"The categorylndex is always greater than or equal to zero and less than
nrOfCategoriesServed." . '

"Clean behaviour"

invariant categoriesServed notNil A
categoriesServed class = OrderedCollection
"DS2-02 (ServiceProviderSimulator)"

"Once categoriesServed has been initialized to refer to an instance of the
OrderedCollection class, it is never set to nil while the ServiceProviderSimulator
instance exists.”

<V categoryIndex where 0 < categorylIndex A
categoryIndex < nrOfCategoriesServed

—(self canAcceptNextSR:
(categoriesServed at: (categoryIndex + 1)))
leads-to
self canAcceptNextSR:
(categoriesServed at: (categoryIndex + 1))
> "DL2-01 (ServiceProviderSimulator)"

"For any service category serviced by the service provider simulator, the service
provider simulator will eventually be able to service a request from that service
category.”

Property A54-01 (the first unless property) reveals how newEventRequired is set to true, viz.
when a new service request is assigned to the simulator. The statements of the parent class
ensure that a timer is started if newEventRequired is true. When the timer is started,
newEventRequired is set to false.

216

The newEventRequired variable then remains false until the service has been completed. The
latter happens once the timer has expired and the service request is deallocated from the
simulator. This is evident from properties 454-02, AP1-01 and AP1-02. Properties AS3-01 and
AP1-02 guarantee that only one service request is serviced at a time. Property API-0I provides
information regarding the nature of the event that is generated. Property DS2-01 specifies the
allowed values of categoryIndex, property DS2-02 guarantees that the categoriesServed
variable will not be nil and property DL2-01 ensures that the service provider simulator will
service each service category supported by it.

The properties of the individual methods are now inspected in order to obtain more
information about the ServiceProviderSimulator class. These methods are as follows:
startSimulation:using:

morelInit:using:

registerServiceProvider:using:

serviceProviderCategory

serviceRequest

canAcceptNextSR:

processServiceRequest:

p_generateEvent

p_updateCategoryIndex:

Details of the correctness properties of the methods listed above are provided in Appendix B,
Section B.13. For the purposes of this discussion it suffices to point out that the first three
methods are used when a ServiceProviderSimulator instance is created. These methods
ensure that the serviceRequest variable is set to nil, that a service provider category is
assigned to the simulator and that the simulator is registered with the relevant service categories
during instance creation. These methods are also responsible for creating the
categoriesServed ordered collection and for recording all the service categories supported by
this ServiceProviderSimulator instance in that collection.

The serviceProviderCategory and serviceRequest methods are accessing methods that
return the category of the service provider simulator and the current service request being
serviced respectively.

The processServiceRequest: method is invoked by the client of the
ServiceProviderSimulator instance in order to assign a new service request to the
simulator. The client has to ensure that the precondition of the processServiceRequest:
method holds when it invokes it. The canAcceptNextSR: method forms part of the
precondition. It returns true if the serviceRequest variable is equal to nil and the message
argument matches the next service category to be serviced by this simulator. It returns false
otherwise. By using the canAcceptNextSR: method in the precondition of the
processServiceRequest: method, it can be guaranteed that a new service request is only
accepted if no other service request is currently being serviced by this simulator. It also ensures
that the service categories are serviced in a round robin fashion.

The postconditions of the total correctness property of the processServiceRequest : method
specify that newEventRequired will be true and serviceRequest will not be nil when the
method has completed its execution. Thus it ensures that newEventRequired is set to true
when a new service request is assigned to the simulator. In turn, the parallel method of the
EventSimulator class ensures that a timer is started if newEventRequired is true. Once the
timer expires, generatingEvent is set to true (also via the parallel method of the parent class).
The precedence property of the p_generateEvent parallel method then guarantees that the
relevant event is generated if generatingEvent is true.

217

The categoryIndex instance variable is updated in the processServiceRequest: and
p_updateCategoryIndex: methods. As is evident from the correctness properties of these
methods, the value is updated in a way which ensures that the relevant service queues can be
serviced in a round robin fashion by this simulator. The processServiceRequest: method
ensures that the categoryIndex is updated whenever a new service request is accepted from a
service queue associated with the service category indicated by the current value of
categoryIndex. The parallel method, p updateCategoryIndex:, checks the service
queue associated with the service category indicated by the current value of categoryIndex. If
that service queue is empty, the categoryIndex is also updated.

In summary, information about the static nature of a class is obtained via the class and instance
variables of the specified class and its ancestors. The software designer needs to inspect the
correctness properties of the class and its methods, both of the class itself and of its ancestors,
in order to learn about the dynamic behaviour of the class.

The purpose of the discussion in this section was merely to demonstrate how information about
the behaviour of the class could be obtained from the correctness properties specified for the
class and its methods. No correctness arguments were given. In the sections that follow, it will
be demonstrated how one can use informal correctness arguments to show how the correctness
properties of the relevant individual methods ensure that various correctness properties of the
class are satisfied. That description forms part of a discussion of the impact of various features
of the SLOOP method on correctness reasoning. It is the topic of the next section.

7.3 The impact of various SLOOP features on correctness reasoning

The purpose of this section is to illustrate how various features of the SLOOP method result in a
gain in simplicity as far as correctness reasoning is concerned. Examples of informal arguments
to reason about safety, liveness and precedence properties are given next. For each property type
listed in Chapter 5, the correctness arguments for at least one property are presented. The
software designer would use such arguments during the software development process to verify
informally that already stated correctness properties indeed hold.

Note that the SLOOP method does not mandate that these correctness arguments form part of
the official documentation of a project. One could therefore choose to adopt this style of
thinking without recording these informal proofs. However, by documenting the correctness
arguments they can be checked by others and they are then also available to those who might
want to reuse the classes to which the correctness arguments apply.

Apart from illustrating how one can reason about different types of correctness properties, the
specific properties in the examples below are also chosen to highlight additional issues. For
example, in Section 7.3.1.2 it is shown how correctness reasoning is simplified due to the fact
that program location counters can be ignored when the atomic units of execution (the parallel
statements) are considered. In Sections 7.3.2.3 and 7.3.3.2 it is illustrated how the distinctive
properties of the leads-to and ensures relations respectively are utilised in correctness

arguments.

In Chapter 5 the desired analysis level properties of the call centre system were stated. These
properties describe the interactions of the objects that comprise the system and are captured
within the CC_SimulationActivation class and its superclass, CC_Activation. The
system properties listed in Chapter 5 were written in terms of the analysis phase artifacts, i.e.
prior to the design level refinements. For example, during the analysis phase the

218

ConnectionContainer class was defined as the container class of the Connection
instances. As a result of the design phase refinements, it was found that the
ConnectionContainer class was superfluous. Instead, the Array class from the Smalltalk
library sufficed. The correctness properties that include the design level refinements refer to this
Array instance as userConnections.

The correctness properties as discussed in the remainder of this chapter include the design level
refinements. Note that properties that emanated from the analysis phase retain their identifiers as
assigned to them during that phase. Thus, even though design phase refinements have been
added, their identifiers do not change, since their origin (i.e. the analysis phase) remains the
same.

The correctness properties of a class may be overridden in a descendant, as will be demonstrated
in Section 7.3.1.4. In that case the property in the subclass has the same identifier as the one in
its ancestor, but the identifier is followed by the name of the ancestor in brackets. When
referring to such a property from within another class, the words "in class-name" have to be
added, where class-name is the name of the class which overrides the property.

7.3.1 Safety properties

In this subsection the safety properties relating to clean behaviour, global invariants and the

unless relation are considered. Each subsection sheds light on something specific:

@ Section 7.3.1.1: the advantages of using macros with respect to correctness reasoning;

Q Section 7.3.1.2: the influence of the SLOOP computational model on correctness
reasoning and the impact of the object-oriented features such as data
encapsulation and reusability on correctness arguments;

Q Section 7.3.1.3: the allocation of respons1b1ht1es regarding the preconditions during
method invocations; and
Q@ Section 7.3.1.4: the effect of inheritance on correctness arguments.

The generic approach towards proving a correctness property informally can be described as
follows: First of all the correctness property is specified formally. Then the strategy to be
followed in order to prove informally that the property holds is determined. Thereafter the
correctness arguments are given. The latter can be presented from first principles (i.e. by
inspecting the statements of the SLOOP program), or correctness properties that have already
been proven, can be reused if applicable. The above procedures are described in detail in Section
7.3.1.2.

7.3.1.1 Using the correctness arguments of a clean behaviour property to illustrate how
the use of macros in SLOOP programs can simplify correctness reasoning

The purpose of this section is to illustrate the advantages of using macros in SLOOP programs
with respect to correctness reasoning. This is achieved by discussing the correctness arguments
of property 4S2-01(CC_Activation), an analysis level clean behaviour safety property. It is
one of the safety properties of the CC_Activation class and specifies the following:

invariant userConnections capacity = maxConn A maxConn > 0
"AS2-01 (CC_Activation)”
"The capacity of the connection container is equal to maxConn, where maxConn is a
positive integer.”

219

This property is used to describe the capacity restrictions of the call centre. The purpose of this
property was discussed in detail in Chapter 5, Section 5.4.1.2. In order to show that the above
property always holds for the CC_Activation class and its subclasses, the contents of this
property first needs to be examined more closely.

First of all, it sends the capacity message to userConnections, the Array instance. One
therefore needs to look at the characteristics of the Array class and its methods. The capacity
method returns the number of indexed instance variables of the Array instance. The indexed
variables are used to hold the elements of the Array instance. When an Array instance is
created, all its indexed instance variables are created. The number of indexed instance variables
remains fixed throughout the existence of the Array instance. It is equal to the value of the
parameter that is passed to the Array class when the new: method is invoked.

In order to show informally that the capacity of userConnections is equal to maxConn and
does not change, it needs to be shown that userConnections is created as an Array instance
of this capacity. This is done by inspecting the SLOOP program statements as given in
Appendix B. The userConnections Array instance is created in the initialize method of
the CC_Activation class® via the statement below:

userConnections := SmalltalkLibPkg:::Array new: maxConn

It is the only statement that assigns a value to the userConnections variable in the
CallCentreSimulation program. Thus, this statement ensures that the capacity of the
userConnections object is equal to maxConn and it therefore means that userConnections
can hold exactly maxConn number of elements.

The second part of property 4S2-01 states that maxConn > 0 is an invariant. This part of the
example highlights the advantages of using macros in a SLOOP program. There are a number
of references to maxConn in the CC_Activation class, but maxConn is not an attribute of this
class, as is evident from the list of instance variables of this class in Appendix B, Section B2.
Instead, all of these references are expanded to config maximumConnections, the message
expression which obtains the value of maximumConnections from an instance of the
Configuration class. One of the invariants of the Configuration class’ is the following:

<V (t, u, v, w) where
t>0Au>0Av>0Aw>0
invariant

maximumConnections = t A
maximumServiceCategories = u A

maximumServiceProviders = v A
maximumAllowableTimeout = w
> "DS2-01 (Configuration) "

Thus, the value of maximumConnections is always greater than zero and it also does not
change. Since property DS2-01 is an invariant of the Configuration class, it means that once
the class is instantiated, this property holds for that class. All other classes that send the
maximumConnections message to the Configuration instance may therefore assume that it
will return a value that is greater than 0, since it is guaranteed by the Configuration class.

® The initialize method of the CC_Activation class is presented in Section B.2 of Appendix
. B.
’ The Configuration class is specified in Appendix B, Section B.4. The rationale for having such a
class was given in Chapter 6, Section 6.3.1.

220

The advantage of using a macro rather than an instance variable in the above case is evident
from the fact that correctness property DS2-01 of the Configuration class may be reused.
Since a macro-variable may not appear on the left-hand side of any SLOOP statement, it can
never contain any value other than the one to which its associated macro-expression evaluates.

One alternative to the above approach is for each client class to define an instance variable
representing the maximum number of connections. It is then the responsibility of each class to
ensure that this variable always contains the correct value (which implies that a correctness
property stating this has to be defined for each client class and the correctness of this property
also needs to be shown).

This example gives an indication of the nature of the correctness arguments that are used in the
SLOOP method. It also gives an indication of the level of rigour that is present in these
arguments. The next section provides more detail regarding the steps that are followed during
correctness reasoning in the SLOOP method.

7.3.1.2 Demonstrating how the computational model and object-oriented features such
as data encapsulation and reusability influence the approach followed during
correctness reasoning

Another clean behaviour property of the call centre system, viz. property AS2-04 defined in
Chapter 5, Section 5.4.1.2, is now used to illustrate the general approach followed during
informal correctness reasoning in the SLOOP method.

The purpose of this section is twofold, viz.

Q Firstly, it demonstrates how the computational model influences the correctness arguments.
It is shown how induction is used when proving invariance properties informally.

Q Secondly, it illustrates how object-oriented features such as data encapsulation and
reusability are taken advantage of in the correctness arguments.

Informally, property AS2-04(CC_Activation) is defined as follows:
If a connection is terminated, it implies that its associated service request is not present in the
input queue.

The approach has three major steps:

Q The first step is to specify the property formally. (It is difficult to reason about something
that can be interpreted in different ways.) Thus, the property has to have an unambiguous
meaning.

Q The strategy required to arrive at the property as conclusion, is determined.

O Arguments are presented to support the various claims as outlined in the strategy.

Specifying the correctness property formally

In order to specify property 452-04 more formally, one needs to consider how a terminated
connection should be represented. In Section 6.3.2 it was explained that a design decision was
made to create the maximum number of Connection instances upon startup and to use the state
of an instance to determine whether it represented an unassigned connection or not.

221

The rationale for making this decision was given in that section. Briefly, it ensures that the
parallel statements of all Connection instances are always present to be selected for execution.
As stated in [ChMIi88], it would be difficult to define a fair execution rule for statements if the set
of program statements changed dynamically. If Connection instances could be created and
destroyed dynamically after initialization, then it would imply that their associated methods
would only be present during the existence of the instances.

When the analysis level property 4S2-04 (CC_Activation) was formulated in Chapter 5, the aim
was to avoid any design level detail. As a result, there were no references to the state of a
Connection instance or the presence or absence of Connection instances in the
userConnections collection in order to indicate the availability of a connection. The
terminology used in the specification of the property was at a very high level of abstraction.

Once the design decision had been made to reflect the availability of the Connection instance
via its state, the property was rewritten as follows:
If a connection is idle, it implies that its associated service request is not present in the input

queue.
More formally:
<V aConnection where userConnections include: aConnection ::
invariant aConnection isIdle =
—(inputQ includes: (aConnection serviceRequest))
> "AS2-04 (CC_Activation)"

Below correctness arguments are given to show that property AS2-04(CC_Activation) is indeed
invariant.

The strategy to be followed for the correctness arguments

The correctness arguments in methods based on the conventional computational model take the
location counters of the processes involved in the computation into account. For example, in
[MaPn81a] the proof principles presented for establishing correctness properties clearly take
cognisance of the location counters. In the SLOOP correctness arguments that are employed at
the design level, there is no notion of concurrent processes and therefore they do not contain
references to location counters of different processes. Instead, the correctness arguments show
that there exist statements in the program that will ensure that the specified progress properties
will hold and also that no statements exist that will violate the safety properties.

The following statements of the CallCentreSimulation program are therefore considered:

0 The sequential statements in the activation-section of the program (in the order of their
appearance).

Q All the parallel statements that are activated directly or indirectly via the activation-section
of the program (in any order).

The sequential methods invoked by the above statements are also taken into account.
The principle of induction [MaPn81b] is used when proving invariants in the SLOOP method.

Considering the SLOOP computational model, this means that one has to show that the property
holds initially, as well as after the execution of any parallel statement of the program.

The correctness arguments for property AS2-04(CC_Activation) are presented in two parts. Part
A shows that the property holds initially. Part B contains the arguments to prove informally that
the property also holds after the execution of each parallel statement of the program.

The arguments in part B are in support of two claims, viz.:

222

B1) The connection state changes to not 'IDLE' whenever the service request is added to the
input queue.

B2) The state does not change to IDLE' while the service request is still present in the input
queue.

Thus, while a service request is present in the input queue, the associated connection is not
'IDLE'. This implies that if a connection is TDLE/, it cannot be present in the input queue, which
is what invariant AS2-04(CC_Activation) specifies.

The correctness arguments

The correctness arguments for property 452-04 are now presented. In part A it is shown that the
property holds immediately after initialization. In part B1 arguments are presented to prove
informally that any statement that adds a service request to the input queue also changes the state
of the connection to not 'IDLE' at that point. In part B2 it is shown that no statements exist that
will change the state of the connection to TDLE' while the associated service request is still
present in the input queue.

Part A:

In order to prove informally that property AS2-04(CC_Activation) holds immediately after
initialization, the sequential statements in the activation-section are scrutinised. In the
CallCentreSimulation program there is only one statement in the sequential part as can be
seen in this SLOOP program excerpt:

program CallCentreSimulation
sequential
aCCSimulationActivation :=
CC_ActivationPkg:::CC. SimulationActivation setup
end-sequential
parallel
aCCSimulationActivation p activate
end-parallel -
"Packages"

end-program

The sequential statement sends the setup message to the CC_SimulationActivation class,
which results in a new instance being created and initialized. The sequential methods that are
invoked as part of the initialization are listed in Sections B.2 and B.3 of Appendix B. Inspection
of these methods reveals that the inputQ is created via the following statement in the
initialize method of the CC_Activation class:

inputQ := SmalltalkLibPkg:::0rderedCollection new: maxConn

However, there are no statements in the sequential methods that are invoked as part of the
initialization that add service requests to the inputQ. Immediately after initialization the
inputQ therefore contains no service requests.

Each Connection instance is created via the following statement in the initConnection:
method of the CC_Activation class:
~CC_CorePkg:::Connection setup: index

223

As can be seen from the statements of the initialize: method® which is invoked as a result of
the execution of the above statement, each Connection instance is in the TDLE' state after
initialization.

Thus, initially each Connection instance is in the TDLE' state and the inputQ contains no
service requests, which means that property 452-04(CC_Activation) is satisfied.

Part B:

The next step is to prove informally that property AS2-04(CC_Activation) is preserved by the
parallel statements of the program. The amount of effort required is reduced by the fact that
only those parallel statements that are relevant to this property need to be considered. This is
because each parallel statement forms part of a method that belongs to a class, and as a result of
data encapsulation, the effect of the execution of a parallel statement is limited to the state of
the objects that are known within that class instance. As a result only a limited number of
statements need to be examined at a time. The steps described below therefore take advantage of
the structuring capabilities inherent in an object-oriented method.

Part B1:

In order to show that the connection state changes to not TDLE' whenever the service request is
added to the input queue, all the statements that add a service request to inputQ need to be

found. The activation-section contains only one parallel statement, viz.
aCCSimulationActivation p_activate

In turn, the p activate method’ of the CC_Activation class contains several parallel
statements:

"p activate method of the CC_Activation class”

parallel
self p_executeCPAgent
"The parallel methods of the commsAgent are not invoked
directly, but rather via the p executeCPAgent method of the
CC_Activation class.”

 timer p_runTimer: timerEventQ

"Activate the parallel methods of the timer object. The timer
parallel statements have the following functionality: Whenever a
timeout occurs, the TimeoutElement instance representing the
timeout is added to the end of the timerEventQ, which indicates
to the requestor that the specified timer has expired."

| self p categoriseAndAllocate

"The parallel methods of the scAllocator object are invoked via
the p categoriseAndAllocate method of the CC_Activation class.
The scAllocator parallel statements have the following
functionality: Once a service request has been categorised, it
is removed from the inputQ and appended to the appropriate
serviceQ."

8 The Connection class is specified in Appendix B, Section B.7.
% The p_activate method is specified in Appendix B, Section B.2.

224

<0 j where 1<j<maxCategories :: (scContainer at: j)
p_execute

>
"Activate the parallel methods of the ServiceCategory instances.
Their parallel statements have the following functionality: For
each service category the associated service queue and set of
service provider agents are monitored. If the service queue is
not empty and a service provider agent in the spSubset
associated with the service category is available to process a
new service request, the first element of the service queue is
removed and assigned to a service provider agent.”

0 <0 i where 1<i<maxConn :: self p_executeConnection:
(userConnections at: i)

>
"The p_executeConnection method of the CC_Activation class is
executed for each Connection instance in order to invoke the
parallel methods of the latter. The parallel statements of the
Connection instances have the following functionality: When a
connection has entered the 'TERMINATING' state, the
communication provider agent is requested to terminate the
connection. Once all the procedures have been completed to
terminate the connection, the connection and its associated
service request are reset to their initial states.”

0 <0 k where 1<k<maxSP :: self p executeSPAgent:
(spAgentContainer at: k)
>
"The parallel methods of the service provider agents are not
invoked directly, but rather by executing the p executeSPAgent
method of the CC_Activation class for each of the service
provider agents."
end-parallel

These statements can be inspected in any order. For brevity, only the statement containing the
p_executeCPAgent message is discussed here, since it is the one leading to the statement that
assigns service requests to the inputQ. The p_executeCPAgent method is the responsibility
of the subclass, which is the CC_SimulationActivation class'® in this case. In the latter, this
method contains the following statements:
"p_executeCPAgent method of the CC_SimulationActivation class”
parallel

commsAgent p_simulate: timer timeoutEventsIn: timerEventQ

] commsAgent p_generateEvent: userConnections target: inputQ
end-parallel

The second parallel statement in this method invokes the p_generateEvent: target: method
of the CommsProviderSimulator class'!, which contains the only statement in the

CallCentreSimulation program that adds a service request to the inputQ:
"p_generateEvent:target: method of the CommsProviderSimulator class"
parallel
inputQ addLast: (idleConnection serviceRequest) \+
idleConnection assign
if generatingEvent and: [idleConnection notNil] ~
Transcript show: 'All connections busy'
if generatingEvent and: [idleConnection isNil]

' The CC_SimulationActivation class is presented in Appendix B, Section B3.
"' The CommsProviderSimulator class is specified in Appendix B, Section B.6.

225

| | newEventRequired := true \+
generatingEvent := false
if generatingEvent
end-parallel

The p_generateEvent:target: method of the CommsProviderSimulator class makes
use of the idleConnection macro, which is defined in the p_generateEvent:target:
method as:

idleConnection = self getIdleConnection: userConnections

In turn, the get IdleConnection sequential method of the CommsProviderSimulator class

is defined as:
~“userConnections detect: [:each | each isIdle] ifNone: [nil]

Finally, the isIdle method of the Connection class'® is defined as:
~state = 'IDLE'

Thus, the p_generateEvent : target : method has the following functionality: If an event has
to be generated, an idle connection is searched for by checking whether there is any
Connection instance in the userConnections array that is in the 'IDLE' state. If one is
found, the associated service request is added to the inputQ and the state of the connection is
changed to indicate that it is connected to a service user. The assign method of the

Connection class contains the following statement:
state := 'CONNECTED'
if state = 'IDLE'

If an idle connection cannot be found, a status message is generated.

From the statement in the p_gerierateEvent:target: method it is clear that a service request
may only be added to the input if the associated connection is in the TDLE' state. In a single
multiple-assignment statement the service request is added to the inputQ and the state of the
connection is changed to 'CONNECTED'. Note that it is crucial that the insertion of the
service request into the inputQ and the modification of the state of the connection to
'CONNECTED' should occur simultaneously, i.e. as part of the same atomic statement.
This is essential for the correctness arguments of the above property, since it has to be
shown that the service request cannot be added to the input queue while the connection
remains in the 'IDLE' state. This concludes Part B1 of the correctness arguments.

Note that in the above discussion it was shown how to locate a specific statement (i.e. one that
adds an element to the inputQ) manually. In practice, any editing or browsing tool can be used
to search for a statement which invokes a specific method, which makes it very simple to isolate
the statements that need to be considered.

Part B2:

For Part B2 it has to be shown that the connection does not enter the TDLE' state while the
service request is in the input queue.

The main arguments comprising Part B are as follows:

B2.1) The only transition to the TDLE' state is from the TERMINATING' state.

B2.2) At this level of refinement the method that results in a transition to the TERMINATING'
state is not invoked while the service request is in the inputQ (i.e. the connection is not aborted
or rejected). Only the service provider simulators invoke this method.

12 The Connection class is specified in Appendix B, Section B.7.

226

B2.3) A service provider simulator only invokes this method if the service provider simulator has
a service request assigned to it.

B2.4) Once a service request has been assigned to a service provider simulator the service
request is no longer present in the inputQ and after a service request has been removed from the
input queue, it remains outside the queue until the connection has been terminated and has
reached the TDLE' state.

Part B2.1:

In this part it needs to be shown that the only transition to the TDLE' state of a connection is from
the 'TERMINATING' state. The informal correctness arguments for B2.1 take advantage of
some of the object-oriented characteristics of the SLOOP method, viz. its structuring and data
encapsulation features. Instead of inspecting each statement of the SLOOP program, one first
checks whether it is not possible to restrict the number of statements that need to be examined.

This is done by inspecting the Connection class in order to find out whether it provides any
methods enabling clients to set its state instance variable to TDLE'. The idea is that if no
method is provided to clients to set the state to TDLE', the number of statements that need to
be inspected is reduced from all the statements in the program to only those of the
Connection class.

The first thing that is discovered is the fact that there is no state: method"” which allows a
client to set the state to any value. Instead, the Connection class controls the values of the
state instance variable by only providing an assign and a terminate: method to modify the
value of state. The assign method sets the value to 'CONNECTED' and the terminate:
method sets it to TERMINATING'.

Although the initialize: and p_doWrapUp methods set the value of state to TDLE!, these
are private and parallel methods respectively. A private method is not accessible to clients, while
a parallel method cannot be invoked from within any sequential method (this rule was specified
in Chapter 4, Section 4.2.3). The p_doWrapUp method is only invoked from within the
CC_Activation class in order to activate the parallel statements of that method. Thus, the
Connection instance itself is the only object that can set state to TDLE'". The only statement
that sets state to 'IDLE' after instance creation and initialization, is the following one in the
p_doWrapUp method:

"p_doWrapUp method of the Connection class"”
parallel
state := '"IDLE' \+
serviceRequest reset \+
currentHandlerInformed := false
if currentHandlerInformed
end-parallel

The precondition for this method is that the instance variable currentHandlerInformed
should be true. This variable is an instance variable of the Connection class that cannot be
modified by any client. The only statement that sets it to true is in the
p_informCommsProvider: parallel method of the Connection class and one of the
preconditions for that method is that the state should be equal to TERMINATING!, as can be
seen below:

3 The SLOOP specification of the methods of the Connection class can be found in Appendix B,
Section B.7.

227

"p _informCommsProvider method of the Connection class”
parallel
commsAgent terminate: self cause: terminatingReason \+
currentHandlerInformed := true
if state = 'TERMINATING' and:
[(terminatingReason = 'completed')
and: [currentHandlerInformed not]]
end-parallel

Thus, the state is only set to TDLE' if currentHandlerInformed is true. In turn,
currentHandlerInformed is only set to true if the state is TERMINATING'. This implies
that the state is only set to TDLE' if it is currently in the TERMINATING' state. This concludes
the informal correctness arguments for B2.1.

Thus, due to the data encapsulation provided by the SLOOP method, the instance variables of
an object can only be modified by that object itself or by methods provided by that object to its
clients. If a method is provided that allows clients to set the value of the instance variable under
consideration (state in the above example) to the value of interest (IDLE' in the above
example), then all the statements of the program need to be checked to determine whether this
method is being invoked by any of them. However, if no such method exists (as in the above
example), then the statements that need to be examined are reduced to those appearing in the
class definition itself. The procedures used during correctness reasoning in the SLOOP method
therefore take advantage of the structuring and data encapsulation capabilities of object-
orientation.

Part B2.2:

In this part it needs to be shown that the ServiceProviderSimulator instances are the only
objects that invoke the terminate: method of the Connection class. Note that up until now
the correctness arguments have all been presented from first principles. However, one of the
advantages of an object-oriented method such as SLOOP is the fact that correctness arguments
can also be reused. This is first illustrated in this part and then applied in all the remaining
correctness arguments.

The only method that causes the connection state to change to 'TERMINATING' is the
terminate: method of the Connection class. The only class that invokes the terminate:
method of the Connection «class at this level of refinement is the
ServiceProviderSimulator class'. This is determined by inspecting the correctness
properties of all the classes and their methods. It is found that the following property of the
p_generateEvent method of the ServiceProviderSimulator class refers to the
terminate: method:
"precedence property of the p generateEvent method"
generatingEvent A serviceRequest notNil ensures
(serviceRequest connection) postconditions: (#terminate:)
withArguments: #('completed') A
serviceRequest isNil A -generatingEvent
"DP1-01 (ServiceProviderSimulator)"
"If a service provider simulator has to generate an event, it ensures that the connection
currently associated with the service request is terminated and that the service provider
simulator becomes available to service a new service request."”

" The ServiceProviderSimulator class is specified in Appendix B, Section B.13.

228

The postconditions:withArguments: construct was first discussed in Chapter 4, Section
4.3.4.2. To recapitulate: it is used when a method sends a message to another object and the
postconditions of the method being executed by the other object have significance in the
correctness properties of the sending method. Thus, in the case of the DPI-01 property of the
ServiceProviderSimulator, the postconditions of the terminate: method of the
Connection class will hold in addition to the postconditions that will hold as a result of
assignments to attributes of the ServiceProviderSimulator instance. These postconditions
willhold if 'completed' is used as the argument of the message.

The introduction of such a construct has several advantages. It prevents the problem of
inconsistency which could arise if the same postconditions were specified in multiple places and
it also highlights the use of another method in the property specification. This is particularly
useful in correctness arguments such as the current one, where one is trying to identify all the
methods that are invoking the terminate: method.

Note that it is not necessary to verify at this point that the p_generateEvent method indeed
invokes the terminate: method. The properties of the ServiceProviderSimulator class
are reused without proving them from first principles. The correctness of the methods of the
ServiceProviderSimulator class are shown at the time when the correctness arguments for
the ServiceProviderSimulator class itself are presented. Thereafter it can be assumed that
the behaviour of this class is as specified by its correctness properties.

Part B2.3:

It now needs to be shown that the ServiceProviderSimulator instance only invokes the
terminate: method if it has a service request assigned to it. This follows directly from the
DPI1-01 property of the p_generateEvent method of the ServiceProviderSimulator
class:
"precedence property of the p_generateEvent method"
generatingEvent A serviceRequest notNil ensures
(serviceRequest connection) postconditions: (#terminate:)
withArguments: #('completed') A serviceRequest isNil A
—~generatingEvent "DP1-01 (ServiceProviderSimulator)"
"If a service provider simulator has to generate an event, it ensures that the connection
currently associated with the service request is terminated and that the service provider
simulator becomes available to service a new service request.”

Part B2.4:

It has now been argued that a connection is only terminated by the service provider simulator and
then only if it has a service request associated with it. It must be shown next that after the service
request has been assigned to a service provider simulator, it is no longer present in the inputQ.
The following precedence properties of the CC_SimulationActivation and
CC_Activation classes respectively are relevant.

<V aServiceRequest where

< 3 aServiceProviderSimulator where
spAgentContainer includes: aServiceProviderSimulator::
aServiceProviderSimulator serviceRequest = aServiceRequest

<3 aServiceQueue :: aServiceQueue includes: aServiceRequest

> precedes
aServiceProviderSimulator serviceRequest = aServiceRequest

> "AP2-01 (CC_SimulationActivation)"

229

"A service request is assigned to an element of the service provider container only if the
former has been enqueued in a service queue and has remained in the queue until it was
assigned to the service provider container element.”

<V aServiceRequest where

< 3 aServiceQueue
aServiceQueue includes: aServiceRequest

inputQ includes: aServiceRequest
precedes
aServiceQueue includes: aServiceRequest
>
> "AP2-02 (CC_Activation)"”

"4 service request is allocated to a service queue only if the service request has been
enqueued in the inputQ and has remained in the latter until it was allocated to the
service queue."

<V aServiceRequest where inputQ includes: aServiceRequest
inputQ includes: aServiceRequest ensures

—(inputQ includes: aServiceRequest) A

< 3 aServiceQueue :: aServiceQueue includes: aServiceRequest)
>

> "AP1-05 (CC_Activation)"”
"4 service request remains in the inputQ until it is assigned to a service queue."

In the above properties aServiceQueue is quantified over all service queues associated with
ServiceCategory instances in the scContainer. This quantification is not shown in order to
make the property specifications less cluttered.

The argument is as follows: Property AP2-01 specifies that a service request can only be
assigned to a service provider simulator if it comes from a service queue. In turn, a service
request can only be allocated to a service queue if it comes from the inputQ (property AP2-02).
Furthermore, when a service request is allocated to a service queue, it is removed from the
inputQ (property AP1-05). Since there is no statement which adds the service request to the
inputQ while it is in the service queue or while it is assigned to a service provider simulator, it
follows that the service request is not present in the inputQ while it is assigned to a service
provider simulator.

There is no statement which adds a service request to the inputQ once it has been removed,
except if the connection has been terminated and has reached the TDLE' state (from Part B1).
Thus, a service request that is an element of the inputQ is no longer present in the inputQ by
the time the state of the associated connection changes to TDLE'. This concludes Part B2 of the
correctness arguments.

Thus, the above example has illustrated the following:

o Location counters are not considered during correctness reasoning.

g It is also not necessary to be concerned about the allocation of statements to processors.
At the design level, correctness reasoning is in terms of the parallel statements, each of
which executes atomically.

Q Data encapsulation provides a mechanism to reduce the effort required during correctness
reasoning.

o The reuse of correctness properties significantly reduces the correctness reasoning effort.

230

7.3.1.3 Using a global invariant property to discuss the responsibility of the client
object regarding preconditions in correctness properties

This section focuses on the responsibilities of the client object in ensuring that preconditions

are satisfied when a method is invoked. In Chapter 5, section 5.4.1.3, the following property

was specified in order to ensure that a service request does not get overwritten by another one

before its processing has been completed:

AS3-09. A service provider / service provider simulator services a single service request at a
time.

Specifying the correctness property formally

Inthe CC_SimulationActivation class, this property is specified as follows:
<V aServiceProviderSimulator where
spContainer includes: aServiceProviderSimulator ::
<V aServiceCategory where
scContainer includes: aServiceCategory ::
invariant aServiceProviderSimulator serviceRequest notNil =
—aServiceProviderSimulator canAcceptNextSR:
(aServiceCategory serviceQCategory)
>
> "AS3-09 (CC_SimulationActivation)"

"A service provider simulator services a single service request at a time."

Thus, once a service request is allocated to a service provider simulator, no other service request
can be allocated to that service provider simulator until the latter has completed servicing the first
service request. It is therefore not possible to overwrite the first service request.

The strategy to be followed for the correctness arguments

Since this is an invariant, it has to be shown that the property holds initially (part A), as well as
after the execution of each parallel statement (part B). There are two aspects to the arguments in
part B. Firstly, it needs to be shown that the ServiceProviderSimulator instance does not
accept a new service request if another service request is already assigned to it (Part B1). Ifitis
found that the ServiceProviderSimulator class achieves this via the preconditions of the
method which accepts a new service request for processing, then it also has to be shown that
those preconditions are indeed met whenever that method is invoked by a client (Part B2).

This is because the above correctness property is not only required to hold for the
ServiceProviderSimulator class, but also for the system as a whole. (Property 453-09is a
correctness property of the composite CC_SimulationActivation class.)

Since the behaviour of the target object is undefined if the preconditions are not met, it is
imperative to check that the client only invokes the method under the correct circumstances.
This is called the "demanding” design approach in [Meye97], where the target object expects its
methods to be invoked only if their respective preconditions are met and where the methods of
the target object do not contain code to take some action if the preconditions are not met.

The motivation for a "demanding” design approach is discussed at length in [Meye97]. It is
argued that the client object is best equipped to deal with the cases where the preconditions
cannot be met (often the target object cannot do anything more constructively than print an error
message). The example in this section demonstrates the impact on correctness reasoning when
this approach is adopted.

231

The correctness arguments

Part A:

Immediately after a ServiceProviderSimulator instance has been created and initialized, it
does not have any service request assigned to it, as can been seen in the SLOOP specification of
the ServiceProviderSimulator class in Appendix B, Section B.13. Property 453-09
(CC_SimulationActivation) is therefore satisfied initially.

Part B:

It now has to be shown that the property holds after the execution of any parallel statement of the
program. As discussed in the previous section, the magnitude of the task is reduced by the fact
that only those statements that are relevant to this property need to be considered.

Part B1:

It is evident from the total correctness property of the processServiceRequest : method of
the ServiceProviderSimulator class that the ServiceProviderSimulator class ensures
that property AS3-09 is not violated. (The parameter that is passed in the
processServiceRequest: message is called aServiceRequest and it refers to the new
service request.)

"Total correctness property of the processServiceRequest:
method"

<V x where 0 < x A x < nrOfCategoriesServed
categoryIndex = x A

aServiceRequest notNil A
self canAcceptNextSR: (aServiceRequest serviceRequestCategory)
results-in

methodReturnValue = self A
serviceRequest = aServiceRequest A

newEventRequired A
categoryIndex = (x + 1) \\ nrOfCategoriesServed
> "DL1-06 (ServiceProviderSimulator)"

Thus, the precondition for accepting a new service request is that the canAcceptNextSR:
method should return true. From the total correctness property of the latter it is clear that the
canAcceptNextSR: method only returns true if no service request is assigned to that
ServiceProviderSimulator instance (and the next service category to be serviced matches

the one passed as parameter), as can be seen below:
"total correctness property of the canAcceptNextSR: method”
true results-in
methodReturnValue = ((requestingServiceCategory =

categoriesServed at: (categoryIndex + 1)) A
(serviceRequest 1isNil))
"DL1-04 (ServiceProviderSimulator)"

A serviceProviderSimulator instance therefore only accepts a new service request if it is
not currently processing another one.

Part B2:

It is the responsibility of the client to ensure that canAcceptNextSR: returns true prior to
invoking the processServiceRequest: method. If the client does not ensure that the
precondition of the total correctness property (DL1-06) of processServiceRequest: holds,
the ServiceProviderSimulator instance does not have any obligations regarding the
correctness properties of the class and its methods. In the call centre example, the
ServiceProviderSimulator class overwrites the existing service request in the

232

processServiceRequest: method if the preconditions are not met, as is evident from the
statements of this method:
"The processServiceRequest: method:

sequential

newEventRequired := true \+

serviceRequest := aServiceRequest \+

categoryIndex := (categoryIndex + 1) \\ nrOfCategoriesServed

end-sequential

In the correctness arguments of property AS3-09 (CC_SimulationActivation) it is therefore
necessary to show that the precondition will always hold when the processServiceRequest:

method is invoked. The only statement which invokes the latter is the assignToSP: method of
the ServiceCategory" class.

The following total correctness property applies to the assignToSP: method:
sr notNil A availableServiceProvider notNil results-in

methodReturnvalue = self A
availableServiceProvider
postconditions: (#processServiceRequest:)
withArguments: #(sr) A
sr postconditions: (#serviceProvider:)
withArguments: #(availableServiceProvider)
"DL1-10 (ServiceCategory)"

where availableServiceProvider is defined in a macro as:

availableServiceProvider =
spSubset detect: [:each | each canAcceptNextSR:
serviceQCategory]

Thus, the ServiceCategory instance assigns the service request denoted by sr to the first
service provider simulator in spSubset which can accept another service request. (The
spSubset instance variable of the ServiceCategory class represents the set of service
provider simulators that have the capability to process service requests that are enqueued in the
serviceQ of this ServiceCategory instance.)

The processServiceRequest: message is therefore only sent to the
ServiceProviderSimulator instance if the canAcceptNextSR: message to that instance
has returned true. This concludes the informal correctness arguments regarding property AS3-09
(CC _SimulationActivation).

This section has shown how a class can restrict its responsibilities regarding the preservation of a
property by specifying the appropriate preconditions for its methods. It is then the responsibility
of the client of these methods to ensure that the relevant preconditions are met when these
methods are invoked.

7.3.1.4 Using an unless property to demonstrate how the correctness properties specified
Jor the class itself as well as those inherited from its parent class are applied in
correctness arguments

It is important to understand the effect of inheritance on correctness properties. There are three
distinct cases:

O A correctness property may be reused as is in the descendant.

O A correctness property may be added in the descendant.

O A correctness property of the descendant may override one in its ancestor.

' The ServiceCategory class is specified in Appendix B, Section B.10.

233

The first two cases are covered in the first example described in this section. Subsequently,
another example is given which demonstrates how a correctness property can be overridden by a
descendant.

The following is one of the unless properties of the ServiceProviderSimulator class :

serviceRequest isNil A —newEventRequired unless
serviceRequest notNil A newEventRequired
"AS4-01 (ServiceProviderSimulator)"
"When a new service request is assigned to the service provider simulator then a new
service provider simulator event is required."

Property 4S4-01 specifies that when the value of the serviceRequest instance variable
changes from nil to not nil, then the value of the newEventRequired instance variable changes
from false to true. This is an example of a correctness property that is added in a descendant.
The EventSimulator class, which is the parent of the ServiceProviderSimulator class'®,
does not contain this property at all. However, it will now be shown how some of the properties
defined for the parent class are reused as is in the correctness arguments for property 4S54-
01 (ServiceProviderSimulator).

The strategy to be followed for the correctness arguments

Since the ServiceProviderSimulator instance does not provide any methods to clients to
modify the serviceRequest and newEventRequired instance variables, it is merely

"necessary to check the statements of the ServiceProviderSimulator class and its ancestors
in order to verify that this property is not violated. .

First of all it is shown in part A that when the value of serviceRequest changes from nil to
not nil, then newEventRequired is set to true. Thereafter it is shown in part B that
serviceRequest is only set to a non-nil value when the value of newEventRequired
changes from false to true, i.e. newEventRequired is not already true when serviceRequest
is set to a non-nil value.

Part B has two subsections:

B1) Firstly it is shown that newEventRequired is set to false and serviceRequest is set to
nil upon initialization. Thus, when processServiceRequest: is executed the first time,
newEventRequired is false, since no other method sets this variable to true. (It is in the
processServiceRequest: method where serviceRequest is set to a non-nil value and
where newEventRequired is set to false.)

B2) It must then be shown that whenever processServiceRequest: is invoked after that,
newEventRequired has the value false. When processServiceRequest: is executed,
newEventRequired is set to true and serviceRequest is set to a non-nil value. Since one of
the preconditions of the processServiceRequest : method is that serviceRequest should
be nil, it means that the processServiceRequest: method can only be executed again once
serviceRequest has been set to nil. Note that it is not a precondition of this method that
newEventRequired should be false. In order to be sure that processServiceRequest: is
not invoked while newEventRequired is still true, it therefore has to be shown that
serviceRequest will remain not nil for at least as long as newEventRequired is true.

16 The ServiceProviderSimulator class is specified in Appendix B, Section B.13 and its parent class, the
EventSimulator class, is specified in Appendix B, Section B.5.

234

Once newEventRequired is true, a timer will eventually be started, at which point
newEventRequired is set to false. The serviceRequest variable is only set to nil once this
timer has expired. This means that newEventRequired is set to false before
serviceRequest is set to nil. Since processServiceRequest: is the only method which
sets newEventRequired to true, it follows that newEventRequired will always be false when
serviceRequest is nil, i.e. when processServiceRequest: is invoked. The sequence of
events as dictated by the preconditions of the above methods is shown below in tabular format.
(The way in which these preconditions determine the sequence of events is referred to as
synchronisation constraints, a topic which was discussed in Chapter 3, Section 3.2.2.3.)

Step Method executed Variables modified, methods invoked

1 processServiceRequest: newEventRequired := true
serviceRequest := aServiceRequest

2 p_simulate: timeoutEventsIn: newEventRequired := false
startRandomTimer:withMaximum

3 p_simulate:timeoutEventsin: generatingEvent := true
resetTimerExpired:

4 p_generateEvent serviceRequest := nil
generatingEvent := false

Table 7-1. Sequence of events involving the newEventRequired and serviceRequest
instance variables.

The correctness arguments

PartA:

It needs to be shown that when the value of serviceRequest is set to not nil, then
newEventRequired is set to true. There is only one method which sets the serviceRequest
instance variable to a non-nil value, viz. processServiceRequest:. The total correctness
property of this method specifies that when the value of serviceRequest changes from nil to
not nil, then newEventRequired is set to true:

"Total correctness ©property of the processServiceRequest:
method"”

<V x where 0 £ x A x < nrOfCategoriesServed
categoryIndex = x A
aServiceRequest notNil A

self canAcceptNextSR: (aServiceRequest serviceRequestCategory)
results-in

methodReturnValue = self A
serviceRequest = aServiceRequest A
newEventRequired A

categoryIndex = (x + 1) \\ nrOfCategoriesServed
> "DL1-06 (ServiceProviderSimulator)”

Property DLI-06 therefore guarantees that when the value of serviceRequest changes from
nil to not nil, then newEventRequired is set to true.

Part B:

It must now be shown that newEventRequired will change from false to true when the value
of serviceRequest is set to a non-nil value.

The total correctness property of the processServiceRequest: method guarantees that
newEventRequired is set to true when the method is executed, as was shown above. It
therefore remains to be shown that newEventRequired will always be false when the
processServiceRequest : method is invoked.

235

Part B1:
From the total correctness property of the initialize method of EventSimulator, the

parent class, it is clear that newEventRequired is false initially.
"Total correctness property of the initialize method"

true results-in methodReturnValue = self A
rand notNil A newEventRequired = false A
currentRandomTimeoutValue = 1 A

generatingEvent = false A
timerOutstanding = false "DL1-01 (EventSimulator)"

The moreInit:using: method of the ServiceProviderSimulator class sets
serviceRequest to nil initially as can be seen from the total correctness property of that
method.

"Total correctness property of the morelInit:using: method”
true results-in methodReturnValue = self A
serviceRequest isNil A
aConfiguration postconditions: (#assignSPCategory) A
serviceProviderCategory notNil A

categoriesServed notNil A
self postconditions: (#registerServiceProvider: using:)
withArguments: #(scContainer aConfiguration)
"DL1-01 (ServiceProviderSimulator)"

Since both these methods are executed when the ServiceProviderSimulator instance is
created, newEventRequired is false and the value of serviceRequest is nil when the
processServiceRequest: method is invoked the first time. This is because
processServiceRequest: i the only method which sets newEventRequired to true and
serviceRequest to not nil. It now remains to be shown that newEventRequired will be
false whenever processServiceRequest: is executed thereafter.

Part B2:

The safe liveness property of the p simulate:timeoutEventsIn: method of the
EventSimulator class (i.e. the parent class) ensures that newEventRequired will eventually
become false, as can be seen below:

newEventRequired ensures

self postconditions: (#startRandomTimer:withMaximum:)
withArguments:

(aTimerServices (aTimerServices maximumTimeout))

A —newEventRequired "DP1-01 (EventSimulator)"

"When newEventRequired is true, it ensures that a simulation timer is started and
newEventRequired becomes false."”

Since the processServiceRequest : method is the only one that sets newEventRequired to
true, newEventRequired will remain false until processServiceRequest: is executed
again. The latter is not executed while serviceRequest has a non-nil value. One therefore has
to show next that serviceRequest will only be set to nil once newEventRequired has
already been set to false.

Property DPI-01(ServiceProviderSimulator) describes the conditions under which
serviceRequest is set to nil. It specifies that it will only happen if generatingEvent is
true, as can be seen below:

236

generatingEvent A serviceRequest notNil ensures
(serviceRequest connection) postconditions: (#terminate:)

withArguments: # ('completed') A

serviceRequest isNil A —generatingEvent
"DP1-01 (ServiceProviderSimulator)"

"If a service provider simulator has to generate an event, it ensures that the connection
currently associated with the service request is terminated and that the service provider
simulator becomes available to service a new service request.”

As is evident from property DPI-02 of the EventSimulator parent class, generatingEvent
is only set to true if a timer started by self expires. In this case self is the current
ServiceProviderSimulator instance.

self timerExpired: timerEventQ ensures

generatingEvent A
self postconditions: (#resetTimerExpired:)
withArguments: # (timerEventQ) "DP1-02(EventSimulator)"

"When a simulation timer expires, it ensures that generatingEvent becomes true."”

The total correctness property of the t imerExpired: method of the EventSimulator parent
class specifies that it will only return true if the t imerEventQ contains an element which has
self as the timeoutRequestor, i.e. the current ServiceProviderSimulator instance
requested the timer earlier on.

"Total correctness property of the timerExpired: method"

true results-in methodReturnValue

(timerEventQ detect: [:each |
each timeoutRequestor == self]
ifNone: [nil]) notNil : "DL1-03 (EventSimulator)"

Thus, generatingEvent is only set to true upon the expiry of a timer started by the current
ServiceProviderSimulator instance. Property DPI-01 of the EventSimulator parent
class guarantees that newEventRequired is set to false when an EventSimulator subclass

requests a timer to be started, as can be seen below.
newEventRequired ensures

self postconditions: (#startRandomTimer:withMaximum:)
withArguments:

(aTimerServices (aTimerServices maximumTimeout))

A —newEventRequired "DP1-01 (EventSimulator) "

"When newEventRequired is true, it ensures that a simulation timer is started and
newEventRequired becomes false.”

Thus, the expiry of a timer has to be preceded by the setting of that timer, at which point
newEventRequired is set to false. The value of serviceRequest can therefore only be set to
not nil once newEventRequired has been set to false.

The correctness arguments for part B are summarised as follows:

In order to show that newEventRequired is always false when processServiceRequest:
is executed, it was first shown that newEventRequired is set to false and serviceRequest is
set to nil upon initialization. Thus, when processServiceRequest: is executed the first time,
newEventRequired is false, since no other method sets this variable to true.

Thereafter, the following occurs: When processServiceRequest: 1is executed,
newEventRequired is set to true and serviceRequest is set to a non-nil value. Eventually, a
timer is started, at which point newEventRequired is set to false. Once the timer expires,
generatingEvent is set to true. Only once generatingEvent is true, can

237

serviceRequest be set to nil. Since generatingEvent is only set to true upon expiry of a
timer, it follows that once processServiceRequest: has been executed,
newEventRequired is always set to false before serviceRequest is set to nil. This
concludes the correctness arguments for property 454-01.

In order to reason about the correctness of the behaviour of the ServiceProviderSimulator
class, it is necessary to take the correctness properties of its parent class, EventSimulator, into
account. The above example has therefore demonstrated how correctness properties that are
inherited from a parent class are reused in the correctness arguments of properties of a
descendant class.

Overriding a property of an ancestor

The cC_simulationActivation class provides an example of where a correctness property
overrides a property of an ancestor. The initCommsAgent method of the CC_Activation

class has the following total correctness property:
"Total correctness property of the initCommsAgent method"
true results-in methodReturnValue notNil
"DL1-05 (CC_Activation)"

The cC_simulationActivation subclass overrides the initCommsAgent method and the
above property is specialized in the subclass in the following way:
"Total correctness property of the initCommsAgent method"
true results-in methodReturnValue notNil A
CC_simulationInterfacesPkg:::CommsProviderSimulator
postconditions: (#startSimulation)
o "DL1-05 (CC_Activation)™

Thus, the cC_Activation class merely specifies that the method will return a non-nil value, but
it does not specify which class should be instantiated. That is left up to the subclass.

The overriding of a property is indicated syntactically by repeating the number of the property
from the ancestor and including the name of the ancestor in brackets. This is similar to the way
in which a method in a descendant overrides a method with the same name in the ancestor. (All
properties that are not inherited are assigned identifiers that are unique within that class.)

In the above example the preconditions are left unchanged, while the postconditions are
strengthened in the subclass. It is important that the designer should take into account that
preconditions may not be strengthened and postconditions may not be weakened when
correctness properties are overridden in a subclass. This is to ensure that a class could be
replaced with its subclass while guaranteeing that all the properties that used to hold for the
parent class will still hold when the subclass is used instead [Meye97].

In order to ensure that preconditions can be weakened and postconditions can be strengthened,
care should be taken during the specification of properties to avoid overspecification. For
example, in the TimerServices'’ class, the size of the timeoutCollection array is
dependent on the maximum timeout value (it is equal to maximumTimeout + 2). It is
important that all other properties that depend on the size of the timeoutCollection array
should refer to 't imeoutCollection size', rather than maximumTimeout + 2', since the size
of the timeoutCollection array might be calculated differently in subclasses of

' The TimerServices class is described in Appendix B, Section B.11. Details about its design and its
properties are also given in Section 7.3.2.2.

238

TimerServices. For such subclasses it should not be necessary to modify the properties of the
methods that use the size of the t imeoutCollection array.

For example, the clean behaviour property of the start:id: for: method should not have to
change if the size of the timeoutCollection array is calculated differently.

invariant 1 £ writeIndex A writeIndex < timeoutCollection size
"DS3-02 (TimerServices)"

The above examples have demonstrated how a correctness property first defined in a parent class
can be reused as is in a descendant class. It has also been shown how correctness properties can
be added in descendant class. The third type of reuse allowed for the specialization of a
correctness property in a descendant class, provided the modifications adhere to the rule given
earlier in this section. This concludes the discussion about the impact of inheritance on
correctness arguments.

7.3.2 Liveness properties

This section deals with three different types of liveness properties, viz. total correctness,
intermittent assertions and responsiveness properties. The correctness arguments for examples of
these properties are used as a vehicle to discuss various aspects of the correctness reasoning in
the SLOOP method. The first example emphasizes the atomicity of sequential methods and how
this characteristic can be used in correctness properties. The intermittent assertion example
shows how the computational model is used to reason about progress and the responsiveness
example demonstrates the importance of showing that preconditions will eventually hold when
correctness properties are being reused in correctness arguments of liveness properties.

7.3.2.1 Showing why the postconditions of a total correctness property can be used in
an ensures relation

The sequential methods in a SLOOP program are either executed as part of the sequential
statements in the activation-section or they are invoked from within parallel statements. Since
each parallel statement is executed atomically (i.e. statement interleaving takes place at the
level of parallel statements), concurrency does not impact on sequential statements embedded in
parallel statements.

The safe liveness property of the p_doWrapUp method of the Connection class demonstrates
how the postconditions of a sequential method can be used in an ensures relation. Recall that the
ensures relation only applies if the postcondition of the relation is reached via the execution of a
single SLOOP statement. Although the reset method of the ServiceRequest class that is
invoked by the p_doWrapUp method of the Connection class contains multiple sequential
statements, they are embedded in the single parallel statement of the p_doWwrapUp method, as
shown below:

"p_doWrapUp method of the Connection class"”

message pattern p doWrapUp

method properties”

"Safe liveness"

currentHandlerInformed ensures

state = 'IDLE' A serviceRequest postconditions: (#reset) A

—currentHandlerInformed "DP1-02 (Connection) "

parallel

state := 'IDLE' \+

serviceRequest reset \+

currentHandlerInformed := false

if currentHandlerInformed
end-parallel

239

"reset method of the ServiceRequest class”

message pattern reset

method properties

"Total correctness"

true results-in methodReturnValue = self A serviceQ isNil A
serviceRequestCategory isNil A serviceProvider isNil A
categorisationData isNil "DL1-12 (ServiceRequest)"

sequential

serviceQ := nil

| serviceRequestCategory := nil

[} serviceProvider := nil

[categorisationData := nil

end-sequential

Thus, despite the fact that the reset method contains four separate SLOOP statements, each one
achieving part of the postcondition, the client of a sequential method views the execution of such
a method as an atomic event. The postconditions of a sequential method may therefore be used
in the postconditions of an ensures relation. In this example it is therefore guaranteed that no
other parallel statements can be executed while the Connection instance and its associated
ServiceRequest instance are being reset.

The correctness arguments to reason about a total correctness property of a sequential method
proceed as for any conventional sequential program, but taking the semantics of SLOOP
sequential statements into account. For example, if a statement contains a conditional-
component—part-list18 as in the registerServiceProvider:using: method of the
ServiceProviderSimulator class below, then all the component-parts of the list are subject
to the associated condition. R .

The order of the statements is significant. For example, in the code fragment below it is clear that
the statement setting nrOfCategoriesServed to zero has to be executed before the loop that
follows. This is because this variable is incremented within the loop whenever the simulator is
registered with a service category. Once the loop has been completed, this variable contains the
number of service categories serviced by this simulator.

If another method is invoked by any of the statements, then the semantics for the invocation are
as for a function call in a conventional programming language. The total correctness property of
the registerServiceProvider:using: method below specifies the conditions that should
hold when the method is entered and it also specifies the conditions that should hold when
control exits from the method.

message pattern registerServiceProvider: scContainer
using: aConfiguration

"Registers the ServiceProviderSimulator with the relevant

service categories"

method macros

maxCategories = aConfiguration maximumServiceCategories

method properties

"Total correctness”™

true results-in methodReturnValue = self A
<VaServiceCategory where
scContainer includes: aServiceCategory A
aServiceCategory servicedBy: serviceProviderCategory ::

18 The conditional-component-part-list was defined in Chapter 4, Section 4.3.6.2.

240

aServiceCategory postconditions: (#addSP:)
withArguments: # (self) A
categoriesServed includes:
(aServiceCategory serviceCategory)
> A
nrOfCategoriesServed = categoriesServed size A
categoryIndex > 0 "DL1-05 (ServiceProviderSimulator)”
sequential
nrOfCategoriesServed := 0
[<[j where 1<j<maxCategories
(scContainer at: j) addSP: self \+

nrOfCategoriesServed := nrOfCategoriesServed + 1 \+

categoriesServed addlLast: ((scContainer at: j) serviceCategory)
if (scContainer at: j) servicedBy: serviceProviderCategory

>

[categoryIndex := 0

end-sequential

Since there can be no interference while the statements of a sequential method are executing, it
is guaranteed that once the condition of a conditional statement within the sequential method has
been evaluated, its value cannot change before the rest of the statement starts executing.

The examples in this section have highlighted the way in which the execution of sequential
methods should be interpreted, i.e. the method executes as an atomic unit. No concurrency
needs to be taken into account when reasoning about the behaviour of the statements within a
sequential method. As far as the computational model is concerned, a sequential method is
executed as part of a single parallel statement. The total correctness properties of a sequential
method can therefore be used in an ensures relation (and in the other SLOOP relations as well).

7.3.2.2 Using an intermittent assertion property to demonstrate how the repeated
execution of parallel statements guarantees progress, provided the preconditions hold at
some point

The aim in this section is to demonstrate how the repeated execution of the parallel statements
selected for the program eventually results in the postconditions specified by the liveness
properties, provided that their preconditions hold at some point. The example is taken from the
list of intermittent assertion properties specified in Chapter 5:

AL2-01.Once a timer has been started, it will eventually expire or it will be stopped.

Specifying the correctness property formally

In order to write this property more formally, it is necessary to consider how timers are
represented in the system. A brief description of the design of the TimerServices class was
presented in Chapter 6, Sections 6.2.4 and 6.3.1, and full details are given in Appendix B,
Section B.11. However, for convenience, a short summary is presented here.

The TimerServices instance, which handles all timer requests, creates a TimeoutElement
instance whenever a timer is started. In order to be able to inform the requestor of the expiry of
the timer, the TimerServices instance determines when the timer would expire and then stores
the TimeoutElement instance in the list of timers that will expire at the calculated time. These
lists are stored in an instance of the Array class, called timeoutCollection.

The TimerServices class implements this array as a circular array. Each position in the array
represents one second. The TimerServices instance maintains an index into the array. This

241

index is called currentTick and is advanced every second (it is incremented modulo the size
of the array). Thus, the entry in the array which will be reached x seconds from the current
moment can be calculated using the value of currentTick, the size of the array and the value
of x. Each entry in the array is an ordered collection of TimeoutElement instances.

When a timer expires, its associated TimeoutElement instance is removed from the list in
timeoutCollection and entered into t imerEventQ, which is checked by all timer requestors
on a regular basis. Appendix B, Section B.11, contains two diagrams (Figures B-3(a) and B-
3(b)) illustrating the above concepts.

The responsibility for ensuring that each timer will expire unless it is stopped, lies with the
TimerServices class. When property 4L2-0! is specified more formally, it can therefore be
written in terms of the instance variables of the TimerServices class:
<V aTimeoutElement where
<3 i where 1 < i1 £ (timeoutCollection size)

(timeoutCollection at: i) includes: aTimeoutElement
>

-aTimeoutElement timerServicesCompleted leads-to
aTimeoutElement timerServicesCompleted
> "DL2-01 (TimerServices)"
"Once a timer has been started, i.e. it is present in one of the lists associated with
timeoutCollection, the TimerServices instance will eventually complete its
responsibilities regarding the timer (i.e. the timer will either be stopped or the
TimerServices instance will indicate its expiry to the requestor of the timer)."

The strategy to be followed for the correctness arguments

It needs to be shown that once a TimeoutElement instance has been entered in one of the lists
reached via the timeoutCollection array, the TimeoutElement instance will eventually be
removed from the relevant list because the timer has been stopped by a client of the
TimerServices instance or it will be removed because the timer has expired, in which case it is
added to the timerEvent(list. Abnormal conditions are not considered at this level of
abstraction, therefore the case where the timer could be stopped is ignored in this discussion. (At
this level of abstraction the TimerServices class does not export a method to stop a timer.)
The strategy for the correctness arguments is therefore as follows:

First of all it needs to be shown that the index which identifies the list of expired timers (the
readIndex) will eventually reach the list containing the specified TimeoutElement instance
(part A). It then needs to be shown that once that happens, the TimeoutElement instance will
eventually be removed from the list and added to the timerEventQ (part B). Since progress is
achieved via the infinitely often execution of parallel statements, the obvious place to start is at
the parallel method defined for the TimerServices class, namely p_runTimer:. This method
contains three parallel statements, as seen below:

parallel

currentTime := SmalltalkLibPkg:::Time now asSeconds "s1”
[lastTime := currentTime \+
currentTick := (currentTick + 1) \\ (timeoutCollection size)

if difference 2 1 and: [currentTimeoutElement isNil] "S2"
[timerEventQ addLast: currentTimeoutElement \+
currentTimeoutElement updateEndTime \+
currentTimeoutElement timerServicesCompleted: true \+
(timeoutCollection at: readIndex) removeFirst
if currentTimeoutElement notNil "s3n
end-parallel

242

The purpose of each statement is summarised here, with more detail to follow. The first
statement (S/) updates the currentTime instance variable with the current time (in seconds)
whenever the statement is executed. The second statement (S2) updates two instance variables,
viz. lastTime and currentTick, whenever at least one second has expired and all the
TimeoutElement instances in the list identified by the current readIndex have been removed.
The lastTime instance variable records the last time when currentTick was updated and is
used to determine whether one second has already expired since the last update. Two macro-
variables, viz. difference and currentTimeoutElement are used in this statement. They
will described in more detail later. The last statement (S3) is used to remove the first
TimeoutElement instance from the list identified by the readIndex and to add it to
timerEventQ. The correctness arguments for property DL2-01 (TimerServices) will refer to the
above statements repeatedly.

The correctness arguments

Part A:
The readIndex macro-variable is defined as follows in the p_runTimer: method of the
TimerServices class (the one has to be added because SLOOP array indices start at one, not
Z€ro):

readIndex = currentTick + 1

Since the readIndex is defined in terms of currentTick, it needs to be shown that
currentTick will eventually be advanced from its current position, regardless of where that
position is. The following statement (S2) in the p_runTimer: method advances the position of
currentTick:

 lastTime := currentTime \+
currentTick := (currentTick + 1) \\ (timeoutCollection size)
if difference 2 1 and: [currentTimeoutElement isNil] "S2"

The value of currentTick is incremented modulo the size of the timeoutCollection array,
which implies the following:
invariant 0 £ currentTick A currentTick £ (timeoutCollection size) - 1.

The advancement of currentTick depends on two conditions, involving the difference and
currentTimeoutElement macro-variables respectively. These variables are defined as
follows:
difference = currentTime - lastTime
if (currentTime - lastTime) = 0 ~
currentTime + (86400 - lastTime)
if (currentTime - lastTime) < O
| currentTimeoutElement =
(timeoutCollection at: readIndex) first
if (timeoutCollection at: readIndex) isEmpty not =~
nil
if (timeoutCollection at: readIndex) isEmpty

First of all it needs to be shown that di f ference will eventually be greater than or equal to one.
As can be seen from the above, difference is used to calculate the elapsed time since
currentTick was last updated. It takes care of the rollover at midnight. The currentTime

instance variable is updated via the following parallel statement of the p_runTimer: method.
currentTime := SmalltalkLibPkg:::Time now asSeconds "s1iT

243

Since statement S/ must be executed infinitely often, it follows that currentTime will be
updated infinitely often and it will therefore eventually result in difference having a value
greater than or equal to one.

The second condition that has to be satisfied before currentTick and lastTime will be
updated is that currentTimeoutElement should be nil. That happens only if the list of
TimeoutElement instances is empty, as is evident from the macro-definition above. This will
eventually become true as a result of the infinitely often execution of the third parallel statement
ofthe p_runTimer: method. Each time that statement executes, it removes the first element of
the list identified by readIndex, provided the list is not empty. Furthermore, the value of
readIndex cannot change (being defined in terms of currentTick) until the condition for the
execution of statement S3 ceases to hold.

Thus, both conditions of statement S2 of the p_runTimer: method will eventually become true,
the first as a result of the infinitely often execution of statement S/ and the second as a result of
the infinitely often execution of statement S3 of that method. Since statement S2 is also executed
infinitely often, it will eventually be executed when both conditions are true, in which case
lastTime and currentTick will be updated. Thus, whatever the current value of
currentTick, it will eventually be incremented modulo the size of the timeoutCollection
array. Since readIndex is defined in terms of currentTick, readIndex will eventually
identify the next list of TimeoutElement instances. Thus, regardless of the index of the list
containing the TimeoutElement instance specified in property DL2-01 (TimerServices),
readIndex will eventually be equal to that index. This concludes the correctness arguments for
Part A.

Part B: g

It now remains to be shown that once the readIndex identifies a particular list of
TimeoutElement instances, then all of those instances will eventually be removed and added to
the timerEventQ. This follows vacuously from the infinitely often execution of statement S3
of the p runTimer: method. The presence of a TimeoutElement instance in the
timerEventQ indicates to the corresponding timer requestor that the timer has expired. This
concludes the correctness arguments of property DL2-01 (TimerServices).

This section has focussed on the role of parallel statements in the correctness arguments for
progress properties. Note that all parallel statements are executed repeatedly and in any order.
If the effect of the statement is conditional, the execution of a statement may not have an effect
each time it is executed.

The execution scenario as depicted in Table 7-2 shows one possible execution sequence (in this
case statement S/ is executed more often than the other two). The first statement of the
p_runTimer: method always has an effect (it is not a conditional statement). The second
statement in that method only has an effect if at least one second has expired since
currentTick has been updated and if the list identified by readIndex is empty. This might
not happen each time the statement is executed, as seen in the Table 7-2, where it is only updated
when it is executed for the fourth time.

244

Statement executed Effect

S2 difference < 1 and there are still two elements
in the list identified by readIndex.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S3 One element is removed from the list identified by
readIndex and added to timerEventQ.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S2 difference < 1 and there is still one element in
the list identified by readIndex.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S3 One element is removed from the list identified by
readIndex and added to timerEventQ.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S2 There are no elements in the list identified by
readIndex, but difference < 1.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S3 No action is taken.

S1 currentTime receives the latest value of the
number of seconds since midnight.

S2 difference is now 2= 1 and the list identified
by readIndex is empty, therefore currentTick is
advanced. "

Table 7-2. Parallel statement execution scenario.

In this section the role of the computational model in the correctness arguments for progress
properties was described. The purpose was to show how the infinitely often execution of the
parallel statements eventually results in the desired outcome. This is relatively simple if all the
parallel statements are unconditional. If some are conditional, however, it is also necessary that
the relevant conditions should eventually become true.

In the above example it had to be shown that the conditions of parallel statement (S2) would
eventually become true. Since the first condition depended on the infinitely often execution of
parallel statement S/, an unconditional parallel statement in the p_runTimer: method, it was
trivial to show that it would eventually become true. The second condition depended on the
infinitely often execution of statement S3. Although statement S3 is a conditional statement, the
condition which will prevent it from executing (i.e. when there are no more elements left in the
list at the readIndex position) is exactly the condition that is required to facilitate the execution
of statement S2. Thus, as long as there are elements in the list at that readIndex position,
statement S3 will execute and remove the first element whenever it is selected for execution
(which is infinitely often). Eventually this list will become empty (since no elements can be
added to the list at readIndex!?), thereby satisfying the second condition of statement S2.

' This is guaranteed by invariant DS3-03 (TimerServices), which is as follows:
invariant writeIndex ~= readIndex

245

This section has described the correctness arguments for a liveness property from first principles.
In the next section it is shown how the results of other correctness properties can be reused in the
correctness arguments of a liveness property. The importance of showing that the preconditions
will eventually hold is also described. This is analogous to the importance of showing that the
conditions of conditional parallel statements will eventually hold in the above example.

7.3.2.3 Using a responsiveness property to demonstrate the importance of showing that
the preconditions will eventually hold when reusing other correctness properties in the
correctness arguments of a liveness property

In this section the focus is on the reuse of correctness properties and the role of preconditions in
correctness arguments for liveness properties. It also shows how the concept of eventuality
chains is applied in informal liveness property proofs.

In the call centre example, the responsiveness property is a very important one, since it is the
property which ensures that the service user experiences the desired effect, i.e. it ensures that a
service request is eventually serviced once the user has connected to the call centre. The SLOOP
specification of the call centre in Appendix B is used as the basis for the discussions in this
section. The level of abstraction of that specification assumes that service users will not abort
service requests and the call centre will only receive service requests that belong to categories
supported by the call centre. Service providers may be idle or busy, but not completely
unavailable. The responsiveness property specified for the call centre system in Chapter 5,
Section 5.4.2.3, is given below for the level of abstraction used in Appendix B.

AL3-01. Once a service user has connected to the call centre, the associated service request will
eventually be serviced by an element of the service provider container.

Specifying the correctness property formally

In order to specify the above property more formally, one needs to determine what predicate
holds for the service request associated with the connection immediately after a service user has
connected to the call centre. Inthe CallCentreSimulation program, a service user trying to
establish a connection is simulated by setting the generatingEvent instance variable of the
CommsProviderSimulator class to true. If an idle Connection instance is available, it is
assigned to the service user and the associated service request is entered into the inputQ. This is
evident from the safe liveness property of the p_generateEvent:target: method of the
CommsProviderSimulator class (the newEventRequired instance variable is set to true in
order to trigger another simulated connection request from a service user after a random
timeout):

"Safe liveness"

generatingEvent A idleConnection notNil A

—(inputQ includes: (idleConnection serviceRequest)) ensures

—generatingEvent A newEventRequired A

inputQ last = (idleConnection serviceRequest) A
idleConnection postconditions: (#assign)
"AP1-01 (CommsProviderSimulator)"

"Tf an event has to be generated and the maximum number of
connections have not yet been established, the communication
provider simulator ensures that a new connection is established,
the associated service request is appended to the input gqueue
and a new communication provider simulator event is again
required.”

The macro-variable idleConnection used in the above property is defined as:

246

idleConnection = self getIdleConnection: userConnections

The getIdleConnection: method returns the first idle connection that can be found in the
userConnections array, or it returns nil if there are no idle connections. This behaviour can
be deduced from the total correctness properties of the get IdleConnection: method of the
CommsProviderSimulator class and the isIdle method of the Connection class listed

below:
"Total correctness property of the getIdleConnection: method"
true results—-in methodReturnValue =
userConnections detect: [:each | each isIdle] ifNone: [nil]
"DL1-03 (CommsProviderSimulator)"

"Total correctness property of the isIdle method"
true results-in methodReturnValue = (state = 'IDLE')
"DL1-05 (Connection) "

The serviceRequest method of the Connection class returns the service request associated
with the connection. The inputQ 1last = (idleConnection serviceRequest)
predicate of property AP1-01(CommsProviderSimulator) therefore specifies that the service
request associated with the first idle connection is appended to the inputQ. The
idleConnection postconditions: (#assign) predicate indicates that the assign
method is invoked on the first idle connection. That method sets the state of the Connection
instance to 'CONNECTED'. The interested reader is referred to Appendix B, Section B.7 for the
specification of the total correctness properties of these methods.

The fact that property AP1-01(CommsProviderSimulator) contains an ensures relation, implies
that at the time when the generatingEvent value is changed from true to false (simulating the
successful connection of the service user to the call centre), a Connection instance is assigned
to the service user and the associated service request is entered into the inputQ using a single
atomic parallel statement. Thus, when a service user connects successfully to the call centre, the
service request associated with the connection is added to the inputQ. This provides the
necessary information to specify property AL3-01 (CC_SimulationActivation) more formally:

<V aConnection where userConnections includes: aConnection
inputQueue includes: aConnection serviceRequest leads-to

<3 aServiceProviderSimulator where

spAgentContainer includes: aServiceProviderSimulator

aServiceProviderSimulator serviceRequest =
aConnection serviceRequest

>

> "AL3-01 (CC_SimulationActivation)"
"Once a service user has connected to the call centre, the associated service request will
eventually be serviced by an element of the service provider container.”

Note that the above property does not specify a unique association between the service requests
in the inputQ and the service provider simulators. For example, if there are 5 service requests in
the inputQ, then it is not necessary to have 5 service provider simulators. One simulator would
suffice. The above property merely specifies that each service request in the inputQ will
eventually be assigned to a service provider simulator.

The strategy to be followed for the correctness arguments

The above responsiveness property can be derived in two steps:

247

A) by applying the transitivity rule on the leads-to relation of the safe liveness properties that
describe the sequence of events from the time that the connection is accepted by the call centre
until the associated service request is assigned to a service provider, and

B) by showing that the preconditions of each of these properties will eventually become true.

The correctness arguments

Part A:

Properties AP1-05 (CC_Activation) and AP1-06 (CC_Activation), first presented in Chapter 5,
Section 5.4.3.1, describe the path followed by a service request through the system. It has to be
shown that a service request which is present in the inputQ is eventually processed by a service
provider simulator. In this part, it is assumed that the preconditions of properties API-05
(CC_Activation) and AP1-06 (CC_Activation) will eventually hold.

<V aServiceRequest where inputQ includes: aServiceRequest
inputQ includes: aServiceRequest ensures

< J aServiceQueue :: aServiceQueue includes: aServiceRequest)
>

> "AP1-05 (CC_Activation)"”
"A service request remains in the inputQ until it is assigned to a service queue."

<V aServiceRequest

< J aServiceQueue :: aServiceQueue includes: aServiceRequest

>

ensures
< 3 aServiceProviderSimulator where
spAgentContainer includes: aServiceProviderSimulator
aServiceProviderSimulator .serviceRequest = aServiceRequest
>

> o "APl1-06 (CC_Activation)"
"A service request remains in a service queue until it is allocated to an element of the service
provider container.”

In properties API-05 (CC_Activation) and API1-06 (CC_Activation) aServiceQueue is
quantified over all the service queues associated with ServiceCategory instances in the
scContainer. This quantification is not shown in order to make the property specifications
less cluttered.

In Chapter 4, Section 4.3.4.4, it was stated that the SLOOP leads-to relation can be derived by
applying the same inference rules as specified for the UNITY leads-to relation. Those inference
rules were presented in Chapter 2, Section 2.5.5. The correctness arguments for property AL3-
01(CC _SimulationActivation) uses the first two inference rules, viz.

p ensures ¢
o e
p—>q
p—o>qq-or
e (transitivity)
por

248

The ensures relation in the properties AP1-05 (CC_Activation) and AP1-06 (CC_Activation) can
therefore be replaced with leads-to relations. Applying the transitivity rule on the leads-to
relations in these properties allows one to deduce the following:

<V aServiceRequest where inputQ includes: aServiceRequest
inputQ includes: aServiceRequest leads-to
< 3 aServiceProviderSimulator where
spAgentContainer includes: aServiceProviderSimulator ::
aServiceProviderSimulator serviceRequest = aServiceRequest
>

Thus, once a service request is present in the inputg, it will eventually be serviced by a service
provider simulator. The above example demonstrates how a chain of eventualities is used in the
correctness arguments of property AL3-01 (CC_SimulationActivation). The concept of proof by
eventuality chains is described in [MaPn81b] as an approach "based on establishing a chain of
eventualities that by transitivity leads to the ultimate establishing of the desired goal".

The results of properties AP1-05 (CC_Activation) and AP1-06 (CC_Activation) are reused here.
Their correctness must be shown separately. As an example, the correctness arguments for
property AP1-06 (CC_Activation) are presented in Section 7.3.3.1. This concludes part A of the
correctness argument.

PartB:
It now remains to be shown that the preconditions of propertles API1-05 (CC_Activation) and
AP1-06 (CC_Activation) will eventually hold.

The precondition of property API-05 (CC_Activation) specifies that the service request
associated with a new connection should be present in the inputQ. It is evident from safe
liveness property API-0] of the p generateEvent:target: method of the
CommsProviderSimulator class, which was given at the beginning of this section, that the
associated service request is entered into the i nputQ when a new connection is established. The
precondition of property AP1-05(CC_Activation) therefore holds once the user has connected
successfully to the service centre, which means that its postcondition will eventually hold.

The precondition of property AP1-06 (CC_Activation) specifies that the service request has to be
entered into a service queue. This follows directly from the postcondition of property AP1-05
(CC_Activation). This concludes the second part of the correctness argument.

In this section it has been demonstrated how the properties of a leads-to relation can be utilised
in the correctness arguments of a liveness property. It has illustrated the application of
eventuality chains in informal liveness property proofs. It has also demonstrated that when
reusing other correctness properties in the correctness arguments of a liveness property, it is
important to show that the preconditions of the properties being reused will eventually become
true. It is only if the preconditions do eventually become true that the postconditions can hold
and that progress can take place. Preconditions play an equally significant role when the
postconditions: construct is used in a correctness property. That is the topic of the Section
7.3.3.1, which covers the correctness arguments of one of the precedence properties. The next
section discusses various precedence properties.

249

7.3.3 Precedence properties

In Chapter 5 three types of precedence properties were listed, viz. safe liveness, absence of
unsolicited response and fair responsiveness. Informal correctness arguments are now given
for examples of each of these correctness property types. The examples have been chosen to
highlight various aspects of correctness reasoning. The safe liveness property example
illustrates the usage of the postconditions: and postconditions:withArguments:
constructs in correctness arguments. The absence of unsolicited response example is used to
demonstrate how the distinctive characteristics of an ensures relation can be used in
correctness arguments. Finally, the fair responsiveness example shows how correctness
arguments are used to check that the classes selected for a system indeed satisfy the
correctness properties as specified for the system under development.

7.3.3.1 Using a safe liveness property to highlight the impact of the postconditions: and
postconditions:withArguments: constructs on correctness arguments

The purpose of this section is to describe the impact of postconditions: and
postconditions:withArguments: constructs on correctness arguments. The discussion
highlights the importance of showing that the preconditions of the methods referenced in the
postconditions: and postconditions:withArguments: constructs are satisfied
Property AP1-06 (CC_Activation) is used in this example.

<V aServiceRequest
< 3 aServiceQueue :: aServiceQueue includes: aServiceRequest
>
ensures
< 3 aServiceProviderSimulator where
spAgentContainer includes: aServiceProviderSimulator ::
aServiceProviderSimulator serviceRéquest = aServiceRequest
>
> "AP1-06 (CC_Activation)"”
"4 service request remains in a service queue until it is allocated to an element of the service
provider container.”

In property AP1-06(CC_Activation) aserviceQueue is quantified over all service queues
associated with ServiceCategory instances in the scContainer. This quantification is not
shown in order to make the property specifications less cluttered. Error conditions are not
described at this level of refinement.

The strategy to be followed for the correctness arguments

1t has to be shown that:

A) once a service request is present in a service queue, it remains in the service queue unless the
service request is allocated to a service provider simulator (the safety part) and

B) eventually a service request is allocated to a service provider simulator (the liveness part).

The strategy for the informal proof of part A is as follows:

A1) Find all the correctness properties that imply the removal of a service request from a service
queue. In this case only one such property is found, viz. the DPI-01(ServiceCategory) property.
A2) Show that the service request is assigned to a service provider simulator when it is removed
from the service queue.

A3) Since the postconditions:withArguments: construct is used to specify the assignment
of a service request to a service provider simulator, it needs to be shown that the preconditions of
the corresponding method will hold when the latter starts its execution.

250

A4) The action in A3 is applied recursively until no further postconditions: or
postconditions:withArguments: constructs are found.

The strategy for the informal proof of part B is as follows:

Once the correctness arguments of Part A have been presented, it will be evident that there is
only one method which removes a service request from a service queue, viz. the p_execute
method of the ServiceCategory class. It will also be clear that when the service request is
removed from the service queue, it is assigned to a service provider simulator (an element of the
spAgentContainer) in a single atomic action. It now only remains to be shown that the
preconditions of the safe liveness correctness property of the p_execute method will eventually
hold.

B1) The first predicate of the preconditions of this property requires a non-empty service0. It
therefore needs to be argued that a service request will be present in the serviceQ.

B2) The second predicate of the safe liveness property of the p_execute method specifies that
a service provider simulator will eventually be willing to accept the service request. It therefore
needs to be shown that:

B2.1) Each service provider simulator eventually responds with the value true when the
canAcceptNextSR: message is sent to it, provided the service category passed as parameter
matches one of the categories serviced by the service provider simulator.

B2.2) A service category only sends the canAcceptNextSR: message to service provider
simulators that have indicated their capability to service that particular service category. These
service provider simulators are elements of the spSubset collection of the ServiceCategory
instance.

B2.3) The spSubset collection of each ServiceCategory instance contains at least one
element.

Thus, by providing correctness as outlined above, it can be concluded that any service request
present in a service queue remains in that queue until it is assigned to a service provider
simulator.

The correctness arguments

Part Al:
First of all the classes comprising the call centre system are inspected with the aim of finding a
correctness property that implies the removal of a service request from a service queue. The only
one that is found, belongs to the p_execute method of the ServiceCategory class®. Its safe
liveness property specifies:
serviceQ isEmpty not A self canAssignSR ensures

self postconditions: (#assignToSP:) withArguments:

((serviceQ first)) A

serviceQ postconditions: (#removeFirst)

"DP1-01 (ServiceCategory)".

Part A2:

The next step is to show that a service request is assigned to a service provider simulator when it
1s removed from the service queue. This is evident from the postconditions of the safe liveness
property of the p_execute method. These indicate that the assignToSP: and removeFirst
methods are invoked; the former to assign a service request to a service provider simulator and
the latter to remove that service request from a service queue. The fact that property DPI-
01(ServiceCategory) is an ensures relation, guarantees that these actions will be executed
atomically.

% This can be verified by inspecting the statements of the classes in Appendix B. The ServiceCategory
class is specified in Appendix B, Section B.10.

251

Inspection of the correctness properties of the assignToSP: method reveals that the
assignToSP: invokes the processServiceRequest: method of the
ServiceProviderSimulator instance in order to perform the actual assignment of the
service request to a service provider simulator, as shown below:

"Total correctness property of the assignToSP: method"
sr notNil A availableServiceProvider notNil results-in
methodReturnvValue = self A
sr postconditions: (#serviceProvider:
withArguments: #(availableServiceProvider) A
availableServiceProvider
postconditions: (#processServiceRequest:)
withArguments: #(sr) "DL1-10 (ServiceCategory)"

21)

The availableServiceProvider macro-variable is defined as:
availableServiceProvider =
spSubset detect: [:each | each canAcceptNextSR:

serviceQCategory]

It is when the processServiceRequest : message is sent to availableServiceProvider
that the service request is assigned to the service provider, as is evident from the total correctness
property of the processServiceRequest: method of the ServiceProviderSimulator
class:

<V x where 0 £ x A x < nrOfCategoriesServed ::

categoryIndex = x A ’ '

aServiceRequest notNil A

self canAcceptNextSR: (aServiceRequest: servicéRequestCategory)
results-in

methodReturnValue = self A
serviceRequest = aServiceRequest A
newEventRequired A

categoryIndex = (x + 1) \\ nrOfCategoriesServed
> "DL1-06 (ServiceProviderSimulator)”

Thus, by inspecting the correctness properties of the classes comprising the call centre, one can
deduce that when a service request is removed from a service queue, then it is assigned to a
service provider simulator, provided the preconditions of the assignTosP: and
processServiceRequest: methods are met. The next two parts of this informal proof are
devoted to showing that the preconditions are indeed satisfied.

Part A3:

Property DP1-01(ServiceCategory), which describes the behaviour of the p_execute method,
uses the postconditions:withArgument: construct to convey the fact that a service request
is assigned to a service provider simulator. In order to ensure that the allocation will be
successful, it has to be shown that the preconditions of the assignToSP: method will always be
satisfied when the latter is invoked from within the p_execute method.

21 The serviceProvider: method of the ServiceRequest instance sets the serviceProvider attribute of that
instance to the value specified in the argument of the method. In this case it refers to the service
provider simulator that will be processing the service request. Refer to Appendix B, Section B.9 for
details of this method.

252

In fact, it can be said that the preconditions of the p execute method of the
ServiceCategory class were designed with the aim of ensuring that the preconditions of any
other methods invoked by the statements of the p execute method would be satisfied
vacuously. This is possible because the p_execute method contains only one statement that
could change the values of the predicates appearing in the precondition of property DPI-
01(ServiceCategory) and that is the statement that invokes the method(s) that have the same
preconditions as the p_execute method itself. At this stage it is assumed that the preconditions
of the p_execute method hold. The correctness arguments to prove that they do indeed hold,
are presented in part B. The predicates of the preconditions of the assignToSP: method are
now considered one by one.

The first predicate of property DLI-10(ServiceCategory) of the p_execute method (given
above) specifies that sr should not be nil, where sr is the message argument in the message
pattern. Thus, assignToSP: should be invoked with a non-nil parameter. Upon inspection of
property DP1-01(ServiceCategory) describing the behaviour of the p_execute method, it
emerges that the argument that is passed to the assignToSP: method is serviceQ first
(this is clear from the postconditions:withArguments: constructs used in that correctness
property). The first element of serviceQ is guaranteed not to be nil by the serviceQ
isEmpty not precondition of the DPI-01(ServiceCategory) correctness property of the
p_execute method.

The second precondition of the total correctness property of the assignToSP: method specifies
that availableServiceProvider notNil has to hold. This means that there has to be at
least one service provider in spSubset that can accept a new service request, as is evident from
the definition of the availableServiceProvider macro-variable listed above.

The second precondition of property DPI-01(ServiceCategory) of the p_execute method
contains the following predicate: self canAssignSR. The total correctness property of the
canAssignSR method of the ServiceCategory class ensures that a value of true is only
returned if there is at least one service provider simulator in spSubset that can accept a new

service request, as can be seen below:
"Total correctness property of the canAssignSR method"
true results-in methodReturnValue =
(spSubset detect:
[:each | each canAcceptNextSR: serviceQCategory]
ifNone: [nil]) notNil "DL1-05 (ServiceCategory)"

Thus, if the preconditions of the property DPI-01(ServiceCategory) are satisfied, then it implies
that the canAssignSR method returns true. As is evident from the above, this means that the
preconditions of the assignToSP: method are also satisfied.

Part A4:

As stated earlier, it is not sufficient to check that the preconditions of the methods invoked by the
p_execute method are satisfied. One also has to ensure that the preconditions of methods
invoked by methods invoked by the p_execute method are satisifed. Thus, step A3 has to be
executed recursively. The assignTosP: method, which is called from within the p_execute
method, in tum also invokes other methods (this is evident from the presence of the
postconditions: withArguments: constructs in its total correctness property specification
given above). One therefore needs to check that the preconditions of those methods are also
satisfied in order to ensure that their postconditions will hold.

253

The precondition of the serviceProvider: method of the ServiceRequest class? is
specified as true and is therefore satisfied vacuously.

The total correctness property of the processServiceRequest: method is as follows:
<V x where 0 £ x A x < nrOfCategoriesServed
categoryIndex = X A
aServiceRequest notNil A

self canAcceptNextSR: (aServiceRequest serviceRequestCategory)
results-in

methodReturnValue = self A
serviceRequest = aServiceRequest A

newEventRequired A
categoryIndex = (x + 1) \\ nrOfCategoriesServed
> "DL1-06 (ServiceProviderSimulator)"”

The first predicate involves the categoryIndex instance variable of the
ServiceProviderSimulator class. The latter does not export any methods to modify this
variable, so it is the responsibility of the ServiceProviderSimulator instance to ensure that
the value of categoryIndex is restricted to the specified range. This is guaranteed by the class
invariant shown below:

invariant categoryIndex 2 0 A

categoryIndex < nrOfCategoriesServed
"DS2-01 (ServiceProviderSimulator)"”

"The categorylndex is always greater than or equal to zero and less than
nrOfCategoriesServed.”

The second predicate in the preconditions of the processServiceRequest : method specifies
that aServiceRequest (the argument of the method)” should hot be nil. Since the
assignToSP: method invokes the processServiceRequest: method passing its pseudo-
variable sr as the argument, and since the preconditions of the assignTosP: method in turn
requires st to be not nil, the value of aServiceRequest is guaranteed not to be nil. (The value
of sr cannot be changed by the assignToSP: method itself, since the value of a pseudo-
variable may not be changed.)

The third precondition of the total correctness property of the processServiceRequest:
method requires that a ServiceProviderSimulator instance should be willing to accept
aServiceRequest, i.e. the canAcceptNextSR: method has to return the value true. As
shown earlier in this section, the assignToSP: method is only executed if its preconditions are
satisfied. This means the availableServiceProvider?® notNil predicate of the
preconditions of the assignTosP: method will always be true when the
processServiceRequest : method is invoked, since the latter is invoked from within one of
the statements of the assignToSP: method and there are no statements” in assignToSP: that
could change the outcome of the canAcceptNextSR: method before
processServiceRequest: is invoked. It therefore follows that the preconditions of the
processServiceRequest: method will hold when it is invoked from within the
assignToSP: method.

22 The SLOOP specification of the ServiceRequest class is given in Appendix B, Section B.9.

23 The processServiceRequest: method is specified in Appendix B, Section B.13, where the usage of its
argument is shown.

24 The availableServiceProvider macro definition was discussed in part A2.

25 This can be verified by checking the statements of the assignToSP: method in Appendix B, Section
B.10.

254

The above arguments have shown informally that the service request remains in the service
queue unless it is assigned to a service provider simulator. This concludes Part A of the
correctness arguments.

Part B:
For Part B of the correctness argument it needs to be shown that the postconditions of the AP1-
06(CC_Activation) safe liveness property will eventually be satisfied, provided the precondition
holds. Thus, it has to be shown that there exists a statement which will assign an element of a
service queue to a service provider simulator. This is guaranteed by the safe liveness property of
the p_execute method of the ServiceCategory class. To recapitulate, this property states that:
serviceQ isEmpty not A self canAssignSR ensures
self postconditions: (#assignToSP:) withArguments:
#((serviceQ first)) A

serviceQ postconditions: (#removeFirst)
"DP1-01 (ServiceCategory)".

In order to ensure that the postconditions will eventually become true, the preconditions have to
be satisfied eventually. This is discussed in parts B1 and B2 of the informal proof.

Part B1:

The first predicate, viz. serviceQ isEmpty not, follows directly from the preconditions of
property API-06 (CC_Activation). Thus it follows directly from the premise of the whole
discussion.

Part B2:
The second predicate requires the canAssignSR method to return the value true. Recall that
the total correctness property of the canAssignSR method is as follows:
true results-in methodReturnValue =
(spSubset detect:
[:each | each canAcceptNextSR: serviceQCategory]
ifNone: [nil]) notNil "DL1-05 (ServiceCategory) "

Thus, the method returns true if there is at least one service provider simulator which returns
true when the canAcceptNextSR: message is sent to it.

Part B2.1:
The first step is to show that each service provider simulator will eventually respond with the
value true when it receives the canAcceptNextSR: message, provided that the service
category that is passed as parameter is an element of the collection of service categories that it
services. This is guaranteed by the liveness property specified for the
ServiceProviderSimulator class, viz.
<V categoryIndex where 0 £ categoryIndex A
categorylndex < nrOfCategoriesServed
—(self canAcceptNextSR:
(categoriesServed at: (categoryIlndex + 1)))
leads-to
self canAcceptNextSR:
(categoriesServed at: (categoryIndex + 1))
> "DL2-01 (ServiceProviderSimulator)"
"For any service category serviced by the service provider simulator, the service
provider simulator will eventually be able to service a request from that service
category.”

One now needs to show that each service category only interrogates the service provider
simulators that service that particular category. That is the topic of Part B2.2.

255

Part B2.2:

From the total correctness property of the canAssignSR method given at the start of Part B2, it
is clear that the ServiceCategory instance only invokes the canAcceptNextSR: method on
members of its spSubset collection. This is the collection that contains the service provider
simulators that will service requests from the service queue belonging to the ServiceCategory
instance. This is evident from the following total correctness properties of the
ServiceProviderSimulator and ServiceCategory classes respectively.

Property DLI-05 of the ServiceProviderSimulator class specifies the behaviour of the
simulator when it registers itself with the ServiceCategory instances that it services. This
property specifies, inter alia, that the ServiceProviderSimulator instance invokes the
addsp: method of the ServiceCategory class for every ServiceCategory instance that it
services:
"Total correctness property of the
registerServiceProvider:using: method”
true results-in
methodReturnValue = self A
<VaServiceCategory where
scContainer includes: aServiceCategory A
aServiceCategory servicedBy: serviceProviderCategory ::
aServiceCategory postconditions: (#addSP:)
withArguments: #(self) A
categoriesServed includes:
(aServiceCategory serviceCategory)
> A
nrOfCategoriesServed = categoriesServed size A
categoryIndex > 0. "DL1-05 (ServiceProviderSimulator)"

In turn, property DLI-09 of the ServiceCategory class specifies that the addsp : method adds
the service provider simulator passed as parameter (via the anSP pseudo-variable) to the

spSubset collection:
"Total correctness property of the addSP: method”
anSP notNil results-in

methodReturnvValue = self A
spSubset includes: anSP "DL1-09 (ServiceCategory)"

Thus, the spSubset of each ServiceCategory instance contains all the service provider
simulators that are able to process service requests belonging to that particular service category.

Part B2.3:

It now remains to be shown that the spSubset collection of each ServiceCategory instance

will have at least one element. This follows directly from property AS2-10(CC-Activation),

which specifies that the service provider subset of each service category contains at least one

element.

AS2-10. The service provider subset of each service category contains at least one (simulated)
service provider instance.

This concludes the correctness arguments for part B and thus for property API-06
(CC Activation). In this section the emphasis has been on the postconditions: and
postconditions:withArguments: constructs. It was demonstrated how these constructs
highlight the fact that other methods are being invoked from within the method under
discussion. It was also shown what role these constructs play in correctness arguments.

256

Another aspect worth noting here is the role that correctness arguments play in the discovery of
design flaws. In the call centre example the original version of the canAcceptNextSR: method
returned true if no service request was assigned to the service provider simulator. The method
did not take any service categories into account. However, it was while working through the
correctness arguments of property AP1-06 that it became clear that in the original version of the
design, starvation of a specific service category was possible.

That could have happened if there were multiple ServiceCategory instances and whenever a
particular ServiceCategory instance executed its p execute method, then the
ServiceProviderSimulators would be busy with a service request from one of the other
categories. Thus, the design flaw was discovered while trying to prove that the
canAcceptNextSR: method will eventually retun true when invoked by a specific
ServiceCategory instance (i.e. while trying to prove part B2 of the above correctness
arguments). As a result the design was modified to ensure that the service categories were
serviced in a round robin fashion, unless the associated service queues were empty.

7.3.3.2 Using an absence of unsolicited reponse property to demonstrate how the
characteristics of an ensures relation can be used in correctness arguments

In this section the focus is on the significance of the ensures relation in correctness arguments.
This relation is distinguished from similar relations such as leads-to and until by the fact that the
transition from the state where the preconditions are holding to where the postconditions are
holding occurs in a single atomic step. If a correctness property contains an ensures relation, one
is therefore guaranteed that the precondition will hold up until the point when the postconditions
start to hold. This concept is illustrated via the correctness arguments of property AP2-01
(CC_Activation). This property is as follows:

<V spAgentContainerElement where
spAgentContainer includes: spAgentContainerElement
<V aServiceRequest
< 3 aServiceQueue
aServiceQueue includes: aServiceRequest precedes
spAgentContainerElement serviceRequest = aServiceRequest
>
>
> "AP2-01 (CC_Activation)"
"A service request is assigned to an element of the service provider container only if the service
request has been enqueued in a service queue and has remained in the queue until it was
assigned to the service provider container element."

The strategy to be followed for the correctness arguments

It has to be shown that :

A) a service request is only allocated to a service provider simulator if the former has been
enqueued in a service queue and

B) once a service request is enqueued in a service queue, it remains there until it is allocated to a
service provider simulator.

257

The correctness arguments

Part A:
A service request 1is allocated to a service provider simulator via the
processServiceRequest : method of the ServiceProviderSimulator class, as is evident
from the total correctness property of this method:

<V x where 0 £ x A x < nrOfCategoriesServed ::

categoryIndex = X A

aServiceRequest notNil A

self canAcceptNextSR: (aServiceRequest serviceRequestCategory)
results-in

methodReturnvValue = self A
serviceRequest = aServiceRequest A
newEventRequired A

categoryIndex = (x + 1) \\ nrOfCategoriesServed
> "DL1-06 (ServiceProviderSimulator)"”

Upon inspection of the correctness properties of the classes used in the call centre system, it is
found that the processServiceRequest: method is invoked only by the assignToSP:
method of the ServiceCategory class. In the total correctness property of the assignToSP:
method the pseudo-variable sr refers to the service request that is received as argument of the
assignToSP: method. In turn, the assignToSP: method passes the value of sr as argument
to the processServiceRequest: method. .
"Total correctness property of the assignToSP: method”
sr notNil A availableServiceProvider notNil results-in
methodReturnValue = self A
sr postconditions: (#serviceProvider:
withArguments: # (availableServiceProvider) A
‘availableServiceProvider ‘
postconditions: (#processServiceRequest:)
withArguments: # (sr) "DL1-10 (ServiceCategory)"

26)

The availableServiceProvider macro-variable is defined as:
availableServiceProvider =
spSubset detect: {[:each | each canAcceptNextSR:
serviceQCategory]

The value of sr is determined by the p_execute method which invokes the assignToSP:
method. From the precedence property of the p_execute method of the ServiceCategory
class it is clear that the service request that is assigned to a service provider simulator is taken
from a service queue:
"Safe liveness property of the p execute method:"
serviceQ isEmpty not A self canAssignSR ensures
self postconditions: (#assignToSP:) withArguments:

((serviceQ first)) A
serviceQ postconditions: (#removeFirst)
"DP1-01 (ServiceCategory)".

The fact that property DPI-01(ServiceCategory) contains an ensures relation, guarantees that the
service request is removed from the serviceQ and assigned to the service provider simulator in

26 The serviceProvider: method of the ServiceRequest instance sets the serviceProvider attribute of that
instance to the value specified in its argument. In this case it refers to the service provider simulator
that will be processing the service request. Refer to Appendix B, Section B.9 for details of this
method.

258

a single atomic step. Thus, a service request that is assigned to a service provider simulator, is
always taken from a service queue. This concludes the first part of the correctness argument.

Part B:
The second part of the correctness argument reuses the results of property API1-06
(CC_Activation). In the section 7.3.3.1 it was shown that:
<V aServiceRequest
< 3 aServiceQueue :: aServiceQueue includes: aServiceRequest

>
ensures
< 3 aServiceProviderSimulator where
spAgentContainer includes: aServiceProviderSimulator
aServiceProviderSimulator serviceRequest = aServiceRequest
>
> "AP1-06 (CC_Activation)”

"A service request remains in a service queue until it is allocated to an element of the service
provider container.”

Again the property being reused contains an ensures relation, which guarantees that the service
request will remain in the service queue until it is assigned to a service provider simulator.
Property AP2-01 (CC_Activation) follows from parts A and B of the correctness argument.

The example in this section has highlighted how the characteristics of a relation such as ensures
are used in correctness arguments. When an ensures relation appears in a correctness property,
the software designer can safely assume that once the preconditions hold, there can be no

interference which could affect the postconditions specified for the property.

7.3.3.3 Using a fair responsiveness property to illustrate the importance of showing via
correctness arguments that the selection of the constituent classes of a system will indeed
result in the behaviour as described in the specification of the system

This section illustrates a specific aspect of the role of correctness arguments in the SLOOP
method, viz. that the correctness arguments are used to check informally that the actual
behaviour of the system as implied by the constituent classes of the SLOOP program matches
the specified behaviour of the system as implied by the correctness properties of the system.
The correctness arguments given below for property AP3-01 (CC_Activation) exemplify this
aspect of correctness reasoning.

When a service request reaches the head of the inputQ, the ServiceCategoryAllocator?
class is used to categorise the service request. This procedure can be quite elaborate, €.g. in the
case where a database has to be consulted in order to obtain specific information. It is therefore
possible that the ServiceCategoryAllocator class could be designed to use parallel
statements to perform the categorisation of the service request. Thus, it might not necessarily be
an atomic action. One design option is to start the categorisation in a FIFO order, but to allow
the service requests to be added to the appropriate service queues as the categorisation for each
service request finishes (which might not necessarily correspond to the start order).

Since the parallel statements may be executed in any order, it is possible that even if the service
requests are categorised in the order in which they were entered into the inputQ, they may still
not be assigned to the service queues in that order. However, the requirements analysis states
that the service requests should be assigned to the service queues in the order in which the
connections were established, which is reflected by property AP3-01 (CC_Activation). When

%" The ServiceCategoryAllocator class is defined in Appendix B, Section B.8.

259

selecting the class which has to perform the categorisation of the service requests, it has to be
shown that the properties of this class do not violate the properties of the system under
development. Property AP3-01 (CC_Activation), which represents one of the correctness
properties of the call centre system, is used in the example below to illustrate how the selection
of the ServiceCategoryAllocator class preserves property AP3-01(CC_Activation).

First of all property AP3-01(CC_Activation) is specified more formally. Its specification has two
parts: the first part specifies that if a service request is added to the inputo, then it is always
added to the end of the input(Q and the second part specifies that if aServiceRequestX is
ahead of aServiceRequestY in the inputQ, then aServiceRequestX will always be
removed first from the inputQ.
<V aServiceRequestX where

— (inputQ includes: aServiceRequestX)

— (inputQ includes: aServiceRequestX) unless

inputQ last = aServiceRequest

> A

<V (aServiceRequestX, aServiceRequestY) where

aServiceRequestX ~~ aServiceRequestY A

inputQ includes: aServiceRequestX A
inputQ includes: aServiceRequestY ::

inputQ indexOf: aServiceRequestX <
inputQ indexOf: aServiceRequestY ensures

— (inputQ includes: aServiceRequestX) A
inputQ includes: aServiceRequestY A

<3 aServiceQueue :: aServiceQueue includes: aServiceRequestX
> .

> - . - "AP3-01 (CC_Activation)"
"Service requests are added and removed from the input queue on a First In First Out basis."”

The significance of the unless and ensures relations in the above property is as follows: The
unless relation indicates that if the service request is added to the inputQ, then it will be added
to the end of the queue, but it does not guarantee that a service request will eventually be added
to the inputQ. The unless relation therefore specifies the behaviour of the system if a service
request has to be added to the inputQ (it describes a safety aspect of the system behaviour).

In contrast, the ensures relation has both safety and liveness characteristics. The safety aspect
specifies that if a service request is ahead of another service request in the inputQ then it will
always be processed first. The liveness aspect specifies that if a service request is present in the
inputQ, then it will eventually be removed from the input0 and added to a service queue.

Error conditions are not specified at this level of refinement. Service queues are quantified over
all service queues associated with service categories in the scContainer. This quantification is
not shown in order to make the specification less cluttered.

The informal proof of this property is now presented, based on the assumption that the
ServiceCategoryAllocator is selected as the class to perform the categorisation of the
service requests and the allocation of service requests to service queues. By showing the
correctness of the above property based on this assumption, it can be deduced that the
ServiceCategoryAllocator class does not violate the above property.

260

The strategy to be followed for the correctness arguments

It has to be shown that

A) if a service request is added to the inputQ, then it is always added to the end of the inputQ,
B) if aserviceRequestX and aServiceRequestY are both present in the inputQ and
aServiceRequestX is ahead of aServiceRequesty, then aServiceRequestX is removed
from the input@ and allocated to a service queue before aServiceRequestY and

C) eventually aserviceRequestX is allocated to a service queue while aServiceRequestY
remains in the inputQ.

In turn, part B also has three parts. It is shown that

B1) a service request is always removed from the head of the inputQ,

B2) the relative ordering between elements of the inputQ is maintained and

B3) when a service request is removed from the inputQ, it is added to a service queue.

The correctness arguments

Part A:
Inspection of the classes that constitute the call centre system yields the
CommsProviderSimulator® class as the only one containing a method which adds a service
request to the inputQ. Safe liveness property API1-01(CommsProviderSimulator) of the
p_generateEvent: target: method specifies the following:

generatingEvent A idleConnection notNil A

—(inputQ includes: (idleConnection serviceRequest)) ensures

—generatingEvent A newEventRequired A

inputQ last = (idleConnection serviceRequest) A
idleConnection postconditions: (#assign)
"AP1-01 (CommsProviderSimulator)"
where

idleConnection = self getIdleConnection: userConnections

Thus, when a service request is added to the inputQ, it is always added at the end. This
concludes part A of the informal proof.

Part B:

The next step is to show that if aServiceRequestX and aServiceRequestY are both present
in the inputQ and aServiceRequestX is ahead of aServiceRequestY, then
aServiceRequestX is removed from the inputQ and allocated to a service queue before
aServiceRequestyY.

Part B1:

It must first be shown that a service request is always removed from the head of the inputQ.
Another inspection of the call centre classes reveals that the only method that results in the
removal of a service request from the inputQ, is the p_allocate:from: method of the
ServiceCategoryAllocator® class. The relevant safe liveness property is shown below.

%8 The CommsProviderSimulator class is specified in Appendix B, Section B.6.
* The ServiceCategoryAllocator class is defined in Appendix B, Section B.8.

261

<V aServiceRequest where
—(inputQ isEmpty) A inputQ first == aServiceRequest
aServiceRequest serviceRequestCategory notNil A
aServiceRequest serviceQ isNil A
< 3 aServiceCategory where
scContainer includes: aServiceCategory ::
aServiceCategory serviceQCategory =
aServiceRequest serviceRequestCategory
>
ensures
self postconditions: (#assignToSQ:using:)
withArguments: #(aServiceRequest scContainer) A
—categorising A
—({inputQ includes: aServiceRequest)
> "DP1-04 (ServiceCategoryAllocator)"”

From the above property it is clear that the service request being dealt with here is the one at the
head of the inputQ. (The variable aServiceRequest is defined as being equivalent to
inputQ first.) The postconditions of property DPI-04(ServiceCategoryAllocator) indicate
that aServiceRequest is no longer an element of inputQ after the p_allocate: from:
method has completed its execution. Since this is the only method that results in the removal of a
service request from the inputQ, it means that service requests are always removed from the
head of the inputQ, which concludes part Bl of the correctness arguments.

Part B2:

The inputQ is created as an instance of the Smalltalk OrderedCollection library class. One
of the properties of that class is that it maintains the relative ordering of its elements. There are
also no statements in the CallCentreSimulation program that add or remove elements from
the inputQ other than those described in parts A and‘ Bl.” This means that if
aServiceRequestX 'is ahead of = aServiceRequestY in the inputQ, then
aServiceRequestX will always be removed from the inputQ before aServiceRequesty.

PartB3:

It now remains to be shown that when a service request is removed from the inputQ, then it is
added to a service queue. In property DPI-04(ServiceCategoryAllocator), which was presented
in part B1, it is stated that when aServiceRequest is removed from the inputo, then the
assignToSQ:using: method of the ServiceCategoryAllocator class is also executed by
the same statement (property DP1-04(ServiceCategoryAllocator) is an ensures relation).

The assignToSQ:using: method is invoked using aServiceRequest as one of its
arguments. One therefore has to check whether the execution of this method results in the
allocation of aServiceRequest to a service queue. This is indeed the case, as is evident from
the total correctness property of the assignToSQ:using: method of the
ServiceCategoryAllocator class (the pseudo-variable serviceRequest used in the
assignToSQ:using: method corresponds to the pseudo-variable aSserviceRequest passed
as an argument to the assignToSQ:using: method):

"Total correctness property of the assignToSQ:using: method”

serviceRequest serviceQ isNil A

serviceRequest serviceRequestCategory notNil A
match notNil results-in

methodReturnValue = self A
serviceRequest serviceQ notNil A

serviceRequest serviceRequestCategory notNil A
(match serviceQ) includes: serviceRequest
"DL1-04 (ServiceCategoryAllocator)"”

262

The macro-variable match is defined as:

match = scContainer detect: [:each | each serviceQCategory =
serviceRequest serviceRequestCategory] ifNone: ([nil]

The preconditions of the assignToSQ:using: method are also preconditions of the
p_allocate:from: method. Since there is only one statement in the p_allocate:from:
method and that is the one invoking the assignToSQ:using: method, these preconditions will
therefore still hold when the assignToSQ:to: method is invoked from within the
p_allocate: from: method. The statements of the p_ allocate:from: method are shown

below for easy reference.
"The statements of the p_allocate:from: method"

parallel
self assignToSQ: serviceRequest using: scContainer \+
categorising := false \+

inputQ removeFirst
if serviceRequest notNil and:
[serviceRequest serviceRequestCategory notNil and:
[serviceRequest serviceQ isNill]

end-parallel

Thus, if the preconditions of the p_allocate: from: method hold when the latter is executed,
then the service request at the head of the inputQ will be removed and the
assignToSQ:using: method will be executed. As shown above, the preconditions of the
assignToSQ:using: method will hold when this method is invoked, therefore the
postconditions of the assignToSQ:using: method are guaranteed to hold after its execution
(i.e. the service request will have been added to a service queue).

Thus, since . .

0 aservice request is always removed from the head of the inputQ,

Q the relative ordering of the elements of the inputQ is always maintained and

Q the removal of a service request from the inputQ coincides with its allocation to a service
queue,

the following is implied:

If the index of aServiceRequestX in the inputQ is less than the index of
aServiceRequestY in the inputQ, then aServiceRequestX is allocated to a service queue
before aserviceRequesty. This concludes part B of the correctness arguments.

Part C:

Part C of the correctness argument reuses the results of property AP1-05 (CC_Activation).

<V aServiceRequest where inputQ includes: aServiceRequest
inputQ includes: aServiceRequest ensures

—(inputQ includes: aServiceRequest) A

< 3 aServiceQueue :: aServiceQueue includes: aServiceReguest)
>

> "AP1-05 (CC_Activation)"
"A service request remains in the inputQ until it is assigned to a service queue."

The above property implies that each service request will eventually be removed from the
inputQ. If the index of aServiceRequestX is less than that of the index of
aServiceRequestY, then aServiceRequestX will eventually be removed from the
inputQ, while aServiceRequesty will still be an element of inputQ. This is because the
relative ordering of the elements of the inputg always remains the same (as was shown in part

263

B2) and service requests are always removed from the head of the inputQ (as was demonstrated
in Part B1). This concludes the correctness argument for part C and thus also for property AP3-
01 (CC_Activation).

By presenting the above correctness arguments based on the assumption that the
ServiceCategoryAllocator class is used to perform the categorisation of the service
requests and the allocation of these requests to service queues, it is implied that this class does
not violate this property. The correctness properties specified for the system under development
are therefore used not only at the beginning of the design phase in order to aid the selection of
the right constituent classes of the system, but also at the end of the design phase to confirm the
correctness of their selection.

7.4 Deriving SLOOP statements from correctness properties

It is now shown how correctness properties can be used to derive SLOOP statements. The
example that was introduced very briefly in Chapter 4, Section 4.2.3, is used to demonstrate the
concepts.

The functionality of the required system is as follows: A dispatcher system must be
developed which acts as a generic transformer of objects, receiving them from a producer,
performing some transformation on the received objects and then dispatching them to a
consumet. The dispatcher has to queue the objects in a FIFO order until the consumer is
ready to receive the next object. The dispatcher keeps a record of the maximum length ever
reached by the queue managed by the dispatcher. The dispatcher ensures that the size of this
queue never exceeds a specified maximum value. ’

The following Dispatcher class attributes can be 1dent1ﬁed

bufferedElements - This attribute refers to the FIFO queue managed by the
Dispatcher class.
consumer This attribute refers to the instance of the Consumer class to

which the Dispatcher instance will dispatch the elements in its
bufferedElements queue.

maximumRecordedLength This attribute represents the maximum length ever reached by
the buf feredElements queue.

maximumAllowedLength This attribute represents the maximum length that the
bufferedElements queue may ever reach.
newElement This attribute refers to an object which has been received from

the Producer instance, but which has not yet been added to the
bufferedElements queue.

The correctness properties below specify the required behaviour of the Dispatcher class:

invariant newElement notNil = — self readyToReceiveElement
"AS2-01 (Dispatcher)"
"The dispatcher will never indicate that it is ready to accept a new element from the
producer if it has not yet added the element passed to it on a previous occasion to the
bufferedElements queue.”

invariant bufferedElements size <= maximumAllowedLength
"AS2-02 (Dispatcher)"”
"The current length of the bufferedElements queue is always less than or equal to the
maximumAllowedLength."”

264

invariant maximumRecordedLength >= bufferedElements size
"AS3-01 (Dispatcher)”
"The maximumRecordedLength of the bufferedElements queue is always greater than or
equal to the current queue size."

< V k where 0 <= k A k <= maximumAllowedLength

maximumRecordedLength = k unless maximumRecordedLength > k

> "AS4-01 (Dispatcher)”
"The maximumRecordedLength of the bufferedElements queue is non-decreasing.”

< V anElement where newElement = anElement

newElement = anElement unless
self postconditions: (#transform:) withArguments: #(anElement) A
bufferedElements includes: anElement A newElement isNil

> "AS4-02 (Dispatcher)"
"Once the dispatcher has accepted a new object from the producer, it remains a new
object unless it is transformed and added to the bufferedElements queue."”

< V anElement where bufferedElements includes: anElement

bufferedElements includes: anElement unless
consumer postconditions: (#pass:) withArguments: #(anElement)

> "AS4-03 (Dispatcher)"
"Once an object is added to the bufferedElements queue, it remains there unless it is
passed to the consumer.”

<V anElementY) where
— bufferedElements includes: anElementY
— bufferedElements includes: anElementY unless
bufferedElements last = anElementY

> "AS4-04 (Dispatcher)"
"If an object is added to the bufferedElements queue, it is always added to the end of the
queue.”

<V (anElementX, anElementY) where
anElementX ~~ anElementY A

bufferedElements includes: anElementX A
bufferedElements includes: anElementY

bufferedElements indexOf: anElementX <
bufferedElements indexOf: anElementY unless

— bufferedElements includes: anElementX) A
bufferedElements includes: anElementY

> "AS4-05 (Dispatcher)”
"Objects are removed from the bufferedElements queue in the order that they are added
to the queue."”

The precedence properties are as follows:

< V anElement where newElement = anElement
newElement = anElement A
bufferedElements size < maximumAllowedLength ensures
self postconditions: (#transform:) withArguments: #(anElement) A

bufferedElements includes: anElement A newElement isNil
> "AP1-01 (Dispatcher)"

265

"If the dispatcher has received a new object from the producer and the size of the

. bufferedElements queue is less than its maximumAllowedLength, these conditions
continue to hold until the new object is transformed and added to the bufferedElements
queue."

< V anElement where bufferedElements includes: anElement

bufferedElements includes: anElement A
consumer readyToReceiveElement ensures

consumer postconditions: (#pass:) withArguments: #(anElement) A
— bufferedElements includes: anElement

> "AP1-02 (Dispatcher)”
"Once the consumer is ready to receive an object and the bufferedElements queue is
non-empty, these conditions continue to hold until an element of the bufferedElements
queue is removed from the queue and passed to the consumer."”

The methods of the various classes of a system are defined once the design phase correctness
properties have been specified. The behaviour described by the correctness properties yields the
necessary information to derive the methods of the classes. The liveness and/or precedence
properties provide the basis for deriving the parallel methods. The infinitely often execution of
the statements of the parallel methods of the various classes has to result in the desired progress
being made.

In the Dispatcher class example, properties API-01 and API-02 specify the progress that needs
to be made by the Dispatcher class instance. Briefly, if the latter has accepted a new element
from the Producer instance, then the new element should be transformed and added to the
pbufferedElements queue once there is space in that queue. . In addition, the elements in the
bufferedElements queue should be passed to the Consumer instance whenever the latter is
ready to accept them. The above describes the crux of the functionality of the Dispatcher class.
One or more parallel methods can be defined to contain the parallel statements that realise this
functionality. In the case of the Dispatcher class a single parallel method called p_dispatch
suffices, because the functionality of this class is very simple.

A useful heuristic for deriving parallel statements from properties of the form "p ensures ¢", is to
populate the if clause using the information in the conjuncts in p and to use the conjuncts in g to
determine the state changes. Note however that the conjuncts in the correctness property are not
mapped to expressions in the SLOOP statement in a mechanical way. For example, in property
API-01 universal quantification is used and there are therefore references to anElement. The
introduction of the variable anElement is necessary in order to be able to refer to the old value
of the variable newElement (i.e. prior to the execution of the statement) in predicate g. Due to
the evaluation order of a SLOOP parallel statement (discussed in Chapter 4, Section 4.3.6.3), it is
not necessary to have such a variable in the SLOOP statement.

Thus, the aim is to devise a statement which, if executed infinitely often, will satisfy correctness
property AP1-01. We therefore have the following statement in the p_dispatch method:

self transform: newElement \+
bufferedElements add: newElement \+
newElement := nil
if newElement notNil and:
[bufferedElements size < maximumAllowedLength] "Statement S1"

From property AP1-02 we have the following:

consumer pass: anElement \+
bufferedElements remove: anElement

266

if consumer readyToReceiveElement and:
[bufferedElements includes: anElement] "Statement S2"

At this stage statement S2 still refers to anElement. Property API-02 does not provide any
additional information regarding the identity of anElement. It will be necessary to consider the
other correctness properties before statement S2 can be refined further.

The derivation of the above two statements demonstrates the advantages of the SLOOP
computational model. These statements are designed without having to be concerned about
location counters. For example, when specifying statement S2, there is no need to consider the
location counter of the consumer object. The only important issue is to identify the conditions
that need to be satisfied in order for statement S2 to produce the desired result. Since each
parallel statement is executed infinitely often, the correct results will be achieved, provided its
preconditions are true at some point and remain true until the statement has executed.

The above statements take care of the liveness and precedence properties. However, the safety
properties have to be considered as well. They provide the necessary information for the
refinements of these statements.

Property AS4-04 prescribes how the new object should be added to bufferedElements, i.e.
always at the end. Consequently the message to bufferedElements in statement S/ is
modified from

bufferedElements add: newElement

to

bufferedElements addLast: newElement

The resulting statement is as follows:
self transform: newElement \+
bufferedElements addLast: newElement \+
newElement := nil
if newElement notNil and:
[bufferedElements size < maximumAllowedLength] "Statement S1"

Property AS3-0/ (invariant maximumRecordedLength >= bufferedElements size)
describes the invariant relationship between the size of buf feredElements and the value of
maximumRecordedLength. When inspecting statement S/ to determine whether its execution
could ever violate this invariant, it is found that such a possibility exists with the execution of the
statement component bufferedElements addLast: newElement. If the latter is
executed, the size of bufferedElements is implicitly incremented by one. One therefore has
to ensure that the value of maximumRecordedLength is updated whenever both of the
following conditions are true: (1) the size of bufferedElements is incremented and (2) the
new size will be greater than the current value of maximumRecordedLength.

This can be achieved by adding an additional component to statement S/. By making it part of
the same statement, one ensures that the components will be executed as one atomic action. This
yields a new statement S/:

self transform: newElement \+
bufferedElements addLast: newElement \+
newElement := nil

if newElement notNil and:

[bufferedElements size < maximumAllowedLength]

| | maximumRecordedLength := bufferedElements size + 1
if newElement notNil and:
[bufferedElements size < maximumAllowedLength and:

267

[bufferedElements size +1 > maximumRecordedLengthl]]
"Statement S1"

Recall that all if clauses of all components of a particular statement are evaluated before any of
the component parts are executed. All evaluations of buf feredElements size in statement
S1 will therefore yield the same result. Thereafter all the message expressions as listed in step 2
in Chapter 4, Section 4.3.6.3, are evaluated, followed by the evaluation of all message
expressions and assignments as described in step 3 in Section 4.3.6.3.

As part of step 2 the following values are obtained (in any arbitrary order):
self, newElement, bufferedElements, nil, (bufferedElements size + 1).

As part of step 3 the following assignments and message expressions are executed (in any

arbitrary order):
self transform: newElement
bufferedElements addLast: newElement
newElement := nil
maximumRecordedLength := bufferedElements size + 1

Since newElement was evaluated in step 2, the assignment of the value nil to the variable
newElement in the third component-part does not affect the first or second component-parts.
Similarly, because the value of buf feredElements size + 1 was determined in step 2, the
assignment to maximumRecordedLength is not affected by the execution of the
bufferedElements addLast: newElement component-part.

Property AS4-05 specifies that elements should only be removed from the head of
buf feredElements, which provides us with the necessary information to replace anElement
with a more specific description in statement S2. All references to anElement are therefore
changed to buf feredElements first

consumer pass: (bufferedElements first) \+
bufferedElements removeFirst
if consumer readyToReceiveElement and:
[bufferedElements size > 0] "Statement S2"

The correctness properties also yield a number of sequential methods. Property A452-01
results in the definition of sequential method readyToReceiveElement. Since each
sequential method has to terminate, a total correctness property is defined for each sequential
method. The readyToReceiveElement method has the following total correctness
property resulting from property AS2-01:

true results-in methodReturnValue = (newElement isNil)
"DL1-01 (Dispatcher)"”

The need for the transform: sequential method is derived from properties 454-02 and API-
01. These correctness properties do not specify the behaviour of the transform: method.
In the Dispatcher class this method is defined to merely return the value of the receiver. In
subclasses, various transformations may be defined.

The other sequential methods that are referenced in the correctness properties of the
Dispatcher class belong to the OrderedCollection class and to the class of the consumer
object. The statements contained in these methods are encapsulated within those classes and
are therefore irrelevant to the discussion of the statements of the Dispatcher methods. Only
the correctness properties of those methods are important when discussing the Dispatcher
class.

268

While discussing the derivation of the methods of the Dispatcher class, no mention was made of
properties 452-02, AS4-01, AS4-02 and AS4-03. These correctness properties specify constraints
on the methods and statements of the Dispatcher class. Rather than indicating what statements
should be included, they dictate what may not be included. For example, property 452-02
ensures that there will be no statement that will cause the size of the buf feredElements queue
to exceed maximumAllowedLength.

Although property 453-01 ensures that maximumRecordedLength is always greater than or
equal to the current size of the bufferedElements queue, it does not ensure that it is greater
than or equal to any previous size of the buf feredElements queue. This additional constraint
is provided by property AS4-01, which ensures that no statement will ever set the value of
maximumRecordedLength to a value less than its current value.

Property AS4-02 implies that the only time when newElement may be set to nil is when the
object that it references is added to the bufferedElements queue. Consequently the
Dispatcher class offers no method which would enable another object to set newElement to nil.
Similarly, property A4S4-03 implies that the only time when an element is removed from the
pufferedElements queue is when it is passed to the consumer.

The way in which correctness properties are used in the SLOOP method can be summarised as
follows: At the start of the design phase, the repository of reusable artifacts is searched for
classes that will match the requirements as outlined by the correctness properties identified
during the requirements analysis phase. If new classes have to be designed, then once again
these correctness properties provide the necessary information regarding the requirements of
these classes. The SLOOP statements of the new classes are derived from the specified
correctness properties. Once all the classes have been finalised, informal proofs of the
correctness properties specified for the system under development confirm that the selected
classes are indeed the correct ones.

7.5 Summary

This chapter has illustrated how the semantics of a class and its methods are conveyed by their
correctness properties. It has also demonstrated how the various types of correctness properties
can be reasoned about and how SLOOP statements can be derived from correctness properties.
Correctness arguments were given for an example property of each type. These correctness
arguments were based on other properties that were specified for the system or for the constituent
classes, as well as on the SLOOP statements that realised those properties. Each example also
highlighted at least one additional aspect of correctness reasoning in the SLOOP method. They
were as follows:

O One of the advantages of using macros is the following: If a macro-variable is defined as
the value returned by a method of another class, then the correctness properties regarding
that value as defined by the target class may be reused by the client class. If the value had
been assigned to an instance variable of the client class, then the latter would have had to
specify its own correctness properties regarding the value of the instance variable.

Q Location counters are not considered during correctness reasoning.

a It is also not necessary to be concerned about the allocation of statements to processors.
At the design level, correctness reasoning is in terms of the parallel statements, each of
which executes atomically.

O The role of the computational model in the correctness arguments is extremely important.
There is no need to consider all possible sequences of events. It is only necessary to
follow the invocation paths starting from each parallel statement that is activated via the
activation-section.

269

The repeated execution of the parallel statements selected for the program eventually
results in the postconditions specified by the liveness properties, provided their
preconditions hold at some point.

The role of preconditions is to define the responsibility of the client. When showing that a
specific property associated with a method is correct, the preconditions can be assumed to
hold. It is merely necessary to show that the postconditions will be achieved, provided the
preconditions hold. However, when that correctness property is being reused (for example
when the corresponding method is being invoked by a client), then it is necessary to show
that the preconditions will indeed hold at the time when the method is invoked. In the case
where the property is used to ensure progress, it is necessary to show that the preconditions
will eventually hold.

The important aspect regarding reasoning about total correctness properties of sequential
methods is the fact that concurrency does not need to be taken into account. Statement
interleaving takes place at the level of parallel statements, which may invoke sequential
methods. Each parallel statement executes atomically.

Since a sequential statement executes as a single atomic unit, the postconditions of a total
correctness property are always achieved during the execution of a single parallel statement.
This means that the ensures logical relation (which requires its postconditions to be achieved
via a single parallel statement) can include invocations of sequential methods.

The distinctive properties of the leads-to logical relation, such as its transitive properties, can
be utilised in correctness arguments.

The reuse of correctness properties has several benefits. A great deal of effort is saved
when the properties of classes can be assumed to hold without having to reason about
them from first principles each time.

Another benefit results from the usage of the postconditions: and postconditions:
withArguments: constructs. The latter highlights the fact that other methods are being
invoked by the current method. The usage of such constructs also allows one to reason
about the pre- and postconditions of the methods being invoked without having to repeat
those conditions in the present correctness property. ‘

While reusing correctness properties in correctness arguments, one should take care that
there is no circular reasoning (i.e. in order to prove property A, property B is reused, but
property B depends on the correctness of property A).

Data encapsulation ensures that in those cases where the class does not provide any
methods to modify a specific class or instance variable, only the correctness properties of the
class itself need to be considered when reasoning about the possible values of such a
variable. If the class does provide methods to modify the variable, then the pre- and
postconditions of those methods must be taken into account and the designer has to ensure
that the clients do not violate the preconditions when they invoke the methods. Data
encapsulation therefore restricts the number of correctness properties that need to be
considered during correctness arguments.

The implications of using inheritance are manifold. Correctness properties of ancestor
classes can be reused as is in the correctness arguments of properties of descendant classes.
They can also be overridden, provided the preconditions are not strengthened and the
postconditions are not weakened. New correctness properties may also be added in the
descendant classes.

Finally, it should not be underestimated how important it is to use correctness arguments to
check informally that the actual behaviour of the system, as implied by the correctness
properties of the constituent classes of the SLOOP program, matches the intended
behaviour of the system, as implied by the specified correctness properties of the system.
Correctness arguments are used to confirm the choice of classes selected to comprise the
system.

As was stated earlier, the correctness reasoning during the design phase takes place at the level of
the parallel statement, i.e. it is based on the atomicity of the parallel statement. The allocation of
these statements to processors is not considered. The next chapter deals with the issue of

270

ensuring that the semantics of the SLOOP parallel statements are preserved when the statements
are allocated to one or more processors, thereby ensuring that the correctness arguments used
during the design phase are not invalidated by the mapping procedure.

271

CHAPTER 8

THE IMPLEMENTATION PHASE

8.1 Introduction

Up until now the target architecture of the system has been ignored, i.e. a unified approach is
followed during the analysis and design phases. The implementation phase requires the
consideration of a number of issues:

QO The target architecture has to be determined.

O The objects and statements have to be assigned to processes/processors.

Q The SLOOP program has to be mapped to an executable program.

The target architectures that are discussed in this chapter are:
a sequential (von Neumann) architecture,

a synchronous shared-memory architecture,

an asynchronous shared-memory architecture and

a distributed system.

000D

The above list is not exhaustive, but was considered sufficiently distinct to demonstrate various
types of mappings. These architectures are also discussed in [ChMi88] and it is therefore
interesting to compare the mappings described in [ChMi88] with the mappings performed in the
SLOOP method.

In Section 4.4.3 of Chapter 4 an overview of the mapping of a SLOOP program to an executable
Smalltalk program was presented. It merely served as an introduction to the topic. This chapter
elaborates on the following issues:

0 Each type of target architecture requires a different type of mapping. The heuristics for the
allocation of objects and SLOOP statements to processes / processors are given in Section
8.2.

O In Chapter 4 the derivation of an executable Smalltalk program for a sequential architecture
was described. In Section 8.3 it is shown how the Smalltalk program can be adapted for
other architectures, such as synchronous shared-memory, asynchronous shared-memory and
distributed architectures.

0 Further options regarding the mapping of the macros-section are discussed in Section 8.4.

0 The mapping of more advanced types of SLOOP statements is described in Section 8.5.
These descriptions cover the mappings of programs that contain multiple guantified-
statement-lists as well as statements that contain multiple statement-components and
component-parts.

273

0 In Section 8.6 is shown how the reflective' facilities of Smalltalk can be used in order to
make the mapping as transparent as possible to the class. Reflective computation can also be
used to perform assertion checking.

O When the SLOOP program is mapped to a target architecture, it may be found that the level
of parallelism displayed by the SLOOP program is not sufficient. This results in a return to
the design phase. The SLOOP program is refined to introduce more parallelism, typically by
decoupling the actions that appear in a single statement and by putting them into additional
parallel statements. This topic is covered in Section 8.7.

At all times during the implementation phase the correctness properties specified during the
analysis and design phases play an extremely important role. Additional correctness properties
are defined for the infrastructures used during the implementation phase.

Note that the emphasis in this chapter is on Smalltalk as the target programming language.
Where concurrency constructs are not required, the Smalltalk-80 language [GoRo89] suffices,
otherwise the Concurrent Smalltalk language [Yoko90] is appropriate. However, the mappings
discussed in this chapter are examples only. Many other mappings are possible, including
mappings to other programming languages such as Java. As mentioned in Chapter 1, Smalltalk
to Java translation has already been studied by other researchers [Enko98].

8.2 Mappings to various architectures

In order to map a SLOOP program to a target architecture, the SLOOP statements have to be
allocated to the process(es) / processor(s) involved. The following four subsections discuss
this allocation in the context of sequential, synchronous shared-memory, asynchronous shared-
memory and distributed architectures respectively. Section 8.3 deals with the issues that need to
be considered in order to ensure that the semantics of the SLOOP statements are retained during
the mapping. ' : '

8.2.1 Sequential architectures

In the case of a sequential architecture, there is a single processor and a single process.
Instructions are therefore executed strictly sequentially [Tane81]. When mapping a SLOOP
program to such an architecture, all the statements are assigned to the same process on the same
processor. Although the parallel statements are executed sequentially, their order of appearance
is irrelevant. The only important issue is that they should be enclosed in an infinite loop in order
to ensure that they are executed infinitely often. Each parallel statement should appear at least
once within this loop.

8.2.2 Synchronous shared-memory architectures

Synchronous shared-memory architectures allow for multiple processors to share a common
memory. There is a common clock and at each clock tick, each processor performs a single step
of computation [ChMi88]. Multiple processors may read from the same memory location
concurrently. If multiple processors write to the same location concurrently, they all have to
write the same value. Concurrent read and write accesses to the same location are not allowed.

This type of architecture is particularly suited to take advantage of the synchrony inherent in
SLOOP statements. Recall that the component-parts of a SLOOP statement (i.e. those parts
separated by the '||' or \+' symbols), execute in parallel. This means that each component-part of
a specific SLOOP parallel statement can be assigned to a separate processor.

! The concept of computational reflection was described briefly in Chapter 1, Section 1.3.4. Further
details are given in Section 8.6.

274

One statement is executed at a time, with each processor executing a component-part of that
statement. Infinite loops are implemented on each processor in order to ensure that the
component-parts of each statement will be executed inifinitely often.

8.2.3 Asynchronous shared-memory architectures

Asynchronous shared-memory architectures also allow for multiple processors to share a
common memory. Asynchronous shared-memory architectures do not have a common clock,
so the computation steps of the various processors might or might not execute simultaneously. If
two processors access the same memory location simultaneously, the actual accesses occur in an
arbitrary order [ChMi88].

Each parallel statement is assigned to one of the processors. (Multiple statements may be
assigned to each processor.) If two statements do not send messages to the same object, they
may execute concurrently, otherwise they have to execute in an arbitrary sequential order. This
is to prevent interference’.

In the case where a statement refers to shared objects, the sequential ordering is achieved in the
following way: Before any statement may be executed, all the shared objects that are accessed
by that statement have to be reserved (locked) by the processor to which the statement has been
allocated. Since each statement may refer to multiple objects in the common address space, it
would be possible to have a scenario where processor A has been granted a lock on object X and
is waiting for a lock on object Y, while processor B has been granted a lock on object Y and is
waiting for a lock on object X. Each processor will wait forever for the other to release the
required lock. The two processors are therefore in a deadlock’ situation.

One algorithm that guarantees the absence of deadlocks is to reserve the objects in a prescribed
order. Issues such as performance also need to be considered when selecting an appropriate
algorithm. This aspect will be discussed further in the next section, where mappings to
distributed systems are described, since the same issues need to be considered when dealing with
distributed systems.

In Section 8.3.3 a mapping to a specific type of asynchronous shared-memory architecture is
discussed. It describes an architecture that consists of a single processor, but which has
multiple processes running on it. The processes share a common address space. In that case
each parallel statement is allocated to a specific process. In the mapping described in Section
8.3.3, no object reservation is required since there is only one processor, but it has to be
guaranteed that each statement executes to completion before any other statement can start
executing. That is to prevent interference. Although there is only a single processor, the
execution of the statements allocated to the various processes can be interleaved in any arbitrary
way, so in that sense the program fragments execute in parallel. One can therefore consider it an
example of pseudo-parallelism.

In order to ensure that all the parallel statements are executed infinitely often when a SLOOP
program is mapped to an asynchronous shared-memory architecture, each statement on each
processor/process has to execute infinitely often. Thus, all parallel statements allocated to a
processor/process have to be enclosed within an infinite loop on that processor/process.

2 The concept of interference was defined in Chapter 2, Section 2.3.2.
? The conditions for deadlock were described in Chapter 4, Section 4.3.6.5.

275

8.2.4 Distributed systems

Distributed systems have multiple processors, each with its own local memory. Communication
occurs via message passing [Bena90].

When a SLOOP program is mapped to a distributed architecture, each object referenced by the
program is allocated to one of the processors. Multiple objects may be allocated to a single
processor. Since the parallel and sequential methods of an object are executed on the processor
where the object resides, messages have to be passed via some or other communication
mechanism if a client invokes a method of a target object that is not co-located. The interface to
the communication infrastructure will be discussed in more detail shortly.

At each processor all the parallel statements assigned to a specific process on that processor have
to be enclosed in an infinite loop. This ensures that all the parallel statements of the program are
executed infinitely often. One of the infinite loops at each processor also has to include a parallel
statement that handles the messages received from remote objects. The purpose of this statement
is to pass the messages to the relevant local objects.

All the shared objects that are referenced by a parallel statement (either directly from within the
parallel statement itself, or indirectly via one of the methods invoked by the parallel statement),
have to be reserved before the statement may execute. In Section 8.3.4.1 an algorithm for the
reservation of resources in a distributed architecture is described. That particular algorithm was
chosen for its simplicity rather than its performance. The objective in this chapter is to point
out the issues that are involved, in which case a simple algorithm is the most appropriate.

When an object sends a message to another object and the latter is not co-located, a complex
infrastructure is required in order to get the message to the target object. For example, the
location of the target object has to be established and the message needs to be converted into.a
format that can be transmitted over a communication medium. Furthermore, the interface to the
communication medium has to be handled. An infrastructure which provides such services is
called a middleware infrastructure [OHE97]. One example is the Common Object Request
Broker Architecture (CORBA) [OHE97].

In this chapter the emphasis is on how to ensure that the semantics of the statements of a SLOOP
program are retained when the program is mapped to a distributed architecture. Once that
mapping is done, any middleware infrastructure can be used to take care of the details of actually
getting a message across to the target object, provided the selected infrastructure guarantees the
reliable delivery of messages to the target object. Thus, the transfer of messages from one
processor to another is transparent to the statements of the mapped SLOOP program.

8.2.5 Comparison with UNITY mappings

When comparing the UNITY mappings described in [ChMi88] with the SLOOP mappings
discussed above, the most important difference lies in the fact that UNITY statements deal with
variables (all UNITY statements are simple multiple-assignment statements), whereas SLOOP
statements deal with objects and the messages sent to those objects. The semantics of a SLOOP
statement are therefore more complex and that has to be taken into account when mapping a
SLOOP program to a specific architecture. The next section describes in more detail the issues
that need to be considered in order to ensure that the semantics of the SLOOP statements arc
retained during the mapping procedures. Although the object-oriented constructs add complexity
to the SLOOP mapping procedures, this is offset by the higher level of abstraction that is
achieved via the use of object-oriented concepts.

276

The object-oriented nature of the SLOOP method also gives it a distinct edge over UNITY when
the program is mapped to a distributed architecture, since the SLOOP mapping can take
advantage of middleware infrastructures such as CORBA. The UNITY mappings to distributed
architectures are in terms of variables and are described in [ChMi88].

8.3 Deriving executable programs on various architectures

This section demonstrates how executable programs can be derived for the different architectures
described in the previous section. The aim is to show what needs to be taken into account in
order to ensure that the correctness properties of the system are not violated during the
implementation phase.

8.3.1 Sequential architectures

The simplest type of mapping is to a sequential architecture. In Chapter 4, Section 4.4.3, it was
shown how an executable Smalltalk program can be derived from a SLOOP program if the target
architecture is sequential. Those parts of the executable program that differ for the various
architectures are repeated here for the sake of convenience. In the sections that follow, the
differences are highlighted.

The mapping of the activation-section of the CallCentreSimulation SLOOP program is
shown below:

[aCC_SimulationActivation |

aCC_SsimulationActivation :=
CC_SimulationActivation setup.
[true] whileTrue: [aCC_SimulationActivation p_activate]

Thus, an instance of CC_SimulationActivation is created. In turn, it instantiates all the
necessary classes. The program then enters an infinite loop. The latter contains a single
statement which invokes the p_activate method of the CC_SimulationActivation class.
At each invocation of the p_activate method one of its constituent parallel statements is
executed.

The mapping of the p_activate method is now shown. In order to select only one statement at
each invocation, while at the same time ensuring that each statement will be selected in turn, two
additional instance variables are introduced to the class. The p_activateTally variable is set
to the number of parallel statements that appear in the method and p_activateCyclelIndex is
initialised to p_activateTally - 1. Ateachinvocationofp activate,thep_activate=
CycleIndex is incremented modulo the number of parallel statements in the method. Its value
is then used to select the parallel statement to be executed.

For simplicity, only two of the statements of the p_activate method are shown in the example
below.

p_activate
p_activateCyclelIndex :=

((p_activateCyclelIndex + 1) \\ p_activateTally).
"Determine which statement should be executed.”

(p_activateCyclelIndex = 0)
ifTrue: [timer p_runTimer: timerEventQ] "statement O"

ifFalse: [(p_activateCyclelIndex = 1)

277

ifTrue: [self p_categoriseAndAllocate] "statement 1"

ifrFalse: [...
]
]

The above example serves to illustrate another issue that needs to be addressed during the
mapping procedure, viz. the handling of parallel messages to the pseudo-variable self. The
statement containing a message to self may be mapped as shown in the example above, or it
may be expanded, in which case the resulting statements are included in the mapping. The
second option is given next.

p_activate
p_activateCyclelIndex :=

((p_activateCycleIndex + 1) \\ p_activateTally).
"Determine which statement should be executed."

(p_activateCycleIndex = 0)

ifTrue: [timer p_runTimer: timerEventQ] "statement 0"
ifFalse: [(p_activateCyclelndex = 1)
ifTrue: [scAllocator p_categorise: inputQ
using: scContainer]) "statement 1"
ifFalse: [(p_activateCycleIndex = 2)

ifTrue: [scAllocator p allocate:
scContainer from: inputQ]
"statement 2"
ifrFalse: [...

]

If the second option is used, the p_activateTally variable has to reflect the total number of
statements after the expansion has taken place. The expansion is mandatory if the ALBEDO
meta-object infrastructure is used to perform the parallel statement selection. This issue is
explained in detail in Section 8.6.2.

A brief description of the functionality of each statement that is executed in the above methods is
given in the corresponding SLOOP methods in Appendix B, Section B.2.

At this point it may seem that the SLOOP method introduces added complexity during the
mapping phase, because additional variables and statements are required in the mapped program.
However, in Section 8.6 it will be shown how the concept of computational reflection can be
used to ensure that variables and statements that do not form part of the SLOOP class can be
implemented in a metaclass.

8.3.2 Synchronous shared-memory architectures

As described in Section 8.2.2, each component-part of a parallel statement can be allocated to a
separate processor. Execution of a SLOOP statement is performed as described in Chapter 4,
Section 4.3.6.3. To recapitulate: All if clauses are evaluated first, followed by the evaluation of
all message expressions representing arguments of other message expressions, as well as the
evaluation of all message expressions that play the role of the receiver of a message. Only then
are the assignments and/or outermost message expressions executed. If the if clause of any
conditional-component-part-list evaluates to false, then no further computation is performed for
the corresponding component-parts.

278

Execution is restricted to one statement at a time. If, for a specific statement, no component-
part is assigned to a particular processor, then that processor is idle for the duration of that
statement. Although other mappings to synchronous shared-memory architectures are possible
(e.g. where processors are not left idle), the simplicity of this mapping makes it easier to reason
about its correctness. Thus, even though the component-parts of a second statement might not
reference any of the objects referenced by the first statement, the second statement is not
executed while the first is still busy executing.

Each component-part on each processor has to execute infinitely often. Furthermore, it has to be
ensured that the component-parts belonging to the same statement execute simultaneously on
the relevant processors. As a result, all the processors comprising the system have to execute the
statements of the SLOOP program in the same order. The component-parts allocated to a
specific processor are therefore enclosed within an infinite loop in a specific order on that
processor.

8.3.3 Asynchronous shared-memory architectures

This section describes a special case of an asynchronous shared-memory architecture, viz.
one where multiple processes run on a single processor. The processes share a common
address space. Whereas in the case of a synchronous shared-memory architecture the
component-parts of a parallel statement are assigned to different processors, here complete
statements are assigned to processes.

Note that a parallel statement that is assigned to a specific process may invoke other parallel or
sequential methods. In that case the statements comprising those methods are also executed by
the same process. A process may therefore contain parallel statements belonging to multiple
objects. Typically, the parallel statements belonging to a specific object are all assigned to the
same process. However, that is not always the case, as will be seen below when the mapping of
the p_activate method of the CC_SimulationActivation class is discussed.

Only parallel statements are assigned to processes. The statements of a sequential method are
executed by the process containing the parallel statement which invoked the sequential method.

The following is an example of how the SLOOP parallel statements of the call centre program
can be assigned to multiple Smalltalk processes running on the same Smalltalk virtual machine.
Any number of Smalltalk processes can be used. In this example 6 processes are created. The
statement allocation is summarized as follows:

Process number Statements

1 No parallel statements
Parallel statements that invoke the parallel methods of the
CommsProviderSimulator and ServiceProviderSimulator classes.

3 Parallel statements that invoke the parallel methods of the TimerServices
class

4 Parallel statements that invoke the parallel methods of the
ServiceCategoryAllocator class

5 Parallel statements that invoke the parallel methods of the
ServiceCategory class

6 Parallel statements that invoke the parallel methods of the Connection
class

Table 8-1. Statement allocation to Smalltalk processes.

279

Process 1 contains the mapping of the sequential statements of the activation-section. 1t

instantiates the necessary classes via the setup method of the CC_SimulationActivation
class. It also creates all the other processes.

The purpose of the parallel statements in the activation-section is to ensure that the necessary
parallel methods of the various classes are invoked infinitely often. In the mapping to the
sequential architecture, this is achieved by enclosing the statement that sends the p_activate
message to the CC_SimulationActivation instance in an infinite loop.

In the mapping to the asynchronous shared-memory architecture, the parallel statements of
the p_activate method need to be spread over the various processes. For example, the
statement that invokes the parallel method of the TimerServices class appears in process 3 and
the ones that invoke the parallel methods of the ServiceCategoryAllocator class are
present in process 4. The p_activate method, which merely served as a convenient way to
group all of these statements in the SLOOP program, is therefore not used in this mapping. The
parallel statements contained within the p_activate method are executed directly from within
the activation-section. Statements containing messages to self are also expanded before the
allocation of objects to processors is made. The mapping of the parallel statements of the
activation-section is therefore spread over the various processes. In each process these parallel
statements are enclosed in an infinite loop.

The Smalltalk-80 statements of process 1 are as follows (for brevity only the statements for
invoking the parallel methods of the TimerServices and ServiceCategoryAllocator
classes are shown):

| aCC_SimulationActivation |

aCC_SimulationActivation :=
CC_SimulationActivation setup.

[[true] whileTrue:
[...] lfork.
"Process 2: Invoking the parallel methods of the
CommsProviderSimulator and ServiceProviderSimulator classes."

[[true] whileTrue:
[timer p runTimer: timerEventQ]]fork.
"Process 3: Invoking the parallel methods of the TimerServices
class."

[[true] whileTrue:
[scAllocator p categorise: inputQ using: scContainer.
scAllocator p_allocate: scContainer from: inputQ
1 lfork.
"Process 4: Invoking the parallel methods of the
ServiceCategoryAllocator class."™

[[true] whileTrue:
[...] lfork.
"Process 5: Invoking the parallel methods of the ServiceCategory
class."

[[true] whileTrue:
[...] 1fork.
"Process 6: Invoking the parallel methods of the Connection
class."

280

Discussion:

Since the address space is shared by all processes, the CC_SimulationActivation class can
be used to create all the instances that need to be present after initialization (via its setup
method). Thereafter the various processes are created. The statements that belong to a particular
process are enclosed in a Smalltalk block* and the message fork is sent to the block. All
processes in this example are created at the same priority level. As soon as the message fork
has been sent to a block, the process associated with that block becomes part of the list of
processes that are scheduled by Processor, the single instance of the Smalltalk library class
ProcessorScheduler. The latter is responsible for scheduling processes in a Smalltaik-80
system [GoR089].

Thus, in the example shown above, the timer p runTimer: timerEventQ statement which
invokes the p_runTimer: parallel method of the TimerServices class, is enclosed in a
Smalltalk block. The process that was created when the message fork was sent to the block,
will eventually be scheduled and at that time the timer p_runTimer: timerEventQ
statement will be executed by that process.

It was stated in Chapter 4 that a parallel method always returns after the execution of one of its
paralle] statements. Its statements are executed infinitely often by virtue of the fact that the
method is invoked infinitely often. In contrast, the parallel statements in the activation-section
of the program are not enclosed in a method. They are executed infinitely often because that is
what the semantics of a parallel statement in the activation-section imply. In the mapping to the
Smalltalk environment, it is therefore desirable to restrict infinite loops to the parallel statements
in the activation-section. The parallel methods are invoked infinitely often via the infinite
loop(s) in the activation-section.

In the mapping to the sequential architecture there was only one infinite loop in the activation-
section. For the mapping to the asynchonous shared-memory architecture, there is an infinite
loop for each process.

As stated earlier in this section, a parallel statement may invoke other parallel or sequential
methods. For example, the timer p runTimer: timerEvent(Q statement invokes the
p_runTimer: parallel method. This method contains three parallel statements, as can be seen
below:

currentTime := SmalltalkLibPkg:::Time now asSeconds
l lastTime := currentTime \+
currentTick := (currentTick + 1) \\ (timeoutCollection size)

if difference 2 1 and: [currentTimeoutElement isNil]
[timerEventQ addLast: currentTimeoutElement \+
currentTimeoutElement updateEndTime \+
currentTimeoutElement timerServicesCompleted: true \+
(timeoutCollection at: readIndex) removeFirst
if currentTimeoutElement notNil

The above method is called a leaf parallel method®, because the statements it contains do not
invoke any parallel methods. Since only one SLOOP parallel statement contained in a leaf
parallel method should be executed at each invocation of the method, it is necessary to insert a

4 A Smalltalk block (delimited by square brackets) is defined as "a description of a deferred sequence
of actions” in [GoRo89]. If the message fork is sent to a block, then a new process is created
containing the expressions enclosed by the block.

3 Details of the p_runTimer: method of the TimerServices class are given in Appendix B, Section B.11.
¢ In Chapter 4, Section 4.3.5.4, a leaf parallel method is defined as a parallel method that contains
parallel statements invoking sequential methods only.

281

Processor yield’ statement after each statement within the leaf parallel method. The
process therefore relinquishes control after the execution of each parallel statement, enabling the
Processor to schedule another process running at the same priority level.

In order to guarantee that the mapping to the above asynchronous shared-memory architecture
retains the semantics of the original SLOOP program, the following aspects therefore have to be
checked:

First of all, each parallel statement of the SLOOP program has to be represented by a Smalltalk
statement which is executed infinitely often. This is achieved by assigning the parallel
statements of each object to a process, and enclosing the statements of each process in an infinite
loop. The parallel statements of an object may be assigned to a process either explicitly or
implicitly. In the above example the statement timer p_runTimer: timerEventQ of the
p_activate method of the CC_simulationActivation class was allocated explicitly to
process 3. However, the statements of the p_runTimer: method of the TimerServices class
were allocated implicitly to process 3. Thus, all parallel and sequential methods invoked by a
parallel statement are implicitly allocated to the process containing the invoking parallel
statement.

Secondly, it has to be ensured that each SLOOP parallel statement contained in a leaf parallel
method executes atomically. Thus, such a statement has to complete its execution before
another parallel statement may be executed. This is achieved by disallowing any Smalltalk
methods that relinquish control in the mapped statements. Thus, the Smalltalk counterparts of
the SLOOP statements may not contain any message expressions that would relinquish control to
the ProcessorScheduler instance.

However, each mapped parallel statement in a leaf parallel method is followed by a
"Processor yield" statement in order to ensure that no process will forever prevent any
other processes of the same priority from running. That is also the reason why all the processes
are created at the same priority. It must also be guaranteed that each statement within the infinite
loop in each process will terminate, i.e. no infinite loops are allowed in any of the statements
enclosed by the outermost infinite loop of the process.

Since only one parallel statement in a leaf parallel method can be executed at a time (there is only
one processor and each parallel statement in a leaf parallel method executes atomically), it is not
necessary to reserve any objects prior to the execution of a parallel statement.

The third issue that has to be checked is whether each parallel statement in each leaf parallel
method will indeed get a turn to be executed. Since only one parallel statement is executed at
each invocation of a parallel method, the mapping of such a method has to ensure that each
parallel statement contained within that method will eventually be executed. One possiblility
is to introduce auxilliary variables in order to keep track of which statement should be executed
next. An example of the usage of such variables was given in Section 8.3.1.

8.3.4 Distributed systems

This section describes the issues that are at stake when a SLOOP program is mapped to a
distributed system. In section 8.2.4 the allocation of statements and objects to processors in a
distributed system was discussed. This section continues that discussion with the focus on
retaining the semantics of the SLOOP statements when they are mapped to a distributed
architecture.

7 When the message yield is sent to the ProcessorScheduler instance, the latter is instructed to give
other processes at the priority of the currently running process a chance to run [GoRo89].

282

The basic premise is that the correctness properties that hold for a SLOOP program, will also
hold for its mapped executable program, provided the mapping is done in such as way that the
mapped statements reflect the semantics of the SLOOP statements. In order to achieve this,
several issues need to be addressed:

O The atomicity of the SLOOP parallel statements must be preserved,

Q the evaluation order of the SLOOP statements must be preserved,

O the semantics of the SLOOP message expressions must be preserved and

O the computational model must be preserved.

In the discussion below, the emphasis is on the last bullet. This is because it provides an
opportunity to demonstrate how possible solutions to some of the complexities of a mapping can
be reused.

The issues that need to be considered in order to address the first three points are therefore only
discussed briefly in this introduction. As far as the preservation of the atomicity of the SLOOP
statements is concerned, the following aspects are relevant: First of all, a SLOOP parallel
statement is never spread over the processes in the distributed system. It is always a complete
statement that is assigned to a process. However, a parallel statement may send messages to
objects that reside at other processes. If two parallel statements share objects, they may not
execute simultaneously. The (arbitrary) ordering of the execution of such statements will be
discussed further when the issues related to the computational model are discussed below.

The evaluation order that needs to be preserved for SLOOP statements was first given in Chapter
4, Section 4.3.6.3 and summarised in Section 8.3.2 of the present chapter. Since a complete
statement is mapped to a process in a distributed architecture, there is nothing specific to a
distributed architecture that needs to be noted in this regard.

The preservation of the semantics of the message expressions is affected more by the target
programming language than by the target architecture. However, in the case of a distributed
architecture one also needs to ensure that the infrastructure that is used to transfer messages
between objects guarantees the delivery of those messages and that it also guarantees that they
will be delivered in the correct order.

As stated above, the remainder of this section focuses on issues related to the SLOOP
computational model. In order to ensure that each mapped parallel statement will execute
infinitely often, they have to be enclosed in an infinite loop. Furthermore, it has to be guaranteed
that a mapped statement will not forever prevent another statement from executing, i.e. each
mapped statement will eventually terminate. No statement should therefore contain an infinite
loop. The only infinite loop that is allowed, is the outermost loop in each process that ensures
that each statement is executed infinitely often. If there are multiple processes per processor,
then each mapped parallel statement should also be followed by a statement which will yield
control to the process scheduler. Absence of deadlock?® should also be guaranteed.

The remainder of this section covers various aspects related to the prevention of deadlock in a
mapping to a distributed architecture. The first subsection focuses on the rules that need to be
followed regarding the reservation of objects in order to ensure that deadlock will not occur. The
second subsection deals with the identification of the objects that need to be reserved and the
third subsection describes why the CORBA Concurrency Control Service [OHE97] is not used to
handle the object reservation aspect of the mapping to distributed architectures.

® Conditions for deadlock and ways of preventing deadlock as presented in the literature were discussed
in Chapter 4, Section 4.3.6.5.

283

8.3.4.1 Guaranteeing absence of deadlock in a mapping to a distributed architecture

As mentioned in the introduction, this description of the mapping of SLOOP programs to
distributed architectures focuses on the role of the SLOOP computational model. In this section
it is demonstrated how the SLOOP approach enables the system designer to work at a high level
of abstraction. Recall that during the design phase, the system is designed in terms of a number
of atomic parallel statements, each executing infinitely often. The designer may rely on this
atomicity at the design level, thereby simplifying the correctness reasoning at that level. There is
no need to be concerned with complicated mechanisms to ensure exclusive access to objects and
to guarantee that critical sections are handled correctly. The designer merely includes all the
actions that need to take place atomically in a single parallel statement.

When the SLOOP program is mapped to its target environment, this atomicity has to be
retained. At the same time, the mapping also has to guarantee that each mapped parallel
statement will execute infinitely often. Thus, no statement should ever prevent any other one
from executing. Once an infrastructure has been developed which satisfies these requirements,
it can simply be reused by each subsequent mapping. Note that this infrastructure is different
from the middleware infrastructure discussed earlier. The latter provides services such as
locating the various objects in the system and transforming the messages into a format that can
be transmitted over a communication medium. The SLOOP infrastructure discussed here uses
the services of a middleware infrastructure.

In the discussion that follows, the required SLOOP infrastructure comprises a system which
controls the sequence in which parallel statements at various processors may execute. The
infrastructure determines which objects are referenced as target objects by each statement, it
requests exclusive use of those objects on behalf of each statément and implements an algorithm
‘which determines in what order the exclusive access may be granted. A distributed resource
‘allocation algorithm is used in the example below. The remainder of this section is devoted to a
description of the functionality of such an infrastructure.

Note: In the description that follows, it is assumed that the distributed system consists of multiple
processors, with a single process running on each processor. At the end of this section the
impact of having multiple processes per processor will be discussed.

Issues to be considered:

In the architectures described earlier, it was only necessary to be concerned with the allocation of
statements to processes/processors. The mapping of a SLOOP program to a distributed system
also involves the allocation of objects to processors, since there is no shared memory amongst
the processors. This means that the data of the object is stored in the private memory of the
processor and its methods are executed by that processor. Since there are multiple processors
that execute concurrently and an object may receive a message from one remote object while it is
busy processing a message from another remote object, the issue of ensuring the integrity of
objects has to be addressed.

The integrity of an object can be ensured if there is no interference. This can be achieved by
requiring that an object only executes methods related to a single parallel statement at a time.
The sequential’ methods invoked by a parallel statement are invoked synchronously[Vino97].
Nested upcalls'® are allowed, but only if the upcalls are related to the execution of the current

® Since parallel methods contain parallel statements and each parallel statement must execute infinitely
often, the correctness properties that are defined for the parallel methods take into account that multiple
?axallel methods of that object will execute concurrently.

® Synchronous invocation and nested upcalls were defined and discussed in Chapter 3, Section 3.2.2.1.

284

(local or remote) parallel statement. If two parallel statements share objects, then only the
methods related to one of these parallel statements may be executed at a time. This restriction
ensures that the correctness arguments used during the design phase are preserved during the
implementation phase. When a sequential method is executed, the state of the object is defined
by the total correctness property of the method being executed. If the above restriction is
adhered to, no other method of the object can interfere with the state of the object during that
execution. In Chapter 4 this requirement was illustrated by two scenarions. In Figure 4-8(a) it
was shown that the nested upcalls belonging to the same parallel statement would always result
in the same execution sequence of the sequential statements, whereas the nested upcalls
belonging to two different parallel statements sharing objects and executing simultaneously could
result in arbitrary execution sequences.

However, by restricting execution at a specific processor to the methods belonging to a single
parallel statement at a time, a new problem is introduced: it is possible for deadlocks to occur (a
scenario for deadlock in such a situation is described in Chapter 3, Section 3.2.2.1), unless
preventative measures are taken. In [Tane92] the reservation of resources is given as one
possible mechanism to prevent deadlock. Thus, by ensuring that all the relevant objects are
reserved for the exclusive use of a particular parallel statement prior to the commencement of the
execution of that statement, deadlock can be prevented. The relevant objects are the object to
which the parallel statement belongs, as well as all the target objects'' referenced either explicitly
(in the statement itself) or implicitly (when a message is sent to an object from within one of the
methods that are invoked as part of the chain of methods that are executed by the statement).

Apart from guaranteeing the integrity of a SLOOP object, this solution also ensures that there is
no interference when parallel statements are executed. A SLOOP parallel statement always
contains a modifying part, optionally governed by a conditional part. The SLOOP model relies
on the fact that the state of an object does not change between the time that the conditional part is
evaluated until the modifying part is executed. While a parallel statement is being executed, no
other parallel statement should interfere with the states of the objects referenced by the former.

Recall that the discussion in this section focuses on the case where each processor in the
distributed system has only one process running on it. In the deadlock prevention strategy
described below, it is assumed that each parallel statement within a process must execute to
completion before the next parallel statement within that process can commence execution.
Thus, if parallel statement sA4/ at processor A requires object 04! at processor A and object 0B1
at processor B, while parallel statement s42 within the same process requires object 042 at
processor A and 0B2 at processor B, then the execution of statement s42 does not commence
before the completion of statement s4/ if the latter is currently being executed. This is because
the atomic unit of execution within a process is a parallel statement. Although the parallel
statements may be executed in an arbitrary order, each statement is executed to completion
before the execution of the next statement is commenced.

This requirement is extended further to include the parallel statement which handles the
messages received as a result of the execution of parallel statements located at remote processors.
Thus, while the process at processor A is busy executing statement s4/ and it is waiting for a
response to its message sent to object oB! (which resides at processor B), the process at
processor A is blocked except for nested upcalls belonging to the blocking statement. Thus, the
process will only respond to messages received via the execution of statement s4/.

If multiple processes are implemented at each processor, the efficiency of the implementation
can be improved considerably. In that case the parallel statement which receives messages from
processes at other processors could be assigned to a separate process. It will then be allowed to

A target object is an object to which a message is being sent. The client object is the object sending
the message.

285

execute concurrently with the parallel statements in the other processes at that processor,
provided the statements do not share objects. However, such improvements are not discussed
here, since the purpose of this section is merely to describe one possible way of mapping a
SLOOP program to a distributed architecture in order to be able to highlight the reusable aspects
of the mapping.

The deadlock prevention strategies described below are therefore aimed at an architecture
comprising multiple processors, but only one process per processor. They are based on the
simple conceptual model that each parallel statement within a process executes to completion
before any other parallel statement within that process is executed. This includes the parallel
statement which handles messages from remote parallel statements.

This approach has the following implication: Even if two parallel statements at two different
processors do not send messages to the same objects, deadlock could still occur if they send
messages to objects that share processors. The scenario shown in Figure 8-1'* supports this
claim: Statement s4] at processor A requires objects 041 and oBI, while statement sB1 at
processor B requires objects 042 and oB2. Thus, there are no shared objects. However, the
statements send messages synchronously to objects that share processors (041 and 042 share
processor A while oBI and 0B2 share processor B).

Processor A Processor B

Select sA1, ‘LsA1 requires oB1 sB1 requires 0A2 Select sB1

reserve oA1

Select and

Select and execute sB2

execute sA2

oB1 granted to sA1 0A2 granted to sB1

Select and
execute sA1 Select sB1,
reserve oB2
and execute
sB1

| | Message to 0A2 Message to oB1 |_|

Figure 8-1. Scenario for deadlock when there are no shared objects, but the objects share
processors in a single process per processor distributed architecture.

'2 The processors are identified via letters of the alphabet. The statements and objects at the various
processors are identified by numbers prefixed by the letters designating the relevant processor, as well
as an 's' to indicate a statement or an '0' to indicate an object respectively. As is evident from Figure 8-
1, reservation requests and confirmations are handled by each processor in between the execution of
statements. Note that a statement is selected for execution on a round robin basis, but is only executed
if all its reservation requests have been granted. At each processor one parallel statement is dedicated
to the handling of messages from remote clients, i.e. it receives the messages from the clients and then
passes them on to the relevant local objects. In Figure 8-1 this function is performed by statements s42
and sB2.

286

If the reservation requests are granted, deadlock occurs if the following happens: Statement s4/
starts executing and sends a message to object oB1 while at the same time statement sB/ starts
executing and sends a message to object 042. Since the messages are being sent synchronously,
the process at processor A blocks while waiting for the message to object 0BI to complete, while
the process at processor B blocks while waiting for the message to object 042 to complete.

The mapping of a SLOOP program to a distributed architecture where only one process runs on

each processor therefore has to ensure the following:

0 Each process only executes one parallel statement at a time and it executes it to
completion before proceeding to the next one. Thus, parallel statements that are located at
the same processor have to be executed in some (arbitrary) order.

Q When two parallel statements are located at different processors and they share objects",
the parallel statements have to be executed in some (arbitrary) order.

Q Parallel statements that are located at different processors and that do not share objects
(either explicitly or implicitly) have to be executed in some arbitrary order if the target
objects'® referenced by the different statements share processors.

Parallel statements may therefore execute simultaneously if the statements are located at
different processors, they do not share objects (either explicitly or implicitly) and the target
objects referenced by the respective statements do not share processors.

Addressing the issues:

One way of achieving all of the above is to acquire all the resources pertaining to a particular
atomic execution prior to the commencement of that execution. This will automatically impose
a sequential ordering on the statements that share resources. Based on the above discussion, it
would appear as if these resources are the processors rather than the objects, because any
statements that refer to target objects sharing the same processor may not execute
simultaneously, even if these statements do not share any objects.

However, by viewing the processors as the resources that have to be reserved, the scope for
concurrency becomes very limited. For that reason the target objects that are referenced by a
statement are viewed as the resources, but special rules apply regarding the reservation of these
resources. Details regarding these rules are given below.

The general strategy for object reservation:

Before providing detail regarding the resource reservation algorithm used here, the general
strategy is described first. One of the aims of this algorithm is to ensure that no statement will be
prevented forever from executing as a result of resource allocations to other objects, i.e. each
statement will eventually be granted its required resources and be allowed to execute.
Furthermore, while resources are being allocated to a statement, other statements will only be
prevented from execution if their execution will result in the violation of the correctness
properties of the system. Thus, concurrent execution must be maximised as far as possible.

B Two parallel statements share objects if they send messages to the same objects, or if the two parallel
statements belong to the same object or if the one parallel statement sends a message to the object to which
the other parallel statement belongs. Objects may be shared either explicitly via references in the parallel
statement itself, or implicitly via references within the methods invoked by the parallel statement.

“1fan object is not the receiver of the parallel statement under consideration, or it does not act as a target
object during the execution of the parallel statement, but it is merely referenced (for example its value is
assigned to a variable), then that object does not have to be considered when identifying the objects that
could affect the possibility of deadlock. This is because none of the statements of such an object are
executed during the execution of the parallel statement under consideration.

287

Requesting resources:

When a parallel statement is selected for execution, the location of each target object referenced
by that statement is determined. A single reservation request is composed for each target
processor. All the objects required from the specified processor for that particular parallel
statement are listed in the reservation request destined for that particular processor.

The specified objects at the specified processor are allocated to the parallel statement in a single
atomic action. There is therefore no need to reserve the objects located at a particular
processor in a specific order. However, reservation requests are sent to processors in a
prescribed order, since it cannot be guaranteed that all the resources pertaining to a specific
statement will be granted simultaneously at all the processors involved. Ordering of requests
removes the circular wait condition of deadlock [Tane92] and therefore prevents the object
reservation algorithm itself from running into a deadlock situation.

For example, processor A has acquired objects from processor B and is now requesting objects
from processor D, while processor C has acquired objects from processor D and is now
requesting objects from processor B. Both A and C will wait forever for the outstanding
resources as the resource allocation graph' [Tane92] in Figure 8-2(a) illustrates. If requests are
always issued in some (arbitrary) order, deadlock is prevented, as shown in Figure 8-2(b). The
request sent to the first processor in the sequence therefore has to be granted before the request to
the second processor may be issued. In the example in Figure 8-2(b) processor C can only send
its request to D once its request to processor B has been granted.

Note that if a statement sends messages to local objects only and none of these objects have
been allocated to or requested by other parallel statements, no reservation request is issued.
The statement may execute immediately, since it is guaranteed to complete and it cannot interfere
with the execution of any other statement. .

If a statement sends messages to local objects only, but one of the objects has already been
allocated to a remote parallel statement, a reservation request has to be issued. This is to
prevent interference. For example, if parallel statement sB/ at processor B has been granted
exclusive access to object o471 and it starts executing, it might check the state of object 04/ in the
conditional part of statement sB/. However, if statement s4/ (which sends messages to object
oAl only) is allowed to execute before statement sB/ can execute its modifying part, it could
change the state of 0o47. This implies that the atomicity requirement of statement sB] would be
violated. It is for this reason that statement sA4/ has to issue a reservation request if it is found
that it has to send messages to objects that are currently allocated to or have been requested by a
remote parallel statement. :

If a statement sends messages to both local and remote objects, reservation requests are issued
for the local objects as well as for the remote objects in the prescribed order.

' In a resource allocation graph processes are represented by circles and resources are shown as
squares. If an arc is directed from a resource towards a process, then the resource has been granted to
that process. If an arc is directed from a process towards a resource, then the process is waiting for that
resource. A cycle in the graph indicates deadlock.

288

Figure 8-2(a). Resource allocation graph showing deadlock.

Figure 8-2(b). Deadlock is prevented if the resource allocation requests are made in an
(arbitrary) order.

Granting resources:

When a request for the reservation of object(s) at a particular processor has been granted to a
parallel statement (regardless of whether that statement is local or remote), all other reservation
requests for objects at that processor are queued by the specified processor if the reservation
requests are received from remote processors. The behaviour when the reservation request
pertains to a local parallel statement will be described shortly. Once one or more of the objects at
a processor have been allocated to a parallel statement, no other objects located at that processor
are allocated to remote parallel statements until the resources have been released.

The rationale for this restriction is as follows: Once a resource has been granted to a remote
processor, the parallel statement at the remote processor could start executing whenever that
statement has acquired all its resources. If a local parallel statement has also acquired all its
resources in the meantime, both statements could start executing simultaneously. This is because

289

the logic determining which statement can be executed next at a particular processor does not
take the status at any remote processor into account. The only criterium that is used to decide
whether a statement should start executing is whether all the required resources have been
granted. As a result deadlock could occur if the parallel statements refer to target objects that
share processors, since the method invocations are synchronous. This is demonstrated by the
scenario depicted in Figure 8-3:

Processor A Processor B Processor C
-I- Select sC1
Select sA1, sC1 requires 0A2
reserve cA1
sA1 requires oB1
[1 Select and
execute sC2

OA2 granted to sC1

oB1 granted \’

Select and [] to sA1

execute sA2
[Select sC1
Select and [

Select and [execute sB1

execute sA1 sC1-requires oB2

Select and
execute sC2

-0B2 granted
to sC1]

Select sC1,

reserve oC2,

Select and
execute sB2 1

execute sC1
Message related to sC1

| e

Select and
execute sB1

3

Message related to sC1

Message related to sA

L | |

Figure 8-3. Deadlock as a result of the granting of multiple reservation requests.

290

Statement s4/ at processor A requires objects 041 and 0B1 at processors A and B respectively.
Statement sC1 at processor C requires objects 042, oB2 and oC2 at processors A, B and C
respectively. All requests are granted, since there are no conflicts. Statement sA/ starts
executing. It sends a message to 0B/ and waits for a response. In the meantime statement sC/
has also started executing. It has sent a message to 0B2. Processor B is currently handling that
message, which requires a message to be sent to 042. Deadlock ensues, since processor A is still
waiting for a response to the message sent to oB1.

If the restriction is adhered to, then the request for object 042 to be allocated to statement sC1 is
not granted by processor A. This is because a local object (041) has been reserved for a local
statement that sends messages to both local and remote objects. As a result, when the request for
object 042 is received, it is queued until statement s4/ has released object o41. Deadlock is
therefore prevented.

In more generic terms, the above algorithm merely ensures that deadlock is prevented at the
processor level, i.e. if two statements send messages to objects that share processors, then those
statements are forced to execute in an (arbitrary) order. Thus, the circular wait condition for
deadlock is eliminated [Tane92].

A two-tiered approach is therefore followed to prevent deadlock. Requests are made for
exclusive access to the relevant objects for a particular statement. This allows statements to be
executed in parallel if such concurrency will not compromise the correctness of the system, as
will be seen below when the requests pertaining to local parallel statements are discussed.

On the other hand, when requests are granted, it is done at a per processor level if the request is
received from a remote processor. If the reservation request pertains to a local parallel
statement, more concurrency is possible, as will be seen shortly.

Note that even when a processor grants a reservation request to a remote parallel statement, it
does not mean that the specified processor is blocked. The processor continues to execute its
infinite loop. It will therefore continue to execute any local parallel statements that have been
granted access to all the required objects. When a parallel statement that has reserved objects has
completed its execution, all the objects that are reserved for that statement are released for
allocation to other statements.

The treatment of local reservation requests is discussed next. Note that a local reservation
request is only issued if a local parallel statement sends messages to both local and remote
objects or if the local parallel statement sends messages to object(s) that have been allocated to or
requested by another parallel statement. The reason for treating local reservation requests
differently from remote reservation requests is as follows: If two local parallel statements do not
share any resources, then the efficiency of the algorithm can be improved by allowing the
resources for these statements to be reserved in parallel. Since these statements share the local
processor, they will not be executed in parallel. The correctness of the system is therefore not
compromised by the concurrent reservation of the resources required by these statements.

When a reservation request for a resource is issued for a local parallel statement, the request is
queued if any local object has been allocated to a remote parallel statement or if any requests
from remote parallel statement(s) have been queued. This is done to prevent a deadlock
situation. If the scenario shown in Figure 8-3 is modified such that the request for object 042
reaches processor A before object 041 is reserved, then the request for object 042 will have been
granted when the reservation request for object 04/ is made. Thus a request for a local object is
made when a local object has already been allocated to a remote parallel statement. It is clear
that if the last request is granted, then exactly the same deadlock situation as depicted in Figure
8-3 is possible.

291

If no remote statements are involved, the request is granted if all the local objects listed in the
request can be allocated, otherwise the request is queued. For example, if object 042 in Figure 8-
4(a) has been allocated to statement s4/ (i.e. to a local parallel statement sending messages to
both local and remote objects) and statement s42 requires objects 042 and 043 (in addition to
remote objects), the reservation request pertaining to statement s42 is queued, as shown in Figure
8-4(a). Object 043 is not allocated, even though it is free, since all the objects required by a
specific parallel statement are allocated in a single atomic action. This ensures that whenever a
statement releases its resources, then all the objects will be available to the next request in the
queue.

If a reservation request is now issued for statement 543 indicating that object 043 is required (in
addition to one or more remote objects), the request is also queued. Although object 043 is free,
it has already been requested by statement s42 and should therefore be allocated to statement s42
first.

However, if the only local object required by statement s42 had been object 042, then the
reservation request for statement s43 would have been granted, as can be seen in Figure 8-4(b).
The concurrent acquisition of the resources required by statements s4/ and s43 is thereby
facilitated.

Thus, the purpose of allowing multiple local reservation requests to be granted simultaneously, is
to allow multiple local parallel statements that do not send messages to the same objects to
acquire their resources in parallel. These statements cannot interfere with each other, since
they are never processed in parallel (owing to the fact that they share the same processor). Note
that it is only necessary to check whether the statements share local objects. If they share remote
objects, the algorithm executed at the remote processors will ensure that the remote objects will
not be allocated to both statements simultaneously.

Processor A o - Processor B

Select sA1,

reserve oA2

sA1 requires oB1

Select sA2,

request for
0A2 and 0A3
queued

eed

request for

Select sA3, [
0A3 queued

——d

Figure 8-4(a). Handling of local reservation requests (shared local objects).

292

Processor A Processor B Processor C

Select sA1,
reserve oA2

sA1 requires oB1

Select sA2,
request for]
0A2 queued W

Select sA3,

reserve oA3

sA3 requires oC1

I\

Select sA1 \

oC1 granted to
sA3
Select sA2

Select and I
execute sA3

Release 0A3

Release oC1 \

Figure 8-4(b). Handling of local reservation requests (no shared local objects).

It would be possible to achieve even more parallelism by allowing local parallel statements to
obtain their remote resources concurrently regardless of whether they share local objects or not.
This is because they will not execute simultaneously, since they share the local processor.
However, that would complicate the resource allocation algorithm, since it would have to make
provision for local objects being allocated to multiple local parallel statements at the same time.
This option is not discussed further here, but this and other ways of improving the efficiency of
the algorithm is a topic for further research.

The resource allocation algorithm:

At each processor in the distributed system, the following actions must be taken:

O Resource reservation requests received from remote processors must be handled.

0 Each parallel statement in the infinite loop running on a processor must be selected infinitely
often for execution. When a statement is selected for execution and all the relevant objects
have already been allocated to it, it is executed. If there are still some objects outstanding,
the necessary action is taken as described below. The statement is not executed.

293

Q Indications that local objects have been released by remote parallel statements must be
processed.

0O Indications that remote objects have been allocated to local parallel statements must be
processed.

A pseudo-code version of the basic functionality of the resource allocation algorithm is now
presented. For easy reference, the different sections of the algorithm are referred to as rules and
are numbered.

(reservation request received from remote processor) "Rule 1"
ifTrue:
[
(any local object (s) already allocated to or requested by a
local or remote parallel statement)
ifTrue: [append the request to the local Request Queue
if it is not already present in the local Request Queue]
ifFalse: [grant the request to the remote parallel statement]
]
ifFalse:
[
(local objects released) "Rule 2"
ifTrue:
[
(all the local objects required by the first entry in the
local Request Queue available)
ifTrue:
[
grant the request to the entry in the local Request Queue.
(the request is for a local parallel statement)
ifTrue:
[
(all objects now reserved)k
ifTrue: [execute the statement and then release all
objects held by the statement]
ifFalse: [issue the next request to a remote processor]
]
ifFalse: [no further action taken]
]

ifFalse: [no action taken]

]

ifFalse:
[
(request granted at a remote processor) "Rule 3"
ifTrue:
[
(access granted to all remote objects that should be reserved
prior to the local objects)
ifTrue:

{
(any of the required local object(s) already allocated to
or requested by another local or remote parallel
statement)
ifTrue: ([create a request and queue it in the local
Request Queue if it is not already present in the
local Request Queue]
"to prevent deadlock and interference"
ifFalse:
{
allocate the objects to the local parallel statement.
(all objects now reserved)
ifTrue: [execute the statement and then release all
objects held by the statement]
ifFalse: [issue the next request to a remote processor)

294

ifFalse: [issue the next request to a remote processor]
i
ifFalse:
(
"next local parallel statement selected"
{(next local parallel statement requires local objects only)
"Rule 4"
ifTrue:
L
(any of the required local object(s) already allocated to or
requested by a remote parallel statement)
ifTrue: [create a request and queue it in the local
Request Queue if it is not already present in the
local Request Queuel]
"to prevent deadlock and interference”
ifFalse: [allocate the objects to the local parallel
statement and execute the statement]
]
ifFalse:
"next local parallel statement requires local and remote objects”
"Rule 5"
(
(access granted to all remote objects that should be reserved
prior to the local objects)
ifTrue:
{
(any of the local objects already allocated to or requested
by a remote parallel statement or
any of the required local object(s) already allocated to
or requested by another local parallel statement)
ifTrue: [create a request and queue it in the local
Request Queue if it i1s not already present in the
local Request Queue]
"to prevent deadlock and interference”
ifFalse:
(
allocate the objects to the local parallel statement.
(all objects now reserved)
ifTrue: [execute the statement and then release all
objects held by the statement]
ifFalse: [issue the next request to a remote processor]
]
]
ifFalse:
(
issue the next request to a remote processor

!

As is evident from the above, the algorithm implements five rules:

Rule 1:

When a reservation request is received from a remote processor (the requesting processor), the
request is quened"® in the local Request Queue instead of granted if local object(s) are already
allocated to or requested by a parallel statement. The latter may be a local parallel statement or
one at another processor. It may even be another parallel statement at the requesting processor.

16 A request is only queued if it is not already present in the local Request Queue. This applies to all
the rules listed here.

295

Rule 2;

When local objects are released by a local or remote parallel statement, the next entry in the

local Request Queue is inspected.

a If this entry is a request for local object(s) to be allocated to a parallel statement at a remote
processor, the request is granted if all local objects are available. Otherwise the request
remains in the queue until the remaining objects have also been released. This takes care of
the requests queued as a result of Rule 1.

0 Else if the entry is a request for local object(s) to be allocated to a local parallel statement,
the request is granted if the requested objects are now free. This ensures that requests
queued as a result of Rule 4 or 5 are processed. If all the required objects are now reserved,
the statement is executed and then the objects are released. If all the required objects have
not been reserved yet, the request to the next processor in the sequence is issued.

Rule 3:

When an indication is received that remote objects have been reserved for a local parallel

statement, the algorithm checks whether there are any more objects that need to be reserved.

0O If all objects have not been reserved yet and the next request in the sequence is one
requesting remote objects, a request is sent to the relevant remote processor.

@ Else if local objects should be reserved next, a request is created and queued in the local
Request Queue if any of the required local objects are currently allocated to or requested by
a remote parallel statement. It is also queued if the specified local object(s) are currently
allocated to or have been requested by a local parallel statement.

0 Else if all the requests pertaining to this statement have been granted the statement is
executed and then the objects are released.

Rule 4:

‘When the next local parallel statement has been selected for execution and all the reqmred
.objects are local, a request is created and queued in the local Request Queue if any of the
required local objects are currently allocated to or requested by a remote parallel statement. If
all the required local objects are available, the statement is executed.

Rule 5:

When the next local parallel statement has been selected for execution and both local and

remote objects are required, the following actions are taken:

O A request is sent to a remote processor if all objects have not been reserved yet and the next
request in the sequence is one requesting remote objects.

@ If local objects should be reserved next, a request is created and queued in the local
Request Queue if any of the required local objects are currently allocated to or requested by
a remote parallel statement. It is also queued if the specified local object(s) are currently
allocated to or have been requested by a local parallel statement.

0O Else if all the requests pertaining to this statement have been granted, the statement is
executed and then the objects are released.

Thus, the underlying goal of this algonthm is to ensure that each statement in the infinite loop
on each processor will always terminate'’, thereby ensuring that each parallel statement can be
executed infinitely often. If all the local and remote resources required by a parallel statement
have been granted to it according to the procedures specified above before it starts executing, its
termination is guaranteed. Separate reservation requests are made for each parallel statement,
since the latter is the atomic unit of execution.

171t is assumed that all the sequential methods invoked by the parallel statements are terminating
methods.

296

Additional comments on the resource allocation algorithm:

0 The entries of the local Request Queue are always processed on a strictly First In First Out
basis.

O The processors are ordered in some (arbitrary) order and reservation requests for each
parallel statement are issued strictly in this order.

O All requests for resources are always issued at the processor where the parallel statement is
located. When a message is received from a remote object and the target object on the local
processor needs to send a message to a remote object on yet another processor, it is therefore
guaranteed that the execution will terminate, since all the resources required by the parallel
statement on the originating processor have to be allocated to that statement before it starts
executing.

0 All resource requests are issued asynchronously, i.e. control is returned to the requesting
processor without waiting for a response. Before any parallel statement is selected, the
queue containing requests and responses from remote processors is examined. If it is not
empty, its entries are processed.

0 When multiple processors are involved, the sequential statements appearing in the
activation-section of the SLOOP program are allocated to the various processors as
appropriate. All of these sequential statements have to complete execution before the
parallel statements start executing. One mechanism to achieve the desired behaviour is to
prohibit the granting of object(s) to a remote parallel statement if all the sequential
statements in the activation-section allocated to the specified processor have not yet
completed execution. The requests are queued at the target processor. Note that the objects
may be granted to a sequential statement appearing in the activation-section on a remote
processor.

0 Ifthe order in which the sequential statements in the activation-section execute is significant,
then the necessary synchronization mechanisms have to be included for this purpose during
the mapping procedure.

Scenarios to illustrate aspects of the resource allocation algorithm:

Several scenarios are now presented to elucidate the above principles. Figure 8-5 illustrates how
reservation requests are queued when the requested objects are not available. It also shows that
reservation requests for a specific parallel statement are made sequentially. Only one reservation
request may be outstanding at a time for a particular parallel statement.

There are three parallel statements at processor A. Statement s4/ is selected for execution. It
requires objects 041, oBI and oCI. Object 041 is allocated to statement s4/. A request for
object oB1 is issued. Without waiting for a response from processor B, statement sA42 is selected.
It requires objects 042, oBI and oDI. Object 042 is allocated to statement s42. Object oD is
available. However, no request for object oD1 is made, since it has not yet acquired object oBI.
A request for object 0BI is issued for statement s42 and queued at processor B. The third
parallel statement (s43) services messages that are received from remote objects, therefore it
does not need to reserve any objects.

By the time that statement s4/ is selected again, object 0B/ has been granted to it, therefore a
request for object oCI is issued. The latter cannot be allocated to statement s4/ yet, so the
request is queued at processor C. Statement s4/ is not executed, since an object request is still
outstanding. Statement s42 is now selected for execution. No action is taken, since it is still
waiting for object 0B to be granted to it.

297

Processor A Processor B Processor C Processor D

Select sA1, l

sA1 requires oB1
reserve oA1 \

Select SA2, oB1 granted

to sA1
reserve oA2

sA2 requires oB1

Request queued

Select sA1
\ sA1 requires oC1

Select sA2 /
I‘—/ Request queued
Select and
execute sA3 /
oC1 granted
I‘_/ to sA1

Release oB1

Select and
execute SA3

Select and
execute sA1

Release oC1
Release 0A1
- 0oB1 granted to sA2

Select sA2 \

;——_—/// oD1 granted to sA2

Select and
execute sA3

Select sA1, | sA1 requires oB1
reserve oA1
| Request queued
Execute sA2
Release oB1
Release oD1

Release oA2I —

Select and _’
execute sA3

I

Figure 8-5. Scenario illustrating how resources may be requested by and granted to parallel
statements at processor A.

298

Once the request for object oCI has been granted, statement sA4/ is executed. (The messages sent
to the objects located at processors B and C are not shown in Figure 8-5.) When it has
completed, it releases all its resources. . The request for object 0B/ can now be granted to
statement s42. A request for object oDI is made on behalf of statement s42. The latter only
executes once it has acquired all its resources.

The next scenario illustrates how the resource allocation algorithm presented in this section

allows for concurrency without introducing undue complexity. While local objects are allocated

to parallel statements that require objects at multiple processors, the local processor may still
execute local parallel statements that are unaffected by these object allocations. In particular, it
may execute:

0 the local parallel statement which services messages from remote objects,

O local parallel statements that do not send messages to remote objects and which do not
require the local objects that are currently allocated to or requested by remote parallel
statements, as well as

Q local parallel statements to which all resources have been granted.

In the scenario depicted in Figure 8-6 processor B has two local parallel statements. The first one
(statement sBI) only sends messages to objects 0B2 and 0B3 at processor B and the second one
(statement sB2) services messages from remote objects. While object oB! is allocated to
statement s4], processor B is allowed to execute its local parallel statements that do not require
any remote resources and that also do not require object 0B1, as shown in Figure 8-6.

If the request for object oCI is granted and processor A starts executing statement s4/, a
message related to statement s4/ at processor A may arrive while processor B is executing
statement sB]. Since the latter only sends messages to objects 0B2 and 0B3, local objects that are
currently not allocated to other statements, it is guaranteed to terminate. Processor B will
therefore eventually execute its second parallel statement (sB2), which services messages from
remote objects. That implies that the message from statement s4] will eventually be serviced.

Note that the statement which services messages from remote objects is always executed when it
is selected, since no resources need to be reserved in order to execute this statement. By the time
a message is received from a remote object, all the resources related to the statement to which
this message belongs have already been reserved. For example, in the above scenario all
resources required for the parallel statements on processor A are issued at that processor. Other
processors never need to issue requests for resources on behalf of processor A. By the time
statement s4/ is allowed to execute, objects 0B/ and oC]I are already allocated to it.

Thus, when processor B executes statement sB2 (which results in the processing of the message
related to s41), it does not have to reserve any resources prior to the execution of the message.
Even if the processing of this message results in a message being sent to an object at processor C,
it is guaranteed that object oCI will be available to statement s4 1, since it has been reserved for
that statement by processor A.

If there is a fourth parallel statement (s44) on processor A which only refers to objects 043 and
044 at processor A, that statement may also execute while statements s4/ and s42 have not yet
acquired all their resources. This is allowed, since a parallel statement which only refers to local
objects that are not allocated to other remote statements at that moment, will never interfere with
the state of an object that is allocated to another object. The statement will also always terminate,
allowing the processor to execute the next statement in its infinite loop.

299

Processor A Processor B Processor C Processor D

Select sA1, sA1 requires oB1

reserve oA1

i

Select sA2,| |._SA2 requires oB1

reserve 0A2 ><
oB1 granted
Selectand [to sA1

execute sA3

Request queue

Select and
execute sB1

i

Select sA1 sA1 requires oC1

]
] |
‘/m

Select sA2 [Select and

execute sB2
oC1 granted to sA1

) coremedoan,
L

- Select and
- execute sA3

Seledt and Selectand |
execute sA1 execute sB1

/

Message related
to sA1

Message related

Select and to sA1
execute sB2
{process the
message relateq Return
to sA1) result

Retum
result

Release oB1

Release oAt Release oC1

oB1 granted to
SA2

Figure 8-6. Scenario illustrating that a local parallel statement is always allowed to execute if it
does not send messages to remote objects and also not to local objects that have been allocated to
or requested by a remote parallel statement.

300

The scenario in Figure 8-7 illustrates the third condition under which a local parallel statement
may be executed while some local objects are allocated to other parallel statements. In this case
processor B contains a third parallel statement (sB3) which requires objects 0B3, oDI and oEl
and a fourth one, which requires objects 0B4 and oCI. When statement sB3 is selected for
execution, object oB3 is allocated to it. A reservation request is sent to processor D in order to
acquire object oDI. Statement sB4 is executed next. A local reservation request is issued for
object oB4. The request is granted, since the object is available and no local objects have been
allocated to remote parallel statements. A request for object oC1 is issued.

The requests for objects oD and oC1 are granted. When a reservation request for object oB1 1s
received from processor A, the request is queued, because a reservation request from a remote
parallel statement is always queued if any local objects are already allocated at that time. When
statement sB3 is selected again, it issues the request for object oE 1.

Statement sB4 is executed when it is selected, since it has acquired all its resources. It is not
affected by the resource allocation status of statement sB3. Even if the request for oE/ is
received before statement sB4 starts executing, statement sB3 cannot interfere with statement
sB4, owing to the fact that only one parallel statement is executed at a time at a particular
processor and that statement execution is completed before the next statement is selected. (The
messages sent to the objects located at processors C, D and E are not shown in Figure 8-7.) Once
a parallel statement has completed execution, its resources are released.

The release of object sB3 results in the allocation of object oBI to statement s4/. When
statement sB4 is selected, the local reservation request for object 0B4 is queued due to the fact
that a local object (oB1) is allocated to a remote parallel statement at that time.

Figures 8-8(a) and (b) illustrate some of the consequences if these rules as implemented in the
resource allocation algorithm presented in this section are not adhered to. Deadlock as a result of
reservation request collision is shown in Figure 8-8(a). Processor A allocates object 042 to
statement sB1, even though a local object is already allocated to statement s4/. This violates
Rule 1. Processor B violates Rule 5 when it allocates object 0B2 to statement sB/. Deadlock
ensues when statements s4 7 and sB! both start executing simultaneously.

In Figure 8-8(b) Rule 5 is violated at both processors, eventually resulting in deadlock. Figures

8-9(a) and (b) show how the rules listed above ensure correct operation under similar
circumstances.

301

Processor A Processor B Processor C ProcessorD Processor E

Select sB3, 1

reserve oB3
\ sB3 requires oD1

Select sB4, sB4 requires oC1
reserve oB4

oD1 granted to sB]

Select and
execute sB1 J

Select and
execute sA3

oC1 granted to sB4
sA1 requires oB1

Select sA1,
reserve oA1
Request queued
Select and
execute sB2
Select sA2, \ sB3 requires oE1
reserve 0A2 \
Request queued /
Selectand [Select and Release oC1 / oE1 granted to sBB
. execute sA3 execute sB4 . ’
T Release oB4 N
Select sA1 [Selectand [7]
execute sB1
T Select and
execute sB2
Select sA2 [
Select and
r execute sB3
Selectand [] [————___| ReleaseoD1
execute sA3 Release oB3 '\\5
[T————___| ReleaseoE1
oB1 granted to
sA1
Select sB4,
request for [
oB4 queued

Select sA1

sA1 requires oC1

Figure 8-7. Scenario illustrating that a local parallel statement for which all resources have been
granted may be executed while another local parallel statement is still waiting for remote
resources to be granted. The two statements do not share local objects.

302

Processor A

J_!sA1 requires oB1

Select sA1,

reserve oA1l

Select and
execute sA2

Select and
execute sA1

|

Message related to sA1

sB1 requires 0A2 JT

0B1 granted to sA1 0A2 granted to sB1

Message related to sB

Processor B

Select sB1

Select and
execute sB2

Select sB1,

reserve oB2

and execute
sB1

Figure 8-8(a). Deadlock in the case of reservation request collision when both local
and remote reservation requests are granted at each processor.

Processor B

Processor A

Select sA1,
reserve 0A2

Select and
execute sA2

Select and
execute sA1

sB1 requires 0A1

0A1 granted to sB1

sA1 requires oB1

oB1 granted to sA1
Message related to sB1

Message related to sA1

Select sB1

Select and
execute sB2

Select sB1,

reserve oB2

and execute
sB1

Figure 8-8(b). Deadlock when a local reservation request is granted while a local
object is currently allocated to a remote parallel statement.

303

Processor A Processor B

Select sA1,
reserve 0A1

Select and
execute
sA2

Select and

execute sA1

Release 0A1

Select and
execute sA2

-

Select
sB1

sA1 requires oB1 sB1 requires 0A2

Select and
execute sB2

oB1 granted to sA1 Request queued

Message related to B1 Select
sB1
Retum resuit Select and
execute sB2

Release oB1

0AZ2 granted to sB1

Figure 8-9(a). Deadlock prevention in the case of reservation request collision.

Processor A ' ProcessorB -

Select sA1,
request for
0A1 queued

Select and
execute sA2

Select sA1

Select and
execute sA2

Select sA1,
reserve oA1

sB1 requires 0A2 Select sB1

0AZ2 granted to sB1

Select and
execute sB2

- Select sB1
M *
essage related to sB1 reserve oB2 and

P// execute sB1

Return result

—>

Release 0A2 Release oB2

sA1 requires oB1

oB1 granted to sA1

‘.f

Figure 8-9(b). Deadlock prevention because a reservation request for a local object
is queued while a local object has been allocated to a statement at a remote

processor.

304

The effects of having multiple processes running on each processor:

If a distributed system comprises multiple processors, where each processor has multiple
processes running on it, the effects on the resource allocation algorithm as described in this
section are as follows:

In such a system there are multiple infinite loops running on each processor, one for each
process. Each process relinquishes control of the processor in the same way as described in
Section 8.3.3, i.e. the mapped SLOOP statements may not contain any messages that will yield
control to the process scheduler, but after each parallel statement has been executed, control is
relinquished explicitly. The atomicity of each parallel statement is thereby guaranteed.

If multiple processes may be present at each processor, only one of the processes at each
processor would need to contain the statement which handles messages from remote objects.
This is because the objects at that processor are shared by all the processes. It is only the parallel
statements that are assigned to individual processes. In order to ensure the integrity of objects,
parallel statements that share objects may not execute simultaneously.

Earlier in this section it was described how the efficiency of the resource allocation algorithm
could be improved if local parallel statements could ebtain their remote resources in parallel. It
was stated that such concurrency would not compromise the correctness of the system, since only
one parallel statement would execute at a time due to the fact that there was only one processor
for the set of local parallel statements.

When multiple processes may run on a processor, the efficiency is improved even further,
because all parallel statements that are located at different processors and that do not share
objects could execute simultaneously. Recall that in a single process per processor distributed -
architecture, parallel statements can execute simultaneously if they are located at different
processors, they do not share objects and the target objects referenced by the respective
statements do not share processors. Since the statement which handles messages from remote
objects can be assigned to a separate process if each processor has multiple processes running on
it, the last condition is removed.

Reuse

It is evident from the above that the infrastructure required to map a SLOOP program to a
distributed architecture is not trivial. However, once such an infrastructure has been developed,
it can be reused whenever a SLOOP program needs to be mapped to such an architecture.

8.3.4.2 Identifying the objects that need to be reserved

The next issue to consider is how to determine which objects should be reserved for each
parallel statement. This is done by inspecting the parameters used in the message expressions in
the parallel statements. The receiver of the parallel statement, as well as all target objects
specified as parameters have to be reserved.

If a statement only sends messages to local objects, no objects need to be reserved if all the
objects can be allocated to the statement simultaneously. If a statement executes under such
circumstances, it cannot interfere with any other statement, as illustrated by the examples in the
previous section.

As discussed in Chapter 4, Section 4.3.5.4, parallel statements may be nested. The purpose of
the parallel statements at the top nesting level at each processor is to invoke the required parallel
methods of the local objects. These methods may send messages to other objects. In the SLOOP
method it is a requirement that such target objects have to be named explicitly as parameters

305

of these methods if they do not form part of the receiver. Thus, a composite object may refer to
its constituent objects without having to name them as parameters in its methods. However, any
other target object has to be passed to the sending object as a parameter. When a composite
object is reserved, all its components are reserved with it.

Reservation requests are only issued at the processor where the top nesting level of a parallel
statement is located. Since all target objects that do not form part of the receiver of the parallel
statement have to be passed as parameters to the receiver, the target objects that are involved in
the execution of a parallel statement can easily be determined when the statement is selected for
execution.

Due to the fact that SLOOP parallel statements may be nested, and each parallel statement may
result in multiple parallel statements at the next nesting level, it is possible that all the parameters
that are passed by the top level parallel statement might not be required by each parallel
statement at the bottom level. This is exemplified by the parallel methods of the TimerServices'®
class.

At the top nesting level the p_runTimer: method is invoked with t imerEventQ as parameter,
as shown below. .

timer p_runTimer: timerEventQ

The p_runTimer: method contains three parallel statements, viz.

currentTime := SmalltalkLibPkg:::Time now asSeconds
[lastTime := currentTime \+ , ‘ ‘ '
currentTick := (currentTick + 1) \\ (timeoutCollection size)

if difference 2 1 and: [currentTimeoutElement isNil]

[timerEventQ addLast: currentTimeoutElement \+
currentTimeoutElement updateEndTime \+
currentTimeoutElement timerServicesCompleted: true \+
(timeoutCollection at: readIndex) removeFirst

if currentTimeoutElement notNil

As is evident from the above, only the third statement refers to timerEventQ. In order to
improve efficiency, the reservation requests are not made until the parallel method at the top
level has been expanded to its lowest level and the relevant statement for that particular pass has
been selected. This expansion procedure forms part of the mapping of a SLOOP program to a
distributed architecture.

If, in the above example, the timerEventQ object is located at a remote processor, then no
remote objects need to be reserved when the first two statements are selected for execution.
These statements may be executed whenever they are selected if the TimerServices instance is
not allocated to a remote parallel statement at the time of their selection.

The third statement requires both.the TimerServices instance and the t imerEventQ object to
be allocated to it before it may execute. This will involve a reservation request to another
processor if the t imerEventQ object is located remotely.

Parallel messages to the pseudo-variable self are used for structuring purposes. It is used to
invoke parallel methods that contain statements that are likely to change during subclassing. A
parallel message to the variable self£ is not required to pass its own instance variables to itself as
arguments. If such a message is encountered at the top nesting level it is necessary to expand the

'8 The SLOOP specification of the TimerServices class is given in Appendix B, Section B.11.

306

parallel statement containing this message in order to determine which objects should be reserved
for the resulting statements.

For example, the p_activate method of the CC_Activation' class contains the following

parallel statement:
self p_executeCPAgent

The p_executeCPAgent method of the CC_S imulationActivation? subclass contains the
following parallel statements:

commsAgent p_simulate: timer timeoutEventsIn: timerEventQ

I commsAgent p_generateEvent: userConnections target: inputQ

Thus, it is evident that the commsAgent, timer and timerEventQ objects are involved in the
first statement, while the commsAgent, userConnections and inputQ objects are involved in
the second statement. Since these are all instance variables of the CC_Activation class, it does
not have to pass these parameters to itself when it sends a message to itself. It is only by
expanding the statement containing the pseudo-variable self that it is possible to determine
which objects are required for the execution of that statement .

8.3.4.3 The middleware infrastructure

Due to the advent of middleware products such as CORBA [OHE97], there is no need to be
concerned about issues such as how to determine the location of an object when a message has to
be sent to it. When a statement in a distributed object implementation is selected for execution,
the CORBA services are used to determine the location of all the target objects involved.
Although the CORBA Concurrency Control Service [OHE97] allows the designer to lock
resources, this service is not used by SLOOP, since it does not provide the functionality required
for the reservation of objects as described above. For example, when a lock is requested via the
"CORBA Concurrency Control Service, the requesting process blocks until the lock is granted,
whereas the SLOOP implementation requires that it should be possible to issue reservation
requests asynchronously.

Once a parallel statement starts executing, the Object Request Broker (ORB) intercepts all
messages sent to a class or an instance. It takes care of locating the target object and of
converting the message selector and its argument to a format that can be transmitted to a remote
Processor.

There are various ways of incorporating CORBA into an implementation: one option suggested
in [OHE97] is to multiply inherit from the CORBA services classes. If multiple inheritance is
not supported by the target architecture, CORBA allows the inclusion of before and after
callbacks that are executed before and after each method respectively [OHE97]. The necessary
CORBA services can be invoked from within these callbacks. The latter approach is followed in
the SLOOP method, since multiple inheritance is not supported.

This concludes the discussion of the basic principles involved during the mapping of SLOOP
programs to different types of architectures. The remainder of this chapter deals with various
topics related to such mappings. For example, it is shown how the concept of reflective
computation can be utilised in SLOOP mappings. There is also a discussion on how more
parallelism can be introduced into a SLOOP design if that is found to be a requirement during the
implementation phase. However, first more detail is given regarding the mapping of macros and
different types of SLOOP statements.

' The CC_Activation class is defined in Appendix B, Section B.2.
 The SLOOP specification of the CC_SimulationActivation class is presented in Appendix B, Section
B.3.

307

8.4 Mapping macros

The previous sections described how the SLOOP computational model can be mapped onto
various architectures. However, there are other SLOOP constructs that also need consideration
during the mapping process. This section covers the issues regarding the mapping of the macros-
section of a SLOOP class or method to Smalltalk.

In Chapter 4, Section 4.4.3.3, the simplest mapping approach was presented. Each macro-
variable is simply replaced with its corresponding macro-expression wherever it is used. In
order to improve efficiency, other options can be considered. However, some of these options
are only more efficient under very specific circumstances and could even be less efficient in
others, as shown below.

The first option is as follows: For each method all the macro-variables are declared as
temporary Smalltalk variables. This includes the macro-variables defined in the class macros-
section that are referenced by the specified method, as well as those in the macros-section of the
specified method. If a macro-expression contains another macro-variable, the latter has to be
declared as a temporary variable as well. The macro-expressions are evaluated and the results
are assigned to the corresponding macro-variables when a parallel or sequential method is
entered.

This approach is more efficient than the mapping given in Chapter 4, Section 4.4.3.3, if the same
macro-variable is referenced multiple times in a sequential method or if it is referenced multiple
times within the same statement in a parallel method. However, this mapping only produces the
correct results if the macro-expression has the same value at all locations in the method. In the
case of a parallel method, where only one statement is selected for execution at each invocation,
the macro-variables may not even be referenced in the selected statement. In that case the
evaluation of the macro-expression is a wasted computation.

Another option is to use a hybrid approach, i.e. in sequential methods macros are evaluated
once when the method is entered, while in parallel methods the macro-variables are replaced
with their corresponding macro-expressions wherever they are used. Again this solution can
only be used if each macro-expression always has the same value regardless of the location in the
sequential method. Thus, if the macro-variable has a different value at different occurrences
within a sequential method, a temporary variable mapping will not preserve the semantics of the
SLOOP statements.

The simplification of the implementation of correctness property checks is another argument in
favour of merely replacing macro-variables with their corresponding macro-expressions
wherever they are used. If the properties-section is implemented using reflection (as discussed in
Section 8.6.3), then the macro-expressions in the property specifications are evaluated from
within the metaclass by obtaining the relevant values of class and instance variables from the
base class. The alternative options above map the macro-variables to temporary variables. The
scope of the temporary variables is the method within which they appear, i.e. at the time when
the preconditions are checked in the metaclass no values have been assigned to these temporary
variables yet. However, since it is optional to implement the properties-sections of a SLOOP
program, this will not be a consideration if the properties-sections are not mapped to the
executable program.

Thus, the simplest mapping of macro-variables would be to replace them with their macro-
expressions wherever they are used. In order to improve the efficiency of the algorithm,
temporary variables could be used in some situations, but the designer would have to take care
that the semantics of the SLOOP statement are preserved.

308

8.5 Mapping SLOOP statements

The mapping of a SLOOP statement which contains a single statement-component and which, in
turn, contains a single component-part is straightforward as was demonstrated in Chapter 4,
Section 4.4.3.3. This section deals with the Smalltalk mapping of parallel methods that contain
multiple quantified-statement-lists. It also covers the mapping of statements comprising multiple
statement-components and component-parts.

8.5.1 Mapping quantified-statement-lists

When multiple quantified-statement-lists appear in a parallel method, each statement within
each quantification has to be included in the list of statements that are executed infinitely often.
It has to be included in such a way that only one statement is selected at each invocation of the
method. In the code fragment below, two of the quantified-statement-lists appearing in the
p_activate method of the CC_Activation class® are shown.

I <[i where 1<i<maxConn :: self p executeConnection:
(userConnections at: 1)
>
[} <0 j where 1<j<maxCategories :: (scContainer at: 3J)
p_execute
>

When the class is instantiated, the p_activateTally instance variable is set to the total
number of parallel statements contained within the p_activate method. For brevity some of
the statements in the p_activate method are omitted in this example. The mapping below
only shows the statements above, as well as two other enumerated statements.

The p_activateTally variable is setto 2 + (config maximumServiceCategories) +
(config maximumConnections) inthe initialize method. Inthe p_activate method,
the first statement calculates which parallel statement should be executed. The second statement
calculates which of the quantified statements should be executed, should the current value of
p_activateCycleIndex not indicate one of the enumerated statements. The temporary variables
i and j are used to select the correct instances of the Connection and ServiceCategory
classes respectively.

"Determine which statement should be executed.”
p_activateCyclelndex :=
((p_activateCycleIndex + 1) \\ p_activateTally).

"Determine whether it is one of the statements of the
Connection class”
(p_activateCycleIndex > 1 and:
[p_activateCycleIndex £ (1 + config maximumConnections)])
ifTrue: [1 := 1+1]
ifFalse:
[
i := 0.
"Determine whether it is one of the statements of
the ServiceCategory class"
(p_activateCyclelndex >
(1 + config maximumConnections) and:
[p_activateCyclelIndex <

! The SLOOP specification of the CC_Activation class is presented in Appendix B, Section B.2.

309

(1 + config maximumConnections +
config maximumServiceCategories)])
ifTrue: [3 := Jj+1]
ifFalse: [J := 0].

(p_activateCycleIndex = 0)
ifTrue: [self p_executeCPAgent] "statement 0"

ifFalse: [(p_activateCyclelIndex = 1)

ifTrue: [timer p runTimer: timerEventQ] "statement 1"
ifFalse: [(p_activateCycleIndex = (1+1i))
ifTrue: [self p_executeConnection:
(userConnections at: i)] "statement 1+i"
ifFalse: [(p_activateCyclelIndex = (1 +
config maximumConnections + 3J)
ifTrue: [(scContainer at: j) p_execute]
"statement 1 + config maximumConnections + j"
iffFalse:[...

]
]

]

The above code fragment represents one possible way of mapping quantified-statement-lists.
Many other mappings are possible, but the above suffices as an illustration of how it could be
done.

8.5.2 Mapping sfatement-componehts and component-parts

The next example illustrates the mapping of a SLOOP statement comprising multiple statement-
components and component-parts. This statement from the p_generateEvent:target:
method of the CommsProviderSimulator class™ has two statement-components separated by
the '||' symbol. (For the purposes of this example, the two statement-components appear in a
specific order in this section, which happens to be different from their ordering in Appendix B.
This is acceptable, since the order in which statement-components appear in a SLOOP program
is not significant.)

newEventRequired := true \+
generatingEvent := false

if generatingEvent
| |inputQ addLast: (idleConnection serviceRequest) \+
idleConnection assign

if generatingEvent and: [idleConnection notNil] ~
Transcript show: 'All connections busy'

if generatingEvent and: [idleConnection isNil]

(The macro-variable idleConnection 1is defined as self getIdleConnection:
userConnections.)

It is important that the semantics of the statement should be preserved, otherwise the resulting
program could be incorrect. The evaluation order of a SLOOP statement was first presented in
Chapter 4, Section 4.3.6.3. Recall that all conditional expressions appearing in a statement are
evaluated first. Thereafter the message expressions that represent receivers and arguments are

2 The CommsProviderSimulator class is specified in Appendix B, Section B.6.

310

evaluated. Finally, the resulting message expressions (the only ones that may modify variables)
are evaluated.

If, instead of following these rules, the statement above is mapped to a sequential architecture by
executing the statement-components sequentially, generatingEvent would be set to false
before the conditional expressions of the second statement-component are evaluated. No service
requests would ever be added to the inputQ, even if there are idle connections, as can be seen
below.

(generatingEvent)

ifTrue:

[
newEventRequired := true.
generatingEvent := false

1.
(generatingEvent and:[(self getIdleConnection: userConnections)
notNil])
ifTrue:
{
inputQ addlLast:
(self getIdleConnection: userConnections) serviceRequest.
(self getIdleConnection: userConnections) assign
]

ifFalse: [Transcript show:'All connections busy'].

A correct mapping of the above statement for a sequential architecture is the following:

(generatingEvent)
ifTrue:
{
newEventRequired := true.
generatingEvent := false.
((self getIdleConnection: userConnections) notNil)
ifTrue:

[
inputQ addLast:
(self getIdleConnection: userConnections) serviceRequest.
(self getIdleConnection: userConnections) assign

]

ifFalse: [Transcript show:'All connections busy'].

]

There are several correct mappings for the above statement. The important issue is to make sure
that if the value of a variable is used and modified in the same statement, then its value prior to
the modification has to be obtained for all occurrences where it is used. All of these occurrences
have to use the value obtained prior to the modification.

A modification may be performed explicitly via an assignment that forms part of the parallel
statement, or it may occur implicitly via an assignment that is performed as a result of a method
being invoked from within the parallel statement. When generatingEvent is set to false in the
above statement, it is an example of an explicit modification. The invocation of the assign
method of the Connection class in the above statement is an example of an implicit
modification.

Note that in a synchronous shared-memory architecture as described in Sections 8.2.2 and 8.3.2,
each component-part of a parallel statement can be assigned to a different processor. Thus, the
addLast: and the assign methods in the above statement can be executed simultaneously,
and at the same time the values of newEventRequired and generatingEvent can also be

311

updated. The various statement-components and component-parts of a parallel statement may
therefore be executed concurrently, with the proviso that all read accesses performed by any
statement-component or component-part of the statement are completed before any write access
may commence.

8.6 The use of reflection in mappings of SLOOP programs

In Chapter 1, Section 1.3.4, it was stated that computational reflection could be used, inter alia, to
reason about control and for assertion checking. These topics are now explored further.

Each time when a parallel method is invoked, only one of its constituent statements is executed.
In the mapping to an executable Smalltalk program additional variables and logic are introduced
in order to select a statement for each invocation. In Section 8.6.2 it is shown how this aspect of
the mapping can be delegated to the metaclass of each base class, thereby ensuring that the latter
is not cluttered with variables and statements that are irrelevant to the class itself.

When a method from the base class is invoked, it is possible to check the preconditions for that
method in the metaclass before the method is executed. Once the method has completed, the
postconditions can be checked in the metaclass before control is returned to the client. This
aspect of the use of reflection in the SLOOP method is covered in Section 8.6.3. However, first
more information is given regarding the infrastructure that is required in order to make use of
reflection in this way.

8.6.1 A reflective computation infrastructure

- The ALBEDO meta-object infrastructure [Bekk93] is one possible infrastructure that can be used
to provide reflective computational facilities. The basic principle employed in a meta-object
infrastructure is to associate a metaclass with a base class and to allow the metaclass object to
intercept the messages sent to the base class object.

The ALBEDO meta-object infrastructure provides a mechanism to intercept these messages. It
is implemented in Smalltalk-80. The Smalltalk architecture consists of a virtual machine and a
virtual image [GoRo89]. The virtual machine handles the interface to the hardware and also
contains low level routines that must be written in machine language. The virtual image consists
of the kernel objects, the compiler objects and the users' objects. Since the message handling
primitive of Smalltalk is part of the virtual machine, it is inaccessible to users.

The way in which this problem is overcome in the ALBEDO system is by encapsulating the
base object and its associated meta-object in a shell. A minimal set of methods is implemented
for the class representing this shell. As a result most messages received by the shell are not
understood. The doesNotUnderstand: method is reimplemented in the shell. Instead of
displaying an error message, the handleMsg: aMessage message is sent to the encapsulated
meta-object, where aMessage is the original message received by the shell.

The meta-object takes the necessary actions pertaining to that particular metaclass and it then
passes the original message to its associated base object. Depending on the function of the meta-
object, it may even modify the original message before sending it to the base object. This aspect
will be discussed in more detail below. A graphical representation of the architecture of the
infrastructure 1s presented in Figure 8-10.

312

Object MinimalReferent

reflect
(aMetaObject)
MetaObiect Referent
referent objectComputation
reflectiveComputation
referent (anObject)
handleMsg (aMessage) objectComputation
ReflectiveComputation
(anObject, aMetaObject)
doesNotUnderstand
(aMessage)
SLOOPMetaObject
hasParallelMethod
(aSelector)
EventSimulator EventSimulatorControlMeta
p_simulateTimeoutEventsin handleMsg (aMessage)
(aTimerServices, timerEventQ hasParallelIMethod (aSelector)
CommsProviderSimulator CPSimulatorControlMeta
p_generateEventTarget handleMsg (aMessage)
(userConnections, inputQ) hasParallelMethod (aSelector)

Figure 8-10. Class diagram of the ALBEDO meta-object infrastructure based on Smalltalk.

313

Only the most important instance variables and methods relevant to the discussion are shown in
the diagram. The EventSimulator and CommsProviderSimulator classes® are used as
examples of a base class hierarchy. The Object class is their root class. To a large extent the
metaclass hierarchy mimics the base class hierarchy. However, all metaclasses have to be
descendants of the MetaObject class. The latter is a subclass of Object. It is also not
mandatory for each base class to have a metaclass associated with it. The purpose of the
SLOOPMetaObject class is to add methods and instance variables that are specific to SLOOP
mappings. This class and its descendants are described in more detail later on in this section.

The implementation of the shell is realized by two new classes, viz. MinimalReferent and
Referent. MinimalReferent is a new root class. A minimal set of methods from the
Smalltalk Object root class is recompiled for MinimalReferent. The subclass Referent
contains the functionality specific to the implementation of reflective computation. This class
contains the two instance variables objectComputation and reflectiveComputation.
Once the encapsulation has been performed via the new reflect: method of the object
class, they refer to the base object and meta-object respectively. The reflect: method will be
discussed in more detail shortly. The Referent class also contains the reimplemented
doesNotUnderstand: method. Reflective computation is activated as illustrated by the
example of the CommsProviderSimulator class given next.

The initialize method ofthe CC_Activation class contains the following statement:
commsAgent := self initCommsAgent

The initCommsAgent method is defined as being the responsibility of the subclass (in this case
CC_SimulationActivation). In the original CC_SimulationActivation class this

method contains the following statement: _
~CC_sSimulationInterfacesPkg:::CommsProviderSimulator
startSimulation)

The initCommsAgent method is now augmented with the statements related to reflective
computation (the additions are shown in bold):

| commsAgentBase commsAgentMeta |

commsAgentBase :=
CC_SimulationInterfacesPkg:::CommsProviderSimulator
startSimulation.

commsAgentMeta :=
CC_SimulationInterfacesPkg:::CPSimulatorControlMeta new.

commsAgentBase := commsAgentBase reflect: commsAgentMeta.

“commsAgentBase

The reflect: method is a new method added to the Object class by the ALBEDO meta-
object infrastructure. Its purpose is to encapsulate the base object and its meta-object in a shell.

The implementation of the reflect : method is as follows:
"Statement (s) of the reflect: method"”
"Referent objectComputation: self reflectiveComputation: aMetaObject

Thus, the objectComputation:reflectiveComputation: class method of the
Referent class is invoked. This method creates and returns a new instance of Referent and it
causes the instance variables objectComputation and reflectiveComputation to refer to
the encapsulated base object and meta-object respectively. At this stage the referent instance
variable of commsAgentMeta, the meta-object, is also set to refer to commsAgentBase, its

® The EventSimulator and CommsProviderSimulator classes are specified in detail in Appendix B,
Sections B.5 and B.6 respectively.

314

associated base object. (The CPSimulatorControlMeta class inherits the referent instance
variable from the MetaObject class.) The base object has no reference to its encapsulation or
its associated meta-object.

In this example the commsAgentMeta meta-object is an instance of the
CPSimulatorControlMeta class. This class performs reflective computation related to the
control of parallel statements in the base class. It is possible to instantiate a different type of
metaclass at this point. For example, a metaclass that performs reflective computation related to
assertion checking or one that performs both control actions and assertion checking could be
instantiated. In the remainder of this section the general concepts are explained using the control
metaclasses as examples.

In the program fragment above the commsAgentBase variable is set to the value returned by the
reflect: method. This is also the value that is returned by the modified version of the
initCommsAgent method. Thus, instead of referring to a CommsProviderSimulator
instance, the commsAgent instance variable refers to the shell encapsulating the
CommsProviderSimulator instance and its associated meta-object. (The shell is an instance
of Referent.)

When a message is now sent to commsAgent, the shell receives it. Since the shell understands
only a minimal set of messages, the doesNotUnderstand: method is invoked for most

messages. The doesNotUnderstand: implementation for the Referent class is as follows:
“reflectiveComputation handleMsg: aMessage.

Thus, the message is passed to commsAgentMeta, the meta-object. The handleMsg: method
now performs the reflective computation before it passes the message to the base object.

(The selector and respondsTo : methods invoked in the program fragment below refer to
Smalltalk-80 library methods and are not shown in Figure 8-10. The receiver of the selector
method is a message expression. The selector method returns the selector found in this
message expression. For example, the (inputQ addlast: serviceRequest) selector
message expression would return the addLast: selector. Thus, if (inputQ addLast:
serviceRequest) is passed as argument to the handleMsg: method below, then aMessage
would have the value (inputQ addLast: serviceRequest) and msgSelector would
have the value addLast:. The respondsTo: method returns true if the receiver supports the
method specified as argument of the respondsTo: method.)

The handleMsg: method of CPSimulatorControlMeta is as follows:
ImsgSelector|
msgSelector := aMessage selector.
(referent respondsTo: msgSelector)
ifTrue:
[
(msgSelector = #p generateEvent:target:)
ifTrue:
[*self handle p generateEvent: aMessage]
ifFalse:
[
(super hasParallelMethod: msgSelector)
ifTrue: [”“super handleMsg: aMessage]

ifFalse:
["referent perform: msgSelector
withArguments: (aMessage arguments)]

315

ifFalse:)
[~referent doesNotUnderstand: aMessage]

First of all, the meta-object checks whether the base-object can respond to the specified message
selector. If it cannot, the doesNotUnderstand: method associated with the base-object is
invoked (i.e. the original one implemented in the Object class, which displays an error
message).

If the message can be understood, the meta-object performs its reflective computation. In the
case of a CPSimulatorControlMeta instance, which needs to take control actions, the meta-
object then checks whether it indicates one of the parallel methods of the base class (in this case
there is only one, viz. p_generateEvent:target:).

If it does, handle_p_ generateEvent:, the meta-object method which handles the selected
parallel method, is invoked. The contents of handle_p generateEvent: is discussed in
Section 8.6.2. At this stage it suffices to note that the method selects one of the parallel
statements of the p_generateEvent:target: method and ensures that the selected statement
is executed.

If the message selector does not match one of those supported by the base-object, the superclass
of the current meta-object is consulted. If the superclass (or one of its ancestors) can find a
match for the specified message selector, the message is passed to the relevant ancestor. If no
match can be found, it is assumed that the message selector represents a sequential method and
the message is passed to the base-object using explicit message passing.

The CommsProviderSimulator class inherits the p simulate:timeoutEventsIn:
method from EventSimulator, its parent class. The reflective computation related to this
method is found in the corresponding metaclass. . Details regarding the handle p simulate:
method will be given in Section 8.6.2.

The handleMsg: method of EventSimulatorControlMeta is as follows:

jmsgSelector|
msgSelector := aMessage selector.
(referent respondsTo: msgSelector)
ifTrue: ’
[
(msgSelector = #p simulate:timeoutEventsIn:)
ifTrue:
[*self handle p simulate: aMessage]
ifFalse:
[
(super hasParallelMethod: msgSelector)
ifTrue:
[*super handleMsg: aMessage]
ifFalse:
[“referent perform: msgSelector
withArguments: (aMessage arguments)]
]
]
ifralse:

[*referent doesNotUnderstand: aMessage]

The class MetaObject is the superclass of all meta-classes. The subclass SLOOPMetaObject
merely adds the method which checks whether the associated base class contains any parallel
methods. In SLOOPMetaObject the method is implemented as follows:

316

hasParallelMethod: aSelector
~false

Each subclass of SLOOPMetaObject which performs reflective computation about the parallel
statements in its associated base class has to reimplement this method. Thus, n
EventSimulatorControlMeta (subclass of SLOOPMetaObject) it is reimplemented as
shown below:

hasParallelMethod: aSelector

(aSelector = #p simulate:timeoutEventsIn:)
ifTrue: [“truel

ifFalse: [“super hasParallelMethod: aSelector]

CPSimulatorControlMeta (subclass of EventSimulatorControlMeta)also reimplements
the method:

hasParallelMethod: aSelector
(aSelector = #p _generateEvent:target:)
ifTrue: [“truel

ifFalse: [“super hasParallelMethod]

In the next section it will be shown how reflective computation is used to select a parallel
statement for execution.

8.6.2 Using reflective computation for control purposes

In Section 8.3.1 it was described how the selection of a single parallel statement per parallel
method invocation can be achieved on a sequential architecture. The mechanism is based on the
introduction of two additional variables. The one contains the total number of statements within
the method and the other variable is used to record which statement had been executed during the
previous cycle.

Instead of adding these variables to the base classes, they are added to the meta-classes. Each
meta-object has to initialize these variables. If such variables are inherited from a superclass, it
has to be ensured that the variables in the superclass are initialized as well. This is illustrated by
the example below. The new method of the EventSimulatorControlMeta class is
implemented as follows:

~ (super new) eventSimulatorInit

The eventSimulatorInit method initializes the p simulateTally and
p_simulateCyclelIndex variables:

"Statements of the eventSimulatorInit method"

p_simulateTally := 2.
p_simulateCycleIndex := p_simulateTally - 1.

The cPSimulatorControlMeta metaclass is a subclass of EventSimulatorControlMeta.
Thus, when this class is instantiated, it has to ensure that the instance variables inherited from its

superclass are initialized as well. Its new method is therefore implemented as follows:

~ (super new) cpSimulatorInit

Thus, first of all the new method of EventSimulatorControlMeta, its superclass, is invoked.
That results in an instance being created, as well as in the invocation of the

317

eventSimulatorInit method. The instance variables of its superclass are therefore
initialized. Subsequently the cpSimulatorinit method is invoked. The latter initializes the
instance variables of the CPSimulatorControlMeta class, as shown below:

"Statements of the cpSimulatorInit method"
p_generateEventTally := 1.
p_generateEventCyclelIndex := p generateEventTally - 1.

When a message is received by the shell and it has been passed to the encapsulated meta-object
via the handleMsg: method, the meta-object determines whether the message selector indicates
a parallel method or a sequential method. It also determines whether it is a parallel method
supported at the current level in the class hierarchy or by an ancestor. If it is a parallel method
selector, the relevant meta-object method is then invoked to perform the selection of the
appropriate statement. This procedure was covered in the previous section. The implementation
of the meta-object methods that perform the statement selection is now described.

The purpose of moving the parallel statement selection (ie. contrel) functionality to the
metaclass level is to keep the mapping of the base class as close as possible to the original
SLOOQP statements. However, there is one aspect that cannot be kept transparent to the base
class, viz. the fact that it has to be possible to refer to a single parallel statement at a time.

If a parallel method contains multiple statements (which may be convenient for abstraction
purposes), the Smalltalk mapping has to include a separate method for each parallel statement
within the method. These methods are not visible to any other base classes. Thus, all other base
classes refer to the parallel method that corresponds with the SLOOP parallel method. The
methods containing the single parallel statements are only used by the corresponding metaclass.
This is now exemplified by the EventSimulator and CommsProviderSimulator classes.

The SLOOP version of the statements in the p_simulate: tlmeOUtEventSIn method is
shown first. It contains two parallel statements:

self startRandomTimer: aTimerServices withMaximum:
(aTimerServices maximumTimeout) \+

newEventRequired := false
if newEventRequired
Il generatingEvent := true \+

self resetTimerExpired: timerEvent(Q
if self timerExpired: timerEventQ

The handle p simulate: aMessage method of the EventSimulatorControlMeta class is
tmplemented as follows:

handle p simulate: aMessage

p_simulateCycleIndex := (p_simulateCycleIndex + 1) \\ p simulateTally.
args := aMessage arguments.

(p_simulateCycleIndex = 0)
if True:
{

“referent perform: (#p_sl simulate:) withArguments: (args at: 1)
]
ifFalse:
[

(p_simulateCyclelIndex = 1)

ifTrue:

["referent perform: (#p_s2 simulate:)

318

withArguments: (args at: 2)]
]

The corresponding single statement methods in the base class are as follows:

p_sl_simulate: aTimerServices

(newEventRequired) ifTrue:

[
self startRandomTimer: aTimerServices withMaximum:
(aTimerServices maximumTimeout) .
newEventRequired := false

p_s2_simulate: timerEventQ

(self timerExpired: timerEventQ) ifTrue:
[
generatingEvent := true.
self resetTimerExpired: timerEventQ

]

Note that the original p_simulate:timeoutEventsIn: method contained two arguments.
However, each of its constituent parallel statements only refers to one of these arguments. This
is reflected by the new methods invoked by the metaclass.

The handle p_generateEvent: aMessage method of the CPSimulatorControlMeta class
is implemented as follows: '

handle_p generateEvent: aMessage

p_generateEventCycleIndex :=
(p_generateEventCycleIndex + 1) \\ p_generateEventTally.
args := aMessage arguments.

(p_generateEventCycleIndex = 0)
if True:
[“referent perform: (aMessage selector): withArguments: args]

Note that in this case the parallel method in the SLOOP class contains only one statement as
shown below, in which case there is no need to define additional single statement methods.

inputQ addLast: (idleConnection serviceRequest) \+
idleConnection assign

if generatingEvent and: [idleConnection notNil] ~
Transcript show: 'All connections busy'

if generatingEvent and: [idleConnection isNil]
| | newEventRequired := true \+
generatingEvent := false

if generatingEvent

The ALBEDO meta-object infrastructure does have the limitation that messages to the Smalltalk
pseudo-variables self and super are not intercepted [Bekk93]. The reason for sending a
parallel message to self is purely for structuring purposes. Equivalent functionality is achieved
by replacing the statement containing the message to se1£ with the constituent statements of the
corresponding method. Thus far there has been no requirement for sending parallel messages to

319

super. An example of parallel statements containing messages to self can be found in the
p_activate method of the CC_Activation class in Appendix B, Section B.2. This concludes
the discussion on how reflective computation can be used to control which parallel statement
should be executed next. In the next section another application of reflective computation is
covered, viz. assertion checking.

8.6.3 Using reflective computation for assertion checking

It is of the utmost importance to check that the relevant correctness properties are not violated by
the mapping of any SLOOP program fragment to an executable program. Some of these
properties can be checked at run-time using the reflective facilities of Smalltalk. In particular,
each message can be intercepted by the meta-object of the target object. The preconditions are
checked before the message is passed to the target object. When the latter has completed its
execution of the corresponding method, control returns to the meta-object, which then checks the
postconditions before returning control to the client object. The ALBEDO meta-object
infrastructure [Bekk93] as described in Section 8.6.1 can again be used to achieve this.

However, the liveness and precedence properties of a parallel method cannot be checked in this
way. The postconditions of these properties are only required to hold eventually, provided the
preconditions hold at some point and the method is invoked infinitely often. During the
implementation phase it is therefore necessary to ensure that each parallel statement will indeed
be executed infinitely often. In Section 8.2 it was described how this could be guaranteed by
enclosing the relevant statements in infinite loops. It is imperative to check that the variables
representing the total number of statements in each parallel method contain the correct values.
The algorithm used to select the next statement within a parallel method has to guarantee that
each statement within the method will eventually. be selected. The software designer therefore
has to take special care that these aspects of the correctness of the mapping are thoroughly
checked.

Apart from reasoning about the correctness of the mapping, it is also possible to implement trace
statements as part of the meta-objects. In so doing, the statements of the base objects are not
affected, while an additional mechanism is provided to increase confidence in the correctness of
the mapping.

Computational reflection is therefore a powerful mechanism that can be used during the
implementation phase of a project based on the SLOOP method. It facilitates the separation of
concerns, i.e. the base classes represent the SLOOP classes, while the metaclasses contain the
information about those classes that are implicitly present in the SLOOP classes.

8.7 Modifying the level of parallelism in a SLOOP design

In some cases, depending on the target architecture to which the SLOOP program should be
mapped, it could be found during the implementation phase that more parallelism in the design
would be beneficial. The SLOOP approach makes it relatively easy to introduce more
parallelism into a design.

For example, when the ServiceCategoryAllocator® instance needs to categorise the
service request at the head of the inputQ, it does this by executing the following parallel

statement:
categorising := true \+
self categoriseServiceRequest: (inputQ first) using: scContainer
if inputQ isEmpty not and: [categorising not]

2% The ServiceCategoryAllocator class is specified in Appendix B, Section B.8.

320

The purpose of the categorising instance variable is to ensure that the
categoriseServiceRequest:using: method is only invoked once for the service request at
the head of the inputQ. Once the service request has been categorised, another parallel
statement?® is executed which removes it from the inputQ and at the same time sets the
categorising variable to false, thereby facilitating the categorisation of the next element
in the inputQ. Depending on the requirements of the system, the categorisation of a service
request could be lengthy and complex.

One disadvantage of the formulation of the above statement is the fact that in order to categorise
an entry from the inputQ, all the objects that are involved at various stages of the categorisation
have to be reserved. Thus, scAllocator, inputQ and all its elements, as well as
scContainer and all its elements have to reserved before this statement can be executed.

It is desirable to reduce the number of objects that have to be reserved for a particular statement,
since that would decrease the period for which those objects are tied up. This is because they are
not released until all of the relevant objects have been reserved and the statement has completed
its execution.

A higher degree of parallelism is achieved by splitting the statement shown above into two
statements, simply by introducing an additional instance variable, viz.
currentServiceRequest. The resulting statements are shown next:

categorising := true \+
currentServiceRequest := inputQ first
if inputQ isEmpty not and: [categorising not]
| self categoriseServiceRequest: currentServiceRequest
using: scContainer
if currentServiceRequest notNil

The currentServiceRequest instance variable is set to nil inside the
categoriseServiceRequest:using: method.

The above design facilitates a higher level of parallelism. For example, the
CommsProviderSimulator class statement which adds new service requests to the inputQ
and the ServiceCategoryAllocator statement which invokes the categorise=
ServiceRequest:using: method can be executed concurrently (provided these two
statements or the objects that they refer to do not share processors). It is therefore quite clear that
it is relatively simple to introduce more parallelism into a design. The only issue that has to be
taken into account whenever such modifications are made, is the fact that none of the correctness
properties should be violated by the modifications.

8.8 Summary
This chapter covered various aspects related to the implementation phase of the SLOOP method.

In earlier chapters it was often stated that the SLOOP method encouraged a unified approach
towards system design; there was no need to consider the target architecture during the analysis
and design phases. This chapter served to reaffirm this view. It demonstrated that a single
SLOOP program could be mapped successfully to sequential, synchronous shared-memory,
asynchronous shared-memory and distributed architectures.

% This second parallel statement is not shown here, but can be found in the p_allocate:from: method of
the ServiceCategoryAllocator class specified in Appendix B, Section B.8

321

An important aspect of the SLOOP method which emerged from the discussion of the mapping
to distributed architectures is the high level of abstraction of the SLOOP program. The
designer may rely on the atomicity of each parallel statement when issues such as exclusive
access to objects and the execution of critical sections have to be considered. The mapping to
the executable program has to ensure this atomicity. In Section 8.3.4.1 it became apparent how
much of the complexity of the total system was delegated to the supporting infrastructure when
it was shown briefly how the atomicity could be guaranteed in a distributed system environment.
A further level of delegation of functionality is the use of a middleware product such as
CORBA to take care of issues such as the converting of the message selector and its argument to
a format that can be transmitted to a remote processor.

Another advantage of the separation of concerns is the fact that the supporting infrastructure
only needs to be developed once. Thereafter it can be reused by any SLOOP program. This
greatly simplifies correctness reasoning. The designer using the SLOOP method only needs to
consider the SLOOP statements. The atomicity of these statements can be relied upon, since the
behaviour of the supporting infrastructure can be assumed to be correct once it has been proved.
The correctness properties of the supporting infrastructure are therefore being reused by the
designers of the SLOOP programs.

Ideally, a SLOOP development environment should include the required supporting
infrastructures for various architectures. Building such an environment is one of the subjects for
future research.

Other aspects of the mapping of a SLOOP program to an executable Smalltalk program include
the mapping of the macros-sections and the various types of SLOOP statements. These
discussions were included to demonstrate that it was possible to perform these mappings with
relative ease. A SLOOP translator could automate all of these tasks. The design and
implementation of such a translator to a given target language (e.g. Smalltalk) is another subject
for further study.

As a step towards making the final executable program look as much as possible like the original
SLOOP program, it was shown that the reflective facilities of Smalltalk could be used to select
the next parallel statement for execution. Again, this functionality could form part of the
development environment. Similarly, reflective computation could also be used to perform
assertion checking.

In addition to emphasizing the high level of abstraction of a SLOOP program, the relative ease
with which more parallelism could be introduced into a SLOOP program was also pointed out.

Throughout this chapter the importance of ensuring the adherence to the specified correctness
properties throughout the development life cycle was stressed. Some measures that may be
taken to avoid the violation of these properties during the implementation phase were described.

This chapter concludes the description of the SLOOP method as it applies to the various phases
of the software development life cycle. The next chapter deals with the incorporation of design
patterns into a SLOOP design. The use of design patterns is not mandatory in a SLOOP design,
but it can greatly enhance the reusability of the components of the system. Chapter 9
demonstrates the compatibility of the SLOOP approach with the concept of design patterns.

322

CHAPTER9

INCORPORATING DESIGN PATTERNS INTO A
SLOOP DESIGN

9.1 Introduction

As noted by Buschmann et al. [BMRSS96], one can classify patterns as being either
architectural patterns, design patterns or idioms. Definitions of the various types of patterns
were given in Chapter 3, Section 3.3.1.

The architectural patterns and design patterns listed in [BMRSS96] and [GHIV9S5] provide
examples of many different types of design problems. The purpose of this chapter is to
demonstrate that the SLOOP approach can be applied successfully to a variety of design
problems. Several architectural and design patterns described in the above-mentioned
references are therefore taken as examples and it is shown how they can be incorporated into a
system that is designed using the SLOOP method.

Some of the patterns are already present in the original design of the call centre system as
presented in Appendix B, while others can be added to improve the reusability and extensibility
of the system. In both cases the SLOOP-specific issues are highlighted. These deal mainly with
adherence to the SLOOP computational model, i.e. it has to be ensured that all the parallel
statements of a particular application are executed infinitely often.

The purpose of incorporating architectural and design patterns into a SLOOP design is not to
model the problem domain more accurately, but to yield a more reusable and flexible solution.
The application of some of the design patterns results in reducing the amount of subclassing
required when instantiating the system for a particular application.

It is beyond the scope of this chapter to provide detailed descriptions of the design patterns
referenced here. For more information about these patterns the bibliographical references given
in the various sections below should be consulted.

9.2 Architectural patterns

9.2.1 Pipes and filters

The design of the call centre system is reminiscent of the Pipes and Filters architectural pattern.
The latter is described in [BMRSS96]. Briefly, data is generated by a data source, it is processed
by successive filters and finally reaches a data sink. The filters are connected via pipes. Thus,
the data is stored in a pipe by the previous filter or the source. The next filter in the pipeline then
obtains the data from the pipe for further processing. This pattern is applicable when data is

323

processed in sequential steps. A filter processes its input incrementally, i.e. it does not read all its
input before it processes the data and starts producing output. This promotes parallelism and a
low latency.

In the call centre example shown in Figure 9-1, the CommsProviderSimulator' instance acts as
the source of the data that needs to be processed (in this case a new service request is added to
the inputQ (the first pipe in the pipeline). The ServiceCategoryAllocator” instance (the first
filter) obtains the service request from the inputQ and initiates the categorisation of the service
request. Once the service request has been categorised, it is assigned to the appropriate
serviceQ (the next pipe). The next filter is the relevant ServiceCategory’ instance, which
assigns the service request to an idle ServiceProviderSimulator® instance. The latter acts as the
data sink in this example.

One of the benefits of the Pipes and Filters pattern is that these components can be added,
deleted or rearranged as required. In the call centre example the ServiceCategoryAllocator
instance obtains its input from a FIFO queue of service requests. The ServiceCategoryAllocator
instance receives the reference to its input pipe as a parameter whenitsp_categorise:using:
method is invoked. It is therefore a trivial matter to construct an application where the
ServiceCategoryAllocator obtains its input from a different queue. The only requirement is that
the new queue should contain service requests of the same type.

It is also fairly simple to add another filter and a pipe between the ServiceCategoryAllocator and
its existing input pipe. The new filter would process the service requests from the existing input
pipe. Its output pipe would serve as the new input pipe of the ServiceCategoryAllocator.

Another possibility would be to construct a system where the ServiceCategoryAllocator was
replaced by a completely different filter.

The SLOOP design approach is particularly suited to this architectural pattern, because it is based
on a concept of a number of parallel statements that execute infinitely often. A parallel statement
has an effect (e.g. it performs the filter function) if its if~clause is true (e.g. there is an element in
the input queue). Parallel statements that do not share processors and that do not send messages
to the same objects may execute concurrently. This facilitates the realization of the goals of
increased parallelism and low latency.

' The CommsProviderSimulator class is specified in Appendix B, Section B.6.
2 The ServiceCategoryAllocator class is specified in Appendix B, Section B.8.
* The ServiceCategory class is specified in Appendix B, Section B.10.

* The ServiceProviderSimulator class is specified in Appendix B, Section B.13.

324

aComms Data Source

ProviderSimulator;

inputQ Pipe

aServiceCategory

Allocator Filter

serviceQ serviceQ serviceQ Pipes

aServiceCategory aServiceCategory aServiceCategory Filters
aServiceProvider aServiceProvider aServiceProvider Data Sinks

Simulator Simulator Simulator

Figure 9-1. Pipes and filters in the call centre system.

9.2.2 Reflection

The reflection architectural pattern as described by [BMRSS96], provides a mechanism to
change the behaviour of a software system by modifying the information at the meta-level. In
CLOS, a reflective programming language [Keen89], the operations defined for an object are
called generic functions. The invocation of such a generic function comprises a number of steps.
First of all, the methods applicable to a given invocation of a generic function are determined,
then they are sorted in decreasing order of precedence and subsequently a final sequence of
methods is selected for execution [BMRSS96].

325

Similarly, in a SLOOP mapping which uses reflective facilities for its statement selection, the
reflective computation determines which of the private methods associated with the parallel
method should be executed at each parallel method invocation. (This was described in detail in
Section 8.6.2 of the previous chapter.) A notable difference is that in a SLOOP mapping only
one method may be selected for execution per parallel method invocation.

Some assertion checking can also be performed using reflective computation. Another
possibility is the generation of trace information. These applications of reflective computation
in the SLOOP method were discussed in Chapter 8, Section 8.6.3.

9.3 Creational design patterns

This section focuses on creational design patterns. The Factory Method and Singleton are two
examples of creational design patterns [GHJV95]. The call centre example is used to
demonstrate the compatibility between these patterns and the SLOOP approach towards system
design.

9.3.1 The Factory Method

The CC_Activation class is used to instantiate the classes used by the call centre system and to
ensure that it is done in the correct order. Evaluation of the design of the CC_Activation class as
described in Chapter 6, Section 6.6.1, and in Appendix B, Section B.2, shows that it is already
designed in the mould of two fundamental design patterns, viz. the Template Method (a
behavioural design pattern) and the Factory Method (a creational design pattern). The aspects
related to the Factory Method design pattern are described here. Section 9.5.3 covers the
application of the Template Method design pattern.

The Factory Method design pattern is used when it is necessary for a class to defer the actual
instantiation of certain classes to its subclasses. The abstract class has knowledge about the
sequence in which it has to instantiate classes, but it needs to allow its subclasses to specify
exactly which classes should be instantiated. Factory Methods are therefore used to instantiate
those classes that are likely to be subclassed (or even replaced by other classes).

A Factory Method is usually invoked from within a Template Method. The latter indicates the
sequence in which the classes should be instantiated. The Factory Methods are invoked at the
various locations where these classes need to be instantiated. The Factory Methods therefore
provide the hooks for the instantiation of these classes without committing to specific classes.

The initialize method of the CC_Activation class represents a Template method. It invokes
several Factory Methods as can be seen below. Examples of objects that are created via Factory
Methods are the config and commsAgent objects. In contrast the userConnections object is
created directly by the CC_Activation class.

The statements of the initialize method of the CC_Activation class are as follows:

sequential

config := self initManagement
l commsAgent := self initCommsAgent
| userConnections := SmalltalkLibPkg:::Array new: maxConn
0 <0 i where 1<i<maxConn :: userConnections at: i

put: (self initConnection: i)

>
[inputQ := SmalltalkLibPkg:::0rderedCollection new: maxConn
I scAllocator := self initServiceCategoryAllocator
[scContainer := SmalltalkLibPkg:::Array new: maxCategories

326

I <0 j where 1<j<maxCategories :: scContainer at: j
put: (CC_CorePkg:::ServiceCategory setup: config)

>
[spAgentContainer := SmalltalkLibPkg:::Array new: maxSP
I <[k where 1<k<maxSP :: spAgentContainer at: k
put: (self initSPAgent)
>

[timer:= SystemUtilitiesPkg:::TimerServices setup: config

[timerEventQ := SmalltalkLibPkg:::OrderedCollection new
end-sequential

The initCommsAgent method of the CC_Activation class contains a single statement indicating
that the subclass needs to reimplement the method. It is therefore an abstract method. The
correctness property of this method indicates that a non-nil value will be returned, but it does
not specify which class should be instantiated.

message pattern initCommsAgent

method properties

"Total correctness™

true results-in methodReturnvValue notNil "DL1-05"
sequential

self subclassResponsibility
end-sequential

CC_SimulationActivation, a subclass of CC_Activation, reimplements this method. In this case
the correctness property specifies explicitly which class is instantiated:
message pattern initCommsAgent
method properties
"Total correctness”
true results-in
methodReturnValue notNil A
CC_SimulationInterfacesPkg:::CommsProviderSimulator
postconditions: (#startSimulation)

"DL1-05 (CC_Activation)"
sequential

~CC_SimulationInterfacesPkg:::CommsProviderSimulator
startSimulation
end-sequential

The Factory method may either be abstract or it may contain a default implementation. The
initialize method of the CC_Activation class contains examples of both. The
initCommsAgent and initSPAgent methods are both abstract, whereas the other Factory
Methods contain default implementations. For example, the initServiceCategoryAllocator

Factory Method instantiates the ServiceCategoryAllocator class by default:

message pattern initServiceCategoryAllocator
method properties

"Total correctness"
true results-in

methodReturnvValue notNil "DL1-07"
sequential

~CC_CorePkg:::ServiceCategoryAllocator setup
end-sequential

Default methods are convenient when a reasonable default exists. When a new system has to be
built, the methods do not have to be overridden in subclasses if the default implementation
suffices. However, should the default implementation not be adequate, the design provides the
flexibility to override only the relevant Factory Method(s). For example, instead of having to

327

override the initialize method of the CC_Activation class (and thereby creating the risk of
modifying unrelated code unintentionally), only the initServiceCategoryAllocator
method needs to be reimplemented if a subclass of the ServiceCategoryAllocator class needs to
be instantiated.

Abstract methods are used where a default implementation is not feasible. For example, the class
representing the communication provider functionality is likely to differ amongst the various
applications. A communication provider simulator may even be used, as in the example in this
thesis. For the same reason, the class representing the service provider functionality is
instantiated via an abstract method.

A number of varieties of the Factory Method pattern are described in [GHIV95]. One of the
disadvantages of the Factory Method is the fact that the class which invokes the Factory Method
(in this case CC_Activation) has to be subclassed when any of the classes which it instantiates
need to be subclassed.

A variation of the Factory Method which avoids subclassing defines instance variables to hold
the class names of all the classes that need to be instantiated by the creating class. Each Factory
Method now creates an instance of a class by referring to the contents of one of these variables.
This alternative, as applied to the CC_Activation example, is shown below:

The following instance variables are defined in addition to the ones already specified for the
CC_Activation class in Appendix B, Section B.2:

managementClass
cpAgentClass
-connectionClass
-scAllocatorClass
spAgentClass

The initialize method is modified by including the following statement as the first statement
in that method:
self makeClasses

The makeClasses private method is implemented as follows:

message pattern makeClasses

method properties

"Total correctness"

true results-in methodReturnValue = self A
managementClass notNil A
cpAgentClass notNil A
connectionClass notNil A

scAllocatorClass notNil A
spAgentClass notNil

sequential
answerString :=
Dialog® request: 'Call centre configuration class: '

[lmanagementClass :=
Class readFrom: (ReadStream on: answerString)

[lJanswerString :=
Dialog request: 'Communication provider agent class: '

5 The Dialog class is used to request typed input from the user [HoHo095].

328

i

[JcpAgentClass Class readfFrom: (ReadStream on: answerString)

[lanswerString Dialog request: 'Connection class: '’
[lconnectionClass :=
Class readFrom: (ReadStream on: answerString)

[lanswerString :=

Dialog request: 'Service category allocator class: '
[lscAllocatorClass :=

Class readFrom: (ReadStream on: answerString)

[lanswerString :=
Dialog request: 'Service provider agent class: '
[1spAgentClass := Class readFrom: (ReadStream on: answerString)

end-sequential

Thus, for each class a dialog box is displayed requesting the name of the class to be instantiated.
The string that is provided by the user is then used to create an object that is the required class
name. This name is stored in the appropriate instance variable. The Factory Methods that
instantiate the various classes are all modified to use the values in the instance variables
containing the class names. Two examples are given below; the first is of a method that
previously was an abstract method and the second example is of a method that contained a
default implementation.

message pattern initCommsAgent

method properties

"Total correctness"

cpAgentClass notNil results-in methodReturnValue notNil"DL1-05"
sequential

~“cpAgentClass setup

end-sequential

message pattern initServiceCategoryAllocator
method properties
"Total correctness"”
scAllocatorClass notNil results-in
methodReturnvValue notNil "DL1-07"
sequential
“scAllocatorClass setup
end-sequential

Note that the precondition of each method now requires that the relevant instance variable
containing the class name should contain a non-nil value. The correctness properties of the
method still do not refer explicitly to the specific class that is instantiated. There is now no
need to subclass the CC_Activation class in order to instantiate the appropriate communication
provider and service category allocator classes.

If a design is used which employs instance variables to store the class names, then it would be
prudent to use generic names such as setup for all the instance creation methods. A name such
as startSimulation would therefore not be a good choice, since it implies that the object will
be performing a simulation. However, if a class with such an instance creation method name
already exists (as in the case of the CommsProviderSimulator class), one can always add a
method called setup to the set of methods supported by the class. The setup method can then
invoke the startSimulation method.

There are a number of reasons why the CC_Activation class might have to be subclassed. The
application of the Factory method as described above enables one to eliminate the need for

329

subclassing when the CC_Activation class does not know in advance which classes will have to
be instantiated.

Another reason why the CC_Activation class might have to be subclassed is the fact that it also
does not know in advance which parallel methods need to be activated. The classes that are
instantiated determine the parallel methods that have to be activated. If the client interface of the
parallel methods remains the same for a class and its subclasses, the need for subclassing in order
to activate the appropriate parallel methods is also eliminated. This aspect will be discussed in
more detail in Section 9.5.3.

9.3.2 Singleton

The Singleton design pattern [GHIV95] is useful when it is necessary to restrict the number of
instances of a class to one. The pattern allows this sole instance to be referenced globally
without requiring the use of a global variable.

One possible implementation of the pattern is the following: The class that is designed as a
Singleton has a class variable that contains the reference to the sole instance of that class.
Whenever the instance has to be obtained, the instance creation method is invoked. The latter
checks whether the class variable contains the value nil. If it does, a new instance is created and
returned, otherwise the existing instance is returned.

When incorporating this design pattern into a SLOOP design an interesting question arises.
Since the class that is implemented as a Singleton does not necessarily have to be instantiated
during activation, a way has to be found to ensure that its parallel statements are activated if
there are any associated with the class. This issue will be addressed shortly. First an example of
a class designed as a Singleton is presented.

The Singleton design pattern is often used in conjunction with the Flyweight and State patterns -
[GHIV95]. These are described in detail in Sections 9.4.2 and 9.5.2 respectively. The State
design pattern is used to extract state-specific behaviour from a class. A separate class is defined
for each state of the original class. The latter then becomes the context of the state. The
Flyweight pattern is used to make the instances of the state classes shareable by multiple
instances of the context class. Only one instance of each state class is therefore required. The
application of the Singleton design pattern ensures that only one instance is created for each state
class.

When the State pattern is applied to the Connection® class of the call centre system, the
IdleConnection, ConnectedConnection and TerminatingConnection classes emerge as state
classes (the rationale for defining these particular classes is given in Section 9.5.2). The
Connection class then becomes their context class. The application of the Flyweight pattern
ensures that the state classes can be shared by multiple instances of the Connection class. Each
state class can then be implemented as a Singleton.

The instance creation methods of the IdleConnection class demonstrate how the Singleton design
pattern ensures that only one instance of the class is instantiated. The new method that is usually
used for instance creation is overrtdden with the instance method as shown below:

class IdleConnection
superclass ConnectionState
class variable names
IdleConnectionInstance
"This variable is used to implement the class as a Singleton”

8 The SLOOP specification of the Connection class is presented in Appendix B, Section B.7.

330

class properties
invariant IdleConnection instanceCount £ 1
"The method instanceCount is a Smalltalk class method which

returns the number of instances that currently exist for the
specified class.”

class methods
category instance creation
message pattern instance
method properties
"Total correctness"
true results-in methodReturnValue = IdleConnectionInstance A
IdleConnectionInstance notNil
sequential
IdleConnectionInstance := super new
if IdleConnectionInstance isNil

[“IdleConnectionInstance
end-sequential

message pattern new

method properties

"Total correctness"

true results-in IdleConnection postconditions: (#instance)
sequential

~ IdleConnection instance

end-sequential

When an invariant describes a property of an instance of a class, the invariant only needs to hold
once the instance has been created and initialized. However, in the above example, the invariant
describes a property of the class. This invariant has to hold at all times.

Instead of using a global variable to refer to the IdleConnection instance, all clients access the
object via the message expression IdleConnection instance. This obviates the need to

instantiate the IdleConnection class during initialization. The instance is created when it is used
the first time.

As described above, state classes are often implemented as Singletons. Since many of these
states are only reached after initialization has completed, the corresponding classes are only
instantiated at that time. For example, the TerminatingConnection class, which is implemented
as a Singleton, represents the behaviour of a connection when its state has changed to

'TERMINATING'. This class is only instantiated when the 'TERMINATING' state is entered
for the first time.

Since the class is not necessarily instantiated during activation, it raises the issue of the
activation of the parallel statements associated with the class, if there are any. The designer has
to ensure that the requirements for SLOOP parallel statements are met at all times, i.¢. all parallel
statements required by the program have to be executed infinitely often. In order to facilitate
reasoning about correctness, these statements have to be available for scheduling at all times after
the instantiation of the class.

The only exception is when they are used in a very specific way, as described in Chapter 4,
Section 4.3.5.3. To recapitulate: if a conditional expression is associated with a parallel
statement, the statement has to be available for scheduling whenever the conditional expression
evaluates to true. When the conditional expression evaluates to false, the statement need not be
present, since the execution of the statement will have no effect even if it is present.

331

In the case of the Connection class, its parallel statements only have an effect if the Connection
instance is in the TERMINATING' state, as can be seen from the cyclic methods listed in
Appendix B, Section B.7. Thus, when these statements are moved to the TerminatingConnection
class, it only needs to be guaranteed that these statements are available for scheduling whenever
the Connection instance is in the TERMINATING' state, i.e. whenever the state instance
variable of the Connection instance refers to the TerminatingConnection instance.

The statements in the p_executeConnection: method of the CC_ Activation class are
responsible for activating the parallel methods of the TerminatingConnection class, viz. the
p_informCommsProvider:context: and p_doWrapUp: methods. In the statements below,
these methods are only invoked if the connection is in the TERMINATING state.
aConnection state p_informCommsProvider: commsAgent
context: aConnection
if aConnection state = TerminatingConnection someInstance’
| aConnection state p doWrapUp: aConnection
if aConnection state = TerminatingConnection someInstance

The parallel methods of the TerminatingConnection class are therefore invoked via the parallel
statements in the activation-section of the programs, but their invocation is subject to an instance
of the TerminatingConnection class currently being in use by the relevant Connection instance.
The effect that is achieved is therefore similar to that which applied when the statements were
still part of the Connection class.

Thus, when the software designer incorporates a Singleton design pattern into a SLOOP design,
it has to be done in such a way that the parallel statements that are involved can still be scheduled
whenever they can have an effect. The way in which this can be achieved was demonstrated
above. :

Further clarification of the above example will be given in Section 9.5.2, where the State design
pattern is explained in more detail.

9.4 Structural design patterns

9.4.1 Adapter

The communication provider and the service providers form part of the environment of the call
centre system. The interfaces of these objects are therefore not determined by the designer of the
call centre. These interfaces may vary, depending on the product being used. However, it is
desirable to present a consistent interface to the clients of these objects within the call centre
system. For this reason the CommsProviderAgent and ServiceProviderAgent classes are
introduced. The clients within the call centre system deal with the agents only. The agents adapt
the messages received from the clients to suit the interfaces of the actual communication and
service providers being used. The agent classes are subclassed as needed, based on the interfaces
of the communication and service provider classes. This is an example of an application of the
Adapter design pattern. The latter is described in detail in [GHIV95].

In the SLOOP program given in Appendix B, the functionality of the agents is simulated via the
CommsProviderSimulator and ServiceProviderSimulator classes. The interfaces presented to the
communication and service provider clients are the same as those that should be presented by the
corresponding CommsProviderAgent and ServiceProviderAgent classes. The latter may

7 The somelnstance method of the Smalltalk Behavior class returns an existing instance of the receiver.
® The p_activate message is sent to the CC_SimulationActivation instance from within the activation-
section of the program. In turn, the p_activate method invokes the p_executeConnection: method
inherited from the CC_Activation class.

332

therefore be defined as descendants of the respective simulation classes. Only the methods that
perform the simulations need to be overridden.

There are no special considerations involved when applying this pattern to a SLOOP design.

9.4.2 Flyweight

One of the situations in which the Flyweight design pattern is applicable is when there is a
proliferation of objects that may be reduced if some of these objects can be made shareable
[GHIV95]. In order to use an object in multiple contexts simultaneously (i.e. as a Flyweight), it
is necessary to store all information that is dependent on the context of the shared object in the
context itself (this is called the extrinsic state of the Flyweight).

The Flyweight pattern is often used in conjunction with the State pattern. The latter implements
the various states defined for a class as separate classes. The original class becomes the context
of these state classes. All actions that are dependent on the state of the context are performed by
the appropriate state objects. There is an instance of each state class for each instance of the
context class. If the number of context instances is high and there are numerous states, then the
application of the State design pattern can result in an unacceptably high number of objects. If
the context-specific data can be stored in the context, then the instances of the state classes can be
shared by multiple contexts, i.e. each state class can be implemented as a Flyweight.

This design pattern can be used successfully in a SLOOP design, provided that each parallel
statement associated with the Flyweight is still executed infinitely often for each instance of the
context class once the SLOOP program is mapped to an executable program. The way in which
this can be achieved is discussed next.

The mapping of a SLOOP program to various architectures was discussed in Chapter 8. Each
invocation of a parallel method results in the execution of one of its statements. The mapping
algorithm has to guarantee that each statement of each activated parallel method will be executed
infinitely often. One way of achieving this is by implementing an instance variable that keeps
track of the last statement that was executed.

Since it has to be guaranteed that each parallel statement is executed infinitely often for each
context, this variable (called the statement selector) has to form part of the context. The
following scenario illustrates the problem that would occur if it were present in the state class
instance (i.e. shared by multiple contexts).

Suppose there are four Connection instances and they are all in the same state, i.e. there are four
context objects sharing a single instance of a state class. The latter has a single parallel method
containing four statements. Suppose further that the parallel method is invoked for each
Connection instance in a round robin fashion. This implies that during the first rotation the
statements will be allocated to the various contexts as follows if the statement selector is shared

by the contexts:

Context 1: statement 1
Context 2: statement 2
Context 3: statement 3
Context 4: statement 4

Unfortunately, the subsequent rotations will follow the same pattern, which means that for any
given context, three of the statements will never be executed. It is therefore clear that the
statement selector is context-specific and should be implemented as such. An example of the
application of the Flyweight pattern in the call centre system is given in Section 9.5.2, where the
State pattern is discussed.

333

9.4.3 Proxy

One of the applications of the Proxy design pattern is to allow one object to act as a local
representative of a remote object [GHIV95]. It does not adapt one interface to another. This
pattern 1s used extensively in distributed system infrastructures such as CORBA [BMRSS96].
Objects send messages to other objects without taking the location of the target objects into
account, i.e. whether they are local or remote is irrelevant to the client object.

One possible implementation of such a system requires the instantiation of a proxy per address
space for each object. The syntax of the messages sent to the proxy is exactly the same as for
those sent to the original object. The proxy is responsible for obtaining information about the
physical location of the original object and for performing the functions related to converting the
message into a format that can be transmitted to a remote processor. These aspects are
transparent to the client of the remote object.

This architecture is reused when SLOOP programs are mapped to distributed systems. As
described mn Chapter 8, SLOOP programs are designed in a unified manner. The physical
location of each object is irrelevant. During the implementation phase the target architecture is
determined. At that stage issues such as how to ensure the atomicity of SLOOP statements are
addressed. Once a parallel statement has been selected for execution and all the required
resources have been reserved for it, design patterns such as Proxy make it possible to send
messages to local and remote objects within these statements without having to take their
locations into account. Thus, the SLOOP program can be mapped to a distributed system
without having to modify the design of the SLOOP program.

9.5 Behavioural design patterns

9.5.1 Iterator

The Iterator design pattern facilitates sequential access to the elements of a collection while
hiding the underlying representation from the client [GHIV95]. Most class libraries provide this
functionality for their collection classes. The Smalltalk internal Iterator method® do: is one
example. This method evaluates the block that is supplied as argument to this method for each
element of the collection representing the receiver of this message. The Iterator design pattern is
therefore automatically used when SLOOP programs contain Smalltalk message expressions that
invoke this method.

9,5.2 State

The Connection class of the call centre system maintains a state instance variable. If an event
occurs, the behaviour depends on the current state of the object. The disadvantage of this design
is the fact that the addition of a new state implies that each method that selects behaviour based
on the current state of the object needs to be modified to include the behaviour for the new state.

The State design pattern [GHIV95] offers an alternative solution: the state-specific behaviour is
removed from the original class. The latter becomes the context of a new class hierarchy. An
abstract superclass is defined which represents the aspects that are generic to the states of the
original class. Each state of the original class is implemented as a subclass of the new abstract

® Gamma et al. [GHJV95] define an internal iterator as one where the iterator controls the iteration.
The client is responsible for advancing the traversal in the case of an external iterator.

334

class, therefore each method handling an event only contains the logic for the state represented
by that particular class. The addition of a new state simply means the addition of a new subclass.

The following example shows how the extensibility of the Connection class is improved by
using the State design pattern.

A new abstract class ConnectionState is defined, as shown in Figure 9-2. The Connection class
becomes the context of the ConnectionState class. Three concrete subclasses are defined for the
ConnectionState abstract class, viz. IdleConnection, ConnectedConnection and
TerminatingConnection. They encapsulate the behaviour corresponding to the 'IDLE!
'CONNECTED' and 'TERMINATING' states previously defined within the Connection class.
These classes are implemented as Flyweights, i.e. all the context-specific information is stored
within the Connection class. (The application of the Flyweight design pattern was described in
Section 9.4.2.)

Connection

state
state <>
serviceRequest

currentHandler-
Informed
terminatingReason

ConnectionState

assign(aConnection)
terminateCause
(aConnection, reason)

currentHandler-
Informed()
currentHandler-
Informed
(newValue)

state(nextState)
terminateReason
(reason)

assign()
terminate(reason)

IdleConnection

ConnectedConnection

TerminatingConnection

IdieConnectioninstance

ConnectedConnection
Instance

TerminatingConnection-
Instance

assign(aConnection)
terminateCause
(aConnection, reason)

assign(aConnection)
terminateCause
(aConnection, reason)

assign(aConnection)
terminateCause
(aConnection, reason)

Figure 9-2. Incorporating the State design pattern into the Connection class.

The Connection instance still maintains an instance variable called state. However, instead of
containing the values TDLE', 'CONNECTED' or 'TERMINATING!, it now contains a reference
to an instance of IdleConnection, ConnectedConnection or TerminatingConnection. When the
Connection instance has to execute state-specific logic, it simply invokes the relevant method of
the ConnectionState subclass instance that is currently referenced by its state instance variable.

The SLOOP specification of the original Connection class is given in Appendix B, Section B.7.

The modifications to the methods of the Connection class are now presented (the modified parts
are shown in bold italics):

335

category private
message pattern initialize: indexOfConnection
method properties
"Total correctness"
true results-in methodReturnValue = self A
state = IdleConnection instance A
serviceRequest notNil A currentHandlerInformed = false A
connectionlndex = indexOfConnection . "DL1-11"
sequential
state := IdleConnection instance
[serviceRequest := CC_CorePkg:::ServiceRequest setup: self
[currentHandlerInformed := false
| connectionIndex := indexOfConnection
end-sequential

When the Connection class is initialized, the state variable now contains a reference to an
instance of the IdleConnection class. The method instance used here is a class method of the
IdleConnection class. Since the latter is implemented as a Singleton (as described in Section
9.3.2), all accesses to the IdleConnection instance are via this method.

The next two methods are used by the clients of the Connection instance to determine whether
the latter is idle or busy terminating. The Smalltalk someInstance method returns an existing
instance of the receiver. Due to the application of the Singleton design pattern it is guaranteed
that there will never be more than one instance of each of the ConnectionState subclasses. The
statements in the methods below therefore suffice to provide the required answers.
category testing

message pattern isIdle

method properties

"Total correctness” ‘

true results-in methodReturnvValue =

(state = IdleConnection somelnstance) "DL1-05"

sequential

~ state = IdleConnection somelnstance

end-sequential

message pattern isTerminating
method properties
"Total correctness"
true results-in methodReturnValue =
(state = TerminatingConnection somelnstance) "DL1-06"
sequential
~ state = TerminatingConnection somelInstance
end-sequential

Previously, accessing methods were provided to obtain the values of some of the instance
variables of the Connection class, viz. terminatingReason, serviceRequest and
connectionIndex. The values of the state and currentHandlerInformed instance
variables were only significant to the Connection instance itself, therefore no accessing and
modifying methods were provided for these variables. The introduction of the ConnectionState
subclasses results in new accessing and modification methods being required, since actions that
previously had been performed within the Connection class are now initiated externally (i.e. from
within the ConnectionState subclasses). The new methods are shown next.

category accessing
message pattern currentHandlerInformed
method properties
"Total correctness"
true results-in methodReturnValue = currentHandlerInformed

336

sequential
~“currentHandlerInformed
end-sequential

category modifying
message pattern terminateReason: reason
method properties
"Total correctness”
true results-in methodReturnValue = self A
terminateReason = reason
sequential
terminateReason := reason
end-sequential

message pattern state: nextState

method properties

"Total correctness"

true results-in methodReturnvValue = self A state = nextState
sequential

state := nextState

end-sequential

message pattern currentHandlerInformed: newValue

method properties

"Total correctness"

true results-in

methodReturnValue = self A currentHandlerInformed = newValue
sequential

currentHandlerInformed := newValue

end-sequential

The methods that contain state-specific logic are the assign and terminate: methods in the
modifying category, as well as the p_informCommsProvider: and p_doWrapUp methods in
the cyclic category. The functionality of these methods is now delegated to the ConnectionState
subclasses, as evident from the modified methods below:

category modifying
message pattern assign
method properties
"Total correctness"

state = IdleConnection somelnstance results-in
methodReturnValue = self A
state postconditions: (#assign:) withArguments: #(self)
"DL1-07"
sequential

state assign: self
if state = IdleConnection somelnstance
end-sequential

message pattern terminate: reason
method properties
"Total correctness"
state = ConnectedConnection somelnstance results-in
methodReturnValue = self A
state postconditions: (#terminate:cause:)
withArguments: # (self reason) "DL1-08"
"Total correctness"
state = TerminatingConnection someInstance results-in
methodReturnValue = self "DL1-09"
"This allows for terminate collision.”

337

"Total correctness™
state = IdleConnection somelnstance results-in
methodReturnValue = self "DL1-10"
"This ensures that the transition from 'IDLE' to 'TERMINATING'
is not possible”
sequential
state terminate: self cause: reason
if state = ConnectedConnection somelnstance
end-sequential

The parallel methods are removed from the Connection class, since they are dependent on the
state of the Connection instance.

The new ConnectionState class and its subclasses are now shown (the only class containing
parallel methods is the TerminatingConnection class):

—— class ConnectionState ---"

class ConnectionState

superclass Object

instance variable names
"There are no instance variables, which allows the class to be a
Flyweight"

class properties
"The set of ConnectionState subclasses and the allowed state
transitions are not specified here, because it would require
ConnectionState to be subclassed if this was changed."

instance methods

category modifying

message pattern assign: aConnection

method properties

"Total correctness" ;

aConnection state = IdleConnection somelInstance results-in
methodReturnvValue = self A
aConnection state postconditions: (#assign:)
withArguments: # (aConnection) "DL1-01"

sequential

self subclassResponsibility

end-sequential

message pattern terminate: aConnection cause: reason
method properties
aConnection state notNil results-in
methodReturnValue = self A
aConnection state postconditions: (#terminate:cause:)
withArguments: #(aConnection reason) "DL1-02"
sequential
self subclassResponsibility
end-sequential

338

M e e e class IdleConnection ---"
class IdleConnection
superclass ConnectionState
class variable names
IdleConnectionInstance
"This variable is used to implement the class as a Singleton"
instance variable names
"There are no instance variables, which allows the class to be a
Flyweight"
class properties
invariant IdleConnection instanceCount £ 1 "DS2-01"
"The method instanceCount is a Smalltalk class method which
returns the number of instances that currently exist for the
specified class."
class methods
category instance creation
message pattern instance
method properties
"Total correctness”
true results-in

methodReturnvValue = IdleConnectionInstance A
IdleConnectionInstance notNil "DL1-01"
sequential
IdleConnectionInstance := super new

if IdleConnectionInstance isNil
l “1dleConnectionInstance
end-sequential

message pattern new

method properties

"Total correctness”

true results-in IdleConnection postconditions: (#instance)
"DL1-02"

sequential

*» IdleConnection instance

end-sequential

instance methods
category modifying
message pattern assign: aConnection
method properties
"Total correctness"
aConnection state = IdleConnection somelInstance results-in
methodReturnvalue = self A
aConnection postconditions: (#state:)
withArguments # ((ConnectedConnection instance))
"DL1-01 (ConnectionState)"
sequential
aConnection state: (ConnectedConnection instance)
end-sequential

message pattern terminate: aConnection cause: reason

method properties

"Total correctness”™

aConnection state = IdleConnection someInstance results-in
methodReturnvalue = self "DL1-02 (ConnectionState) "

"This ensures that the transition from 'IDLE' to 'TERMINATING'

is not allowed"”

sequential

~self

end-sequential

339

—————————————————————————————————————— class ConnectedConnection ---"
class ConnectedConnection
superclass ConnectionState
class variable names
ConnectedConnectionInstance
"This is used to implement the class as a Singleton"”
instance variable names
"There are no instance variables, which allows the class to be a
Flyweight"
class properties
invariant ConnectedConnection instanceCount £ 1 "DS2-01"
"The method instanceCount 1is a Smalltalk class method which
returns the number of instances that currently exist for the
specified class.”

class methods

category instance creation
message pattern instance
method properties
"Total correctness"
true results-in

methodReturnValue = ConnectedConnectionInstance A

ConnectedConnectionInstance notNil "DL1-01"
sequential
ConnectedConnectionInstance := super new

if ConnectedConnectionInstance isNil
] “ConnectedConnectionInstance’
end-sequential

message pattern new

method properties

"Total correctness”

true results-in

ConnectedConnection postconditions: (#instance) "DL1-02"
sequential

~ ConnectedConnection instance

end-sequential

instance methods
category modifying
message pattern assign: aConnection
method properties
"Total correctness™
aConnection state = ConnectedConnection somelInstance results-in
methodReturnValue = self "DL1-01 (ConnectionState)"
"This ensures that the transition from 'CONNECTED' to
'CONNECTED' is not allowed”
sequential
“self
end-sequential

message pattern terminate: aConnection cause: reason

method properties

"Total correctness"

aConnection state = ConnectedConnection somelnstance results-in
methodReturnValue = self A
aConnection postconditions: (#state:)

withArguments: #((TerminatingConnection instance)) A

340

aConnection postconditions: (#terminateReason:)
withArguments: # (reason) "DL1-02 (ConnectionState)”
sequential
aConnection terminateReason: reason
[aConnection state: (TerminatingConnection instance)
end-sequential

———————————————————————————————————— class TerminatingConnection ---
class TerminatingConnection
superclass ConnectionState
class variable names
TerminatingConnectionInstance
"This is used to implement the class as a Singleton”
instance variable names
"There are no instance variables, which allows the class to be a
Flyweight"
class properties
invariant TerminatingConnection instanceCount £ 1 "DS2-01"
"The method instanceCount is a Smalltalk class method which
returns the number of instances that currently exist for the
specified class.”

class methods

category instance creation
message pattern instance
method properties
"Total correctness"”
true results-in

methodReturnValue = TerminatingConnectionInstance A

TerminatingConnectionInstance notNil "DL1-01"
sequential
TerminatingConnectionInstance := super new

if TerminatingConnectionInstance isNil
] "TerminatingConnectionInstance
end-sequential

message pattern new

method properties

"Total correctness”

true results-in

TerminatingConnection postconditions: (#instance) "DL1-02"
sequential

~ TerminatingConnection instance

end-sequential

instance methods
category modifying
message pattern assign: aConnection
method properties
"Total correctness"
aConnection state = TerminatingConnection somelnstance
results-in methodReturnvalue = self
"DL1-01 (ConnectionState)”
"This ensures that the transition from 'TERMINATING' to
'CONNECTED' is not allowed”
sequential
~self
end-sequential

341

message pattern terminate: aConnection cause: reason
method properties
"This is the terminate collision case. It is important not to
overwrite terminateReason with reason, since the connection is
already busy terminating."
"Total correctness"
aConnection state = TerminatingConnection somelInstance
results-in methodReturnvalue = self
"DL1-02 (ConnectionState)"
"This takes care of terminate collision."
sequential
~self
end-sequential

category cyclic
message pattern p informCommsProvider: commsAgent
context: aConnection'®
method properties
"Safe liveness”

aConnection state = TerminatingConnection somelnstance A

aConnection terminatingReason = 'completed' A
—(aConnection currentHandlerInformed) ensures
commsAgent postconditions: (#terminate:cause:)
withArguments:
(aConnection (aConnection terminatingReason)) A
aConnection currentHandlerInformed "DP1-01"
parallel

commsAgent terminate: aConnection
cause: (aConnection terminatingReason) \+
aConnection currentHandlerInformed: true
if aConnection terminatingRéason.= 'completed’
and: [aConnection currentHandlerInformed not]
end-parallel

message pattern p doWrapUp: aConnection
method properties

"Safe liveness"

aConnection currentHandlerInformed ensures

aConnection state = IdleConnection somelInstance A

(aConnection serviceRequest) postconditions: (#reset) A

—(aConnection currentHandlerInformed) "DP1-02"
parallel

aConnection serviceRequest reset \+
aConnection state: IdleConnection somelInstance \+
aConnection currentHandlerInformed: false

if aConnection currentHandlerInformed
end-parallel

The above implementation of the State design pattern provides an example of the usage of
dynamic parallel statements.

In the original SLOOP program given in Appendix B, the Connection class contained two
parallel methods, viz. p_informCommsProvider: and p_doWrapUp. These methods were
invoked infinitely often for each Connection instance due to the presence of the following
statements in the p_activate method of the CC_Activation class:

1 The p_informCommsProvider: and p_doWrapUp methods are modified to include an additional
argument, viz. the context.

342

I <0 i where 1<i<maxConn
self p_executeConnection: (userConnections at: i)
>

The original p_executeConnection: method of the CC_Activation class contained the
following statements:

"statements of the original p_executeConnection: method”

parallel

aConnection p_informCommsProvider: commsAgent

| aConnection p_doWrapUp
end-parallel

The parallel statements of the Connection class only have an effect if the connection is in the
'TERMINATING' state, otherwise none of the assignments or modifying message expressions
are executed (only the if clauses are executed). The parallel methods of the original Connection
class are repeated here for easy reference. Those parts of the if clauses that refer to the state of
the connection are highlighted in bold italics.

message pattern p informCommsProvider: commsAgent
method properties
"Safe liveness"
state = 'TERMINATING' A terminatingReason = 'completed' A
—currentHandlerInformed ensures
commsAgent postconditions: (#terminate:cause:)
withArguments: # (self terminatingReason) A

currentHandlerInformed "DP1-01"
parallel
commsAgent terminate: self cause: terminatingReason \+
currentHandlerInformed := true

if state = 'TERMINATING' and:

[(terminatingReason = 'completed')

and: [currentHandlerInformed not]]
end-parallel

message pattern p_doWrapUp
method properties
"Safe liveness™
currentHandlerInformed ensures
state = '"IDLE' A serviceRequest postconditions: (#reset) A
—currentHandlerInformed "DP1-02"
parallel
state := 'IDLE' \+
serviceRequest reset \+
currentHandlerInformed := false
if currentHandlerInformed
"By following the logic of the methods of the Connection class
it will be evident that currentHandlerInformed can only be true
while the connection is in the 'TERMINATING' state"
end-parallel

When the State design pattern is implemented, the p informCommsProvider: and
p_doWrapUp methods are moved to the TerminatingConnection class. They are not present in
the other State subclasses. Thus, when the connection is not in the TERMINATING' state (i.e.
its state variable refers to a ConnectionState subclass instance other than the
TerminatingConnection instance), the statements of these methods are not part of the list of
parallel statements that are executed infinitely often.

343

The statements in the p_executeConnection: method of the CC_Activation class are
changed to:

(aConnection state) p_informCommsProvider: commsAgent
context: aConnection

if aConnection state = TerminatingConnection somelnstance
[aConnection state p doWrapUp: aConnection

if aConnection state = TerminatingConnection somelInstance

Thus, the statements of the p_informCommsProvider:context: and p doWrapUp:
methods are present in the list of parallel statements whenever the Connection instance contains a
reference to the TerminatingConnection instance (i.e. it is in the TERMINATING' state).

The statements of the p_informCommsProvider:context: and p_doWrapUp: methods no
longer have to check the state of the Connection instance, since they can only be invoked if the
TerminatingConnection instance is active.

This concludes the discussion of the State design pattern. The issues related to the SLOOP
computational model were highlighted and it was shown why they did not present a problem.
The above example has therefore demonstrated that the State design pattern can be applied
successfully to a design based on the SLOOP method.

9.5.3 Template

The Template Method is used to implement the skeleton of an algorithm, allowing some steps
to be reimplemented by subclasses [GHIV95]. This is achieved by invoking abstract methods
or default methods for some steps of the algorithm. That way it ensures that all the necessary
steps are executed and that they are performed in the correct order, while allowing subclasses to
redefine the variant parts of the algorithm.

In Section 9.3.1 it was mentioned that the initialize method of the CC_Activation'' class
was implemented as a Template Method. In that section the focus was on the Factory Methods
that were used as abstract or default methods. The discussion here concentrates on the Template
Method characteristics of the design of the initialize method.

The method includes all the statements that are necessary to instantiate all the classes required by
the system. The order in which these statements appear ensures that the correctness properties
specified for the method are satisfied. For example, the config object (created via the
initManagement method) has to exist prior to the instantiation of many of the other classes,
since configuration information is obtained from the config object during the instantiation of
these classes. By reusing the initialize method, the designer is assured of performing the
instantiation actions in the correct order.

The activation-section of a SLOOP program not only contains statements to instantiate the

relevant classes, but it also activates the appropriate parallel statements. These parallel -
statements may vary, depending on the classes that are instantiated. The Template Method

design pattern is therefore also used in the p_activate method of the CC_Activation example.

It contains the following statements:

' The CC_Activation class is specified in Appendix B, Section B.2.

344

parallel
self p_executeCPAgent
"Execute the parallel statements of the commsAgent.”

[} timer p_runTimer: timerEventQ

"Whenever a timeout occurs, the TimeoutElement instance
representing the timeout is added to the end of the timerEventQ,
which indicates to the requestor that the specified timer has
expired.”

| self p_categoriseAndAllocate
"Once a service request has been categorised, it is removed from
the inputQ and appended to the appropriate serviceQ."

I <0 ; where 1<j<maxCategories :: (scContainer at: j)
p_execute

>
"For each service category the associated service queue and set
of service provider agents are monitored. If the service queue
is not empty and a service provider agent in the spSubset
associated with the service category is available to process a
new service request, the first element of the service queue 1is
removed and assigned to a service provider agent."

I <[i where 1<i<maxConn :: self p_executeConnection:
(userConnections at: i)

>
"When a connection has entered the 'TERMINATING' state, the
communication provider agent is requested to terminate the
connection. Once all the procedures have been completed to
terminate the connection, the connection and its associated
service request are reset to their initial states.”

I < k where 1<k<maxSP :: self p executeSPAgent:
(spAgentContainer at: k)
>
"Execute the parallel statements of the service provider
agents."

end-parallel

As mentioned earlier, the Template Method may invoke abstract or default methods. The
example above illustrates both types of invocations. The p_executeCPAgent method is
abstract, whereas the p categoriseAndAllocate method is a default method. The
implementation of each method is shown below:

message pattern p executeCPAgent

method properties

"These are the properties pertaining to the communication
provider interface as identified during the analysis phase.”
parallel

self subclassResponsibility

end-parallel

message pattern p categoriseAndAllocate

method properties

"These are the properties pertaining to the service category
allocator as identified during the analysis phase."

345

parallel

scAllocator p_categorise: inputQ using: scContainer

"The scAllocator monitors the inputQ. If it is not empty, it
enables the categorisation of the first element (a service
request) ."

] scAllocator p_allocate: scContainer from: inputQ

"Once the service request has been categorised, the scAllocator
removes it from the inputQ and appends it to the appropriate
serviceQ."

end-parallel

By using the Template Method design pattern, it is clear to the designer of a new application that
the parallel statements of the cpAgent object should be included, but the actual statements are
only specified once the relevant interface class is determined. In the case of the
p_categoriseAndAllocate method a default implementation is feasible, which is provided
for the convenience of the designers of future applications.

As described in Section 9.3.1, subclassing can be avoided when using certain variants of the
Factory method during instance creation. This is only beneficial if the parallel methods
belonging to the classes being instantiated can also be activated without having to resort to
subclassing. This implies that although the set of parallel methods may differ for each class, they
have to be activated via the same message expression. One way of achieving this is by
encapsulating the parallel methods of each subclass in such a way that all subclasses present
the same interface to the client.

For example, a subclass of the ServiceCategoryAllocator'? class might obtain information from a
database in order to categorise a service request. In order to accomplish this, it may be necessary
to define additional parallel methods for the ServiceCategoryAllocator subclass as well as
modify the ones inherited from the parent class. These changes can be hidden from the client it
the parallel methods of the ServiceCategoryAllocator class and its subclasses are encapsulated in
anew method, viz. p_categorise:allocate:

The p_categoriseAndAllocate method of the CC_Activation class now only refers to this
encapsulating method, as shown below:

message pattern p categoriseAndAllocate

method properties

"These are the properties pertaining to the service category
allocator as identified during the analysis phase."

parallel

scAllocator p categorise: inputQ allocate: scContainer

"The scAllocator monitors the inputQ. If it is not empty, it
enables the categorisation of the first element (a service
request). Once it has been categorised, it removes it from the
inputQ and appends it to the appropriate serviceQ."

end-parallel

The p_categorise:allocate: method of the ServiceCategoryAllocator class now invokes
the methods previously invoked by the p categoriseAndAllocate method of the
CC_Activation class:

message pattern p categorise: inputQ
allocate: scContainer

12 The ServiceCategoryAllocator class is specified in Appendix B, Section B.8.

346

method properties
"These are the properties pertaining to the service category
allocator as identified during the analysis phase.”

parallel

self p categorise: inputQ using: scContainer

"The scAllocator monitors the inputQ. If it is not empty, it
enables the categorisation of the first element (a service
request) ."

| self p allocate: scContainer from: inputQ

"Once the service request has been categorised, the scAllocator
removes it from the inputQ and appends it to the appropriate
serviceQ."

end-parallel

Subclasses of the ServiceCategoryAllocator class may alter the implementation of the
p_categorise:allocate: method (e.g. by adding parallel statements to obtain information
from a database) without affecting the CC_Activation class.

Note that the encapsulating method has to pass all the arguments required by the encapsulated
parallel statements. This interface remains the same, even though some subclasses may not
require all the arguments.

9.5.4 Strategy

Before a service request can be allocated to one of the call centre service queues, its category has
to be determined. Different applications may require different categorisation algorithms to be
used. For example, the information could be extracted from the service request itself, a database
could be consulted or the call centre could enter into a dialogue with the service user to obtain the
information. The Strategy pattern is useful to allow one to vary the algorithm without requiring
subclassing.

The categoriseServiceRequest:using: method of the ServiceCategoryAllocator class
implements the categorisation algorithm in the call centre system. In the original SLOOP
program given in Appendix B, the ServiceCategoryAllocator class needs to be subclassed if the
default implementation of this method presented in Section B.8 does not suffice.

Incorporating the Strategy pattern involves the definition of a new class, viz.
CategorisingStrategy. It represents the common interface used by the context when the latter
invokes one of the supported algorithms. The subclasses of this class represent the various
options as listed above, as well as any future implementations. The abstract class is defined as
follows:

class CategorisingStrategy

superclass Object

instance methods

category modifying
message pattern categoriseServiceRequest: serviceRequest

using: scContainer

method properties
"Total correctness"”
"When this method has completed execution, the
serviceRequestCategory attribute of the service request object
will have a wvalue (i.e. the service request will have been
categorised) and that category will match one of the service
categories supported by the system.™
true results-in

methodReturnvValue = self A

347

serviceRequest serviceRequestCategory notNil A
(scContainer detects:

([:each | each serviceQCategory =

serviceRequest serviceRequestCategory] ifNone: [nill))

notNil "DL1-01 (CategorisingStrategy)"
sequential

self subclassResponsibility
end-sequential

The DefaultCategory subclass is presented next:

class DefaultCategory
superclass CategorisingStrategy
instance methods
category modifying
message pattern categoriseServiceRequest: serviceRequest
using: scContainer
method properties
"Total correctness"
true results-in
methodReturnValue = self A
serviceRequest serviceRequestCategory notNil A
(scContainer detects:
([:each | each serviceQCategory =
serviceRequest serviceRequestCategory] ifNone: [nil]))
notNil "DL1-01 (CategorisingStrategy)"
sequential
serviceRequest serviceRequestCategory:
- (scContainer first) serviceQCategory
end-sequential

The p_categorise:using: method of the original ServiceCategoryAllocator class contains
the following statement to invoke its own categoriseServiceRequest :using: method:

parallel
categorising := true \+
self categoriseSerViceRequest: (inputQ first) using: scContainer

if inputQ isEmpty not and: [categorising not]
end-parallel

This method is now modified to invoke the method of the appropriate CategorisingStrategy
subclass, as shown below. The new categorisingAlgorithm instance variable of the
ServiceCategoryAllocator class contains a reference to the instance of the relevant
CategorisingStrategy subclass. The way in which this variable is initialized will be explained
shortly. The method properties of the modified p_categorise:using: method also reflect
the new receiver of the categoriseServiceRequest:using: message.

category cyclic
message pattern p categorise: inputQ using: scContainer
method properties
"Safe liveness"
—(inputQ isEmpty) A —categorising until
categorising A
categorisingAlgorithm postconditions:
(#categoriseServiceRequest:using:)
withArguments: # ((inputQ first) scContainer)
"DP1-03 (ServiceCategoryAllocator)"

348

parallel
categorising := true \+
categorisingAlgorithm categoriseServiceRequest: (inputQ first)
using: scContainer

if inputQ isEmpty not and: [categorising not]
end-parallel

The categorisingAlgorithm variable is initialized as follows: When the
ServiceCategoryAllocator instance creation method is invoked, the name of the appropriate
CategorisingStrategy subclass is passed as an argument. During initialization of the
ServiceCategoryAllocator instance, the CategorisingStrategy subclass instance is created and the
reference is stored in the categorisingAlgorithm variable.

If the CategorisingStrategy subclasses contain parallel methods, then the statements in these
methods have to be activated. A common interface should be defined for the invocation of the
parallel methods of the various subclasses. That would facilitate the activation of the parallel
statements of the instantiated subclass by merely adding a statement to invoke this common
method to the p_categorise:allocate: method. The latter is the method which invokes all
the parallel methods of the context. It was first introduced in Section 9.5.3. Should the
CategorisingStrategy subclasses contain parallel methods, the required modification would be as
shown below in bold italics:

message pattern p categorise: inputQ

allocate: scContainer
method properties
"These are the properties pertaining to the service category
allocator as identified during the analysis phase.”
parallel
self p categorise: inputQ using: scContainer
"The scAllocator monitors the inputQ. If it is not empty, it
enables the categorisation of the first element (a service
request) ."
| self p _allocate: scContainer from: inputQ
"Once the service request has been categorised, the scAllocator
removes it from the inputQ and appends it to the appropriate
serviceQ."”
[categorisingAlgorithm p_ execute
"Execute the parallel statements of the CategorisingStrategy
subclass."”
end-parallel

From the above it is clear that the Strategy pattern is most suited to a design where such common
interfaces can be defined, otherwise it would be more appropriate to subclass the original class.

9.6 Summary

The SLOOP method differs from more conventional object-oriented approaches in the sense that
it is based on a different computational model. In previous chapters the advantages of this
method were described, e.g. its high level of abstraction, its applicability to all types of
architectures and its emphasis on correctness properties. In this chapter it was demonstrated that
the computational model of the SLOOP method presented no difficulties when applied to such a
wide variety of design problems as exemplified by those given in [GHIV95] and [BMRSS96].

Several patterns were incorporated into a design based on the SLOOP method. Each category
described in [GHIV95] and [BMRSS] was covered. The suitability of the SLOOP method was
discussed for multiple design patterns in each category. The results can be summarized as
follows:

349

The structure of the Pipes and Filters architectural pattern [BMRSS96] promotes
parallelism. The filters can be implemented to execute concurrently and to be non-
terminating. These characteristics are inherent in the SLOOP approach, since the latter is
based on the concept of a number of parallel statements that execute infinitely often.

The Reflection architectural pattern [BMRSS96] was applied during the SLOOP
implementation phase. In Chapter 8 it was shown how it could be used to control statement
execution, perform some assertion checking and generate trace information.

The Factory Method creational design pattern [GHJV95] allows a class to defer the
specification of exactly which classes to instantiate to its subclasses. This design pattern is
easily incorporated into a SLOOP design. Variants that aveid subclassing can also be used,
but it was pointed out in Section 9.3.1 that this goal can only be achieved successfully if the
parallel methods of the relevant classes could also be activated without requiring
subclassing. This is possible if the client interface of the parallel methods can be defined to
remain the same for a class and its subclasses.

The Singleton creational design pattern highlighted another aspect of parallel statement
activation. All the parallel statements required by a particular application have to be
activated via the parallel statements in the activation-section of the SLOOP program.
However, the instances of some classes may not yet exist immediately after the sequential
statements in the activation-section have been executed. For example, the class which
represents the TERMINATING' state of a connection is only instantiated once this state is
entered for the first time. The invocation of the parallel methods of such a class therefore has
to be subject to the existence of an instance of that class. As explained in Section 9.3.2,
this is only acceptable if the netto effect of the execution of the affected parallel statements
1s the same before and after incorporating the design pattern. An example of how this
could be achieved was presented in Section 9.3.2.

When the Adapter structural design pattern is used in a SLOOP design, no special
considerations are necessary.

In contrast, care has to be taken that the mapping of the collaborators in the Flyweight
structural design pattern is performed correctly during the implementation phase. A
statement selector has to be maintained for each context of the shared object in order to
guarantee that each parallel statement of the Flyweight will be executed infinitely often for
each context.

One of the applications of the Proxy structural design pattern is to make the physical
location of objects transparent to the application. This is in line with the philosophy used
in the SLOOP method, which advocates a unified design approach, i.e. the target
architecture is only considered during the implementation phase.

The Iterator behavioural design pattern is present in Smalltalk library classes. Since
Smalltalk message expressions may form part of SLOOP statements, this design pattern
is used extensively in most SLOOP programs.

The State behavioural design pattern, discussed in Section 9.5.2, provided an example of
the use of dynamic parallel statements. Prior to the incorporation of this design pattern, the
parallel statements of the Connection class were always present in the list of parallel
statements, but they only had an effect when the connection was in the TERMINATING'
state. When these statements were moved to the TerminatingConnection class, they were
only present in the list of executable statements when the state instance variable of the
Connection class referred to the TerminatingConnection class, i.e. when the connection was

350

in the ' TERMINATING ' state. When the application of the State design pattern results in the
use of dynamic parallel statements, the designer has to ensure that the effective behaviour is
the same before and after the incorporation of the pattern.

Q The Template Method behavioural design pattern is very useful in a SLOOP program. It
provides flexibility while at the same time it enables the designer to ensure that the relevant
statements will be executed. This applies to both sequential and parallel Template
Methods. If the method is sequential and correctness properties are specified that refer to
the ordering of the statements, the Template Method allows one to guarantee that these
properties will not be violated. Subclasses may only change the contents of the methods
invoked by the Template Method, but not the invocations themselves.

QO In order to use a Template Method design pattern for the invocation of parallel methods, the
client interface of these methods has to be the same for a class and its subclasses. A

similar requirement exists when the Strategy behavioural design pattern is applied to a
SLOOP design.

This chapter concludes the presentation of the various aspects of the SLOOP method. The next
chapter summarises the advantages of using this method and it also describes the directions for
future research.

351

CHAPTER 10

CONCLUSIONS

10.1 Evaluation of the SLOOP method

The preceding chapters described all facets of the SLOOP method, viz.

its syntax,

the associated semantics,

the analysis and design approach that results from applying the method,

reasoning about correctness properties on an informal basis,

the mapping of a design to an executable program,

the use of reflection to separate the statements within the system being designed from the
statements about the system being designed, and

Q considerations when incorporating various design patterns into SLOOP designs.

OCcooDop0Oo

Elaborate examples demonstrated various aspects of the SLOOP method. It is now appropriate
to evaluate the SLOOP method with respect to the goals of this research as listed in Chapter 1.

10.1.1 Increasing the reliability of systems developed via this method

The first goal, viz. to maximise the reliability of the system under development, encompasses a
wide spectrum of issues. First of all, the system that is produced has to be functionally correct.
In order to achieve this, the SLOOP method requires the software designer to focus on
correctness properties throughout the system development.

During the analysis phase, the behaviour of the system is specified in terms of a set of informal
correctness properties, once the interacting classes have been identified. The SLOOP method
aids the designer by providing a useful checklist' of different kinds of correctness properties that
can be specified. This prompts the designer to analyse the problem domain in terms of a wider
range of aspects than might otherwise have been the case. This checklist therefore promotes the
completeness of the specification.

During the design phase, the focus remains on the correctness properties, but now they are also
used to find suitable matching artifacts in the repository of reusable artifacts (if one exists).
Artifacts are therefore compared on the basis of their correctness properties as was shown in
Chapter 6. During the design phase, the correctness properties are refined. They are also
specified more rigorously in order to facilitate an unambiguous specification, which is required
in order to reason about the correctness of the design. The SLOOP method provides a
notation’ based on temporal logic for the rigorous specification of correctness properties.

' This checklist of correctness properties was described in detail in Chapter 5, Section 5.2.4.
% The SLOOP notation for specifying correctness properties was presented in Chapter 4, Section 4.3.4.

353

During the implementation phase, the target architecture is considered for the first time. When
the SLOOP program is mapped to an executable program, the designer has to take care that the
semantics of the SLOOP statements are preserved. The issues that need to be taken into account
in order to achieve this, were discussed in Chapter 8. The SLOOP method advocates the
development of infrastructures for mappings to different types of architectures (as described in
Chapter 8). The correctness properties of these infrastructures can then also be reused.

It is evident from the above that the SLOOP method provides several mechanisms in order to aid
the achievement of functional correctness during system development. Functional correctness is
a requirement for all types of architectures.

The second aspect of the goal of producing reliable systems is to ensure that the problems usually
associated with concurrency, such as deadlock® and interference’, are prevented. Since the
SLOOP method advocates a unified approach towards software development, these are issues
that are only relevant during the implementation phase. The system is designed at a high level of
abstraction. By definition, the unit of atomic execution in a SLOOP program is a parallel
statement. At the design level, all the actions that should take place atomically, are grouped into
a single parallel statement. There can be no interference between parallel statements.

As described in Chapter 4, Section 4.3.6.4, the SLOOP method is based on the interleaving
model of concurrency [MaPn81a]. Thus, if two parallel statements refer to the same objects,
they execute in some arbitrary order; if they do not share any objects, they may execute
simultaneously. During the implementation phase the atomicity of the parallel statements has to
be preserved in order to prevent interference. Furthermore, the interleaving model has to be
preserved in order to ensure the prevention of deadlock. Chapter 8 covered possible strategies to
achieve this.

As was evident from the earlier chapters, deadlock and interference are not the only issues
addressed by the SLOOP method. Many different types of safety, liveness and precedence
properties are described. Although the software designer is only required to reason about these
properties informally, the mere fact that the "constructive approach"” [Meye90] is followed
during system development results in a product that instills more confidence as far as its
correctness is concerned. As was demonstrated in Chapter 7, the SLOOP method encourages the
software designer to consider both what should happen and also what should never happen. The
end result is a more reliable system. This was corroborated by the results of the experimental
systems that were developed.

In [Meye97] Bertrand Meyer states that "it is still too difficult to produce software without
defects (bugs), and too hard to correct the defects once they are there." He continues to list some
of the techniques for improving the reliability of software. These are, inter alia, a more
systematic approach towards software construction, more formal specifications and built-in
checks throughout the software development process.

The SLOOP method applies all of these techniques: It provides a checklist of useful correctness
properties, thereby encouraging the software designer to work more systematically. The
behaviour of the system has to be specified in terms of a set of correctness properties. The
SLOOP notation provides the necessary constructs to express these properties formally.
Although the correctness arguments are informal, they form an integral part of the method, which
attests to the significance attached to them. Each phase of the software development process

3 The conditions for deadlock to occur, as well as deadlock prevention strategies, were described in
Chapter 4, Section 4.3.6.5.
* Interference was defined in Chapter 2, Section 2.3.2.

354

emphasizes correctness. By using the SLOOP method, the software developer therefore
automatically focusses on correctness issues throughout the software development process.

10.1.2 Scalability of the method

When the scalability of the SLOOP method comes under scrutiny, one can argue that there are
two aspects that need to be considered when the method is applied to medium- to large-scale
systems. The one aspect deals with the software lifecycle in general, i.e. the mechanisms that are
provided by the method to handle the analysis, design and implementation phases. The
second aspect deals with how well the method facilitates reasoning about correctness.

When evaluating the way in which the SLOOP method assists the software designer during the
analysis, design and implementation phases, the following is apparent. Since the SLOOP
method is an object-oriented method, it has all the structuring capabilities that are associated
with object-orientation. Thus, the solution domain is modelled in terms of a set of classes. The
SLOOP method takes full advantage of the data encapsulation feature of object-orientation.
Even the parallel statements are defined on a per class basis and are encapsulated within
parallel methods associated with specific classes. The SLOOP method therefore provides the
software designer with the necessary structuring mechanisms in order to break a large system
into smaller, more manageable components.

As far as reasoning about correctness is concerned, the SLOOP method has several features that
simplify correctness arguments. The benefits are particularly noticeable in larger systems. As
demonstrated in Chapter 7, the correctness arguments do not refer to location counters. This
is because the properties are existentially or universally qualified over all program statements. In
larger systems this reduces the complexity of the correctness arguments considerably, since in a
SLOOP program there is no need to take computation histories into account. In a system
with a conventional computational model, the number of computation histories grows
exponentially as the number of processes that are involved increases.

Location counters are only significant in sequential methods in SLOOP programs, but since a
sequential method is always executed as an atomic unit, there can be no interference and the
correctness arguments are therefore as for a sequential program, i.e. relatively simple. Since a
sequential method is typically a very small piece of code, the software designer only has to deal
with a small piece of logic at a time.

Although the correctness properties are quantified over all the parallel statements of a SLOOP
program, it is typically only a few of these statements that actually influence a specific property.
Only those parallel statements that reference the objects mentioned in the correctness properties,
and possibly a few related ones, need to be taken into account. This was demonstrated in many
examples in Chapter 7. Thus, although it might seem that the size of a system would adversely
affect the ease with which one could reason about correctness, this is not the case because the
parallel statements of the system do not have a flat structure. Parallel statements are
encapsulated within the parallel methods of objects and are therefore structured according to
the classes of the system. Furthermore, the parallel methods of the classes have correctness
properties associated with them that specify clearly the effects of executing the statements
contained within them.

Another feature of the SLOOP method which makes it particularly appropriate for larger
systems, is its capacity for reuse. Not only can designs and code be reused, but correctness
reasoning also does not need to take place from first principles each time. This was
demonstrated in numerous examples in Chapter 7. Furthermore, the postconditions: and
postconditions:withArguments: constructs in the SLOOP notation make it possible to

355

highlight the fact that other methods are being invoked and that their correctness properties are
being reused.

The running example that was used in the body of this thesis was specifically chosen so that the
applicability of the SLOOP method to nen-trivial systems could be demonstrated.

10.1.3 Understandability of the method

A number of issues affect the understandability of the SLOOP method. First of all, the
underlying computational model has to be understood by the software designer. The user of the
SLOOP method has to think in terms of statements that execute infinitely often. Although this is
different from conventional computational models, the principle is simple.

The second aspect that a new user of the SLOOP method has to grasp, is how object-orientation
fits into the picture. Again, this is not complex. The (static) object model of the system is
created in the usual way. It is only once the behaviour of the system is specified that the
computational model has an effect. The designer has to determine how the functionality of a
class should be distributed amongst its sequential and parallel methods. The designer also has
to determine which actions should be executed atomically, i.e. which actions should be grouped
into a single parallel statement.

The fact that the behaviour of the system and its classes is first specified via a set of properties
(as was shown in Chapters 5 and 6), makes it relatively easy to derive the SLOOP statements.
This is because one has a clear specification of what the behaviour of each class and its methods
should be.

One of the main criticisms against formal methods is the perception that the underlying
mathematics is difficult and tedious to use. Although the SLOOP method is not a formal
. method, a certain amount of rigour is required in order to support correctness reasoning. The
underlying mathematical foundation for the SLOOP method is based on UNITY [ChMi88]. In
[GePn89] a proof system is given for UNITY. It is claimed there that the UNITY assignments
could be substituted with arbitrary programs without having to change the existing rules of the
proof system; only a few additional rules would have to be added to reason about these atomic
programs. This forms the theoretical basis for allowing method invocations in SLOOP
statements.

However, the user is not required to have any detailed knowledge of the theory
underpinning the SLOOP method; not even when reasoning about the correctness of a SLOOP
program. As was demonstrated in Chapter 7, the correctness arguments are informal. There is
no need to learn a set of theorems and to understand the application of such theorems. A
correctness property is shown to be correct by inspecting the other correctness properties of the
program and using them in the correctness arguments. If there are no relevant properties, the
SLOOP statements themselves are inspected in order to support the correctness arguments.

Several factors contribute to ensure that this is not such a daunting task. First of all, there is no
need to take location counters into consideration. Secondly, the structuring and the data
encapsulation provided by object-orientation, results in the localisation of the properties (and
statements) that need to be considered. It is seldom that all the properties specified for a program
need to inspected in order to reason about the correctness of a specific aspect. Furthermore, each
correctness property is only proved once from first principles. Thereafter its results can be
reused in other correctness arguments. This reusability contributes towards making the proofs
less tedious.

Another important aspect which simplifies the correctness properties and therefore aids
understandability, is the fact that class and instance methods may be used in the correctness

356

properties. The only proviso is that they should not modify the state of the objects. One is
therefore not restricted to specifying the properties in terms of class and instance variables and
boolean operators. The expressive power gained from allowing methods in the correctness
properties contributes towards making the specification of these properties less tedious and it
also makes them more understandable. It enables one to write these properties in terms of
methods rather than in terms of variables, i.e. they are expressed at a higher level of abstraction.

In the Eiffel programming language, method invocations are also allowed in the assertions
[Meye97]. However, the SLOOP method goes even further. The notation contains the
postconditions: and postconditions:withArguments: constructs that enable one to
specify which other modifying methods are invoked by the method currently under
consideration. This makes it explicit that another method is involved. It makes it clear that the
postconditions of the other method will hold, without stating what those postconditions are. This
minimises the risk of inconsistency, since the actual postconditions of that method are specified
at one location only, viz. where that method is defined.

Finally, the SLOOP syntax includes Smalltalk message expressions, which makes SLOOP
programs easily understood by software designers already familiar with Smalltalk.

10.1.4 Unified approach

The SLOOP method is not concerned with the target architecture during the analysis and design
phases of system development. This was demonstrated in the example used in Chapters 5 and 6.
The target architecture is only considered once the implementation phase is reached. In
Chapter 8 it was shown what issues needed to be considered when a SLOOP program was
mapped to various architectures. In all cases the semantics of the SLOOP statements, as well as
the atomicity of the SLOOP parallel statements had to be preserved. This was achieved in -
different ways for the various architectures, as described in Chapter 8.

Although the mapping to a specific architecture is an additional step that is not required in a
software development method where the program is designed for a specific architecture from the
outset, a unified approach provides the software designer with the freedom to map the design to
any target architecture with relative ease. In our experience, there has not been the need to
make any modifications to the design as a result of a mapping to a particular target architecture.

A unified approach also has the advantage that the design is at a high level of abstraction.
There 1s no need to consider issues such as mutual exclusion and deadlock that would normally
be associated with concurrency. Those aspects are addressed during the implementation phase.
As shown in Chapter 8, the solutions that are implemented for the various target architectures
during that phase can be reused in infrastructures for the respective target architectures.

10.1.5 Reusability

The SLOOP method has all the reusability features of a fully-fledged object-oriented method.
In Chapter 9 it was demonstrated how design patterns could be reused in a SLOOP design. In
addition to the usual reuse of classes and patterns, the SLOOP method also makes provision for
the reuse of correctness properties, as was described in Chapter 7. During the implementation

phase, the mapping infrastructures can also be reused. This was discussed in detail in Chapter
8.

10.1.6 Seamlessness

During the analysis phase, the behaviour of the system under development is described in terms
of a set of correctness properties. During the design phase, these properties are refined and

357

additional design level properties are added. The notation used for the specification of the
properties includes Smalltalk message expressions. This makes the derivation of the SLOOP
statements from the correctness properties relatively simple. If the target implementation
language is Smalltalk-80, the transition from the design phase to the implementation phase is
seamless.

As demonstrated in Chapter 8, it is possible to use the reflective facilities of Smalltalk to ensure
that the base objects do not contain any additional logic that are specific to the mapping of the
program to the target architecture. For example, the statements related to the selection of the
next parallel statement for execution is relegated to the metaclasses. The mapped base class and
the original SLOOP class are therefore almost identical, thereby achieving a high degree of
seamlessness.

10.1.7 General availability and minimisation of developmental resources

At this stage a SLOOP development environment does not exist yet. Currently, a SLOOP
program can be written using any text editor. When the mapping is performed, the development
environment of the target architecture is used. For example, for a mapping to a sequential
architecture the Smalltalk-80 development environment can be used as is. This also applies to a
mapping to an asynchronous shared-memory architecture where multiple processes run on a
single processor. The meta-object infrastructure used for reflective computation and the mapping
infrastructures are implemented as reusable classes. All of these factors make it easy to
experiment with the concepts proposed in the SLOOP method without having to make a large
investment in terms of developmental resources.

10.2 Concluding remarks and future research directions

The purpose of this research has been to experiment with the concept of an object-oriented
method based on a Single Location Program (SLP) computational model in order to try and
achieve the goals discussed in the previous section. As recorded in the preceding chapters and
summarised in the previous section, the SLOOP method provides the necessary features to
accomplish this.

This experiment has therefore resulted in the development of a new software construction
method which has the rich feature set of an object-oriented method, but which is based on a
computational model that simplifies correctness reasoning. This simplification, which is
enhanced by the high degree of reuse that is facilitated by the object-oriented nature of the
method, has the following implications:

It improves the understandability of the method.

It makes the specification of correctness properties a simpler and less tedious task.

Informal correctness reasoning about these properties becomes viable.

It makes the method attractive to practising software designers that are not necessarily
proficient in the use of formal methods.

ocoo0oQo

The SLOOP method therefore promotes a 'constructive approach" towards software
development.

Although the emphasis in this research has been on creating a software development which
facilitates informal correctness reasoning, this could be complemented by the development of a
formal proof system for the SLOOP method. That way, the method would still be usable without
requiring any knowledge of formal methods if only informal correctness arguments were used,
but the user would also have the option of creating formal proofs. Further research would be
required to develop a formal semantics and proof system for the SLOOP method. That would

358

then also facilitate the development of tools to automate the verification of programs developed
via the SLOOP method.

Although the mapping to an existing executable language such as Smalltalk is straightforward,
the purpose of this work was not to maximise the efficiency of the executable program. That
is a topic for further research. Aspects that are currently implemented via reflection in
metaclasses should form part of the development environment. A SLOOP translator could
form part of such a development environment.

It must be noted that the choice of Smalltalk as the language to provide the SLOOP method with
its object-oriented facilities was motivated to a large extent by the suitability of Smalltalk for
experimental systems (this includes its reflective facilities). There is no reason why another
object-oriented language could not replace Smalltalk in the SLOOP method when a fully fledged
development environment is developed. However, such a language would have to provide at
least the same capabilities as Smalltalk (except for the reflective facilities).

Desirable features of such a language would be proper support for encapsulation (in the case of
C++ and Java this is somewhat illusory [ABV00]), polymorphism and inheritance. If further
research shows that the SLOOP method should support multiple inheritance, then that would be
a desirable feature of such a language as well. Strong typing would facilitate the detection of
certain errors’ during compilation and it would also be possible to implement compilation
optimisations that could increase efficiency [Meye97]. A strongly typed language would then
require the support for genericity, i.e. classes with formal generic parameters representing
arbitrary types would have to be supported [Meye97].

As far as software development tools are concerned it would be very useful to have an
animated graphical trace facility. Such a tool would be used during the design phase to
generate animated execution traces. It would highlight an object on the screen whenever that
object executes an unconditional parallel statement or whenever it executes a conditional parallel
statement and the condition evaluates to true. The values of some of the instance variables as
they are after the execution of the parallel statement could be shown. If sequential methods are
invoked by the parallel statement, then the target objects could be highlighted in another colour.
Such a tool would not replace the correctness reasoning described in Chapter 7. However, it
could be used to aid understandability, since it would facilitate the visualisation of event
flows.

Another aspect that could be investigated further is to find more succinct ways of presenting the
informal correctness arguments, without going to the lengths of changing SLOOP into a formal
method. The inclusion of real time properties into the formalism is another potential area for
further investigation.

This research has produced very encouraging results. The SLOOP method facilitates solutions
that are elegant, reusable, extendible, understandable and reliable. Further research would
enhance the method, but it can already be applied successfully in its existing form. A solid
foundation has been laid for creating high quality software systems.

3 It would be possible to detect during compilation that a message is being sent to an object which does
not implement that message.

359

	Front
	Chapters 1-4
	Chapters 5-6
	CHAPTER 7
	7.1 Introduction
	7.2 Conveying the semantics
	7.3 The impact of various SLOOP features on correctness reasonging
	7.4 Deriving SLOOP statements from correctness properties
	7.5 Summary

	CHAPTER 8
	8.1 Introduction
	8.2 Mappings to various architectures
	8.3 Deriving executable programs on various architectures
	8.4 Mapping macros
	8.5 Mapping SLOOP statements
	8.6 The use of reflection in mappings of SLOOP programs
	8.7 Modifying the level of parallelism in a SLOOP design
	8.8 Summary

	CHAPTER 9
	9.1 Introduction
	9.2 Architectrural patterns
	9.3 Creational design patterns
	9.4 Structural design patterns
	9.5 Behavioural design patterns
	9.6 Summary

	CHAPTER 10
	10.1 Evaluation of the SLOOP method
	10.2 Concluding remarks and future research directions

	Back

