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ABSTRACT 

 

This paper investigates the empirical relevance of structural breaks in forecasting stock return 

volatility using both in-sample and out-of-sample tests applied to daily returns of the 

Johannesburg Stock Exchange (JSE) All Share Index from 07/02/1995 to 08/25/2010. We find 

evidence of structural breaks in the unconditional variance of the stock returns series over the 

period, with high levels of persistence and variability in the parameter estimates of the 

GARCH(1,1) model across the sub-samples defined by the structural breaks. This indicates that 

structural breaks are empirically relevant to stock return volatility in South Africa. However, 

based on the out-of-sample forecasting exercise, we find that even though there structural breaks 

in the volatility , there are no statistical gains from using competing models that explicitly 

accounts for structural breaks, relative to a GARCH(1,1) model with expanding window. This 

could be because of the fact that the two identified structural breaks occurred in our out-of-

sample, and recursive estimation of the GARCH(1,1) model is perhaps sufficient to account for 

the effect of the breaks on the parameter estimates. Finally, we highlight that, given the point of 

the breaks, perhaps what seems more important in South Africa, is accounting for leverage 

effects, especially in terms of long-horizon forecasting of stock return volatility.     
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1. Introduction 

When volatility is interpreted as uncertainty, it becomes a key input to many investment 

decisions and portfolio creations. Given that, investors and portfolio managers have certain 

bearable levels of risk, proper forecast of the volatility of asset prices over the investment 

holding period is of paramount importance in assessing investment risk. Further, volatility is the 

most important variable in the pricing of derivative securities. To price an option, we need to 

know the volatility of the underlying asset from now until the option expires. So, a volatility 

forecast and a second prediction on the volatility of volatility over the defined period is needed to 

price derivative contracts. In addition, financial risk management has taken a dominant role since 

the first Basle Accord was established in 1996, making volatility forecasting a compulsory risk-

management exercise for financial institutions around the world. Banks and trading houses have 

to set aside reserve capital of at least three times that of value-at-risk (VaR), estimates of which, 

in turn, are readily available given volatility forecast, mean estimate, and a normal distribution 

assumption for the changes in total asset value. Even when the normal distribution assumption is 

violated, volatility is still needed in the simulation process used to produce the VaR figures. 

Finally, financial market volatility, as witnessed during the recent “Great Recession”, as well as 

earlier, can have a wide repercussion on the economy as a whole, via its effect on public 

confidence. Hence, market estimates of volatility can serve as a measure of for the vulnerability 

of financial markets and the economy, and help policy makers to design appropriate policies.  

The impact of structural breaks on the accuracy of volatility forecasts has largely been ignored in 

previous research. This is because researchers in using the generalised autoregressive conditional 

heteroscedastic (GARCH) model of Engle (1982) and Bollerslev (1986) often assume (both 

implicitly and explicitly) the existence of a stable GARCH process in volatility forecasting. As a 

result most researchers use a fixed or expanding window when estimating GARCH models used 

to generate out-of-sample volatility forecasts. This affects the accuracy of volatility forecasts 

using GARCH processes in several ways.  

Failure to account for structural breaks in the unconditional variance of stock market returns can 

lead to sizeable upward biases in the degree of persistence in estimated GARCH models 

(Andreou and Ghysels, 2002; Mikosh and Starica, 2004; Hillebrand, 2005; building on earlier 

work by Diebold, 1986; Hendry, 1986; Lamoureux and Lastrapes, 1990). With structural breaks, 
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GARCH models do not accurately track changes in the unconditional variance leading to 

forecasts that underestimate or overestimate volatility on average for long stretches. This is 

because the fixed or expanding window mechanism as used under stable GARCH processes does 

not perform well in the presence of structural breaks (West and Cho, 1995). Again neglecting 

structural breaks in the unconditional variance may lead to over persistent GARCH models 

which have adverse effects on volatility forecasts (Rapach and Strauss, 2008; Rapach et al., 

2008). Consequently long-horizon forecasts of stock return volatility generated by GARCH(1,1) 

models that allow for periodic changes in the unconditional variance of stock returns have been 

found to yield better results than forecasts that assume parameter stability (Stărică and Granger,  

2005).  

Despite extensive work on volatility forecasting of asset returns, hardly any work is specific to 

South Africa in terms of forecasting the volatility of stock market returns. The only study we are 

aware of is by Samouilhan and Shannon (2008), who use a small data set of 682 observations 

(01/02/2004-28/09/2006) of daily data for the TOP40 index of the Johannesburg stock exchange 

(JSE). The authors investigated the comparative ability of three types of volatility forecasts 

namely different autoregressive conditional heteroscedasticity (ARCH) by Engle (1982), and as 

generalised by Bollerslev (1986) on one hand, a Safex Interbank Volatility Index (SAVI) for the 

options market, and measures of volatility based purely on historical volatility using a random 

walk (naive) and 5-day moving average forecasts. Samouilhan and Shannon (2008) found that 

the GARCH (2, 2) specification provided the best in-sample fit of all the symmetric GARCH 

models. For their out-of-sample results the GARCH(1,1) specification provided the best forecast 

of all the symmetric models as compared to GARCH (1, 2), (2, 1) and (2, 2) models.  

However, Samouilhan and Shannon (2008) assume the existence of a stable GARCH process in 

volatility forecasting and do not take into consideration the impact of structural breaks on the 

accuracy of volatility forecasts. Additionally only one period ahead forecasts, whether using 

daily data or averaged out daily data to compute weekly data, were used in their paper to 

ascertain the accuracy of the three different volatility forecasting approaches.   

To address these gaps in the South African literature, we investigate the empirical relevance of 

structural breaks for GARCH(1,1) models of stock return volatility in South Africa using in-

sample and out-of-sample tests. We again differ from Samouilhan and Shannon (2008) by using 
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multi-period horizons to ascertain the accuracy of different forecasting approaches as compared 

to a one period ahead approach by Samouilhan and Shannon (2008). Note, we did not consider 

GARCH (p, q) models, because the GARCH(1,1) model is essentially treated as the canonical 

specification in the literature on asset returns volatility. Further, the GARCH(1,1) specification 

has been found to be sufficient in practice for such studies, even though the GARCH (p, q) 

model might be of theoretical interest (Bollerslev et al. 1992). More importantly, in our case, we 

found the GARCH(1,1) model to fit the data better than the GARCH (2, 2) model, both in- and 

out-of-sample.1 Given that, Samouilhan and Shannon (2008) observed the so-called “leverage 

effect” in the volatility of returns of the TOP40 index using the Glosten et al., (1983)-GARCH 

(GJR-GARCH) model, we too look into the issue by considering not only the GJR-GARCH(1, 1) 

model, but also the Markov Switching-GARCH (MS-GARCH) framework (Klassen, 2002; Haas 

et al., 2004) in terms of forecasting relative to our benchmark GARCH(1,1) model. Note, the so-

called leverage effect refers to the situation where negative returns shocks are correlated with 

larger increases in volatility than positive returns shocks. The rest of the paper is organised as 

follows; section 2 details the econometric methodology, section 3 the empirical results for the in-

sample and out-of-sample tests. Section 4 concludes.  

 

2. Econometric Methodology 

2.1  In-Sample Tests 

For the in-sample tests we employ a modified version of the iterated cumulative sum of squares 

algorithm (Inclán and Tiao, 1994) to test for the possibility of structural breaks in the 

unconditional variance of the daily Johannesburg Stock Exchange  (JSE) all share index from 

1995 to 2010.  

Let  = 100[ln( ln( )], be the returns on a stock index from time t-1 to period t.  

denotes  the value of the stock index at time t and =  – , where  is the constant 

(conditional and unconditional)  mean of . Supposing  can be observed for t = 1… T, the 

cumulative sum of squares statistic given by  

IT =             (1) 
                                                             
1 The results from the GARCH(2, 2) model  is available upon request from the authors. 
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that tests the null hypothesis that the unconditional variance  is constant for k =1… T, against 

the alternative hypothesis of a break in the unconditional variance at some point in the sample. 

= (   - (k/T) and   =  for k = 1… T. When the null hypothesis is rejected, the 

value of k that maximises  serves as the estimate of the break date. When  iid 

N (0, ,  Inclán and Tiao (1994) show that under the null hypothesis the asymptotic 

distribution of the IT statistic is given by  where  = W( r ) – r W(1) is a 

Brownian bridge and W( r ) is a standard Brownian motion. Finite-sample critical values of IT 

are then generated using simulation methods.  

Several studies (see Andreu and Ghysels, 2002: de Pooter and van Dijk, 2004; Sansό et al.,. 

2004) have shown that the IT statistic can be substantially oversized when  follows a 

dependent process such as a GARCH process. This is because the IT statistic is designed for i.i.d 

processes. Following Kokoszka and Leipus (1999), Lee and Park (2001) and Sansό et al.,. 2004, 

we address this deficiency of the IT statistic, and allow  to follow a variety of dependent 

processes under the null hypothesis, including GARCH processes, by using a nonparametric 

adjustment based on the Bartlett Kernel applied to the IT statistic. Formally, the adjusted IT 

(AIT) statistic is given by:  

        AIT =               (2)    

where =   [  - (k/T) )],  =  ,    

 =  ),  = . The lag truncation parameter m is 

selected using the procedure in Newey and West (1994).  The asymptotic distribution of AIT is 

also given by  under general conditions, and finite-sample critical values can 

again be generated by simulation methods.  

The IT statistic can also be used to test for multiple breaks in the unconditional variance using an 

iterative cumulative sum of squares (ICSS) algorithm also developed by Inclán and Tiao (1994). 

To avoid the size distortions that results with the use of the IT statistic, the ICSS procedure can 

alternatively be based on the AIT statistic in order to allow  to follow dependent processes 
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under the null hypothesis. We then use a 5% level of significance to test for structural breaks in 

the unconditional volatility of the daily stock returns series for the JSE All Share Index.   

The GARCH(1,1) model for  with mean zero (conditional and unconditional) is expressed as  

 =         (3) 

=  +  +       (4) 

where   represents the conditional volatility of  and  is i.i.d. with mean zero and unit 

variance.   measures the persistence of the GARCH (1,1) model and  < 1 for the 

process to be covariance-stationary. When   = 1 we have the integrated GARCH(1,1) of 

model of Bollerslev (1986). In equation (4),  is unidentified and set to zero when = 0, so that 

 =  and  is characterised by conditional homoscedasticity.  For the GARCH(1,1) process 

to be stationary the unconditional variance of   is given by / (1 -  - ). The Quasi 

Maximum Likelihood Estimation (QMLE) is often used to estimate the GARCH(1,1) because 

QMLE parameter estimates have been shown to be consistent and asymptotically normal (Berkes 

et al. 2003; Jensen and Rahbek, 2004; Straumann, 2005). It is however assumed that   N 

(0.1), and the restrictions  > 0 and   0 imposed. The in-sample tests enable us to analyse 

the empirical relevance of structural breaks in unconditional volatility for the JSE All share index 

and the effect of structural breaks on GARCH(1,1) models. The in-sample tests also provide a 

framework for analyzing the out-of-sample tests results. 

2.2 Out-of-Sample Tests 

To compare the out-of-sample forecasts of stock return volatility, we first divide the sample of 

stock returns into two portions; in-sample and out-of-sample, where the in-sample portion 

contains the first R observations and the out-of-sample portion contains the last P observations. 

Following Rapach and Strauss (2008), we use three benchmark models and five competing 

models to compare the out-of-sample forecasts. Note that, while the decision to use the 

RiskMetrics model as a second benchmark emanates from its popularity in the literature on out-

of-sample volatility forecasting exercises, the choice of the FIGARCH(1,d,1) model as a third 

benchmark is motivated out of the well-known fact that the autocorrelations of squared returns 
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for many financial assets decay slower than exponentially, as implied by GARCH models, so 

that conditional heteroskedasticity might be better represented by a long-memory process as 

captured by the FIGARCH(1,d,1) specification.2 The first benchmark model is a GARCH(1,1) 

model estimated using an expanding window. The first out-of-sample forecast at the 1-period 

horizon (s = 1) is given by  =  +  +   where  , 

,  and    are the estimates of  ,  and  respectively obtained from 

equation (4) using QMLE and data from the first observation through to observation R.  For the 

second out-of-sample forecast R+2, we expand the estimation window by one observation using 

data from the first observation through observation R+1, . We continue this way 

through to the end of the available out-of-sample period, yielding a series of P one-step ahead 

out-of-sample forecasts given by {  .  

The RiskMetrics model is the second benchmark model based on an expanding window. It is 

easier to implement because it does not involve the estimation of any parameters. It is given by 

the exponential weighted moving average  = where as 

recommended by the RiskMetrics Group (1996) for daily data.  Consistent with the usual 

practice, we set the s-step-ahead forecast for s > 1equal to the 1-step-ahead forecast for the 

RiskMetrics model.  The s-step-ahead out-of-sample volatility forecasts for the RiskMetrics 

model is given by {  .  

The fractionally integrated GARCH(1,d,1) or FIGARCH(1,d,1) model is the third benchmark 

model also estimated using an expanding window (see Baillie et al. 1996).  

The FIGARCH(1,d,1) specification is given by   

                (5) 

where L is lag operator and  = 

 is fractional differencing operator. 

The parameter vector (  is estimated using QMLE under the assumption that  

  and  to ensure that the conditional variance is positive. The 

                                                             
2 See Baillie et al., (1996) for further details.  
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FIGARCH(1,d,1) model is considered a relevant benchmark in forecasting volatility of asset 

returns. This is because autocorrelations of squared or (absolute) returns for many financial 

assets decay slower than exponentially as implied by GARCH models. Thus conditional 

heteroscedasticity may be better described by a long memory process as captured by the   

FIGARCH(1,d,1) specification. The forecasts generated by the FIGARCH(1,d,1) model is 

denoted by { . 

The first forecasting competing model is a GARCH(1,1) 0.5 rolling window model. This model 

generates forecasts using a rolling estimation window equal to one-half of the size of the in-

sample period. The forecasts are generated similar to the GARCH(1,1) expanding window 

model, except that the parameter estimates for the first out-of-sample forecast are based on 

observations (0.5R+1, ……, R) and for the second out-of-sample forecast are based on 

observations (0.5R+2, ……, R+1) and so on. The forecasts for the GARCH(1,1) 0.5 rolling 

window model is denoted by . The second competing model is a 

GARCH(1,1) 0.25 rolling window. This model generates forecasts using a rolling estimation 

window equal to one-quarter of the size of the in-sample period so that the first out-of-sample 

forecast are based on observations (0.75R+1, ……, R) and for the second out-of-sample forecast 

are based on observations (0.75R+2, ……, R+1) and so on. We denote the forecasts for the 

GARCH(1,1) 0.25 rolling window model by . 

As in Mittnik and Paolella (2000), the third competing forecasting model is a GARCH(1,1) 

model estimated using an expanding window and a weighted maximum likelihood procedure. 

This model is known to better handle structural instabilities in GARCH parameters (Mittnik et 

al. 2000). In forming the likelihood function used to estimate the GARCH(1,1) model 

parameters, declining weights are assigned to observations in the more distant past. For the first 

out-of-sample forecast using data through R observations, a weight of  is attached to 

observation t = 1,…, R in the log-likelihood function used to estimate the GARCH(1,1) 

parameters. To generate the second out-of-sample forecast the window is expanded by one 

observation and a weight of  attached to observations t = 1,..., R + 1 in the log-likelihood 

function. This procedure is continued through to the end of the available out-of-sample period. 

Mittnik et al. (2000) recommend , which they find work well in out-of-sample 
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volatility forecasts. The forecasts generated by the GARCH(1,1) weighted maximum likelihood 

model is denoted as {   

In the fourth competing model the modified  ICSS algorithm is used to select the estimation 

window for the GARCH(1,1) model. The modified ICSS algorithm is first of all applied to 

observation one through R. If there is evidence of one or more structural breaks, and the final 

break is expected to occur at time TF, the GARCH(1,1) model is estimated using observations 

 TF  + 1 through R to form an estimate of . One the other hand if no evidence of a structural 

break is found the GARCH(1,1) model is then estimated using observations one through R to 

form an estimate of . For the second out-of-sample forecast, the modified ICSS algorithm is 

applied to observations one through R+1and the same procedure as in the first out-of-sample 

forecast is followed. We proceed in this manner through the end of the available out-of-sample 

period, producing a series of forecasts corresponding to the GARCH(1,1) with breaks model, 

given by { . The modified ICSS algorithm that determines the size of the 

estimation window only uses data available at the time of the forecast formation. As a result 

there is no “look ahead” bias involved in the generation of the forecasts for the GARCH(1,1) 

with breaks model.  

The final competing forecasting model is a simple moving average model that uses the average 

of the squared returns over the previous 250 days to form the volatility for day t : 

. This model has been found to outperform GARCH(1,1) 

models when forecasting daily stock return volatility over longer horizons especially for 

industrialised countries and also very useful in accommodating structural breaks (Stărică and 

Granger, 2005).   Following Rapach and Staruss (2008), we set the s-step-ahead forecast for s > 1 

equal to 1-step-ahead forecast for the moving average model. We denote the sequence of s-step-

ahead out-of-sample forecasts for the moving average model by . 

Additionally we consider a multi period volatility forecast over the out-of-sample period for 

horizons of 1, 20, 60 and 120 days with the aim of exploring the effects of structural breaks on 

volatility forecasting and the usefulness of various forecasting methods designed to 

accommodate potential structural breaks. Based on information available at period t – s we 
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denote the model  forecast3 of   formed at period t – s by  yielding a series of P - (s - 

1) s-step ahead out-of-sample forecasts given by .  We then iterate forward by 

generating   for s > 1 using the fitted GARCH(1,1) process and the iterative procedure 

given by the equation 

 = + (  + /2 + )  from Franses and van Dijk (2000).  

To compare volatility forecasts across models we employ two loss functions; an aggregated 

version of the mean square forecast error (MSFE) metric by Stărică and Granger (2005) and the 

value-at-risk (VaR) by González-Rivera and Mishra (2004).  The MSFE metric is given by 

=     (6) 

where   =  and  =  . Aggregation provides a more 

useful metric for comparing volatility forecasts because it reduces the idiosyncratic noise in 

squared returns at horizons beyond one period (Andersen and Bollerslev, 1998). The MSFE loss 

function produces a consistent empirical ranking of forecasting models when squared returns 

serve as a proxy for measuring latent volatility (Awartani and Corradi, 2004; Hansen and Lunde, 

2006). Thus using the aggregated MSFE metric we analyse volatility forecasts at horizons of 1, 

20, 60 and 120 days (s = 1, 20, 60, 120). 

With respect to the VaR loss function, let  be the forecast of the 0.05 quantile of the 

cumulative distribution function for the cumulative return  =  generated by 

model 𝑖 and formed at time t – s. The VaR loss mean function, as in González-Rivera et al., 

(2004) is given by  

 = [    (7) 

where   = 1(    and 1(.) is the indicator function that takes a value of unity 

when the argument is satisfied. Compared to the “hit or no hit” VaR-based loss functions, this is 

an asymmetric loss function which is more sophisticated. In this regard, note that, assuming 

                                                             
3 Where = EXP, RM FI, ROLL(0.5), ROLL(0.25), WML, BREAKS, MA}. 
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normal markets and no trading in the portfolio, VaR is defined as a threshold value such that the 

probability that the mark-to-market loss on the portfolio over the given time horizon exceeds this 

value is the given probability level. Thus, VaR is essentially a percentile of the predictive 

probability distribution for the size of a future financial loss (Jorion, 2006).4 When   

, a large weight of 0.95 is attached by the loss function to the absolute value of the 

difference between   and  , indicating a relatively high cost associated with large 

losses. Conversely a smaller weight of 0.05 is attached by the loss function to the difference 

between  and   when  . Although the weight is smaller in this case 

it is still positive thereby enabling the loss function to reflect the opportunity costs of the capital 

held to cover the potential losses indicated by . The advantage of the  

criterion is that it is motivated by the VaR as a risk management tool and does not require 

observations of the latent volatility . By assuming that  N (0, 1) we calculate  as 

the simulated cumulative returns 

(  = ) of a simulated sequence of returns based on estimates of the conditional 

volatility process available at the time of forecast formation ({  ). This process is 

repeated 2000 times yielding an empirical distribution of simulated cumulative returns. The 100th 

element of the ordered simulated cumulative returns is the   .  

Besides ranking the forecasting models using the  and  loss functions, we test 

the null hypothesis that none of the competing models has superior predictive ability over the 

benchmark model in terms of expected loss, against the alternative one sided (upper-tail) 

hypothesis that at least one of the competing models has superior predictive ability over the 

benchmark model.  That is we check whether the expected loss of the forecasts generated by at 

least one of the five competing models is significantly less than that generated by a given 

benchmark model using the White (2000) test. The loss at time t for forecasting model j relative 

to benchmark model 𝑖 is defined as   , where  is given by the expression 

                                                             
4 Suppose that if a portfolio of stocks has a one-day 5 percent VaR of South African Rand (ZAR) 1 million, there is 
a 0.05 probability that the portfolio will fall in value by more than ZAR 1 million over a one day period if there is no 
trading. Informally, a loss of ZAR 1 million or more on this portfolio is expected on one day out of twenty. 

http://en.wikipedia.org/wiki/Mark_to_market_accounting
http://en.wikipedia.org/wiki/Percentile
http://en.wikipedia.org/wiki/Probability_distribution
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after the summation operator in equation (6) or (7) for each loss function, and  = [

. The White (2000) statistic for 𝑙 competing models is given by   

 = (    (8) 

with 𝑙 = 5 in this paper.   

As in White (2000) a p-value corresponding to  is generated using the stationary bootstrap 

method of Politis and Romano (1994). The White (2000) reality check is performed by 

comparing each of the benchmark models (GARCH(1,1) expanding window, RiskMetrics and 

FIGARCH(1,d,1) to the five competing models to check whether any of the five competing 

models performs better than the given benchmark model in terms of real-time volatility 

forecasting. Additionally, the Hansen (2005) version of the White (2000) test which has a higher 

power in determining superior predictive ability is also conducted. The Hansen (2005) 

studentised version of the    statistic,   is computed and the p-values again generated by 

the stationary bootstrap method of Politis and Romano (1994).  

One drawback of the GARCH(1,1) model is its assumption that the response of the conditional 

variance to both positive and negative shocks is the same-symmetrical. Thus only the size and 

not the sign of the shock is relevant. There exists ample empirical evidence of the existence of 

leverage effects in stock returns, meaning negative return shocks results in higher volatility in 

subsequent periods than positive return shocks. We compare the performance of two asymmetric 

GARCH models in accurately capturing leverage effects in stock return volatility, namely the 

GJR-GARCH(1,1) model and the MS-GARCH(1,1).  The GJR-GARCH(1,1) model is the 

asymmetric GARCH(1,1) model of Glosten et al. (1993) and is expressed as  where 

0, 1), and   =  . The dummy I takes on the 

value of unity when  < 0 and zero otherwise. The MS-GARCH(1,1) is the two-state 

Markov-switching GARCH(1,1) model of Haas et al. (2004) and is expressed as  

where 0, 1), with    =  in state one,  and in 

state two = , with transition probabilities given by  = [P(

for j= 1, 2. The ratio of the mean loss for each model to the mean 
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loss of the benchmark GARCH(1,1) expanding window model is compared under the  

and criteria, as above.  

Recent literature has shown that comparing the relative predictive accuracy of different 

forecasting models need to take into consideration the relative sizes of the in-sample and out-of-

sample periods (P/R), type of estimating window used (expanding, rolling or fixed) and whether 

the models being compared are nested or not. Since these requirements are not all necessarily 

satisfied in our application we report the bootstrapped p-values for the White (2000)   and 

Hansen (2005)  statistics as a crude guide to assessing statistical significance of the various 

models used in this paper. 

3. Empirical Results 
3.1 Data and Descriptive Statistics  

 

Daily data on the Johannesburg Stock Exchange All Share Index is used in this paper. The 

sample period is from 07/02/1995 to 08/25/2010 consisting of 3788 observations. The daily stock 

returns are based on the closing prices. The descriptive statistics are reported in Table 1. These 

statistics include heteroscedastic and autocorrelation consistent standard errors for the mean, 

standard deviation, skewness, and excess kurtosis. The computation of these statistics is based on 

the procedure in West and Cho (1995). The mean is significantly different from zero at 5 % level 

of significance. Daily stock returns appear quite volatile and exhibit strong evidence of excess 

kurtosis. The modified Ljung-Box statistics are robust to conditional heteroscedasticity and show 

no evidence of autocorrelation of the daily stock returns.  However there is strong evidence of 

serial correlations in the squared stock returns. The Lagrange multiplier statistics are significant 

at 1 % level confirming ARCH effects (Engle, 1982). These descriptives support the modelling 

of stock market returns in South Africa using GARCH processes.  
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Table 1: Summary statistics, SA JSE All Share Index returns (07/03/1995 to 08/25/2010)                                                                                     
                                                                         Estimates                          Std. err                p-values                        
Stock Market Price Return 
Mean                         0.045   0.021      
Standard deviation           1.320   0.030      
Skewness                                  -0.479   0.253      
Excess kurtosis              5.944   1.852      
Minimum                                         -12.628  
Maximum                                            7.266 
Modified Ljung-Box (r=20)   26.137      0.161                          
Squared Stock Market Price Return 
Ljung-Box (r=20)     1781.218     0.000   
ARCH Lagrange multiplier (q = 2)    411.880      0.000 
ARCH Lagrange multiplier (q = 10)   560.927         0.000 

                                                                                                                                                                                   
Note: Returns are defined as 100 times the log-differences of the stock price indices. Ljung-Box statistics correspond 
to a test of the null hypothesis that the r autocorrelations are zero. Modified Ljung-Box statistics are robust to 
conditional heteroskedasticity. ARCH Lagrange multiplier statistics correspond to a test of the null hypothesis of no 
ARCH effects from lag 1 through q. 0.000 indicates the p values less than 0.0005. 
 
 
 3.2  In-sample results 

 

The modified ICSS algorithm employed for our in-sample test revealed two structural breaks in 

the unconditional volatility of stock market return in South Africa, specifically on 10th of 

December, 2008 and 15th of July, 2009. While, the first structural break represent an increase in 

volatility, the second one is characterized by a reduction of the same as indicated by the 

increased and reduced unconditional variances reported for the sub-samples 2 and 3, relative to 

sub-sample 1, in Table 2. Figure 1 below shows a plot of the stock returns series and three-

standard-deviation bands defined by the structural breaks identified by the modified ICSS 

algorithm.      
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Figure 1: The JSE All Share Index and  standard deviation bands.  

 

 
 

Most emerging markets like South Africa largely stood at the fringes of the global financial crisis 

for most part of 2007 and 2008, which led to very high volatility, in general. With the South 

African economy reaching the trough of the business cycle by the end of 2008 (Venter, 2011), 

we observe a sharp increase in volatility (as depicted in sub-sample 2 relative to sub-sample 1 in 

Table 2) indicating the uncertainty in the market, and hence, resulting likely in the structural 

break identified by the ICSS algorithm in early December of 2008.  The importance of the 

impact of US stock returns on South African stock returns has recently been highlighted by 

Gupta and Modise (2012). In light of this, as the US economy started to show mild signs of 

revival, the decreased uncertainty is likely to have produced lower levels of volatility in the 

South African stock returns, following the hike in the variance. Further, as the US recession was 

officially called-off in the first quarter of 2009, a reduced volatility in the stock returns was 

observed in the early third quarter of 2009. Also, both the leading and the coincident indicator 

for South Africa had started to turn upwards in the first quarter of 2009 (Venter, 2011). In 

addition, as indicated  by van Wyk de Vries et al., (forthcoming), during the financial crisis, due 

to the global uncertainty, hedging demand by South African investors for domestic stocks were 

much less volatile, with a positive mean value,  than hedging demands for US and UK stocks, 

with the mean value of the latter set of stocks being actually negative. Finally, evidence provided 
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by Naraidoo and Raputsoane (2010) and Naraidoo and Ndahiriwe (forthcoming), indicated that 

the south African Reserve Bank, had systematically reacted to a financial conditions index 

(containing stock prices) during the recent financial crisis to minimize the forecasted volatility in 

the financial conditions index.   Given these set of events, the two structural breaks in the South 

African stock returns volatility in December 2008 and July 2009, characterized by increased and 

reduced volatility respectively, seems to be logical.   

 

Table 2 below shows the unconditional variance of the squared stock return series estimated 

using a standard QMLE GARCH(1,1) model both over the full sample period and sub-sample 

periods.  

 

Table 2: Quasi Maximum Likelihood Estimation Results for GARCH(1,1) Models                                                                                             
                                                                         Estimates                                         Std.err                        
GARCH(1,1) full sample estimation results  
ω                          0.020      0.005   
α             0.111      0.011   
β                      0.878      0.011   
ω/(1 - α - β)           1.746      0.166  
 
GARCH(1,1) sub-sample 1 estimation results   
ω                          0.020      0.005   
α             0.115      0.012   
β                      0.873      0.012   
ω/(1 - α – β)          1.711      0.182   
 
GARCH(1,1) sub-sample 2 estimation results   
ω                          3.581      0.367   
α             0      0   
β                      0      0   
ω/(1 – α – β)          3.581      0.367   
 
GARCH(1,1) sub-sample 3 estimation results   
ω                          0.058      0.041   
α             0.089      0.036   
β                      0.863      0.307   
ω/(1 – α – β)          1.191      0.307   
 
Notes: Table 2 reports the GARCH(1,1) model estimations for the squared stock return series for the full sample and those for the different sub-
samples defined by the structural breaks. The table also includes standard deviations of the estimates.    
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The sub-samples are defined by the structural breaks identified by the modified ICSS algorithm. 

The fitted full sample GARCH(1,1) model is highly persistent with an estimate of α + β of about 

0.989. The first sub-sample GARCH(1,1) model also exhibits high persistence with an estimate 

of ∝�  + β�  = 0.984. The second sub-sample GARCH(1,1) model shows absolutely no 

persistence, whiles the third sub-sample GARCH(1,1) model also shows high persistence with an 

estimate of ∝�  + β� = 0.953. These high levels of persistence show that the sub-samples are 

generally characterized by conditional heteroscedasticity, barring sub-sample 2 which is 

characterized by unconditional homoskedasticity. As discussed in Rapach et al., (2008), this kind 

of sizable decreases in the persistence of the volatility process relative to the full-sample (as well 

as other sub-sample) estimates are a likely due to the upward biases in the persistence that results 

from failing to account for structural breaks. Table 2 also shows some significant5 changes in the 

unconditional variance as reflected by 𝜔�/(1 -  ∝� - 𝛽̂β). These changes are due to the structural 

breaks bringing about substantial shift in the intercept defined by 𝜔�ω over the period under 

review. In addition the GARCH(1,1) parameter estimates vary across sub-samples defined by the 

structural breaks. These in-sample results show, in general, highly persistent conditional variance 

for the stock return and also confirm that structural breaks are an empirically relevant feature of 

stock market returns in South Africa.  

 

3.3 Out-of-sample results 

 

The out-of-sample period consists of the last 500 observations of the January 2 1995 to August 

31 2010 full sample period and covers the September 2 2008 to August 31 2010 period for South 

Africa, which includes both the structural breaks.  Table 3 reports the out-of-sample volatility 

forecasting results over horizons of 1, 20, 60 and 120 days. The first row in each panel of the 

table reports the mean loss for the GARCH(1,1) expanding window model, while the remaining 

                                                             
5 Using a upper-tailed F-test, we were able to show that the unconditional variance for sub-sample 2 was 
significantly bigger than sub-samples 1 and 3, while, the unconditional variance of sub-sample 1 significantly 
exceeded the same for sub-sample 3. Note that the values of the F-statistic = (Unconditional Variance of sample 
2(1))/ (Unconditional Variance of sample 1 or 3(3)) and  were all greater than 1 (3.007, 2.0929 and 1.4366), and, 
given the sizes of sub-samples 1, 2 and 3 of 3362, 144 and 279 respectively, the null of the equality of the 
unconditional variances was rejected at one percent level of significance. The details of these results are available 
upon request from the authors.   
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rows present the ratio of the mean  loss for each of the other models to the mean loss for the 

GARCH(1,1) expanding window model. The model with the lowest mean lost ratio under both 

the MSFE and MVaR criteria performs better than the other models in forecasting volatility. The 

table also reports p-values corresponding to the White (2000)  and Hansen (2005)  

statistics with the GARCH(1,1) expanding window, RiskMetrics, and FIGARCH(1,d,1) 

expanding window models serving as the benchmark models and the two GARCH(1,1) rolling 

window, GARCH(1,1) weighted ML, GARCH(1,1) with breaks and moving average models 

serving as the competing models.  

 

From the out-of-sample results in Table 3 based on the  loss function, within the 

benchmark models GARCH(1,1) with expanding window, RiskMetrics and FIGARCH(1,d,1), 

the RiskMetrics model outperforms the two other benchmarks at s=1, while, the 

FIGARCH(1,d,1) performs better than the other two benchmarks at s=60 and 120. This confirms 

the finding in the literature that the FIGARCH(1,d,1) model better captures conditional 

heteroscedasticity described by long memory processes, especially at longer horizons. At s= 20, 

the GARCH(1,1) with expanding window is best amongst the three benchmarks. As far as the 

competing models are concerned, the GARCH(1,1) 0.50 rolling window and the GARCH(1,1) 

with breaks models report the lowest mean loss ratio over the 1-day horizon compared to the 

benchmarks as well as the other competing models. The GARCH(1,1) 0.25 rolling window 

model performs better than all the competing models over the 20, 60 and 120 days horizons 

under the  criterion. This model, also does better than all the benchmark models, barring 

the 20 days ahead forecast, where it performs slightly worse than the GARCH(1,1) with 

expanding window. This proves that allowing for instabilities in GARCH(1,1) models has 

benefits in out-of-sample volatility forecasting.     

The performance of GARCH(1,1) with breaks worsens over higher forecasting horizons but 

performs relatively better than the GARCH(1,1) weighted ML and the Moving average models. 

FIGARCH(1,d,1)Importantly though,  the p-values corresponding to the Hansen (2005)  

statistics and the White (2000) l statistics, in general, fails to indicate significant gains in 

predictive ability from the competing models, relative to benchmark models. There are however, 

some exceptions, based on  Hansen (2005)  especially relative to the FIGARCH(1,d,1) 

model.   
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Using the  criterion, the benchmark GARCH(1,1) model with expanding window 

always performs better than the other two benchmarks for all horizons. Barring, at s=1, where the 

GARCH(1,1) 0.50 rolling window model delivers the lowest mean loss ratio, none of the 

competing models outperforms the GARCH(1,1) with expanding window. Hence, not 

surprisingly, the p-values corresponding to the Hansen (2005)  statistics and the White 

(2000) l statistics,  fail to reject the null hypothesis consistently.  

 

Following Rapach and Strauss (2008), we also tried forecast combinations based on the 

benchmark GARCH(1,1) with expanding window and the five other competing models, using 

mean of the six individual forecasts and trimmed mean (the mean of four individual forecasts 

remaining after discarding the highest and lowest individual forecasts) combination methods. In 

general, the trimmed mean combination method fairs well compared to the simple mean method. 

However, the combination methods fail to outperform the best competing model. 

 

Table 3 also provides the out-of-sample forecasting results comparing the GJR-GARCH(1,1) 

expanding window model and MS-GARCH(1,1) models relative to the GARCH(1,1) with 

expanding window.  Based on , the GJR-GARCH(1,1) models and the MS-

GARCH(1,1) model fails out outperform the GARCH(1,1) with expanding window at all 

forecast horizons, with the MS-GARCH(1,1) performing exceptionally poor beyond the one-day-

ahead forecast.  The performances are much better, based on , especially at s= 60 and 

120, with the GJR-GARCH(1,1) performing consistently better relative to the five other 

competing models considered above beyond horizon of s = 2. The results also show that for 

shorter horizons, based on , the MS-GARCH(1,1) better captures the leverage effect in 

stock market return volatility than the GJR-GARCH(1,1). However for longer horizons, the 

GJR-GARCH(1,1) model performs better than the MS-GARCH(1,1) model in accurately 

capturing leverage effects in stock market return volatility.   
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Table 3:  Summary of Out of Sample Forecasting Results                                                                                              
s = 1     MSFE                  MVaR  
            
GARCH(1,1) expanding window  36.893 (0.879) [0.372]   0.173 (0.768) [0.558] 
RiskMetrics     0.998 (0.867) [0.570]   1.012 (0.736) [0.382] 
FIGARCH(1,d,1) expanding window 1.015 (0.693) [0.097]   1.016 (0.705) [0.281] 
GARCH(1,1) 0.50 rolling window  0.995     0.995 
GARCH(1,1) 0.25 rolling window  1.011     1.007 
GARCH(1,1) weighted ML  1.029     1.017 
GARCH(1,1) with breaks   0.995     0.997 
Moving average        1.290     1.262   
Mean     1.003     1.011 
Trimmed Mean    0.999     0.999 
GJR-GARCH(1,1) expanding window 1.417     1.989 
MS-GARCH(1,1) expanding window 1.002     1.031 
 
s = 20 
GARCH(1,1) expanding window  2327.75 (0.962) [1.000]   0.837 (1.000) [1.000] 
RiskMetrics     1.176 (0.689) [0.260]   1.068 (0.617) [0.106] 
FIGARCH(1,d,1) expanding window 1.125 (0.787) [0.254]   1.072 (0.682) [0.111] 
GARCH(1,1) 0.50 rolling window  1.044     1.032 
GARCH(1,1) 0.25 rolling window  1.005     1.024 
GARCH(1,1) weighted ML  1.635     1.046 
GARCH(1,1) with breaks   1.029     1.028 
Moving average        2.888     1.302 
Mean     1.065     1.061 
Trimmed Mean    1.010     1.028 
GJR-GARCH(1,1) expanding window 4.376     1.380 
MS-GARCH(1,1) expanding window 3704.21     0.997 
 
 
s = 60 
 
GARCH(1,1) expanding window  27263.1 (0.758) [0.639]   1.504 (0.998) [1.000] 
RiskMetrics     1.204 (0.663) [0.368]   1.001 (0.960) [1.000] 
FIGARCH(1,d,1) expanding window 0.954 (0.788) [0.039]   1.038 (0.755) [0.589] 
GARCH(1,1) 0.50 rolling window  0.939     1.010 
GARCH(1,1) 0.25 rolling window  0.861     1.019 
GARCH(1,1) weighted ML  3.852     1.073 
GARCH(1,1) with breaks   1.049     1.037 
Moving average        1.944     1.153 
Mean     1.090     1.045 
Trimmed Mean    0.949     1.024 
GJR-GARCH(1,1) expanding window 2.661     0.908 
MS-GARCH(1,1) expanding window 2.414e+16    0.978 
 

MSFE     MVaR 
     Ratio     Ratio  
 
s = 120 
 
GARCH(1,1) expanding window  92405 (0.635) [0.107]   2.106 (1.000) [1.000] 
RiskMetrics     1.505 (0.503) [0.088]   1.003 (0.928) [1.000] 
FIGARCH(1,d,1) expanding window 0.787 (0.699) [0.000]   1.067 (0.450) [0.008] 
GARCH(1,1) 0.50 rolling window  0.682     1.010 
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GARCH(1,1) 0.25 rolling window  0.619     1.016 
GARCH(1,1) weighted ML  16.353     1.133 
GARCH(1,1) with breaks   1.080     1.042 
Moving average        1.888     1.188 
Mean     1.566     1.059 
Trimmed Mean    0.837     1.027 
GJR-GARCH(1,1) expanding window 1.978     0.935 
MS-GARCH(1,1) expanding window 9.09640e+36    0.966  
                                                                     
Note: Entries for the GARCH(1,1) expanding window model give the mean loss for this model. Entries for the other 
models give the ratio of the mean loss for each model to the mean loss for the GARCH(1,1) expanding window 
model. Bold entries denote the model with the smallest mean loss among all of the models. P-values for the White 
(2000) ) l (Hansen (2005)  ) statistics are given in brackets (box brackets) and correspond to a test of the null 
hypothesis that none of the five competing models (two GARCH(1,1) rolling window, GARCH(1,1) weighted ML, 
GARCH(1,1) with breaks, and moving average models) has a lower expected loss than the benchmark model 
indicated on the left against the one sided (upper-tail) alternative hypothesis that at least one of the competing 
models have a lower expected loss than the benchmark model Mean and Trimmed Mean entries correspond to 
forecast combinations based on the GARCH(1,1) model with expanding window and the five other competing 
models using simple mean and trimmed mean combination methods.The bold-italic entries corresponds to the best 
model amongst the the GJR-GARCH(1,1) and the MS-GARCH(1,1) with expanding windows relative to the 
GARCH(1,1) model with expanding window. The ratios in the table are the mean loss for each model to the mean 
loss for the GARCH(1,1) expanding window model.   
 
4. Conclusion 

 

Proper forecast of volatility in stock returns is crucial for many investment decisions and 

portfolio creations. Further, volatility is the most important variable in the pricing of derivative 

securities, and has become a compulsory risk-management exercise for financial institutions 

around the world following the first Basle Accord. Finally, financial market volatility serves as a 

measure of for the vulnerability of financial markets and the economy, and help policy makers to 

design appropriate policies. Given that recent research has shown that, during the recent financial 

crisis, the South African Reserve Bank has been systematically reacting to a financial conditions 

index, which in turn, includes stock returns, predicting the volatility of stock returns accurately 

could be of paramount importance when designing the appropriate loss-function to obtain the 

future path of the financial conditions index to obtain the optimal monetary policy response.   

The impact of structural breaks on the accuracy of volatility forecasts has largely been ignored in 

previous research. Failure to account for structural breaks in the unconditional variance of stock 

market returns can lead to sizeable upward biases in the degree of persistence in estimated 

GARCH models - traditionally used to forecast volatility. With structural breaks, GARCH 

models do not accurately track changes in the unconditional variance leading to forecasts that 

underestimate or overestimate volatility on average for long stretches.  
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Despite extensive work on volatility forecasting of asset returns, hardly any work is specific to 

South Africa in terms of forecasting the volatility of stock market returns. The one that exists, 

namely, Samouilhan and Shannon (2008) assume the existence of a stable GARCH process in 

volatility forecasting and do not take into consideration the impact of structural breaks on the 

accuracy of volatility forecasts. Additionally only one period ahead forecasts were used in their 

paper to ascertain the accuracy of the three different volatility forecasting approaches.  To 

address these gaps in the South African literature, we investigate the empirical relevance of 

structural breaks for GARCH(1,1) models of stock return volatility in South Africa using in-

sample and out-of-sample tests on daily data from the JSE All Share index from 1995 to 2010.  

Results from our in-sample tests using the modified ICSS algorithm identify two structural 

breaks (10th of December, 2008 and 15th of July, 2009), characterized by reduced volatility, in 

the unconditional volatility of the stock market return series in South Africa. Using an out-of-

sample period of September 2 2008 to August 31 2010 period for South Africa, which includes 

both the structural breaks, we find that, though there are some gains in forecasting ability from 

using models that explicitly accounts for structural changes, statistically, these improved 

forecasting abilities relative to the benchmark GARCH(1,1) model with expanding window, are 

insignificant. Forecast combination too is not found to change the above results. Interestingly, 

when we try to capture leverage effects, the GJR-GARCH(1,1) model with expanding window 

shows some evidence of success relative to the benchmark GARCH(1,1) model with expanding 

window. Our results tend to suggest, that even though there structural breaks in the volatility of 

South African stock returns, there are no apparent gains from using competing models that 

explicitly accounts for structural breaks, relative to a GARCH(1,1) model with expanding 

window. We believe that this is most likely due to the fact that the two identified structural 

breaks occurred in our out-of-sample, and recursive estimation of the GARCH(1,1) model is 

perhaps sufficient to account for the effect of the breaks on the parameter estimates. Having said 

that, to vindicate our reasoning, it would entail conducting a similar analysis in the future 

whereby additional data would us to treat these two identified breaks within the in-sample, as 

was observed by Rapach and Strauss (2008), when they analyzed exchange rate volatility for 

eight US dollar-based exchange rates of industrialized countries. Further, based on our results, 

what seems more important in South Africa, is accounting for leverage effects, especially in 

terms of long-horizon forecasting of stock return volatility. But all in all, the GARCH(1,1) model 
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with expanding window, seems to provide an accurate data-generating process of stock returns 

volatility in South Africa, even in the presence of structural breaks.  
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