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INTRODUCTION

Transport energy consumption is emer-

ging as a major area of public and political 

concern worldwide. The transport sector is 

a significant consumer of energy – estimates 

for Cape Town, for instance, indicate that 

transport accounts for just over half of all 

energy consumed in the city (SEA 2003). 

Given that about 97% of transport energy 

in South Africa comes from liquid fuels, of 

which the lion’s share is refined imported 

crude (Cooper 2007), concerns centre around 

energy security, the exposure of the economy 

to international oil price volatility, and the 

environmental impacts of transport fuel use.

Potential strategies to reduce the trans-

port sector’s dependence on oil include 

technological improvements such as increas-

ing the energy efficiency of the vehicle parc, 

behaviour change, reducing the demand for 

travel by individual commuters, or shifting 

towards less energy-intensive modes of travel 

(Vanderschuren et al 2008). Behavioural 

change objectives are being pursued through 

the various public transport upgrading and 

travel demand management strategies being 

implemented in South African cities (DOT 

2007). What complicates these efforts is the 

extent to which energy concerns are inter-

woven with many other social and economic 

goals, from urban restructuring and poverty 

relief to industrial development. There is 

thus increasing interest in understanding 

the drivers of energy use, and their linkages 

with other urban processes. Local empirical 

studies of transport energy consumption 

have tended to focus at the city or provincial 

level (e.g. Cooper 2007; SEA 2003; Maré 

& Van Zyl 1992), typically using aggregate 

fuel sales data. Goyns (2008) analysed fuel 

consumption and emissions in Johannesburg 

for a sample of instrumented vehicles under 

various vehicle, driving and traffic condi-

tions, but could not link it to demographic 

or land use variables. Goyns’s work showed 

that, as travel demand and conditions vary at 

a fine grain across space and time, patterns of 

transport energy consumption vary consider-

ably at the intra-metropolitan level. A greater 

understanding is needed of the relationships 

between transport energy consumption and 

the socio-economic, land use, and transport 

supply characteristics in cities before the 

energy and sustainability impacts of urban 

management policies can be predicted; and 

before effective policies and interventions can 

be fashioned that are aimed specifically at 

addressing energy concerns.

With that in mind, the paper aims to 

answer the following questions:

 ■ Can detailed and disaggregate informa-

tion on transport energy use be derived 

from available travel survey data?

 ■ Which socio-economic and land use 

variables significantly influence energy 

consumption in personal transport?

Estimating car ownership 
and transport energy 
consumption: a disaggregate 
study in Nelson Mandela Bay

C J Venter, S O Mohammed

This paper investigates energy consumption patterns by households and individuals 
during travel on a typical day. A methodology is developed to estimate trip-by-trip energy 
consumption using standard 24-hour travel survey data, and applied to the Nelson Mandela 
Metropolitan Area using their 2004 household travel survey. Baseline energy consumption 
patterns by different modes, times of day, and user groups are established. Across the 
population, energy use is very skewed: 20% of people consume about 80% of transport energy, 
mainly due to the disproportional contribution of car use to energy expenditure. We then 
estimate a disaggregate vehicle ownership model and link it to a model of household transport 
energy consumption to explore the underlying socio-economic and land use variables driving 
energy consumption. Land use factors (especially job accessibility) significantly affect energy 
use, but do so differently for low and for high-income households, suggesting that accessibility-
enhancing land use and transport measures could have unintended consequences for overall 
energy and environmental management.
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 ■ How do these variables affect household 

car ownership and transport energy use?

 ■ What are the implications for urban 

policy and management?

The data is taken from the Nelson Mandela 

Metropolitan Area Travel Survey (NMMM 

2004) conducted in 2004, supplemented by 

transport supply data. The study is restricted 

to personal surface transport modes and 

excludes freight and commercial transport. 

The focus is furthermore on the end-user 

consumption of energy only, in terms of the 

marginal amount of fuel (in the case of road 

transport) or electricity (in the case of rail) 

consumed by a traveller during each trip. 

Full accounting of energy use could include 

the energy used in the construction of infra-

structure and the manufacture of vehicles, 

but such life-cycle assessments (e.g. Chester 

& Horvath 2008) fall outside the scope of 

this paper.

The following section provides a brief 

introduction to previous work on the rela-

tionships between transport energy, land use, 

and travel behaviour, followed by a descrip-

tion of the research design and methodology 

used. The final sections describe the results 

of the analysis, including two disaggregate 

models estimated on car ownership and 

energy use. Lastly, conclusions are drawn as 

to the meaning of the findings for strategies 

to reduce or manage energy use in the pas-

senger transport sector.

TRANSPORT ENERGY 

CONSUMPTION, LAND USE 

AND TRAVEL BEHAVIOUR 

The links between land use, travel 

behaviour and energy consumption

Relationships between land use and energy 

use have been studied widely internation-

ally. The earliest studies focused on urban 

density. In perhaps the most well-known 

(although not uncontested) work, Newman 

and Kenworthy (1989) measured per capita 

petroleum consumption and population 

densities in a number of large cities around 

the world, and found a clear negative 

relationship between the two. Car usage 

was lower and provision of public transport 

higher in the cities with the highest densities. 

Others have argued that the transport policy 

environment accompanying higher densities 

– including parking management and fuel 

pricing – often contribute as much to the 

achievement of high public transport shares 

as density per se (e.g. Gomez-Ibanez 1991).

In recent years a significant body of 

research has emerged around the links 

between land use and travel behaviour. Travel 

behaviour – the amounts, types, lengths and 

modes of travel undertaken by trip-makers 

with various characteristics – is important 

as an intermediate factor determining the 

amount of energy consumed during travel. 

The range of land use variables examined 

has also broadened from aggregate density 

towards more microscopic factors reflecting 

the quality of the urban environment, includ-

ing neighbourhood safety, attractiveness 

for walking and bicycling, block sizes and 

mixed land uses (e.g. Crane & Crepeau 1998; 

Zegras 2010). The general conclusion has 

been that land use variables account for some 

variation in travel patterns, but that socio-

economic characteristics and preferences 

are at least as important in determining the 

desire and opportunity for travel (e.g. Ewing 

& Cervero 2001; Banister 2005). Among the 

most important socio-economic variables 

identified were car ownership and employ-

ment – travel patterns and distances tend to 

change significantly once a household owns a 

motor vehicle. 

Models of vehicle ownership

Vehicle ownership models, central to the 

analysis of transport energy consumption, 

have a long history. Mokonyama and Venter 

(2007) provide a brief overview of modelling 

approaches used in South Africa, and discuss 

the limitations of conventional ownership 

models using time-series or income variables 

only (e.g. Sweet 1988). In short, significant 

evidence exists of the benefits of using pric-

ing, land use and demographic factors to 

help explain vehicle ownership. Disaggregate 

choice models of the kind used in this paper 

are ideally suited to this task, provided the 

data is available at the household or indi-

vidual level. One local application has been 

found of a logit model used to investigate 

the choice between petrol and diesel vehicles 

(Naude 2002), but the model did not go so 

far as to examine the initial vehicle purchase 

decision.

Methodologies for studying land 

use / transport energy relationships

Studies of the effects of urban form on vehi-

cle usage and energy consumption can be 

divided into aggregate and disaggregate stud-

ies. Aggregate studies use spatially defined 

averages for all variables, with observations 

usually at the city or metropolitan level. 

Besides the work by Newman and Kenworthy 

(1989), recent applications of this approach 

include comparisons of transport energy 

consumption across cities in developed and 

developing countries (Daimon et al 2007). 

A major problem with cross-sectional 

aggregate approaches is the difficulty in 

controlling for cultural, political, historical 

and economic differences. Handy (1996) 

reviewed many studies, and concluded that 

aggregate studies are generally not capable of 

uncovering true relationships between land 

form measures and travel. 

Disaggregate studies, on the other 

hand, use household observations of 

vehicle usage and city-wide, zonal or 

neighbourhood averages for urban form 

variables. These allow energy use for 

transport to be compared to characteristics 

of the household and the residential area 

(e.g. Golob & Brownstone 2005; Lindsey 

et al 2011). For example, Naess et al (1995) 

used data collected from 321 households 

in 30 residential areas in Greater Oslo to 

investigate variations in travel distances, 

modal splits and energy use, and found that 

residents of high-density, centrally located 

communities travel considerably shorter 

distances and use considerably less energy 

per capita than those who live in low-density, 

outer areas. A similar approach is applied in 

this paper to the Nelson Mandela Bay area.

RESEARCH DESIGN

Background and study area

The study area is the Nelson Mandela 

Metropolitan Area located in the Eastern 

Cape Province. It has a population of 

approximately 1.5 million and a land area of 

1 845 square kilometres (NMMM 2004). The 

metropolitan boundary includes the city of 

Port Elizabeth, its surrounding low-income 

residential areas, and the nearby towns of 

Despatch and Uitenhage. Thirty-four per 

cent of households have access to one or 

more cars, very similar to the average of 36% 

for other metropolitan areas in South Africa 

(DOT 2005). Nelson Mandela Bay is fairly 

well served by public transport. Minibus 

taxis transport about 20% of daily trips, 

while the Algoa Bus Company, the sole bus 

operator in the area, serves about 6% of all 

trips on a fairly extensive bus route network 

connecting outlying areas with the Port 

Elizabeth (CBD) Central Business District 

(NMMM 2005). A single commuter rail line 

connects the CBD with Uitenhage, but trans-

ports less than 1% of trips. The overall split 

between public and private modes is 40:60 

(excluding walking). 

Although the modal mix and mode 

shares in Nelson Mandela Bay are typical of 

metropolitan areas in South Africa, it has 

some unique topographical features. These 

include the coastline which directs growth 

towards the north and north-west, and the 

Swartkops River to the north of the metro, 

both of which might lead to longer travel 

distances than in other comparable-sized 

metros. 
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Travel survey data

In 2004, the Nelson Mandela Metropolitan 

Municipality undertook a travel survey to 

determine travel demand characteristics in 

the area. A total of 2 828 randomly chosen 

households (10 200 individuals) were included 

in the survey. The survey included a 24-hour 

weekday travel diary. As one of the first travel 

surveys in South Africa that extended beyond 

peak periods it offered much more complete 

travel data than traditional survey sources. 

Data on standard vehicle ownership and 

demographics was also collected. 

To estimate energy consumed for trans-

port, the data on trip distances and public 

transport occupancies was obtained from 

secondary sources. Trip distances were 

extracted from a zonal distance matrix 

based on shortest route road distances 

between zone centroids. Public transport 

occupancy figures were obtained from the 

municipality’s Current Public Transport 

Record (CPTR), which recorded bus and taxi 

occupancies by route and time of day. 

Land use data and 

accessibility measures

The land use intensity variables that we used 

included population density and a job acces-

sibility index. The population density per 

residence zone was derived from the 2001 

national census data. 

The accessibility of a household in a par-

ticular zone is generally defined as the ease 

of reaching opportunities in the surrounding 

area, and is affected both by the location of 

the household relative to potential destina-

tions, and the quality of the transport system 

available. In order to test our hypothesis that 

the amount of transport energy consumed 

is affected by the level of accessibility a 

household enjoys, we constructed an acces-

sibility index for each home zone. A standard 

gravity-based measure was used (El-Geneidy 

& Levinson 2007), defined as follows: 

Ai = 
∑dj ∙ f(wij)

∑dj

 (1)

where:

 Ai =  accessibility index of zone i to 

opportunities;

 dj =  the amount of job opportunities 

available at zone j;

 f(wij) =  an impedance function expressing 

the increasing difficulty of travel-

ling between i and j as the distance 

increases;

 wij =  the road distance between zones i 

and j.

We used a locally calibrated impedance func-

tion of f(wij) = e–0.15wij obtained from the trip 

distribution model of the NMMM strategic 

transport model; it thus reflects the actual 

sensitivity of trip makers in the area to travel 

distance, averaged over trip purpose and 

income levels (NMMM 2004). Two assump-

tions are that access to jobs reflects the level 

of access to other opportunities (including 

shopping, social, and business opportunities); 

and that road distance as a proxy for travel 

friction captures the main effect of interest, 

even though it ignores congestion.

Estimating transport 

energy consumption

The transport energy estimation process 

requires determining the energy intensity 

for each individual trip made. Studies have 

shown that fuel consumption per vehicle- 

kilometre depends on many factors, inclu ding 

vehicle engine size, fuel type, traffic condi-

tions, environmental conditions and driving 

style (Goyns 2008; Wong 2000). We used 

average fuel consumption figures for passen-

ger vehicles and for minibuses as suggested 

by Schutte and Pienaar (1997), and averaged 

across petrol and diesel vehicles according 

to the number of each fuel type registered in 

the Nelson Mandela Metropolitan Area. The 

figures for passenger vehicles accord with 

fuel consumption rates measured by Wong 

(2000) in coastal regions of South Africa. 

Sivanandan and Rakha (2003) showed that 

energy intensity estimates based on an aver-

age composite vehicle tend to produce con-

clusions that are consistent with the explicit 

modelling of the various vehicle types. 

The average fuel consumption estimates 

for buses were obtained from the Algoa Bus 

Company. A summary of the final fuel inten-

sity figures (in litres per 100 veh-km) used for 

each mode in the survey is given in Table 1.

The fuel consumption for each trip made 

by each individual interviewed during the 

survey was calculated as:

l/person-trip = 
km × l/veh-km

vehicle occupancy
 (2)

where:

 l/person-trip = fuel consumption

 km = distance

 l/veh-km = fuel consumption intensity

Trip distances were estimated from the 

shortest-path route between the origin 

and destination of each trip. Equation (2) 

is applicable to all modes of travel, except 

for passenger rail. Rail transport in Nelson 

Mandela Metropolitan Area uses electric 

power. In order to convert the electric 

power consumption to the same unit as the 

other modes, the energy consumption and 

maximum occupancy figures (for 9 M com-

muter rail trains) suggested by Del Mistro & 

Aucamp (2000) were used, namely 10.3 MJ/

coach-km and 255 passengers respectively. 

The average occupancy per coach, based on 

100% occupancy in peak direction and 20% 

in the opposite direction, is taken as 60%. 

Thus the energy consumption per rail pas-

senger trip was calculated as:

MJ/person-trip)

= 
km × Mj/coach-km

60% × maximum occupancy per coach
 (3)

where:

 MJ/person-trip = energy consumption

 km = distance

 Mj/coach-km =  energy consumption 

intensity

Results from Equation (2) were converted to 

Megajoules (MJ) to enable comparison across 

different modes using a conversion factor of 

36.7 MJ/litre of fuel. The final step was the 

summation of the energy consumption by 

trip according to the levels of analysis. 

Modelling disaggregate energy 

consumption: analytical issues

When attempting to model the relationship 

between transport energy consumption and 

household, individual or spatial explanatory 

Table 1 Fuel consumption and energy intensity rates used to estimate energy consumption

Mode used
Fuel consumption 

(litres/100 veh-km)
Energy intensity

(Megajoules/100veh-km)

Walk 0 0

Bicycle 0 0

Motor cycle 2.8 102.8

Bakkie taxi 12.3 451.4

Minibus taxi 14.0 513.8

Commuter rail --- 10.3 (MJ per couch-km)

Bus 47.5 1 833.5

Motor vehicle 10.8 396.4

Note: See text for data sources
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variables, one is confronted with a number of 

analytical problems. The first relates to the 

problem of self-selection bias. This kind of 

problem occurs when cross-sectional data is 

used to assess how land use variables, such 

as density or accessibility, influence people’s 

travel behaviour (see Mokhtarian & Cao 2008) 

or travel energy consumption. Self-selection 

refers to the fact that households are not ran-

domly distributed across space: households 

who prefer (or are unable) to own a car may 

choose to locate in an area that provides 

opportunities for walking and public trans-

port use. If statistical analysis then identifies a 

correlation between being located in an acces-

sible neighbourhood and high use of public 

transport, it is not clear that this behaviour 

can be attributed to the neighbourhood 

features rather than to preference variables. 

In other words, causality is unclear. Methods 

exist for dealing with problems of simultane-

ity (see for instance Mokhtarian & Cao 2008), 

but these require more advanced research 

designs involving control groups that are not 

available for this study. We do not correct for 

self-selection bias here. The results, therefore, 

must be interpreted with caution: we can, at 

best, infer association between land use and 

energy consumption, rather than causality. 

A second problem relates to endogene-

ity, in this case with respect to the effect of 

unobserved taste variations on car ownership 

and energy use. We expect (and will later 

prove) that income (and the values and life-

style choices normally associated with a cer-

tain income level) strongly affects the deci-

sion to buy a motor vehicle. The same values 

and preferences also affect the amount of 

travel undertaken (and therefore the amount 

of energy consumed). For statistical reasons 

we cannot specify a single regression model 

of transport energy consumption containing 

the household’s number of motor vehicles as 

an independent variable, as this variable may 

be correlated with the unobserved values and 

preferences (and thus with the regression 

model’s error term). Instead we develop an 

instrumental variable, the predicted number 

of cars in a household, and use this predicted 

value rather than the observed number of 

cars owned as the explanatory variable in the 

regression model (see Zegras 2010). 

What the need for an instrumental 

variable implies is that a separate model of 

household car ownership choice must first 

be estimated on the data set, before energy 

consumption can be modelled. We therefore 

specify a multinomial logit (MNL) model to 

capture the household decision of whether 

to own zero, one, or two or more vehicles, as 

a function of demographic and spatial vari-

ables. Apart from its usefulness in supplying 

the instrumental variable for the energy 

use model, the MNL model also provides 

additional insight into the factors affecting 

a household’s decision of whether or not to 

buy a car.

A third problem relates to the use of the 

energy consumption metric as a dependent 

variable, as the variable is calculated across 

all persons and households in the sample, 

and therefore includes many zero observa-

tions. In fact, the data shows that 34% of 

individuals consumed no energy during 

travel, as their trips consisted exclusively of 

walking or bicycle trips on the survey day. 

The data is thus left-censored, with many 

observations clustered at zero, and can 

not be modelled using a simple linear OLS 

model for continuous dependent variables. 

This would produce biased and inconsist-

ent parameter estimates (Washington et al 

2003). The solution is to use a Tobit model 

(a model formulation developed specifically 

to deal with such cases), and estimated 

Maximum Likelihood methods. The Tobit 

model is encountered in the travel behaviour 

literature in the analysis of travel expendi-

ture data, which is frequently left-censored 

when no money is spent on transport (e.g. 

Thakuriah & Liao 2005). The paper does not 

elaborate on the specification or estimation 

of the Tobit model; suffice to say that Tobit 

model results and test statistics can be inter-

preted in the same way as those of ordinary 

least squares models.

ENERGY CONSUMPTION 

PATTERNS ACROSS SUB-

GROUPS OF THE POPULATION

We look firstly at patterns of daily transport 

energy consumption by aggregating our 

trip-level energy consumption estimates by 

mode used, by time of day, and by zone. We 

then aggregate across demographic charac-

teristics, such as gender and occupation, in 

order to examine intergroup differences in 

energy use.

Transport energy use by 

mode and time of day

Figure 1 plots the distribution of daily 

transport energy consumption per person. 

It is clearly a very skew distribution, with 

about 34% of individuals in the sample using 

no fuel, and 83% consuming less than 40 MJ 

per day to travel (40 MJ is approximately the 

energy consumed during one 10-kilometre 

long car trip made by a single occupant). The 

cumulative distribution in Figure 1 shows 

Figure 1  Daily and cumulative daily energy consumption by persons in the sample 

(unweighted, n = 7 000 persons)
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that 80% of residents in Nelson Mandela Bay 

contribute only 22% to the overall energy bill, 

with the remaining 20% of people consuming 

78% of the total.

The reason for this skewness is apparent 

from Table 2, which shows the distribution 

of trips by mode in the sample. Almost half 

of all trips are made on foot or on bicycles. 

The car is used in a quarter of person-trips, 

but these trips consume three to five times 

the amount of energy as trips by motorcycle, 

minibus taxi or bus. This is due to the car’s 

low occupancy rather than to long trip 

distances; mean car trip lengths are similar 

to trip lengths by taxi, and less than trip 

lengths by bus and train. Surprisingly, the 

mean energy consumption per bus trip 

is about 50% higher than that per trip in 

a minibus taxi. Two reasons account for 

this: buses have an energy intensity that is 

more than three times higher than that of 

minibuses (Table 1); and bus passengers tend 

to make longer trips than taxi passengers. 

When controlling for trip distance, however, 

the energy consumed per bus passenger on a 

per-kilometre basis is about equal to that of a 

minibus taxi passenger. The higher carrying 

capacity of buses offsets their higher energy 

intensity, but perhaps not to the extent 

expected. Trains are by far the most efficient 

mode due to their high passenger capacities.

When comparing transport energy con-

sumption across different times of the day, 

marked differences are observed. As shown in 

Table 3, average energy use of trips made dur-

ing peak hours is 60% higher than that of trips 

made during the rest of the day. Both occu-

pancies and trip distances vary depending on 

the time of the day. Table 2 shows that only 

buses are significantly fuller during the peaks 

than during the off-peaks; minibus taxis have 

about the same average occupancy through-

out the day, while private cars actually have 

lower occupancy during peaks – an indication 

that the car trip to work tends to be predomi-

nantly single-occupancy. Furthermore, mean 

trip distances are higher during the peak than 

the off-peak (Tables 2 and 3), contributing 

further to peak period energy use. 

Spatial patterns of 

transport energy use

Figure 2 shows the zonal average household 

transport energy consumption, plotted 

on the transport analysis zones used by 

NMMM. The figure indicates how demo-

graphic, spatial and transport supply factors 

interact to determine energy consumption 

patterns in the study area. High transport 

energy consumption is recorded in outlying 

areas towards the north (around Coega) and 

south, but these are in fact sparsely popu-

lated areas of low significance. Low income 

residential areas that are well-served by pub-

lic transport, such as Motherwell, iBhayi and 

Kwanobuhle, have relatively low transport 

energy consumption; so do the Despatch and 

Uitenhage areas which are close to the rail 

line and to local factory jobs. Higher-income 

areas such as Bluewater Bay, Summerstrand 

and the PE central suburbs are located closer 

to the Port Elizabeth CBD, but have higher 

energy consumption – this despite having 

relatively good taxi and bus coverage. The 

metro’s unique topography may also contrib-

ute to higher energy consumption across the 

river to the north, from where residents have 

longer travel distances to access major work 

nodes to the south.

Table 2 Comparison of transport energy use by travel mode

Mode of travel
Number of 

person-trips 
observed

Percentage 
of trips

Mean 
energy use 

(MJ/
person-trip)

Average occupancy
(persons/vehicle)

Average trip 
distance (km/trip)

Time of day Time of day

Off-peak Peak Off-peak Peak

Non-motorised 9 785 46.1 0.0 1.00 1.00 1.8 1.9

Motor cycle 50 0.2 5.6 1.03 1.00 5.9 4.7

Motor vehicle 5 333 25.1 25.8 2.02 1.95 8.3 10.2

Minibus taxi 4 751 22.4 4.8 9.30 9.43 8.0 9.5

Bakkie taxi 89 0.4 11.1 4.67 4.87 12.9 10.9

Bus 1 120 5.3 7.1 32.94 44.38 12.3 14.6

Train 57 0.3 1.7 51.0a 255.0a 32.0 23.8

Other 45 0.2 8.9 2.80 2.81 5.9 7.0

Notes: 
Sources: Mean energy use estimated. Average occupancy of motor vehicle trips as reported in survey. 
Average occupancy of public transport trips obtained from Current Public Transport Record, 2004. 
a = Train occupancies based on national averages. Average occupancy shown per coach.

Table 3 Comparisons of transport energy use by time of day

Period Mean energy use (MJ/person-trip) Mean trip distance (km/trip)

Peak period 9.7 6.9

Off-peak period 6.0 5.2

All trips in sample 8.1 6.1

Notes: Peak period is defined as 6:00-9:00 and 15:00-18:00. Off-peak period is all the other hours of the day

Figure 2  Estimated average daily household transport energy consumed (MJ), shown per 

transport analysis zone
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TRANSPORT ENERGY USE BY 

GENDER AND EMPLOYMENT STATUS

To examine patterns of transport energy use 

across segments of the population, trip-level 

consumption figures are aggregated for 

each individual and grouped by gender and 

employment status (see Table 4). Gender is 

considered here as it relates to the different 

roles played by men and women in society, 

and has frequently been found to account for 

significantly different travel patterns across a 

population (e.g. Turner & Fouracre 1995). In 

this sample, the mean energy consumption 

by male travellers is significantly higher than 

that of women. Men make slightly fewer trips 

per day than women, but, on average, travel 

longer distances. This is consistent with 

previous findings indicating that, compared 

to men, women tend to make more non-work 

trips, and tend to visit destinations closer to 

the home (e.g. Venter et al 2007). Men also 

tend to use cars more: 28% of all trips by 

men are made by car, compared to 22% for 

women. 

A similar grouping by occupation type 

shows the importance of employment status 

as a predictor of transport energy consump-

tion. People who are employed and travel to 

work consume 47 MJ during travel per day, 

compared to 14 MJ for unemployed people 

or homemakers, and 9 MJ for students and 

scholars. Thus giving one unemployed 

person a job would tend to increase their 

transport energy use more than three-fold, 

everything else being equal, as employment 

is associated with both longer travel dis-

tances and more frequent use of the car. The 

strength and nature of the income effect on 

energy consumption is examined further in 

the following section.

DISAGGREGATE RELATIONSHIPS 

BETWEEN LAND USE, 

DEMOGRAPHICS AND TRANSPORT 

ENERGY CONSUMPTION

The objective here is to assess to what extent 

energy use during travel is affected by a 

household or individual’s own characteristics 

(such as income and gender), by zone-level 

land use characteristics (such as density), and 

by zone-level accessibility to surrounding 

opportunities. Some of the variables were 

already examined in the previous section, 

but we now include them in a multivariate 

model to assess the relative strength of 

each in explaining variations in energy use. 

Theory suggests that higher incomes are 

associated with higher energy use, as both 

car ownership and travel activity tend to 

increase as incomes grow. Higher densities 

are associated with lower energy use, all else 

being equal, because opportunities for walk-

ing and reducing trip lengths grow as more 

activities are available close to home. The 

influence of accessibility is unpredictable; 

being located in more accessible areas close 

to the city centre might lead to reduced trip 

lengths and thus reduced energy require-

ments, but it might equally lead to increased 

trip making as the opportunities for interac-

tion improve. 

As explained earlier, we first estimate a 

model of household vehicle ownership choice 

to examine the factors driving the decision 

to purchase a vehicle, and to supply an 

instrumental variable of predicted car own-

ership that can be used in the subsequent 

energy use models.

Household vehicle ownership choice

A multinomial logit (MNL) model of vehicle 

ownership choice was estimated, using a 

category-dependent variable with three 

potential outcomes, namely zero cars (the 

base case), one car, or two and more cars 

in a household. Household characteristics 

tested as explanatory variables included 

the monthly household income reported by 

respondents, the number of workers in the 

household, and household size, which was 

interacted with income to test the possibil-

ity that household size has a differential 

effect on vehicle ownership depending on 

socio-economic status. All correlations 

among explanatory variables are below 0.5, 

indicating sufficient independence. Zonal 

population density and job accessibility 

index variables were included as land use 

descriptors. 

Table 5 shows the parameter estimates 

and the t-values for each coefficient, as well as 

the goodness-of-fit statistics. Almost all coef-

ficients are significant, and the adjusted rho-

squared value of 0.31 is good for disaggregate 

Table 4 Comparisons of transport energy use and travel, by gender and occupation

Group
Mean energy use 
(MJ/person/day)

Mean number of trips 
(trips/person/day)

Mean daily travel 
distance 

(km/person/day)

Gender

Female 20.8 3.1 18.0

Male 28.9 2.9 19.3

Employment status

Working outside home 46.9 3.3 27.8

Not working outside home 13.8 3.3 14.7

Scholars and students 8.8 2.7 11.8

All individuals in sample 24.7 3.0 18.6

Notes:  ‘Working outside home’ includes part and full-time workers. ‘Not working outside home’ includes people working from 
home, home-makers, unemployed, retired.

Table 5 Estimation results: Multinomial logit model of vehicle ownership choice

Variables
0 vehicles

(base)

1 vehicle 2+ vehicles

Beta T-value Beta T-value

Household characteristics

No of workers 0.353 4.69** 0.703 6.79**

HH income (R’000s) 0.149 5.67** 0.264 9.57**

HH size (low incomea) –0.138 –3.92** –0.146 –2.50**

HH size (high incomea) 0.001 0.025 –0.047 –0.86

Zone characteristics

Population densityb –0.148 –9.183** –0.366 –11.945**

Job access indexc 6.847 4.476** 6.720 3.491**

Constants –1.003 –5.87** –1.898 –7.72**

Number of observations 1 648 534 411

Likelihood ratio test (full model)
Chi-squared =

1 475**

Adjusted rho-squared 0.314

** = Significant at 95%
a = Low-income households are below the median income of R2 500 per month; high-income is above
b = Population density of household zone (in 1 000 persons per square kilometre) 
c = Accessibility index by road to job opportunities (see text for explanation)
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choice models. Household income and the 

number of workers show a positive and strong 

relationship to vehicle ownership – this can 

be expected and agrees with evidence from 

previous studies. Household size has an 

interesting differential effect on the likelihood 

of buying a car, depending on the income. For 

low-income households, an increasing house-

hold size is associated with a lower likelihood 

of buying a car, even controlling for the level 

of income itself. Increasing household sizes 

indicate the presence of either more children 

or dependent elderly people in the family, who 

represent a competing claim on household 

resources, leaving less for the purchase and 

maintenance of a vehicle. Amongst high-

income households, however, the number of 

people in the household has no statistically 

significant relationship with the number of 

vehicles – evidently, once incomes are high 

enough, children’s impact on household 

resources is not significant enough to affect 

vehicle purchase decisions. 

The density of people in a household’s 

neighbourhood has a negative association 

with the likelihood of buying a vehicle, as 

was expected. This strong relationship is, 

however, not necessarily an indication that 

land use by itself influences car owner-

ship – the problem of self-selection bias 

described above prevents us from drawing 

any conclusions regarding causality. A look 

at population density figures for NMMA 

confirms that the highest density zones are 

found in lower income townships like Ibhayi 

and Motherwell. It is likely, therefore, that 

households who cannot afford to buy a vehi-

cle locate in higher density residential areas 

for a host of reasons, including historical or 

community ties, housing affordability, and, 

perhaps, the nearby location of social and 

educational opportunities.

The accessibility index, as a measure of 

relative location on a metro-wide scale, is 

significant and positive. The more accessible 

a home is via the road network, the more 

likely the household is to own one or more 

vehicles. The implication is, once again, not 

necessarily one of causality. The result might 

as well be an outcome of historic settlement 

patterns typical to the South African city: 

higher income households have historically 

had the opportunity to locate in more cen-

tral, more accessible places with good road 

networks, and are also more likely to afford 

and own more vehicles. It is important to 

note that there is at this stage no evidence 

that city-scale accessibility patterns influ-

ence vehicle ownership decisions – a more 

detailed investigation, controlling for socio-

economic variables and preferably using 

time-series data, is needed to examine such 

a question. 

Household transport 

energy consumption

Table 6 presents the results of a Tobit model 

of transport energy consumption estimated 

at the household level, and using household 

characteristics and spatial properties of the 

household’s home zone as independent vari-

ables. Household income is omitted from the 

model due to its high correlation with the 

expected vehicle ownership variable. 

Parameter estimates are largely signifi-

cant and of the expected sign, and the model 

performs well according to the likelihood 

ratio test. The positive signs of the household 

variables indicate that, all else being equal, 

households consume more transport energy 

if they have more workers or more people 

in the household overall. More workers 

mean more work trips – which we already 

showed tend to be energy intensive – while 

bigger households make more trips overall. 

Expected vehicle ownership dwarfs all 

other variables in the model (looking at the 

t-values), confirming that this is the single 

most important driver of household trans-

port energy use (Goyns 2008). 

The land use variables show interesting 

results. Population density of the home zone 

is insignificant: by itself it does not explain 

household transport energy consumption. 

Read in conjunction with the previous 

model’s results, this implies that the density 

effect is indirect rather than direct: lower 

density is associated with higher car owner-

ship, thus indirectly affecting travel patterns 

via mode use; but once the car is bought, 

lower population density is not associated 

with more trip-making. This is consistent 

with the findings of Mirrilees (1993) that 

factors such as the distribution and distances 

between different land uses, the location of 

services with respect to one another, and 

vehicle ownership play a larger role in trans-

port energy demand than urban density. 

The estimates for the job accessibility 

variables show that, indeed, a household’s 

location relative to job (and by implication 

other opportunities in the surrounding 

metro area) does affect the amount of 

transport energy consumed, even after 

controlling for vehicle ownership. The effect 

differs, however, across households. In order 

to account for a potential accessibility/

income relationship suggested by the MNL 

model, the accessibility index was interacted 

with a household income dummy which 

categorised the household as either below 

or above the median income level for the 

area. The parameter estimates show that a 

household’s accessibility significantly affects 

Table 6 Estimation results: Tobit models of transport energy consumption

Variables
Household model Individual model

Beta T-value Beta T-value

Household characteristics

No of workers

HH size

Expected vehicles owneda

15.181

2.865

104.54

6.45**

3.19**

20.83** 38.32 27.7**

Individual characteristics

Gender (1 = male)

Age 

Employed (1 = employed)

Studying (1 = scholar/student)

3.605

0.593

31.07

–10.48

2.67**

10.41**

16.68**

–4.17**

Zone characteristics

Population densityb 0.964 1.67 –0.066 –0.33

Job access indexc

 Low-income HHd

 High-income HHd

–31.304

–263.73

–0.55

–4.06**

97.68

–0.186

4.53**

–1.09

Constants –34.971 –5.92** –44.02 –12.80**

Number of observations 2 593 7 000

Number (%) of zero observations 363 (14%) 2 380 (34%)

Likelihood ratio test (full model)
Chi-squared =

1 201**
Chi-squared =

3 039**

** = significant at 95%
Dependent variable = Megajoules of transport energy consumed per day (per individual/household)
Empty cells denote variable not used in model
a = Estimated as 0*P(0) + 1*P(1) + 2.3*P(2+), where the values of P(n), the probability of owning n vehicles (calculated from the 
MNL model estimated above), and the value 2.3 is the mean number of vehicles owned by all households in the sample who own 
two or more vehicles.
b = Population density of household zone (in 1 000 persons per square kilometre) 
c = Accessibility index by road to job opportunities (see text for explanation)
d = Low-income households are below the median income of R2 500 per month; high-income is above
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transport energy consumption only if the 

household is high-income: richer households 

tend to consume less transport energy if 

they live in more accessible places. This 

suggests that, once a vehicle is available, 

households benefit from being located in 

more central, accessible places by gaining 

the ability to reduce their travel distances 

and, by extension, their transport energy 

consumption. Low-income households do 

not gain this benefit from being located in 

accessible places (as indicated by the non-

significant parameter estimate). The reason 

is probably that low-income households are 

more likely to have low transport energy 

consumption levels anyway – being more 

likely to walk or use public transport – so 

that any additional gains in travel distances 

do not impact energy expenditures 

significantly.

Individual transport energy 

consumption

The results of the transport energy con-

sumption model estimated at the individual 

level indicate similar findings (see Table 6). 

Once again, expected household car owner-

ship is the strongest predictor of energy use. 

Personal characteristics also explain energy 

use: all else being equal, being male, being 

older, and being employed raises a person’s 

energy expenditure, while being a student or 

scholar reduces energy use (relative to being 

unemployed). These findings are consistent 

with the results of the bivariate analyses 

presented earlier. 

Population density is again non-signifi-

cant. However, the interacted access index 

variable reverses its significance and sign: 

persons living in low-income households 

are now more likely to have higher energy 

expenditures, while no effect is found among 

high-income persons. What this might 

indicate is that accessibility is associated 

with increased travel activity among lower-

income people, as one might expect if there 

was significant latent or suppressed demand 

for travel among low-income persons, which 

is released once travel becomes easier or less 

expensive due to improved accessibility. This 

interpretation matches the general finding 

regarding the differential benefits of acces-

sibility suggested by the previous model: 

that accessibility plays a different role for 

different people, depending on their socio-

economic status and the extent of mobility 

they already enjoy. Among high-income (car 

owning) people, higher levels of access are 

associated with travel activity savings and 

a reduction in energy use; among lower-

income people, higher access is associated 

with increased motorised travel and higher 

energy expenditures.

CONCLUSIONS: IMPLICATIONS 

FOR URBAN MANAGEMENT 

Methodologically the study demonstrated 

the feasibility of using travel survey data to 

establish disaggregate patterns of transport 

energy consumption at the individual, house-

hold or neighbourhood levels. This provides 

opportunities for using existing travel data 

sources for establishing baseline data to moni-

tor impacts and changes over time. Marginal 

methodological improvements might come 

from improved data collection (especially the 

inclusion of vehicle size and fuel type data in 

questionnaires), and marrying travel route 

information with more accurate link-level 

speed information to improve the accuracy of 

vehicle energy consumption estimates. 

Our results clearly showed how skewed 

energy expenditure is across the population. 

Car users, although they make only 25% of 

trips, contribute 70% of the passenger trans-

port energy consumption in metropolitan 

Nelson Mandela Bay. The strong influence 

of car ownership and income level on energy 

consumption is a common finding globally. 

From the urban policy perspective this high-

lights the challenges inherent in addressing 

urban sustainability issues. If the objective 

were simply to reduce transport energy use, 

the largest pay-off would come from reduc-

ing private vehicle use through, for instance, 

the pricing of low-occupancy car travel. 

However, energy reduction goals are traded 

off against other policy objectives such as job 

creation. Workers spend three times more 

energy travelling daily than the unemployed; 

should residential and work locations remain 

fixed, employment gains will result in sig-

nificant increases in South Africa’s energy 

needs, unless a significant proportion of 

such travel can be shifted to non-motorised 

modes or to rail.

What might transport interventions do to 

energy consumption? Compared to the dif-

ference between cars and non-car modes, the 

difference in energy use between road-based 

public transport modes is relatively small. 

So is the average difference between peak 

and off-peak travel (although this difference 

might be larger in cities with higher conges-

tion levels than NMMM). More specifically, 

on a per-passenger-kilometre basis, the 

energy consumption of minibus taxi trips is 

similar to that of bus trips, due to the high 

energy efficiency of small vehicles and the 

relatively low occupancy of metropolitan 

bus services. This suggests that – in energy 

terms – little can be gained from travel 

demand management (TDM) strategies such 

as peak spreading, or from public transport 

interventions such as bus rapid transit (BRT), 

unless they are coupled with appreciable 

increases in bus occupancy, introduction of 

more fuel efficient vehicles, significant speed 

gains by avoiding congestion, and a signifi-

cant amount of switching from car (rather 

than taxi) to BRT. The predominant focus of 

first-generation BRT schemes on replacing 

minibus-taxi services is likely to do little for 

energy and environmental concerns unless 

they delay the car purchase decision among 

medium-income future car owners. This is a 

challenging proposition given the sensitivity 

of car ownership to income growth. 

A significant element of the urban sustain-

ability agenda is concerned with changing 

the density and form of land use in cities. 

Our findings suggest that such efforts will 

have a variety of impacts on travel behaviour, 

energy consumption and sustainability – and 

not all of it in a desirable direction. High 

neighbourhood densities are correlated with 

lower car ownership (and thus with reduced 

transport energy use), but the data does not 

allow us to establish causality – in other 

words to conclude that densification strategies 

would necessarily lead to better sustainability 

outcomes. Further research using time-series 

data (perhaps using repeated panel surveys) is 

needed to allow researchers to tease out the 

effects of density (and other land use factors) 

from other historic and taste-based variables.

Metropolitan-wide accessibility – the 

ease of reaching job (and other) opportuni-

ties within a reasonable travel time – does 

seem to affect travel behaviour and transport 

energy consumption. An important finding 

is that this relationship appears to depend on 

the socio-economic status of a household or 

individual. Among high-income households, 

better accessibility is associated with lower 

travel. It is likely that access-enhancing strat-

egies, such as those promoting mixed-use 

developments in accessible, centrally located 

nodes, would reduce driving distances and 

the energy and environmental costs of travel. 

However, the same accessibility improve-

ments could have the opposite effect on 

lower-income (non-driving) households, as 

the time or cost savings brought about by 

the access improvements could be converted 

into increased travel, releasing some of the 

pent-up demand for mobility. This is where 

coordination between land use and transport 

is key: attractive, upgraded public transport 

should then be available to capture this 

additional demand in energy-efficient ways. 

Otherwise, uncoordinated land use measures 

could have unintended consequences and 

contribute to deteriorating sustainability 

outcomes in our cities.
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