
Computational Analysis of Medieval Manuscripts: A New

Tool for Analysis and Mapping of Medieval Documents to

Modern Orthography

Mushtaq Ahmad

(Dept. of Computer Science, University of Pretoria, Pretoria, South Africa

Dept. of Computing Services, Athabasca University, Athabasca, Canada

mushtaqa@athabascau.ca)

Stefan Gruner

(Dept. of Computer Science, University of Pretoria, Pretoria, South Africa

sgruner@cs.up.ac.za)

Muhammad Tanvir Afzal

(Dept. of Computer Science, Mohammad Ali Jinnah University, Islamabad

Pakistan

mafzal@jinnah.edu.pk)

Abstract: Medieval manuscripts or other written documents from that period contain
valuable information about people, religion, and politics of the medieval period, making
the study of medieval documents a necessary pre-requisite to gaining in-depth knowl-
edge of medieval history. Although tool-less study of such documents is possible and has
been ongoing for centuries, much subtle information remains locked such manuscripts
unless it gets revealed by effective means of computational analysis. Automatic analy-
sis of medieval manuscripts is a non-trivial task mainly due to non-conforming styles,
spelling peculiarities, or lack of relational structures (hyper-links), which could be used
to answer meaningful queries. Natural Language Processing (NLP) tools and algo-
rithms are used to carry out computational analysis of text data. However due to high
percentage of spelling variations in medieval manuscripts, NLP tools and algorithms
cannot be applied directly for computational analysis. If the spelling variations are
mapped to standard dictionary words, then application of standard NLP tools and al-
gorithms becomes possible. In this paper we describe a web-based software tool CAMM
(Computational Analysis of Medieval Manuscripts) that maps medieval spelling vari-
ations to a modern German dictionary. Here we describe the steps taken to acquire,
reformat, and analyze data, produce putative mappings as well as the steps taken to
evaluate the findings. At the time of the writing of this paper, CAMM provides ac-
cess to 11275 manuscripts organized into 54 collections containing a total of 242446
distinctly spelled words. CAMM accurately corrects spelling of 55% percent of the ver-
ifiable words. CAMM is freely available at http://researchworks.cs.athabascau.ca/

Key Words: MPEG spelling variations, mapping, phonetic algorithms

Category: I.7.1, I.7.2, I.7.m, J.5 umanities

Journal of Universal Computer Science, vol. 18, no. 20 (2012), 2750-2770
submitted: 24/1/12, accepted: 18/9/12, appeared: 1/12/12 © J.UCS



1 Introduction

Medieval manuscripts form the majority of the remaining and preserved docu-

ments available to us today from that period. The primary use of manuscripts

was to preserve ideas, knowledge, and facts, which the writers or their superi-

ors believed were worth preserving. There are also letters through which people

communicated, including contracts, bills, or other deeds of legal relevance. Those

documents provide a glimpse of the people, society, political and religious beliefs

and affairs of their era. When studied collectively, they offer the possibility of dis-

covering interesting larger ’patterns’ on the subjects discussed in the individual

manuscripts.

However, historical documents are difficult to analyze. They were handwrit-

ten on skin (parchment) or paper. Over centuries, portions of those documents

deteriorated physically which makes their writing difficult to decipher, even with

help of advanced scanner and optical character recognition software. The writers

of those documents are typically not known by name, and the context of their

writing is often unclear from our contemporary point of view.

European orthography was not standardized until about two centuries ago.

In medieval Europe, manuscripts were often written to be read out loud rather

than being studied quietly; the general public (including even some members of

the political leadership) was mostly illiterate. Writing was restricted to impor-

tant matters only, since the writing material was expensive to obtain. Moreover,

the medieval world was to a large extent regionally confined, with only little

trans-regional mobility, such that many regional customs, habits and dialects

were preserved. These factors also contributed to the delay of standardization

in orthography.

In Germany it was only in 1880 when the first documented comprehensive

effort to standardize the German orthography was released as “Vollständiges Or-

thographisches Wörterbuch der deutschen Sprache” (complete orthographic dic-

tionary of the German language). This is now commonly known as “the Duden”.

Modern German orthography is nowadays regulated by the “Rat für deutsche

Rechtschreibung”, RdR (council for German orthography).

A wide range of orthography and linguistic phenomena can be found in me-

dieval documents. They result from individual and regional orthographical habits

(as mentioned above), and also from local variation in the language itself. Study

of medieval documents thus requires dealing with spelling variations [PE+08],

along with linguistic variations. Linguistic variations can be phonetic, morpho-

logic, lexical, grammatical or semantic.

In the absence of standardized orthography, writers relied much on the sounds

of pronunciation of the words to spell them out in writing. It is thus conceiv-

able that the spelling of writers was influenced by their local dialects. Dialects

differ in intonation, pause, and stress, (sometimes even in dictionary and gram-

2751Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



mar), but the general phonetic sequence usually remains the same (or at least

sufficiently similar). For example, when stretched, the word “haus” can be pro-

nounced as: haaoos, or: huus, but in both cases the phonetic key remains the

same, namely: ‘HS’. In this context the goal of our work is to normalize his-

toric spelling variations in historic texts to contemporary orthography, mainly

for these two reasons:

– to make digital representations of historic texts better search-able, such that

contemporary search-words can be used to find their historic counter parts,

and

– to present historic texts more legibly to lay readers who are interested only

in the contents however not in the spelling variations of those documents.

Because it is likely that a typical user will not be able to discern all possible

spelling variations, for example: ‘haus’ or ‘hus’, it is necessary that a mean is

devised wherein a user can receive a set of suggested spelling variations for a

particular word that is retrieved from the ample database store of medieval

documents.

Since a phonetic key can help to identify records across different dialects,

phonetic key mapping could aid in the mapping of variant grapheme sets to

standardized dictionaries. To discover spelling variations or phonetic keys gen-

erally text analysis algorithms are applied to modern printed text whereby the

assumption is that the text is grammatically and lexically correct with respect

to contemporary standards and has been proofread for standard-conformance

before publication. For this reason most text analysis algorithms produce aber-

rant results when applied to documents that are rich in spelling variations and

regional peculiarities such as medieval manuscripts.

Orthography does not have to provide a unique phonemic description of the

words, and various different graphemes could be used to represent the same

phoneme. For example, the graphemes ‘kapitel’, ‘kapittel’, and ‘capitel’ all rep-

resent the phoneme: KPTL. However only the grapheme sequence ‘kapitel’ can

be found in nowadays German dictionary. Thus the graphemes defined in a mod-

ern dictionary are only a subset of all graphemes that could possibly represent

a phoneme. Thus, a German dictionary word is simply a grapheme sequence,

which has been designated to be the correct spelling by the RdR. Based on this

observation, it could be postulated that ‘correcting’ a spelling variation simply

requires mapping the alternative grapheme sequence (variation) to the normal-

ized grapheme sequences (word defined in a dictionary or used in a corpus).

A comprehensive modern dictionary provides a list of words together with

their definitions, etymology, phonetics, pronunciation, and lexical information.

However, a dictionary does not provide all possible morphological forms of these

words. A larger set of different morphological forms of words can be found in a

2752 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



large corpus such as “Europarl” Corpus [Koe05]. Thus a reference system based

on a dictionary and corpus is more effective than dictionary or corpus alone.

As mentioned above, the purpose of our work is motivated by the desire to

make valuable historic documents better accessible to a wider audience of mod-

ern readers, who cannot cope with the peculiarities of medieval syntax, by trans-

forming such documents to modern orthographic forms, while still preserving and

presenting the original manuscript for users or viewers who take advantage of

the search function. In the work carried out for this paper, word extraction from

11275 manuscripts resulted in 242446 unique grapheme sequences. Mapping so

many grapheme sequences manually is not feasible and calls for the application

of tool-supported mapping algorithms. For a meaningful mapping, some com-

mon property shared by two graphemes in question is required. This common

property, functioning like a meta-model, could be a phoneme, character distance,

neighborhood profile, grapheme profile or some other statistical feature linking

the two.

2 Related Work

Work in the wider context of our paper, with the aim of providing any software

and computational support methods to the faculty of history, is called History-

Informatics [BVG08].

As far as the particular topic of spelling variations is concerned, [EGF06]

describes a probabilistic approach to search terms to generate possible historical

spelling variants and produce a list of transformation rules. Spelling variants

are matched against a dictionary whereby tokens are excluded. All remaining

tokens are manually processed, and a list of transformation rules is produced.

In [PL+06] we can find an engine for “Rule-based search in text databases with

nonstandard orthography” (RSNSR). The rules used to find spelling variants

are derived manually and statistically. In [PE+08] the automatic versus man-

ual detection of spelling variations in English and German historical texts is

discussed. Although the problem of normalizing spelling variations in historical

documents is different from spelling correction in modern orthography, many

classical approaches to spelling correction, such as the use of phonetic keys or

the well-known Levenshtein distance [Lev66], can be applied in our context, too.

The problem of spelling variations in old German is explained in detail by

[HH+07] from a linguistic perspective. There we can also find a wider survey of

research in this field. The spelling variation problem has been classified into eight

categories: new word form, Latin words, variations in word splitting, partial new

word form, variation in prefixes or suffixes, typesetting variations, graphemic-

phonetic variations, and new characters. From the list of those eight problems,

our CAMM tool (as described in the subsequent section) attempts to solve two,

namely graphemic-phonetic variations and new characters.

2753Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Nearly every phoneme can be represented by different grapheme combina-

tions. At the same time a particular phoneme has its unique phonetic key. Based

on this premise, many of the spelling correction algorithms use phonetic keys

in one or more steps. By far the most widely used phonetic key generation al-

gorithm is Metaphone [Phi90]. Several variants of Metaphone, such as double

Metaphone or Cologne Metaphone based on Postel’s algorithm [Pos69], have

been published over the years for various application purposes.

Computational spelling correction methods are based on either distance-

based or similarity-based methods. Similarity-based methods compute dictio-

nary word hash keys to compute a similarity score used to evaluate similarity.

Soundex [Knu73] and Speedcop [PZa84] are similarity-based phonetic algorithms

for spelling correction. Distance-based methods, on the other hand, compute

distance between dictionary words and misspelled words. Correct [Kes04] and

GNU Aspell [Atk11] are distance-based methods. Those algorithms have largely

been used to correct the spelling of words in modern languages and are also

applied in the context of automated speech recognition, as further explained in

the following:

– Soundex encodes consonants and vowels if a vowel is the first letter in the

word. The encoded sounds are used to search for correctly spelled words.

Although Soundex is designed for English, it can be adapted to be used

on other languages. Daitch-Mokotoff Soundex [Mok06] is a refinement of

Soundex to make it more suitable for German and Slavic words. The Klner

Phonetik [Pos69] is particularly suitable for German words.

– Speedcop computes a key for every word in the dictionary by taking the first

letter followed by every consonant in the order it is written, followed by the

vowels in the order they appear. Each letter can appear only once in the

key. A key is generated for the word in question and the keys are compared

with the keys in the dictionary. The key can be varied moving forward and

backward, to find suitable candidates.

– Correct is based on a model of sound-spelling correspondences in the En-

glish orthography. It ranks misspellings by the Levenshtein distance from

potentially correct words, combined with the frequency of sound-spelling

correspondences. The ranking is then used to compute the most probable

correct spelling.

– Aspell is the standard GNU spelling corrector. It uses the Metaphone algo-

rithm to generate phonetic keys and compares those keys against the pho-

netic keys of a given dictionary. Then it computes the number of changes

required to change the string to a dictionary string. The string with the

lowest number of required modifications is returned as the most probable

correct spelling.

2754 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Although the authors of [HH+07] have explained the problem in detail and pro-

pose conceptual solutions, a software tool was hitherto not provided. POM, the

Phonetic Orthography Mapper, was our own first software tool that attempted

to solve the problem of normalizing spellings in medieval historical documents

[ARG11]. POM uses phonetic keys and computes the likelihood of a word being

spelled with a certain grapheme sequence on the basis of Hidden Markov Model

(HMM) profiles to map the spelling variations. Our CAMM tool, as described

in the remainder of this article, builds on POM but it also provides a word-by-

word lexical and statistical analysis. Moreover it also provides a user-friendly

interface to a computational analysis tool for medieval manuscripts. The aim

of CAMM, in comparison to POM [ARG11], is not only to normalize medieval

spelling variations, but also to enable historians to study the ’computationally

enhanced’ historical documents via a set of computational methods, lexical, and

statistical data provided by the software tool.

3 CAMM: Computational Analysis of Medieval Documents

As mentioned above the purpose of the CAMM tool is not only provide com-

putational analysis of medieval German manuscripts, but also to allow users to

search, investigate, and annotate the manuscripts. However, the normalization

of spelling variations was our main concern for this paper.

3.1 Data Source and Data Processing

Data in the Monasterium project [Kra09] [Hei10] are stored in the XML for-

mat defined by the Charter Encoding Initiative (CEI) [BVG08]. Currently the

archive contains approximately 200000 digitalized historical manuscripts. This

data source was chosen because of the contents of the data, data accessibility,

relevance to our research project, along with the suitable format the data are

stored in. Monasterium’s XML archive contained 198502 XML documents at the

time of our most recent access. Those documents were transferred into MySQL

database storage. For our experiments 11275 manuscripts, written in medieval

German, were chosen from that database. 5815163 words were extracted from

the manuscripts and their frequencies were recorded. Overall there were 242486

uniquely spelled graphemes forming 88579 phonemes. On that data basis, the

following six steps, further explained in the subsequent sub-sections, had to be

carried out to make the CAMM tool operational:

(1) ’Shredding’ XML documents to SQL

(2) Annotating paragraphs, sentences, phrases, and words from manuscripts

(3) Finding a German dictionary and converting it to a suitable SQL format

(4) Extracting paragraphs, sentences, phrases and words from Europarl corpus

2755Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



(5) Devising a scoring system to rank the graphemes

(6) Creating a web interface to show the findings

3.2 Shredding XML documents to SQL

XML is useful for storing data with annotations and enabling communication

between otherwise incompatible systems or data archives. Until recently fetch-

ing and manipulating data in XML was slow, thus making it unsuitable for

our computationally intensive research works. However, well-known newer XML

database systems such as eXist, Sedna, or BaseX have overcome that shortcom-

ing by using high performance indexers such as Lucene. Thus the conventional

argument that XML is too slow no longer holds true. Relational databases on

the other hand have extensive established libraries, support, documentation, and

they are flexible and easier to manage and administer locally. Our data analysis

requires strong relational algebra, thus relational databases are the best choice

for powerful relational algebra features. For this reason MySQL, an open source

relational database management system, was chosen for our project.

A shredder is software that distributes an XML document to SQL tables.

Different groups have created numerous shredders over the years such as XLight

[ZHS10], XPEV [QZ+05], XParent [JL+02], XRel [YA+01], XTRON [MLC08],

or INode [LNg04]. However, none of those could handle the tri-layer complex

XML structure of Monasterium data which for every manuscript is stored across

three different XML files in different directories. To overcome this hurdle, a new

shredder called “Document, Path, Egde, and Value” (DPEV) was programmed

to shred XML to SQL. Another program was written to convert the DPEV SQL

tables to a normalized data model.

Figure 1 depicts the data model designed for CAMM. The German dictionary

and the Europarl corpus have been used along with three algorithms (Meta-

phone, double Metaphone, and Cologne Phonetic) and the results have been

stored in the mom word table after processing the manuscript data.

3.3 Annotation of Paragraphs, Sentences, Phrases, and Words

Human Language is repetitive (redundant). For this reason, frequency analysis is

important and fruitful in automated text analysis. A deterministic ‘sliding win-

dow’ algorithm was implemented to annotate paragraphs sentences and phrases.

Words are extracted and their frequency and location is annotated such that

each word can be mapped back to every sentence and paragraph of manuscript

that it occurred in. In addition, the neighborhood of each word is also recorded.

‘Neighborhood’ refers to information such as words that appear to the right and

left of the word, how often the word is the first or last word in a sentence, or its

proximity to syntactic symbols such as a comma or question mark. Large volume

2756 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 1: Data Schema of CAMM

of data (13.2 Gigabytes) of descriptive data is collected at this stage, which is

used in later phases. An exhaustive explanation of every type of data is beyond

the scope of this paper. However, this information is available online in the help

and documentation files.

Until the universal usage of standardized orthography, graphemes tended to

evolve faster than phonemes. This makes phoneme computation, annotation, and

mapping critical for spelling variation mapping. As mentioned above the Meta-

phone algorithm, in addition to the Double Metaphone and Cologne Metaphone,

were used to calculate and store phonemes for all words in the freedict dictio-

nary, the Europarl corpus and the manuscripts. The algorithms map grapheme

2757Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



sequences to phoneme sequences. For example, ‘p’ maps phoneme P unless ‘p’

is followed by ‘h’ such that it would map to F. Metaphone is specific to En-

glish and thus produces aberrant results when used with other languages. For

example, French ‘ch’ sounds like English ‘sh’, and German ‘ch’ (which has two

different context-dependent pronunciations) can sound like Russian ‘kh’. Sev-

eral Metaphone variations have been proposed over the years such as double

Metaphone, triple Metaphone, and Cologne Metaphone. They all attempt to

extend Metaphone by including sound representation of languages other than

English. CAMM allows users to use Metaphone, double Metaphone, or Cologne

Metaphone, and to compare results from each of them.

3.4 Dictionary

Since spelling correction in our work is based on the premise that words from

manuscripts shall be mapped to dictionary words, a suitable dictionary is essen-

tial. The dictionary must be in a format that can be converted to SQL since the

mapping comparison needs to be done in SQL. Wörterbuchnetz [Bra07] would

provide the best dictionary for this purpose, however it is copyrighted and we

were unable to gain permission to use it. Currently CAMM uses an open-source

dictionary, KTranslator [Fer07] that provides its content in a tab-delimited for-

mat. An auxiliary program was written to convert tab-delimited text to SQL.

81542 distinct grapheme sequences were extracted from that dictionary. Single

and double Metaphone results were computed for each word. A dictionary pro-

vides a fairly complete set of words, but it does not provide all morphological

forms of the words. The already mentioned Europarl corpus [Koe05] contains

almost 40 Million words in 348936 distinct grapheme sequences, thus providing

a better coverage of the different morphological forms.

3.5 Mapping of Spelling Variations

Grapheme sequences (words) from manuscripts are mapped to grapheme se-

quences in the dictionary based on their score. The score is based on a number

of factors. Phonemes are used to filter possibilities. It is not computationally

feasible to compare 242000 words with 82000 dictionary words and to perform

complex statistical operations on every combination. Therefore the comparisons

are limited to phoneme identities of the graphemes. Grapheme frequency, neigh-

borhood analysis, tri-word frequency, and profile scores are used to score the

grapheme combinations. If the score of the best result is not better by at least

one order of magnitudes the top-scoring graphemes are returned. Suppose there

is an alternate grapheme sequence, then the following steps are carried out to

map it to a grapheme from a dictionary:

(1) Select all words from the dictionary with the same phoneme sequence,

2758 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



(2) Compute the string similarities for each grapheme sequence,

(3) Select the grapheme sequence with maximum similarity,

(4) If several sequences are selected compute the smallest Levenshtein distance,

(5) Add the word and neighborhood profile,

(6) Compute the score,

(7) Iterate steps 2→6 until every grapheme sequence is accounted for,

(8) Print all results until there is a score difference of one order of magnitude.

3.6 Module Structure

CAMM is a computational analysis tool-kit with a convenient user interface.

The interface allows users to select data sets from a repository of data sources

and then to apply different algorithms to the chosen data set. The results of the

investigation are stored in a database. The results of the finding are then ren-

dered by a Web API and made available online. Figure 2 illustrates the top-level

layout of the software system. CAMM can handle XML and symbol-separated

files such as tab-delimited or CSV files. Results of the findings are not presented

in a static format to the users. Users can interact with CAMM to select a dictio-

nary or corpus, a Metaphone algorithm, and manuscript texts. For each set of

choices users are provided with detailed lexical and statistical analyses. CAMM

provides two different functionalities from software design perspective, namely:

computation and presentation. The one is to analyze, the other one is to store

the results and to make them available to the research community for further

information retrieval. For a computational analysis, CAMM creates new tables

for every experiment. The parameters must be provided in the command line by

the user conducting an experiment. Once a computational experiment is com-

plete and the generated data is stored in the database, the user can choose to

export the data to existing tables used by the modules shown in Figure 3. This

operation makes the data available for querying and online viewing.

4 User Interface of CAMM

Figure 4 shows the home page of CAMM. Manuscripts are organized into col-

lections. Only those collections, in which text versions of the content (a.k.a.

‘tenor’) are available, are displayed in CAMM. This page provides easy access

to the collections. As mentioned above, CAMM allows users to try out differ-

ent computational analyses and view statistical and lexical data on the analysis

and the manuscripts. Users are required to choose a manuscript, a Metaphone

algorithm, manuscript text, and a dictionary or corpus. Default selections are

provided as shown in Figure 5. The same figure also shows different options for

user to start the process of annotation. The user can select any of the algorithms

such as: metaphone, double metaphone and cologne. The user can select types of

2759Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 2: Module Structure of CAMM

texts from the options: original and corrected with diphtong. Furthermore, the

user can select a dictionary from options: German dictionary and Europarl dic-

tionary. The tool has the default selection of these options that is metaphone,

original text, and Europarl corpus, and user has the choice to select different

combinations to see the results produced by the tool.

Once a selection has been made, the user is provided with the title, abstract,

manuscript text, corrected manuscript text, annotation form and some statistics

about the analysis, as depicted in Figures 6-12. Figure 6 displays the selected

manuscript in which each word has a link. The user can click on any linked word

to see the statistical analysis of the word. Figure 7 shows a detailed statistical

analysis of a selected word, ‘haben’. The occurrence, the metaphone, and the

double metaphone of this word are listed. Other listed dictionary candidates

that also include Europarl corpus candidates help the user to find the very close

spellings of the chosen word for annotation. In some circumstances, when CAMM

is not able to reliably map spellings or to find any suitable mapping candidate,

the unmapped words are colored red as shown in Figure 8.

On the screen shown in Figure 9 the user has an option to annotate the

words after entering a master key. The user can annotate a whole manuscript

or can make partial annotations, word by word. In Figure 9 the user has option

to annotate the whole manuscript, whereas in Figure 10 the user has option

2760 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 3: Class Diagram of CAMM

Figure 4: Listing of Manuscript Collections

to annotate word by word. Only an authorized user (who has the key) will be

able to annotate the word(s) with further options. The user can correct the

annotated word in case when the word is not annotated correctly at first place,

where the user can use the delete option and re-annotate that word. The result

2761Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 5: Manuscript List from the ‘127 Spital am Pyhrn Can’ Collection

Figure 6: Links to lexical and statistical Analysis Results per Word

of the selected options will be as shown in the Figure 11. Word coverage only

shows how many words the algorithm attempted to correct. The result of the

selected algorithm to compute the phonemes by using the dictionary shows the

words spelled correctly and incorrectly. Figure 12 shows a snippet of a scanned

manuscript from the middle ages.

5 Assessment of Mapping Accuracy

We have selected the two manuscripts named ‘469 Spital am Pyhrm Can’ and

‘127 Spital am Pyhrn Can’ from the list of available manuscripts, to observe

the results of words corrected accurately, along with the words corrected inaccu-

rately. The user has seven unique options, but must select three simultaneously

2762 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 7: Lexical and Statistical Analysis of the Grapheme Sequence

Figure 8: Spelling partially corrected by the chosen Algorithm

to view the output results. As shown by the twelve rows of the table in Figure

13, the user must run the sequence twelve times to confirm the results.

In the table of Figure 13 the sum of words corrected accurately and words

corrected inaccurately is not equal to the word coverage because correction is

based on the words annotated, which should be slightly different from word

2763Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 9: Annotation Window for the Expert (Historian)

Figure 10: Input Mask for Word Annotations

coverage. For example: With m.o.p the word coverage is 195, and the sum of

words corrected accurately and words corrected inaccurately is 156. So there are

39 words which were not annotated during that process. The calculation behind

that table is based on the total number of original text words, here 248. The

legends for rows in tables and X-Axis for the subsequent graphs are as follows:

— m.o.g: Metaphone algorithm, original text, German dictionary

— m.o.e: Metaphone algorithm, original text, Europarl corpus

2764 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 11: Result Display with Metaphone and German Dictionary

Figure 12: Scanned Original from Collection ‘5466 Ardagger Can’

— m.d.g: Metaphone algorithm, diphtong corrected text, German dictionary

— m.d.e: Metaphone algorithm, diphtong corrected text, Europarl corpus

— d.o.g: double Metaphone algorithm, original text, German dictionary

— d.o.e: double Metaphone algorithm, original text, Europarl corpus

— d.d.g: double Metaphone algorithm, diphtong corrected text, German dict.

— d.d.e: double Metaphone algorithm, diphtong corrected text, Europarl corp.

— c.o.g: Cologne Metaphone, original text, German dictionary

— c.o.e: Cologne Metaphone, original text, Europarl corpus

— c.d.g: Cologne Metaphone, diphtong corrected text, German dictionary

— c.d.e: Cologne Metaphone, diphtong corrected text, Europarl corpus

The Cologne phonetic algorithm, shown in the graph of Figure 14, is a suitable

selection wherein a 90% percent or higher word coverage dictionary is consulted.

It does however, produce adequate results with regards to validity of revision

since the correction accuracy is nearly 4% percent less than m.o.g. Metaphone,

utilizing a German dictionary seems to have a higher effectiveness than the other

two options (double Metaphone and Cologne Phonetic).

Amongst others we also experimented with another manuscript identified as

‘127 Spital am Pyhrn Can’. The table shown in Figure 15 outlines the output

in terms of word(s) corrected accurately, word(s) corrected inaccurately, as well

as word coverage. We observed that the Europarl corpus and the Cologne Meta-

2765Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 13: Words Statistics for Manuscript ‘469 Spital am Pyhrm Can’

Figure 14: Words Statistics for Manuscript ‘469 Spital am Pyhrm Can’

2766 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 15: Words Statistics for Manuscript ‘127 Spital am Pyhrn Can’

phone on the diphthong algorithm had the highest word coverage. Likewise, an

improvement is noted in the corrected inaccurately word(s), at 61% in word(s)

corrected accurately; at 39% an improvement in corrected inaccurately word(s).

The graph of Figure 16 portrays that c.d.e, c.o.e, d.d.e, d.o.e, and m.o.e are

producing about 60% word(s) accurately corrected.

6 Conclusion and Outlook to Future Work

Digitalization of historical texts is essential to save existing volumes of historical

text from ruin and to preserve it for progeny. Digitalization should be conducted

in a ’smart’ way such that it enables further and more subtle information ex-

traction. However, even when digitalization is conducted properly, computational

analysis and information extraction is obstructed by the spelling variations prob-

lem. The automated normalization of medieval spelling variations is a rather new

sub-field of History-Informatics wherein only little research has been conducted

so far.

2767Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



Figure 16: Words Statistics for Manuscript ‘127 Spital am Pyhrn Can’

CAMM is, as far as we know, the first tool available to provide support in

this regard. In preliminary earlier work [ARG11] we had developed the Pho-

netic Orthography Mapper (POM) with phonetic analysis and machine learning

techniques. Our current CAMM system, as described in this paper, extends our

previous work in several ways: a number of new algorithms were implemented

and evaluated, a more comprehensive online analysis tool kit was developed,

several dictionaries were incorporated, etc.

In [HH+07] eight categories of the spelling variation problems were discussed.

The new CAMM tool tackles two of those eight problem categories, namely

graphemic-phonetic variations, and new-character problem. Moreover, CAMM

also allows scholars of medieval history to annotate manuscripts through a user-

friendly web interface, according to the practical needs that had been identified in

[BVG08]. Currently CAMM allows users to experiment with different dictionar-

ies, text editing, and Metaphone algorithms. A learn-algorithm adapts itself to

the user’s choices. For every experiment the user is provided with detailed word-

by-word lexical and statistical analysis results. CAMM currently provides access

to 11275 manuscripts organized into 54 collections with a total of 242446 dis-

2768 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



tinctly spelled words. In its current version, CAMM accurately corrects spelling

of approximately 55% percent of the verifiable words.

From a technical perspective, the CAMM tool kit is characterized by a mod-

ular and thus extensible software architecture. Further dictionaries, algorithms,

statistics packages, and other features can be easily added without compromis-

ing the existing structure. The performance and accuracy of CAMM is thus

expected to improve over time. To date the most critical limitation in the tool

is the scarcity of human annotations in the documents to be processed. CAMM

normalizations are partly based on POM, which is based on a learning algo-

rithm. As the quantity and quality of human-generated annotation in the input

documents increases, CAMM would also yield better normalization results.

Acknowledgements

Thanks to Georg Vogeler for his valuable suggestions about the algorithms.

Thanks also to Jochen Graf and the Monasterium consortium for having given

us access to the medieval dataset and for sharing valuable information about the

existing EditMOM tools. Thanks to the Athabasca University, for providing a

server to launch this tool, and thanks to the Web Unit of the Computing Services

Department at Athabasca for keeping the link alive.

Definitions

Corpus: Collection of linguistic data compiled from written or transcribed text

Grapheme: Sequence of lexical symbols to represent a phoneme

Orthography: Set of lexical norms for spelling words consistently

Phoneme: Distinct unit of sound in a natural language

Word: Sequence of graphemes to represent a phoneme or a phoneme sequence

References

[ARG11] Mushtaq Ahmad, Nazim Rahman, Stefan Gruner: “A Phonetic Approach to
Handling Spelling Variations in Medieval Documents”, Proceedings SAICSIT’11
Annual Conf. of the South Afr. Inst. of Comp. Sc. and Inf. Techn., Cape Town,
South Africa, pp. 263-267, 2011.

[Atk11] Kevin Atkinson: “GNU Aspell”, 2011, http://aspell.net/
[BRa07] Thomas Burch, Andrea Rapp: “Das Wörterbuch-Netz: Verfahren, Methoden,

Perspektiven”, Post-Proceedings .hist’2006, Historisches Forum 10/1, pp. 607-627,
2007.

[BVG08] Benjamin Burkard, Georg Vogeler, Stefan Gruner: “Informatics for Histori-
ans: Tools for Medieval Document XML Mark-Up, and their Impact on the History
Sciences”, Journal of Universal Computer Science 14/2, pp. 193-201, 2008.

[EGF06] Andrea Ernst-Gerlach, Norbert Fuhr: “Generating Search Term Variants for
Text Collections with Historic Spellings”, Proceedings ECIR 28th European Conf.
on Inf. Retrieval Research, pp. 49-60, 2006.

2769Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...



[Fer07] Raul Fernandes: “KTranslator”, 2007, http://ktranslator.sourceforge.net/
[HH+07] Andreas Hauser, Markus Heller, Elisabeth Leiss, Klaus U. Schulz, Christiane

Wanzeck: “Information Access to Historical Documents from the Early New High
German Period”, Proceedings Dagstuhl Seminars #06491, Schloss Dagstuhl, Ger-
many, 2007.

[Hei10] Karl Heinz: “Monasterium.net: Auf dem Weg zu einem europäischen Urkun-
denportal”. Proceedings 12th Commission Internationale de Diplomatique, pp.
139-145, 2010.

[JL+02] Haifeng Jiang, Hongjun Lu, Wei Wang, Jeffrey Xu Yu: “XParent: An Efficient
RDBMS-Based XML Database System”, Proceedings 18th Internat. Conf. on Data
Eng., San Jose, USA, pp. 335-336, 2002.

[Kes04] Brett Kessler: “A Spelling Corrector incorporating Knowledge of English Or-
thography and Pronunciation”, 2004, http://spell.psychology.wustl.edu/correct/

[Knu73] Donald Knuth: “The Art of Computer Programming” (Vol. 3), Addison-
Wesley, 1973.

[Koe05] Philipp Koehn: “Europarl: A Parallel Corpus for Statistical Machine Transla-
tion”, Techn. Rep., 2005, http://www.statmt.org/europarl/

[Kra09] Adelheid Krah: “Monasterium.net: Das virtuelle Urkundenarchiv Europas”,
Archivalische Zeitschrift 91 (Sonderdruck), pp. 221-246, 2009.

[LNg04] Hoi Kit Lau, Vincent Ng: “INode: an effective Approach for storing XML
using Relational Database”, Internat. Journ. of Web Eng. and Techn. 1/3, pp.
338-352, 2004.

[Lev66] Vladimir Levenshtein: “Binary Codes capable of correcting Deletions, Inser-
tions and Reversals”, Soviet Physics Doklady 10/8, pp. 707-710, 1966.

[MLC08] Jun-Ki Min, Chun-Hee Lee, Chin-Wan Chun: “XTRON: An XML Data Man-
agement System using Relational Databases”, Inf. and Softw. Techn. 50/5, pp.
462-479, 2008.

[Mok06] Gary Mokotoff: “Soundexing & Genealogy”, 2006, http://www.avotaynu.com/
soundex.htm

[Phi90] Lawrence Philips “Metaphone Algorithm” 1990, http://aspell.net/metaphone/
[PE+08] Thomas Pilz, Andrea Ernst-Gerlach, Sebastian Kempken, Paul Rayson, Dawn

Archer: “The Identification of Spelling Variants in English and German Historical
Texts: Manual or Automatic?”, Lit. Linguist Comp. 23/1, pp. 65-72, 2008.

[PL+06] Thomas Pilz, Wolfram Luther, Norbert Fuhr, Ulrich Ammon: “Rule-based
Search in Text Databases with Nonstandard Orthography”, Lit. Linguist Comp.
21/2, pp. 179-186, 2006.

[PZa84] Joseph J. Pollock, Antonio Zamora: “Automatic Spelling Correction in Scien-
tific and Scholarly Text”, Comm. of the ACM 27/4, pp. 358-368, 1984.

[Pos69] Hans Joachim Postel: “Die Klner Phonetik: Ein Verfahren zur Identifizierung
von Personennamen auf der Grundlage der Gestaltanalyse”, IBM-Nachrichten 19,
pp. 925-931, 1969.

[QZ+05] Jie Qin, Shu-Mei Zhao, Shu-Qiang Yang, Wen-Hua Dou: “XPEV: A Storage
Model for Well-formed XML Documents”, LNCS 3613, pp. 360-369, 2005.

[MLC08] Jun-Ki Min, Chun-Hee Lee, Chin-Wan Chun: “XTRON: An XML Data Man-
agement System using Relational Databases”, Inf. and Softw. Techn. 50/5, pp. 462-
479, 2008.

[YA+01] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, Shunsuke Ue-
mura: “XRel: A Path-Based Approach to Storage and Retrieval of XML Documents
using Relational Databases”, ACM Trans. on Internet Techn. 1/1, pp. 110-141,
2001.

[ZHS10] Hasan Zafari, Keramat Hasani, M. Ebrahim Shiri: “XLight: An Efficient Re-
lational Schema to Store and Query XML Data”, Proceedings DSDE Internat.
Conf. on Data Storage and Data Engineering, Bangalore, India, pp. 254-257, 2010.

2770 Ahmad M., Gruner S., Afzal M.T.: Computational Analysis of Medieval Manuscripts ...


