A Credibility Proxy: Tracking US Monetary Developments

Maria Demertzis∗ Massimiliano Marcellino† Nicola Viegi‡

∗De Nederlandsche Bank, m.demertzis@dnb.nl
†European University Institute and Bocconi University, Massimiliano.Marcellino@EUI.eu
‡University of Pretoria and ERSA, viegin@gmail.com

Recommended Citation
DOI: 10.1515/1935-1690.2442

Copyright ©2012 De Gruyter. All rights reserved.
A Credibility Proxy: Tracking US Monetary Developments*

Maria Demertzis, Massimiliano Marcellino, and Nicola Viegi

Abstract

The purpose of this paper is two-fold: first, we propose a method for checking empirically whether inflation expectations are anchored in the long run, and at what level. The extent of anchoring then serves as a proxy for the credibility of the monetary authority. Second, to assess how well this measure proxies credibility, we cross-check it against periods for which the level of credibility is known and generally agreed upon. To this end, we apply our measure to the US inflation history since 1963, which includes both the period of the Great Inflation, in which credibility was poor and deteriorating, as well as the period of the Great Moderation during which credibility in the monetary authority was gradually re-established. Finally we check what our measure of credibility tells us about the crisis period.

KEYWORDS: great inflation, great moderation, expectation anchors

*Views expressed are our own and do not necessarily reflect those of the institutions with which we are affiliated. We would like to thank Stephen Cecchetti and Robert Tetlow for sharing their data, Gabriele Galati, Todd Clark and seminar participants at the European University Institute in Florence, DNB, University of Cape Town, Boston Fed, EEA08 and the Norges Bank for comments and suggestions. Any remaining errors are our own.
1 Introduction

Numerous attempts in the literature on monetary policy have tried to define credibility, explain why it is necessary and how it can be earned and maintained. Institutional commitment to a nominal anchor (Mishkin, 2007), or any explicit form of commitment more generally, (Albanesi et al, 2003 and Christiano and Gust, 2000), are often thought to promote price stability and are considered crucial to managing inflation expectations. Commitment, in general, is the key ingredient to establishing credibility, as shown in the more recent theory on optimal monetary policy (Clarida et al., 1999; Woodford, 2003). Empirically, a number of studies have shown the beneficial effects of a successful commitment to a nominal anchor in terms of more stable and less persistent inflation (Levin et al 2004, Gürkaynak et al 2006) but also in terms of lower output volatility (Fatás et al 2007; Mishkin and Schmidt-Hebbel, 2002, 2007). We argue that commitment to a well defined and credible nominal anchor has an effect on the dynamic relationship between inflation expectations and realized inflation. As such, a fully credible and transparent monetary policy provides an anchor for inflation expectations and therefore de-couples them from short run inflation dynamics (Demertzis and Viegi, 2009).

The purpose of this paper is two-fold: first, we propose a method for checking empirically whether inflation expectations are anchored in the long run, and at what level. The extent of anchoring then serves as a proxy for the credibility of the monetary authority. Second, to assess how well this measure proxies credibility, we cross-check it against periods for which the level of credibility is known and generally agreed upon. To this end, we apply our measure to the US inflation history since 1963, which includes the period of the Great Inflation, in which credibility is supposed to be poor and deteriorating, the period of the Great Moderation during which credibility in the monetary authority was gradually re-established, as well as the period since the mid 2007 which saw the start of the recent financial crisis, a period governed by large uncertainty. Beyond that we also examine the evolution of credibility during the early eighties. This period is associated with Volcker’s Disinflation, in which economic understanding became more sophisticated (Romer and Romer, 2002, Taylor 1998) and monetary policy makers worried explicitly about the way ‘inflationary psychology’ was affecting their ability to be effective (Goodfriend and King 2005). Aiming to align expectations with their own inflation objectives, as well as effectively bring down inflation, the Fed engaged in persistently aggressive policies. This was done at great cost to output in that period, but helped reverse the inflationary trend thereafter, and hence improve credibility (Goodfriend 1993, 2007).
The paper is organized as follows. Section 2 discusses how the anchoring effect and credibility can be formally measured and tested. Section 3 presents a number of stylized facts about US inflation and inflation expectations that allow us to divide the sample into subperiods according to their level of credibility. Section 4 implements empirically the theoretical suggestions of Section 2 using US data for the subperiods identified in Section 3. Section 5 generalizes the analysis by introducing a model for the entire period under analysis, starting in 1963, which allows for time-varying credibility. The estimation results are then used to discuss how our measure tracks the evolution of credibility in a number of well-documented monetary policy incidents. Finally, Section 6 summarizes and concludes.

2 The Anchoring Effect

We start this section by describing how inflation is affected by the level of expectations in a simple theoretical model. Then we derive the econometric implications for the joint modelling of inflation and long-term inflation expectations. Finally, we introduce an empirical measure that proxies the monetary authority’s credibility.

2.1 A simple model of inflation determination

We consider a standard framework, in which the Central Bank chooses the rate of inflation π to minimize the distance from the inflation objective set π^T and close the output gap y_t, i.e.,

$$L_{CB|j} = \frac{1}{2}E_{\xi} \left[\left(\pi_t - \pi^T \right)^2 + y_t^2 \right]. \tag{1}$$

Depending on the underlying economy, optimization of (1) implies that,

$$\pi_t|\xi = \gamma_1 \pi^T + (1 - \gamma_1) \pi^e_t - (1 - \gamma_1) \xi_t, \tag{2}$$

where π_t is now the ex post inflation outcome conditional on the shock ξ_t, before solving for private sector expectations, π^e_t.\footnote{The parameter γ_1 is defined by the underlying model. For example, for the standard Neo-Keynesian model based on Clarida et al. (1999),

$$\pi_t = \beta E_t \pi_{t+1} + ky_t + \varepsilon_t$$

$$y_t = E_t y_{t+1} - \gamma (i_t - E_t \pi_{t+1}) + \eta_t.$$}
set-up, where the Central Bank commits to the target π^T, expectations formed are equal to the CB’s objectives, $\pi^e_t = \pi^T$, and the ex post outcome (2) is:

$$\pi_t|_t = \pi^T - (1 - \gamma)\xi_t \quad (3)$$

$$E(\pi) = \pi^T. \quad (4)$$

However, it is questionable whether empirically it is justified to reduce (2) into (3). Rather than impose an anchor for expectations, we would like to explore how inflation expectations actually evolve.

There are a number of ways recent contributions in the literature depart from the full information set-up. A heuristic expectations formation (Brazier et al. 2008), or monetary policy as an information game (Demertzis and Viegi, 2008, 2009), or expectations learning (e.g. Orphanides and Williams, 2005), all constitute such examples. In their simplest form however, these approaches imply that when looking at expectations across time, they would be partly time dependent and partly time invariant. We identify the extent to which expectations are time invariant with the anchoring effect. Bomfin and Rudebusch (2000) model this feature by assuming that long-run inflation expectations at time t are a weighted average of a constant π^* (which in their case is the current target) and last period’s inflation rate:

$$\pi^e_t = \lambda \pi^* + (1 - \lambda) \pi_{t-1}. \quad (5)$$

The parameter λ ($\in [0, 1]$) then measures the degree to which expectations are anchored. If $\lambda = 1$, inflation expectations are perfectly anchored to the constant π^*, which for inflation targeting regimes can be cross-checked against the inflation objective π^T communicated. Credible regimes will then be those for which both $\lambda = 1$ as well as $\pi^* = \pi^T$.\footnote{It follows that π^* is the Central Bank’s inflation target, as perceived by those who form expectations.} It follows that if $\lambda = 0$, there is no credibility, the inflation target is ignored in the formation of expectations which simply follow past inflation.

the structural representation of the ex post inflation outcome is:

$$\pi_t = \frac{k^2}{1+k^2} \pi^T + \frac{1}{1+k^2} E_t \pi_{t+1} + \frac{\varepsilon_t}{1+k^2}.$$

Our point is to show that the ex post outcome is a function of both the CB objective as well as the expectations of the private sector at the relevant horizon (and naturally the shocks).\footnote{If expectations are formed according to an information game, then (5) is a very good proxy for the way they are generated across time and therefore, consistent with optimizing agents.}

Published by De Gruyter, 2012
Note that this notion of credibility applies to long horizons, which are no longer affected by policy. That is why expectations considered in this context refer to the long-run (in our case the 10-year horizon). This definition does not necessarily preclude anchored expectations in the short-term, but the movement of expectations in the short-run is not necessarily evidence of lack of credibility.

Remark 1 For countries that do not have an explicit inflation objective, such as the US, the value of the parameter λ alone is then a proxy for credibility.\(^4\)

In the next subsection we will identify five features concerning the evolution of inflation, long term inflation expectations, and their relationship in the presence of perfect credibility ($\lambda = 1$). Then, we will propose an empirical proxy for the extent of credibility.

2.2 Testing for the Anchoring Effect

The main observation of the previous analysis is that a credible regime will be characterized by a disconnect between inflation and long-run inflation expectations dynamics. In what follows we identify how this disconnect would manifest itself in the data, and then how inflation expectations are anchored once they are disconnected from historical inflation experience.

Following (2) and (5), and allowing for the presence of dynamics, we model π_t and π_t^e in the following VAR specification:

\[
\begin{align*}
\begin{pmatrix} \pi_t \\ \pi_t^e \end{pmatrix} &= \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + \begin{pmatrix} a(L) & b(L) \\ c(L) & d(L) \end{pmatrix} \begin{pmatrix} \pi_{t-1} \\ \pi_{t-1}^e \end{pmatrix} + \begin{pmatrix} e_{1t} \\ e_{2t} \end{pmatrix}, \\
\left(\begin{array}{l} e_{1t} \\ e_{2t} \end{array} \right) &\sim i.i.d. \begin{pmatrix} 0 \\ \sigma_{11} \sigma_{12} \\ \sigma_{12} \sigma_{22} \end{pmatrix}.
\end{align*}
\]

Conjecture 1: A credible inflation expectations disconnect would imply that the following hypotheses are satisfied:

\(^4\)In his testimony to the US House of representatives, on the 27th of February 2008, chairman Bernanke said the following: "The inflation projections submitted by FOMC participants for 2010—which ranged from 1.5 percent to 2.0 percent for overall PCE inflation—were importantly influenced by participants' judgments about the measured rates of inflation consistent with the Federal Reserve’s dual mandate and about the time frame over which policy should aim to attain those rates." This was very much interpreted as an informal inflation target (see, http://www.marketwatch.com/story/fed-sets-informal-inflation-target-of-15-to-2 or http://www.usinflationcalculator.com/interest-rates/long-term-inflation-target-of-17-to-2-set-by-fed/1000388/)
H1: Expected inflation is not affected by lagged actual inflation, i.e., \(c(L) = 0 \).

H2: Expected inflation is anchored to an intercept on average, i.e., \(c(L) = 0 \) and \(d(L) = 0 \).

H3: Actual inflation is not affected by expected inflation, i.e., \(b(L) = 0 \).

H4: The persistence of actual inflation, the sum of the coefficients of \(a(L) \), decreases with credibility.

H5: There is no contemporaneous transmission of shocks from actual to expected inflation and vice versa, i.e., \(\sigma_{12} = 0 \).

We test hypotheses H1-H3 with standard Wald tests. In particular, H1 and H3 correspond to Granger non-causality of, respectively, actual inflation for expected inflation, and expected inflation for actual inflation. If there is evidence of some heteroskedasticity in the errors, we apply a robust (HAC based) version of the Wald test. We examine H4 by comparing estimated inflation persistence in different periods for which the level of monetary policy credibility is known. H5 can be verified by checking the non-significance of the correlation between the VAR errors \(\text{corr}(e_{1t}, e_{2t}) = 0 \) according to a Fisher transform test. Note that H1, H3 and H5 jointly imply that all elements of the impulse response function (IRF) of actual inflation to a shock in expectations are zero, and the same should hold for the IRF of expected inflation to a shock in actual inflation.

The hypotheses that we have identified in this subsection should hold only in the presence of perfect credibility, namely, \(\lambda = 1 \). When they are rejected, it is however interesting to have a measure of the extent of the credibility of the monetary authority, and a natural proposal is an estimate of \(\lambda \). In the next subsection we discuss how to obtain such an estimate of \(\lambda \).

2.3 A Proxy for Credibility

We turn next to the way expectations are formed. Note that (5) assumes that inflation expectations do not depend on their own past behavior, i.e., \(d(L) = 0 \) in (6). However, this hypothesis should be tested and, as we will see in the next section, it is empirically systematically rejected. Hence, we use a VAR approach to provide a more general measure of \(\lambda \). Our prior is that credible monetary policy implies that expectations are de-coupled from inflation (low correlation) and are anchored to an ‘implicit’ target. Expectations are then partly following that implicit ‘anchor’ \(\pi^* \). We derive the values of \(\lambda \) and \(\pi^* \) next.
Consider for simplicity the VAR(1) version of (6):

\[
\begin{align*}
\pi_t &= a_0 + a\pi_{t-1} + b\pi^e_{t-1} + e_{1t} \\
\pi^e_t &= c_0 + c\pi_{t-1} + d\pi^e_{t-1} + e_{2t},
\end{align*}
\]

which in equilibrium reduces to:

\[
\begin{align*}
\pi &= \frac{a_0}{1 - a} + \frac{b}{1 - a}\pi^e \quad \text{and} \\
\pi^e &= \frac{c_0}{1 - d} + \frac{c}{1 - d}\pi^e
\end{align*}
\]

Matching coefficients of (5) and (9), it follows that:

\[
\begin{align*}
\lambda\pi^* &= \frac{c_0}{1 - d} \\
1 - \lambda &= \frac{c}{1 - d},
\end{align*}
\]

and therefore,

\[
\begin{align*}
\lambda &= 1 - \frac{c}{1 - d} \\
\pi^* &= \frac{c_0}{(1 - d)\lambda}.
\end{align*}
\]

Empirically, \(\lambda\) and \(\pi^*\) can be estimated by substituting parameters \(c_0\), \(c\) and \(d\) with their estimates from system (7). The parameter \(\lambda\) will serve as a proxy for credibility and the estimated value of \(\pi^*\) as the implicit long-term anchor for inflation expectations\(^6\).

\(^5\)See Appendix A for a general result based on a high-order VAR\((p)\).

\(^6\)Alternatively we could derive \(\lambda\) and \(\pi^*\) from equation (8) which would give \(\lambda = 1 - (1 - a)/b\) and \(\lambda\pi^* = -a(0)/b\), where \(a(0)\) is the autoregressive parameter in the inflation equation 8, this would mean that when expectations are anchored the inflation process is a random walk. This result is dependent on the reduced form nature of specification (8): if we use a different specification for the stochastic inflation process the results would be different. On the other hand the derivation of \(\lambda\) from equation (9) is consistent with the hypothesis \(H1 - H5\) on page 4 and is independent on the specification on the inflation process: when expectations are anchored, i.e. \(\lambda = 1\), \(c = 0\) and the expectation process is independent on the inflation process.
Last, we make the following remarks. First, \(\lambda \) in (10) is not constrained to belong to the \([0,1]\) interval. Using the VAR coefficients it can be re-written as:

\[
c = (1 - \lambda) (1 - d),
\]

which yields

\[
\pi_t^e = c_0 + (1 - \lambda) (1 - d) \pi_{t-1} + d \pi_{t-1}^e + e_{2t}.
\]

Second, we estimate the VARs over sub-periods when credibility is believed to be fairly constant, in order to avoid instability in the VAR parameters. In Section 5 we will consider a more general approach based on full sample estimation of a time-varying VAR, to allow for the temporal evolution of credibility.

Finally, our proxy for credibility is equivalent to the one employed by King (1995), who analyzes the difference between long-run inflation expectations (derived from nominal and real yield curves) and inflation targets. It is also close to the expectations definitions in Johnson (1998, 2002) and Croushore and Koot (1994), who use short-run inflation expectations from surveys.

3 Stylized facts

In this Section we briefly summarize the US inflation history from 1963 to 2011. Our main analysis is based on series for CPI inflation\(^7\) and long-term expectations produced by the FRB/US model of the Federal Reserve Board.\(^8\) We will also use the 6-10 years Consensus Forecasts (semi-annual, based on CPI) but this series is only available since 1990.

\(^7\)Quarterly, y-o-y changes of CPI, 1963q1-2011q2. Appendix C will discuss also our main results based on PCE series for inflation, as this is the one used to represent inflation most often. However, Clark (1999) argues that when comparing the pros and cons of the two series CPI is the better index.

\(^8\)The FRB/US series for long term inflation expectations is constructed as follows. For data from 1991q4 through 2006q4, the FRB series is exactly equal to SPF - 0.5, where SPF: Philadelphia Fed Survey of Prof Forecasters: CPI Inflation Rate Over the Next 10 Years, Median (%). From 2007q1, the FRB series is just the SPF median for PCE inflation, with no constant adjustment. From 1980 to 1991, the FRB series splices SPF data for 1991-present from the Hoey survey, and for data prior to 1980, it uses an econometric estimate based on a learning model developed by Kozicki and Tinsley (2001). Even though FRB/US aims to track CPE inflation, it is based on information on CPI for most of the period examined. This is why we choose to show the results based on CPI in the main text. We thank Todd Clark and Robert Tetlow for information on the data.
3.1 Inflation and Inflation Expectations

Figure 1 plots CPI inflation and FRB long term expectations. The literature typically identifies three distinct periods in the conduct and effectiveness of monetary policy (Goodfriend, 2007). First is the period of the Great Inflation during the late '60s and '70s, when inflation was steadily increasing with three noticeable peaks at 1969q4, 1974q4 and 1980q1, (see figure 1). The on-going debate on the sources of this pattern for inflation, summarized in Cecchetti et al. (2007), attributes it mostly to the behavior of oil and raw material prices, combined with an insufficiently tight monetary policy. Over this period, inflation expectations were also steadily increasing, but remained systematically below actual inflation. This is generally considered a period of deteriorating credibility.

The second period identified, the '80s, is characterized by a decline in the level of inflation, associated with the Volcker Disinflation. Figure 1 shows that the decline in the long term FRB expectations was less pronounced, with a prolonged period of expectations above actual inflation. Goodfriend and King (2005) argue that this was also a period of poor credibility, which was the cause of the high costs of disinflation observed. In the third period, identified from approximately 1991 till the start of the financial crisis in 2007, we observe relatively stable inflation accompanied by a further decline in the long term inflation expectations, which stabilizes at a value around 2 per cent after 2000. This is generally believed to be a period of relatively high credibility. Although
too soon to be looked at as a separate period, we also look at the latest years from 2007 till 2011, as a period of very high inflation volatility and generally great financial and macroeconomic uncertainty. Inflation is more volatile than in the previous period but expectations do not follow a similar pattern. This is a rather short period but given the distinct nature of the financial crisis that occurred, it is worth looking at separately.

A similar picture emerges when looking at the descriptive statistics for the corresponding periods in Table 1. We report the standard statistics as well as the level of persistence and the correlation of actual and expected inflation. Average and median values of actual and expected inflation steadily decrease across the three first periods, and average expected inflation is higher than average actual inflation, only in the second period, the ’80s. The range and standard deviation shrink progressively over time. While this is a well known feature for inflation, a similar pattern emerges also for expectations, the standard deviation of which reduces from 1.41 in 1968-80 to 0.54 in 1991-06. Furthermore, there is a noticeable decrease in the persistence of inflation. This is not the case for inflation expectations. In addition, the correlation between actual and expected inflation drops from 0.81 in the ’70s to 0.40 in 91-06 and is statistically insignificant after the year 2000. The latter period is also characterized by a major drop in the volatility and persistence of inflation expectations. Our results remain unchanged if we move the start and ending point of the three periods by a few quarters.

Persistence is measured as the sum of the autoregressive coefficients in an AR(4) model with a constant. We examine the significance of the correlation coefficients between the variables in question, by applying Fisher’s transformation:

\[z = 0.5 \ln \left(\frac{1 + \rho}{1 - \rho} \right) \]

This statistic is approximately normally distributed, with zero mean and standard deviation \(\sigma = (n - 3)^{-\frac{1}{2}} \), where \(n \) is the sample size. Bold indicates significantly different from zero at the 5% level.
Table 1. Descriptive statistics for inflation and long run FRB expectations

<table>
<thead>
<tr>
<th>Sample</th>
<th>68q1-80q4</th>
<th>81q1-90q4</th>
<th>91q1-06q4</th>
<th>01q1-07q1</th>
<th>07q1-11q2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Infl</td>
<td>Infl^e</td>
<td>Infl</td>
<td>Infl^e</td>
<td>Infl</td>
</tr>
<tr>
<td>Mean</td>
<td>7.31</td>
<td>4.31</td>
<td>4.68</td>
<td>5.17</td>
<td>2.73</td>
</tr>
<tr>
<td>Median</td>
<td>6.28</td>
<td>4.45</td>
<td>4.22</td>
<td>4.86</td>
<td>2.75</td>
</tr>
<tr>
<td>Max</td>
<td>14.68</td>
<td>7.05</td>
<td>10.96</td>
<td>7.72</td>
<td>4.89</td>
</tr>
<tr>
<td>Min</td>
<td>2.84</td>
<td>1.68</td>
<td>1.13</td>
<td>3.50</td>
<td>1.06</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>3.17</td>
<td>1.41</td>
<td>2.19</td>
<td>1.09</td>
<td>0.80</td>
</tr>
<tr>
<td>Persistence</td>
<td>0.91</td>
<td>0.99</td>
<td>0.83</td>
<td>0.96</td>
<td>0.60</td>
</tr>
<tr>
<td>Correlation with Inflation</td>
<td>-</td>
<td>0.81</td>
<td>-</td>
<td>0.54</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: bold indicates significance at the 5% level.
Last, we examine how FRB long term inflation expectations compare to the consensus forecast measure of inflation expectations for overlapping periods. Figure 2 plots the two series as well as CPI inflation.

![Figure 2: Two Alternative Measures of Inflation Expectations - US 1990-2011](image)

Table 2 summarizes the main descriptive statistics for long term expectations, the Survey of Professional Forecasters and the Consensus Forecast.

| Table 2. Descriptive statistics for alternative long run inflation expectations |
|---------------------------------|----------|----------|----------|
| | FRB | Consensus (6-10) |
| Mean | 2.73 | 2.37 | 2.84 |
| Median | 2.75 | 2.10 | 2.60 |
| Max | 6.16 | 3.83 | 4.30 |
| Min | -1.62 | 1.75 | 2.10 |
| St.Dev. | 1.27 | 0.57 | 0.63 |
| Persistence | 0.75 | 0.95 | 0.96 |
| Corr with Infl | - | 0.47 | 0.40 |
| Sample | 90:s1-11:s2 | 90:s1-11:s1 | 91:s2-11:s1 |

Note: bold indicates significance at the 5% level.
The differences between the two measures of expectations are minor: FRB has a slightly lower average\(^{10}\) and median value and shorter range of variability. Overall the two series of inflation expectations move closely together, (correl(Cons, FRB)=0.96). The contemporaneous correlation of actual and expected inflation is 0.47 and 0.40, for the two measures respectively. However, these values can be spuriously upward biased, due to their overall decreasing behavior in the period examined. Hence, the issue of correlation needs to be addressed within a formal dynamic model, as we show in the next section.

4 Inflation and Expectations Disconnect

We implement next the measures and tests suggested in Section 2, using data for the sub-periods identified in Section 3. We present results for the period between 1968 and 1980 as a period of low credibility, using the series on FRB expectations only. We then test our model for the period between 1990 and 2007, as one where monetary policy is relatively credible. For this latter period we also carry out tests based on alternative expectations series. Finally we have a brief look at the relation between inflation and inflation expectations in the crisis period, 2007-2011. We provide additional robustness checks in Appendixes B.1 and B.2.

4.1 1968-1980: A Period of Low credibility

The period generally associated with the Great Inflation starts in 1965 and is to last for about 20 years, after which Volcker’s period of disinflation begins to bear results. This period is also associated with low and deteriorating credibility and generally an inability to control inflation (Cecchetti et al 2007). Meltzer (2005) attributes this to a number of reasons, including both lack of knowledge of how the underlying economy worked at the time, as well policy and institutional arrangements made. Given this general description of the time-period, we evaluate the performance of the VAR model and the outcome of tests for hypotheses 1-5, for the period up to the end of 1979.\(^{11}\) Our choice of ending the period in 1979 is motivated by Volcker’s appointment

\(^{10}\)Note that FRB expectations were constructed to be consistent with CPE, which for the period examined had a lower mean. This may account for the lower mean.

\(^{11}\)Note that if \(\lambda\) is equal, or close, to zero, the VAR framework is not suited due to perfect collinearity between the regressors. In this case a single equation approach along the lines of (5) would be appropriate. However, we have never found such a case to be true in practice (correlations in Table 1 are at most 0.81).
as chairman of the Federal Reserve, which is identified with the start of a new era in monetary policy effectiveness. Our main finding is that over this period hypotheses 1 and 3, no effects of actual inflation on long term expectations and vice versa, are strongly rejected, (see Table 3 below). Hypothesis 5 is not rejected, indicating that there is still no evidence of contemporaneous shock transmission (insignificant correlation).

| Table 3. Granger Causality (H1, H3 and H5) |
|---|---|---|---|---|
| Dependent | Excluded | df | χ^2 | (Pr) |
| π | π_{FRB}^e | 6 | **27.19** | (0.00) |
| π_{FRB}^e | π | 6 | **22.49** | (0.00) |

Notes: Bold indicates significance at 5% level.

In summary, there appears to be a lot of interaction between actual inflation and long term inflation expectations over a period of low credibility. Based on the VAR(6) choice, the IRFs in figure 312 show that there is great persistence in both inflation as well as expectations and both variables affect each other in the long-run.

Our analysis implies that for a period of generally deteriorating performance in inflation and low credibility, there is a close relationship between inflation and the way expectations are formed, even in the long run.

4.2 1990-2007: A Period of High Credibility

Goodfriend (2007) describes US monetary policy of this period as follows: “Under Greenspan’s leadership, the Fed demonstrated additional practical principles of monetary policy that have become part of the new consensus. The most important is that monetary policy could sustain low inflation with low unemployment on average, and with infrequent, mild recessions.” This period is one in which inflation is on a long declining trend, eventually becoming stationary after the year 2000. We check for the anchoring effect in this period based on two alternative measures for expectations.

The lag length selection criteria indicate 5 lags for the series FRB and 1 lag for the Consensus Forecasts. From the Wald tests for hypotheses 1 and

12Our ordering of the VAR places inflation before expectations. Leduc et al (2007) use the opposite ordering, justified by the timing of data release. We have checked the alternative ordering and results remain similar.
Figure 3: FRB Expectations, 1968-1980

3, reported in table 4 below, expected inflation is not significant in the actual inflation equation, and vice versa.\(^{13}\) Moreover, the correlation of the VAR residuals is not statistically different from zero for the Consensus series although the test fails when using FRB expectations.

<table>
<thead>
<tr>
<th>Table 4. Granger Causality (H1, H3 and H5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depend.</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>(\pi)</td>
</tr>
<tr>
<td>(\pi_{FRB}^e)</td>
</tr>
<tr>
<td>(\pi)</td>
</tr>
<tr>
<td>(\pi_{(6-10)})</td>
</tr>
</tbody>
</table>

Note: Bold indicates significance at 5% level.

As already mentioned, the joint validity of hypotheses 1, 3, 5 should imply that each value of the cross IRF is not statistically different from zero. This is indeed the case, with the only exception of the small and positive reaction of

\(^{13}\)A robust version of the Wald test yields the same results, the p-values are, respectively, 0.56 and 0.56.
the FRB expectation measure (in line with the findings in Table 4). Figures 4-5 report the estimated impulse responses and their 95% confidence bands.

Figure 4: FRB Expectations, 1989-2007

Hypothesis 2 however, (no persistence in expected inflation), is strongly rejected. The estimated persistence (the coefficient of lagged expected inflation in this case), for example for Consensus forecasts is 0.95, similar to the result from the AR(4) reported in Table 1. The estimated persistence in inflation is instead 0.57, again in line with the previous finding based on the AR(4) model. Figures 4-5 confirm the higher persistence of inflation expectations, but they also highlight the fact that shocks that hit expectations are much smaller in size by comparison to inflation.

When looking at the data for SPF directly (available from the authors), the results are identical to those shown by Consensus Forecasts. Summarizing, our results for this period, using alternative measures for inflation expectations, show weak or no contemporaneous or dynamic statistically significant correlation between actual values and long term inflation expectations. This stands in contrast to the earlier period described above, where the relationship between the two variables was tighter. There appears therefore to be a disconnect between inflation and expectations for periods when monetary policy is generally considered to be credible.
4.3 2007-2011: Financial Crisis and Uncertainty

We look next at the period of the financial crisis since 2007. Although the sample is somewhat limited, in this period the disconnect between inflation and inflation expectations seems to be even stronger than in the period between 1990 and 2007. We report the Wald tests for hypotheses 1 and 3 in table 5 below and see that expected inflation is not significant in the actual inflation equation, and vice versa, and the correlation in the VAR residuals is not statistically different from zero.

![Figure 5: Consensus Forecasts (6-10 years ahead), 1990-2007](image)

Table 5. Granger Causality (H1, H3 and H5)

<table>
<thead>
<tr>
<th>Depend.</th>
<th>Excluded</th>
<th>df</th>
<th>χ^2</th>
<th>(Pr)</th>
<th>cor$_{e_1,e_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>π</td>
<td>π^e</td>
<td>1</td>
<td>2.44</td>
<td>(0.12)</td>
<td>0.04</td>
</tr>
<tr>
<td>π^e</td>
<td>π</td>
<td>1</td>
<td>1.49</td>
<td>(0.22)</td>
<td></td>
</tr>
</tbody>
</table>

Note: Bold indicates significance at 5% level.

Moreover, there is a lower persistence in expected inflation, with an estimated persistence 0.63, compared to the previous period but a marginally higher persistence in inflation (0.67 versus 0.57). While the variance of inflation is changed significantly, the shocks to expectations are extremely small. This set of results is confirmed by the IRF graphed in Figure 6.
This is an indication that the credibility of the Federal Reserve has not so far been substantially affected by the crisis. However, it is worth mentioning that with respect to the 1990-2007 period, during 2007-2011 average inflation has decreased from 2.76 to 2.12, while average inflation expectations have increased from 1.95 to 2.1314.

Overall, in this section we have seen that the relationship between inflation and inflation expectations has indeed changed over time. The exact start/end dates of the different subperiods are rather uncertain, and in addition there could be some within subperiod instability. Therefore, in the next section we move to a full sample analysis based on a time-varying parameter model.

14This result is not dissimilar from the results in Gerlach et al (2011) and Galati et al. (2011). In the paper the authors show that the crisis has not affected yet long term inflation expectations, although they observe an increase of dispersion and volatility around the long term anchor. We will see that in our framework this is captured by a reduction in the credibility index estimated in the next section.
5 A Generalized Measure of the Anchoring Effect

So far we have assumed that there are discrete changes in the parameters of the VAR in (6), which are associated with periods with different monetary policy credibility. Next we construct a time varying measure of credibility derived from the definition in equation (10). To construct this measure, first we estimate a VARs with time-varying parameters over the whole sample. This is done along the lines of, for example, Stock and Watson (1996), Cogley and Sargent (2005), or Clark and Nakata (2008). Based on the estimated time-varying VAR coefficients, we estimate how the credibility of the monetary authority, i.e. \(\lambda_t \) in equation (10), also varies over time.

Based on Stock and Watson (1996) we specify a time-varying VAR(1) version of (6) as follows:

\[
\pi_t = a_0 + a_1 \pi_{t-1} + b_t \pi_{t-1}^e + e_{1t},
\]

\[
\pi_t^e = c_0 + c_t \pi_{t-1} + d_t \pi_{t-1}^e + e_{2t},
\]

where each parameter is assumed to evolve according to a random walk, the errors of the random walks are uncorrelated among themselves and with the VAR errors. We assume, in turn, that the VAR errors are uncorrelated and homoskedastic. We estimate the model above by maximum likelihood, using the Kalman filter, and figure 7 reports the (smoothed) estimates of the time-varying parameters for equation (14) which we will use to estimate the anchoring effect.\(^{15}\)

![Figure 7: Time varying parameters](image)

\(^{15}\)More details are provided in Appendix B.3.

\[\text{Figure 7: Time varying parameters}\]
Parameter c_t is higher in the '70s and early '80s, declines after that, and reaches values close to zero in the most recent period. The d_t parameter increases steadily up to the early '80s, then declines until the end of the '90s, and stabilizes afterwards. Again these results are coherent with the picture emerging from the split-sample VARs. In the absence of credibility, inflation expectations are more persistent, and can be directly affected by the evolution of actual inflation, while the two variables are de-coupled when credibility is restored. Evidence for the last part of the sample suggests that the credibility has been negatively affected by the crisis.\footnote{We find much more evidence of instability in the relation between actual and long term expected inflation than Clark and Nakata (2008). This is due to different specification choices (see Appendix C for a detailed discussion).}

Based on the estimated parameters above, we compute a measure of the time varying credibility as follows:

$$\lambda_t = 1 - \frac{c_t}{1 - d_t},$$

which generalizes the constant measure from equation (10). Figure 8 plots the values for λ_t and two standard error bands\footnote{The error band is generate from the joint distribution of the parameters in (15) using the following approxiamation $\text{var} \left[\frac{X}{Y} \right] \approx \left(\frac{\mu_X}{\mu_Y} \right)^2 \left(\frac{\text{var}(X)}{\mu_X^2} + \frac{\text{var}(Y)}{\mu_Y^2} \right)$} and shows that it, and by proxy also credibility, has varied significantly across the whole period.

Using our estimated λ_t, we can in turn estimate the implicit time-varying anchor of long term inflation expectations as follows:

$$\pi^*_t = \frac{c_0}{(1 - d_t)\lambda_t},$$

which generalizes the formula in equation (11). While the estimated λ_t indicates the extent to which expectations are anchored to a constant, (and therefore, past inflation does not affect expectations), π^*_t provides an estimate of that anchor\footnote{We use the expected values and standard deviation of a quotient of stochastic variables as follows:}

Figure 9 plots CPI inflation and FRB expectations, as well as the estimated values for the time-varying λ and π^*_t.\footnote{Ireland (2007) allows for the target to adjust to the technology shock, the cost push shock and the monetary authority’s preference parameters. He presents very similar empirical estimates for π^* to those in figure 8 across the same period, in particular when assuming backward-looking price setting, which would be consistent with our VAR set-up.} The estimated values for λ_t and π^*_t
are in line with qualitative descriptions of the recent US monetary history. In particular, the period of the Great Inflation, from 1965 to the early 1980s, was characterized by both high as well as very volatile inflation, which reached its peak in 1980q1. Meltzer (2005) writes “...The Great Inflation of 1965 to the mid-1980s was the central monetary event of the latter half of the 20th century. Its economic cost was large. It destroyed the Bretton Woods system of fixed exchange rates, bankrupted much of the thrift industry, heavily taxed the U.S. capital stock, and arbitrarily redistributed income and wealth.”

Our proxy for credibility, λ, exhibits a considerable decline in this period, starting from a value of 1 and reducing to a value 0.75. At the same time, the implicit long run anticipated inflation increased steadily, following the trend, and level, of FRB expectations closely. This is in our view consistent with the perception that for this period monetary policy was losing credibility.

The period from the end of the 1970s and early 1980s was to see two important events for the course of inflation thereafter: first was the appointment of Volcker at the summer of 1979 and second, inflation reached its peak in the first quarter of 1980. This marked the start of what has come to be known as the ‘Volcker Disinflation’ period associated with the start of a long and declining path for inflation for the following 10-15 years. And while there is no doubt about the importance of this period in terms of altering the long-term inflation trend, there is some discussion as to what the associated cost has been. Goodfriend and King (2005) argue that “…the reduction in inflation
engineered by the Fed under Volcker was accompanied by substantial output losses ... because it was viewed as not credible, in the sense that firms and households believed for several years that the reduction in inflation was temporary with a return to high inflation likely.”, (p983). Figure 8 concurs with this view, in the sense that the value of λ_t in that period is the lowest in the whole sample. It also shows that even though inflation reached its peak in 1980q1, credibility continued to fall for another four quarters before changing direction. It required therefore a year of rapidly declining inflation before the public began to change its opinion. This delay in public perceptions is also alluded to by Goodfriend and King (2005) who argue “…that the Volcker disinflation did not really start in earnest until late 1980 or early 1981.”

Figure 10 concentrates on the Volcker disinflation period, which saw four ‘inflation scares’ identified by Goodfriend (1993). Our objective is to map the evolution of the credibility proxy during this period to the events themselves. The first of these inflation scares was observed at the start of 1980. “In retrospect, 1980 was a disaster from a monetary policy point of view. The U.S. economy suffered a recession along with a destabilizing inflation scare

\footnote{Goodfriend (2005) has the timing of the reversal slightly later, in the summer of 1982, based on evidence on long bond rates.}

\footnote{Inflation scares are instances of sharply rising long-term bond rates reflecting rising long-term inflation expectations.}
and policy reaction, and yet at the end of the year, inflation remained above 10 percent. The events of 1980 heightened public unhappiness with inflation”, Goodfriend (2007). Indeed we see that after the first inflation scare there is substantial loss in credibility (of about 10 basis points), even though inflation is already declining. The second inflation scare in 1981 was accompanied with an extraordinarily tight monetary policy, which was a very hard action to implement as recession deepened, but proved beneficial in term of reversing, and sustaining, the downward path in credibility.

The third inflation scare, in the summer of 1984, was met with an equally determined Fed - “...For the first time in its history, the Fed successfully employed interest rate policy to hold the line on inflation (at 4 percent) without creating a recession.”, Goodfriend (2007). The graph demonstrates how credibility is increasing throughout the length of the third inflation scare, at levels which allow a costless tightening “...indicating that the Volcker Fed had acquired credibility for 4 percent trend inflation.”, Goodfriend (2007). The parameter λ_t is now above 0.9 and increasing, and both expectations as well as the implicit π_t^* have stabilized at just above 4 percent.

The fourth inflation scare in October 1987 was qualitatively different. It is true that it was not till 1992 that bond yields returned to their 1987 levels, but by that time, both inflation as well inflation expectations had improved considerably and the level of credibility, as proxied by λ_t, was hovering between 0.9 and 0.95. Alan Greenspan had replaced Volcker as chairman of the Fed in 1987, but the credibility acquired under the Volcker Fed was sustained,
allowing for inflation expectations to continue to fall. It would take 15 years
(till the end of 1990s) for inflation to stabilize around the 2 percent level,
(figure 8), at which point the Fed became fully credible, showing that “(T)he
Federal Reserve under Greenspan was patient in moving toward its implicit

Last, we observe that in the years since the start of the financial crisis at
mid 2007, inflation expectations for the first time in 10 years are above the
2 per cent mark, at a level of 2.1-2.3 per cent. At the same time inflation
is very volatile ranging from over 5 per cent to almost negative 2. This has
cau sed \(\lambda_t \) to enter a declining path, which reaches the value of 0.95 at the
last date of our sample. Two questions arise: first, when will that trend
revert and second, what is the critical threshold for \(\lambda_t \) below which monetary
policy is no longer credible. The first question is naturally very difficult to
answer, especially in view of the events in the financial markets since then.
On the second question however, history shows us that periods during which
monetary policy was considered to be credible corresponded to values of \(\lambda_t \)
generally greater than 0.9. Although not a formal test, this would imply that
there is still some way (buffer) for expectations to move away from the implicit
anchor, before credibility is compromised. Galati et al (2011) and Gerlach et al
(2011) both show that of long run inflation expectations are still anchored but
also that inflation expectations measures more volatile and uncertain. This
fact confirm the small reduction in monetary policy credibility here captured
by the reduction in the value of \(\lambda_t \).

6 Conclusions

Credibility is important for the effectiveness of monetary policy. First it pro-
vides the flexibility to deal with shocks without changing the trend of inflation
and second, it allows monetary authorities to disinflate without much cost on
real interest rates and output. Our conjecture has been that credible regimes
imply a disconnect between inflation and inflation expectations. We have ex-
pressed this in terms of five testable hypotheses. Our empirical set-up has
allowed us to develop a measure for the extent to which expectations are an-
chored, as well as at what level. The contribution of this paper is therefore
to provide a method for quantifying the anchoring effect, which we use as a
proxy for credibility in applied monetary policy.

We apply this measure to US data since 1963. As the history of monetary
policy in the US has periods for which credibility is known to be low, as well
as periods for which it is known to be high, we check how well this measure
compares to the way the literature describes them. We find that it typically matches the general description of the different levels of credibility across different periods. We also test the measure against four incidents of inflation scares, as documented by Goodfriend (1993), and show that the measure typically tracks the timing as well as direction of changes in this credibility proxy. At the heart of the argument made is the fact that credibility and the underlying anchor are not constant but are subject to changes as new data becomes available, a reminder that credibility can be gained but it can also be lost.
APPENDICES

A A General Proxy for Credibility [VAR(p)]

The VAR(p) equations are:

\[\pi_t = a_0 + a_1 \pi_{t-1} + \ldots + a_p \pi_{t-p} + b_1 \pi_{t-1}^e + \ldots + b_p \pi_{t-p}^e + e_{1t}, \]
\[\pi_t^e = c_0 + c_1 \pi_{t-1} + \ldots + c_p \pi_{t-p} + d_1 \pi_{t-1}^e + \ldots + d_p \pi_{t-p}^e + e_{2t}. \]

In the long run they become:

\[\pi = a_0 + a_1 \pi + \ldots + a_p \pi + b_1 \pi^e + \ldots + b_p \pi^e, \]
\[\pi^e = c_0 + c_1 \pi + \ldots + c_p \pi + d_1 \pi^e + \ldots + d_p \pi^e, \]

and

\[(1 - a_1 - \ldots - a_p) \pi = a_0 + (b_1 + \ldots + b_p) \pi^e \]
\[\pi = \frac{a_0}{1 - a_1 - \ldots - a_p} + \frac{b_1 + \ldots + b_p}{1 - a_1 - \ldots - a_p} \pi^e, \quad \text{and} \]
\[(1 - d_1 - \ldots - d_p) \pi^e = c_0 + (c_1 + \ldots + c_p) \pi \]
\[\pi^e = \frac{c_0}{1 - d_1 - \ldots - d_p} + \frac{c_1 + \ldots + c_p}{1 - d_1 - \ldots - d_p} \pi. \]

It follows that,

\[\lambda \pi^* = \frac{c_0}{1 - d_1 - \ldots - d_p} \]
\[1 - \lambda = \frac{c_1 + \ldots + c_p}{1 - d_1 - \ldots - d_p}. \]

As in the VAR(1) case, we can derive the \(\lambda \) and \(\pi^* \). In the case of a VAR (2), we then have:

\[\pi_t^e = c_0 + c_1 \pi_{t-1} + c_2 \pi_{t-2} + d_1 \pi_{t-1}^e + d_2 \pi_{t-2}^e + e_{2t}, \]

and

\[\lambda = 1 - \frac{c_1 + c_2}{1 - d_1 - d_2} \]
\[\pi^* = \frac{c_0}{(1 - d_1 - d_2) \lambda}. \]

Therefore,

\[\pi_t^e = c_0 + [(1 - \lambda) (1 - d_1 - d_2) - c_2] \pi_{t-1} + c_2 \pi_{t-2} + d_1 \pi_{t-1}^e + d_2 \pi_{t-2}^e + e_{2t}. \]
B Robustness Checks

In the empirical implementation, the lag length of the VAR is chosen based on recursive likelihood ratio tests for the non-significance of the longest lag and on the Schwarz (BIC) information criterion, starting with a VAR(4). In both cases, the statistical congruence of the model is controlled by means of standard diagnostic tests on the residuals for no correlation, homoskedasticity and normality. These hypotheses are typically not rejected, in particular when the lag selection is based on testing. When the testing and information criteria give conflicting results on the lag length of the VAR, two VARs of different order are estimated in order to control the robustness of the results.

B.1 A note on Section 4.1

The recursive tests for lag length suggest a VAR(6), when starting with 8 lags, while the Schwarz criterion indicates a VAR(2). Since the hypothesis of no serial correlation of the errors is rejected for the latter, we continue the analysis with the VAR(6), but there are minor differences in the results with the VAR(2).

We find that we cannot reject the null hypothesis of a unit root for either actual or expected inflation over this sample, using an Augmented Dickey Fuller test. While this outcome could be the result of a small sample power of the test, as a final check on the robustness of the results we have repeated the analysis with an error correction model. We cannot reject the hypothesis of one cointegrating vector by the Johansen trace test, but the restriction that the coefficients of the variables are 1 and −1 (i.e., that actual minus expected inflation is stationary) is strongly rejected. Hypotheses 1 and 3 would require first no cointegration (otherwise the error correction term should be significant in at least one of the equations, creating a dynamic link between actual and expected inflation), and, second, no significance of the lagged differences of expected inflation in the equation for the difference of actual inflation, and vice versa. Instead, we find cointegration, the error correction term is strongly significant in both equations, and the cross lags are also significant.

B.2 A note on Section 4.2

The lag selection is either 5, when based on testing, or 1, when based on the Schwarz criterion. Since for the VAR(1) the hypothesis of uncorrelated residuals is rejected, we present results based on the VAR(5). However, those for the VAR(1) are qualitatively similar. Modelling actual inflation and the
Consensus expectation (inflation expectations 6-10 year ahead) with a VAR over the period 1990-2007, the lag length selection criteria indicate just one lag. From the Wald tests for hypotheses 1 and 3, which are reported in table 4 expected inflation is not significant in the actual inflation equation, and vice versa. A robust version of the Wald test yields the same results, as the p-values are, respectively, 0.56 and 0.56.

Given the relatively high level of persistence estimated (0.95 for the Consensus Forecasts, the highest of the two), it is worth examining whether we can assume expectations to be stationary, or in other words whether the estimated persistence of 0.95 is significantly different from 1. The Augmented Dickey Fuller test rejects the null hypothesis of a unit root for inflation but not for inflation expectations. However as the sample considered is relatively small, unit root tests are not reliable. To examine the variables stationarity, we simulate stochastically the VAR(1) model over the period 2007:1-2050:2, and evaluate, first, whether and how quickly the values of actual and expected inflation stabilize and, second, whether the long-run equilibrium values are compatible with the credibility assumption, in the sense that actual inflation is not statistically different from expected inflation. The simulation results show that both properties are satisfied, and the convergence to the equilibrium, in the absence of shocks, is fairly quickly22.

Finally, Consensus reports data also on inflation expectations at shorter horizons, specifically, 1, 3, and 5 years (labelled Infl1, Infl3, and Infl5, respectively). We have therefore repeated the analysis using these alternative series. In all cases, a VAR(1) is selected by the Schwarz criterion and it is sufficient to obtain uncorrelated, homoskedastic and normal residuals. The only exception is the VAR for Infl1 and Infl, for which three lags are needed to avoid correlation in the residuals, but qualitatively the results are equal to the VAR(1) case. For all the three measures of expectations, the results of the hypothesis testing are similar as for the Infl10 case, in the sense that there is no dynamic or contemporaneous interaction between expectations and actual inflation emerging from the VAR. This is not surprising for the 3- and 5-year horizon expectations, while one might expect a stronger dependence of the short 1-year horizon expectation on actual inflation. Our finding for Infl1 could be due to a timing issue, a mismatch in timing between the expectation and realization data, which led Johnson (2002) to suggest the use of a slightly modified definition of inflation. Actually, when we adopt his definition of inflation we find that Infl is strongly statistically significant in the Infl1 equation.

22Results available from the authors.
B.3 A note on Section 5.1

We discuss in more detail here why our results differ from those in Clark and Nakata (2008). To start with, Clark and Nakata (2008) analyze actual minus expected inflation and the change in expected inflation, rather than the levels of the two variables as in our case, and this transformation enhances stationarity. Moreover, they de-mean the interest rate variable using a constant (full-sample) estimate for the mean, while we allow for changes in the mean of all variables by including a time-varying ‘constant’ in the model. Hence, following the specification choices of Clark and Nakata (2008), the model in (13) would become:

\[
\begin{align*}
(\pi_t - \pi_t^e - \mu_{\pi - \pi^e}) &= a_t(\pi_{t-1} - \pi_{t-1}^e - \mu_{\pi - \pi^e}) + b_t(\pi_{t-1}^e - \pi_{t-2}^e - \mu_{\Delta \pi}) + e_{1t}, \\
(\pi_t^e - \pi_{t-1}^e - \mu_{\Delta \pi}) &= c_t(\pi_{t-1}^e - \pi_{t-1}^e - \mu_{\pi - \pi^e}) + d_t(\pi_{t-1}^e - \pi_{t-2}^e - \mu_{\Delta \pi}) + e_{2t}.
\end{align*}
\]

(16)

Our theoretical model requires that we estimate the VAR in levels. But if we estimate the model in (16), using the same sample as in Clark and Nakata (2008), we also find much less evidence of parameter instability, (see Figure 10 below). Actually, coefficients \(b_t\) and \(c_t\) are in practice stable, and the variability of \(d_t\) is very limited.\(^{23}\) Other differences with respect to Clark and Nakata (2008) are in the precise definition of the variables, and in the fact that they allow for stochastic volatility in the VAR errors, which does not appear to be necessary in our case since the time-varying ‘constant’ already captures the volatility in inflation and inflation expectations.

Last, since the analysis of the time-varying VAR has highlighted the sample 2000-2007 as a period of substantial stability, in line also with the descriptive statistics of Table 2 and the graphical evidence of figure 1, it is worth repeating the analysis with a constant parameter VAR focusing on this most recent period. In addition to the results reported in Table 6 below, expected inflation does not significantly depend on its lag, and the persistence of inflation (as measured by the coefficient of its own lag) drops to 0.47. Hence, all the hypotheses 1-5 appear to be satisfied for the US over the most recent period.

\(^{23}\)We should point out that we have experienced numerical convergence problems in the estimation of the model in (16), which are not present for (13). However, Figure 11 is based on a model for which convergence of the numerical estimation procedure is achieved.
C An alternative measure for inflation: PCE

We plot three alternative definitions for inflation based on CPI, PCE and core PCE. Figure 11 shows that CPI is the most volatile of the three.

We then recalculate the credibility proxy, λ, (grey line) based on PCE inflation (figure ??). It is worth remembering however, that the expectation measure refers to CPI not PCE so that this derivation of λ is not entirely consistent. Since the PCE series is both lower on average and less volatile, the corresponding λ is also lower and smoother. This is particularly so for the start of the period of the Great Moderation. The evolution of credibility however, matches our previous analysis throughout the whole period.
Figure 12: Alternative Inflation Definitions

Figure 13: Credibility: CPI vs. PCE
References

