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Abstract

An additive hereditary graph property is a class of simple graphs which is closed

under unions, subgraphs and isomorphisms. If P1, . . . ,Pn are graph properties,

then a (P1, . . . ,Pn)-decomposition of a graph G is a partition E1, . . . , En of

E(G) such that G[Ei], the subgraph of G induced by Ei, is in Pi, for i = 1, . . . , n.

The sum of the properties P1, . . . ,Pn is the property P1 ⊕ · · · ⊕ Pn = {G ∈ I :

G has a (P1, . . . ,Pn)-decomposition}. A property P is said to be decomposable

if there exist non-trivial additive hereditary properties P1 and P2 such that

P = P1 ⊕ P2. A property is uniquely decomposable if, apart from the order of

the factors, it can be written as a sum of indecomposable properties in only one

way. We show that not all properties are uniquely decomposable; however, the

property of k-colourable graphs Ok is a uniquely decomposable property.
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1. Introduction

For any undefined basic graph theoretical concepts the reader is referred to [3].

The class of all finite simple graphs is denoted by I. A graph property is a non-

empty isomorphism-closed subclass of I. Notation and terminology of concepts

related to graph properties are taken from [1] and of concepts related to products

of graphs are taken from [5].

The fact that H is a subgraph of G is denoted by H ⊆ G and H ≤ G means

that H is an induced subgraph of G. The disjoint union of two graphs G and

H is denoted by G∪H. A property P is called hereditary if G ∈ P and H ⊆ G

implies H ∈ P; P is called induced-hereditary if G ∈ P and H ≤ G implies

H ∈ P; P is called additive if G ∪H ∈ P whenever G ∈ P and H ∈ P.

Example 1.1. Some well-known additive hereditary properties are given in the
list below.

O = {G ∈ I : E(G) = ∅}

Sk = {G ∈ I : the maximum degree of G is at most k}

Ik = {G ∈ I : G does not contain Kk+2}

The properties I and O are defined to be the trivial properties and an edgeless

graph is called a trivial graph. We use the phrase G has property P to denote

the fact that G ∈ P.

2. Decomposability

Let P1, . . . ,Pn be graph properties. A (P1, . . . ,Pn)-decomposition of a graph G

is a partition E1, . . . , En of E(G) such that G[Ei], the subgraph of G induced by

Ei, has property Pi, for i = 1, . . . , n. (In this context it is convenient to regard

the empty set ∅ as a set inducing a subgraph with every property P.) We denote

by P1 ⊕ · · · ⊕ Pn the property {G ∈ I : G has a (P1, . . . ,Pn)-decomposition}.

It is easy to see that if Pi is additive and (induced-)hereditary for every i, then

P1 ⊕ · · · ⊕ Pn is also additive and (induced-)hereditary.

If K is a set of properties and P ∈ K then P is said to be decomposable in

K if there exist non-trivial properties P1 and P2 in K such that P = P1 ⊕ P2;
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otherwise P is said to be indecomposable in K. We usually use for K the lattice

La of all additive hereditary properties of graphs or the lattice La≤ of all additive

induced-hereditary graph properties – see [1] for more details on these lattices.

The property P ◦ Q is the vertex-analogue of P ⊕ Q. For the sake of com-

pleteness we give the necessary definitions: For given properties P1, . . . ,Pn, a

vertex (P1,P2, . . . ,Pn)-partition of a graph G is a partition V1, . . . , Vn of V (G)

such that for each i = 1, . . . , n the induced subgraph G[Vi] has property Pi.

The product P1 ◦ · · · ◦ Pn of the properties P1, . . . ,Pn is now defined as the set

of all graphs having a vertex (P1, . . . ,Pn)-partition. Each Pi is called a factor

of this product. If P1 = · · · = Pn = P, then we write Pn = P1 ◦ · · · ◦ Pn. As an

example we note that Ok denotes the class of all k-colourable graphs.

A propertyR is reducible if there are properties P andQ such thatR = P◦Q;

otherwise it is irreducible. This paper is motivated by the following unique

factorisation theorem [6] (see also [7]).

Theorem 2.1. Every reducible property P 6= I in La≤ is uniquely factorisable
into irreducible factors in La≤ (up to the order of the factors).

The following result shows that there is no corresponding result for decom-

positions of properties.

Theorem 2.2. Let P1 = {G ∈ I : Every component of G is either a triangle
or triangle-free}. Then P1 ⊕ S1 = I1 ⊕ S1 from which it follows that I1 ⊕ S1 is
not uniquely decomposable.

Proof. For the non-trivial inclusion, let G ∈ P1⊕S1 and let E1, E2 be a (P1,S1)-
decomposition of E(G). Let E′ consist of exactly one edge from each compo-
nent of G[E1] isomorphic to K3 and let E′′ = {e ∈ E2 : e is adjacent to an
edge of E′}. Let E′1 = (E1 \ E′) ∪ E′′ and E′2 = (E2 \ E′′) ∪ E′. Clearly
G[E′2] ∈ S1. Also, G[E′1] ∈ I1 since it is obtained from the triangle-free graph
F = G[E1 \E′] by adding a set of disjoint edges E′′ such that every edge in E′′

has its vertices in different components of F .

A similar argument shows that the above example is but a special case of the

following: For all positive integers k and m such that k ≤ m, Sk⊕Im = Sk⊕Pm
where Pm = {G ∈ I : Every component of G is either a Km+2 or Km+2-free}.
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3. The unique decomposability of Ok

In order to prove that Ok is uniquely decomposable in La≤ we need a few results

on homomorphism properties.

A homomorphism of a graph G to a graph H is a function f from V (G)

into V (H) such that if uv ∈ E(G) then f(u)f(v) ∈ E(H); if such a function

exists, we write G→ H. For a given graph H we denote by → H the (additive

hereditary) property {G ∈ I : G→ H}. → H is called a hom property.

The disjunction of two graphs G and H, denoted by G ∨ H, is the graph

with vertex set V (G)×V (H) = {(g, h) : g ∈ V (G) and h ∈ V (H)} and edge set

{(g1, h1)(g2, h2) : g1g2 ∈ E(G) or h1h2 ∈ E(H)}.

Using the standard notation H for the complement of a graph H we write

G[n] for G ∨Kn and call G[n] a multiplication of G.

Some basic properties of the disjunction, multiplications and homomorphism

properties are given below.

Lemma 3.1. For all graphs G, H and F and positive integers k and n:

1. G ∨H = H ∨G.
2. (G ∨H) ∨ F = G ∨ (H ∨ F ).
3. G→ H iff G ⊆ H[k] for some k.
4. → G = → H iff G→ H and H → G.
5. → H = → H[k].
6. Ok = → Kk.

Theorem 3.2. Let G and H be graphs. Then → G ⊕ → H = → (G ∨H).

Proof. First we show that G∨G′ ∈ → G ⊕ → G′ for all G′. An appropriate (→
G,→ G′)-decomposition E1, E2 of G∨G′ is given by letting (u1, v1)(u2, v2) ∈ E1

iff u1u2 ∈ E(G).
In order to prove now that → (G ∨ H) ⊆ → G ⊕ → H we suppose that

K ∈ → (G ∨ H). Then, by Lemma 3.1(3), K ⊆ (G ∨ H)[k] for some k. But,
by the definition of G[k] and Lemma 3.1(2), (G ∨ H)[k] = (G ∨ H) ∨ Kk =
G ∨ (H ∨Kk) = G ∨ (H[k]). Therefore, with G′ = H[k], it follows that K ∈ →
G ⊕ → H[k] = → G ⊕ → H, using Lemma 3.1(5).

Now suppose that F ∈ → G ⊕ → H and let E1, E2 be a (→ G,→ H)-
decomposition of F . Then there exist homomorphisms g : (V (F ), E1)→ G and
h : (V (F ), E2) → H. Now define f : F → G ∨ H by f(v) = (g(v), h(v)) for
all v ∈ V (F ). In order to show that f is a homomorphism, let uv ∈ E(F ).
Then f(u)f(v) = (g(u), h(u))(g(v), h(v)). If uv ∈ E1 then g(u)g(v) ∈ E(G)
hence f(u)f(v) ∈ E(G ∨H). Similarly, if uv ∈ E2 then f(u)f(v) ∈ E(G ∨H).
Therefore f is a homomorphism, proving that F ∈ → (G ∨H).
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Corollary 3.3. For all positive integers a and b, Oab = Oa ⊕Ob.

Proof. Oab = → Kab = → (Ka ∨Kb) = → Ka ⊕ → Kb = Oa ⊕Ob.

For graphs G and H we define the lexicographic product H ◦G of G and H

to be the graph with vertex set V (H) × V (G) and edge set {(u1, v1)(u2, v2) :

u1 = u2 and v1v2 ∈ E(G) or u1u2 ∈ E(H)}. We let H ◦ P be the class of all

subgraphs of graphs of the form H ◦G,G ∈ P.

The edges of the lexicographic product H ◦G of two graphs H and G take

the following two forms:

- For a given vertex u1 ∈ V (H), the edges of the form (u1, v1)(u1, v2) with

v1v2 ∈ E(G); these we call edges of type u1.

- For a given edge u1u2 ∈ E(H), the edges of the form (u1, v1)(u2, v2) with

v1, v2 ∈ V (G); these we call edges of type u1u2.

A colouring of the edge set E(F ) of a subgraph F of H ◦G is called good if,

for each u1 ∈ V (H), all the edges of type u1 have the same colour and, for each

u1u2 ∈ E(H), all the edges of type u1u2 have the same colour. (For different

vertices (edges) of H, the colours of the edges of the type associated with these

vertices (edges respectively) need not be the same.)

Next we consider two graphs F ⊆ H ◦ G and F ′ ⊆ H ◦ G′. If there is an

isomorphism f : V (F ) → V (F ′) of F onto F ′ such that, for all (u, v) ∈ V (F ),

f(u, v) ∈ {u} × V (G′), then we say that f is position-sensitive and we write

F ∼=ps F
′.

With F and F ′ as in the previous paragraph (but not necessarily isomorphic),

we write F ′ →g F if for every 2-colouring of E(F ′) there is an induced subgraph

K ≤ F ′ such that the inherited colouring of E(K) is a good colouring and

F ∼=ps K. F ′ →g F means that, with respect to any 2-edge colouring of F ′,

there is a well-coloured position-sensitive copy of F in F ′.

A property P ∈ La≤ is called H-Ramsey if for every F ∈ H ◦ P there is

an F ′ ∈ H ◦ P such that F ′ →g F ; if H = K2 it is called a bipartite Ramsey

property. The well-known Bipartite Ramsey Lemma (see for instance Lemma

9.3.3 of [4]) states that the property O is bipartite Ramsey.
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Lemma 3.4. Let P be a bipartite Ramsey property and let H be any graph.
Then P is H-Ramsey.

Proof. We imitate the partite construction due to Nešetřil and Rödl in [8] where
the special case with P = O (and H = Kn) is proved. We first prove the
following statement: For any e = u1u2 ∈ E(H) and G ∈ H ◦ P there is a
G′ ∈ H ◦ P such that G′ →e G, where we mean by this notation that for any
2-colouring of E(G′) there is a K ≤ G′ such that G ∼=ps K and all type u1u2

edges have the same colour, all type u1 edges have the same colour, and all type
u2 edges have the same colour in the 2-colouring K inherits from G′.

We construct G′ as follows: For i = 1, 2, let Vi = {(u, v) ∈ V (G) : u = ui}.
Let B ∈ K2 ◦ P be the subgraph of G induced by V1 ∪ V2. Since P is bipartite
Ramsey, there exists a B′ ∈ K2 ◦ P such that B′ →g B. For every induced
subgraph B′′ of B′ such that B′′ ∼=ps B we add a copy of G−E(B) to B′ and we
identify the vertices corresponding to vertices of V1 ∪V2 with the corresponding
vertices of B′′. It is easy to see that G′ has the required properties.

Now let E(H) = {e1, . . . , em}. For any G ∈ P, we repeat the above
construction to obtain graphs G1, . . . , Gm such that Gm →em Gm−1 →em−1

Gm−2 →em−2 · · · →e2 G1 →e1 G from which it follows that Gm →g G.

In our next result we use the notation H = H1 ]H2 to denote that V (H) =

V (H1) = V (H2) and E(H) = E(H1) ∪ E(H2), with E(H1) ∩ E(H2) = ∅.

Theorem 3.5. Let → H ⊆ P ⊕ Q, P,Q ∈ La≤. Then there exist graphs H1

and H2 such that → H ⊆ → H1 ⊕ → H2 with → H1 ⊆ P, → H2 ⊆ Q and
H = H1 ]H2.

Proof. Let G be any graph in → H. Then G ⊆ H[k] = H ◦Kk for some k. By
Lemma 3.4 (with P = O), there exists a graph G′ ⊆ H ◦K`, for some `, such
that G′ →g G. Then G′ ∈ → H, so that G′ ∈ P ⊕ Q. Consider therefore any
(P,Q)-colouring c of E(G′). By the Lemma there is a K such that c restricted
to E(K) is a good colouring of K and K ∼=ps G. Therefore every G ∈ → H has
a good (P,Q)-colouring, if we regard G as a subgraph of H ◦Kk for some k.

Any such good colouring induces a colouring of E(H) in a natural way. Since
there are finitely many colourings of E(H) there is a colouring c′ = E1, E2 of
E(H) such that every graph G ∈ → H has a good (P,Q)-colouring that induces
c′. (Otherwise we could find a disjoint union of finitely many graphs in → H
with no good (P,Q)-colouring.) Set H1 = (V (H), E1) and H2 = (V (H), E2).
Clearly, H ∈ → H1 ⊕ → H2 and since → H1 ⊕ → H2 is a hom-property by
Theorem 3.2, it follows that → H ⊆ → H1 ⊕ → H2.

By the choice of c′, → H1 ⊆ P and → H2 ⊆ Q, and we clearly have
H = H1 ]H2.

Corollary 3.6. For any graph H, if → H is decomposable in La≤ then → H is
decomposable in HOM = {→ H : H ∈ I}.
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The next result is useful in the proof of our main result. Here we use the

following standard notation: ω(G) is the clique number of a graph G, χ(G) is

the chromatic number of G and α(G) is the independence number of G.

Lemma 3.7. Let G and H be graphs. Then

1. ω(G ∨H) ≤ ω(G)χ(H) ≤ χ(G ∨H).
2. α(G ∨H) = α(G)α(H).
3. → H = Ok iff ω(H) = χ(H) = k.

Proof.

1. In order to prove the first inequality, let K be a complete subgraph of G∨H
and let F be any edgeless induced subgraph of H. Then |V (K) ∩ (V (G) ×
V (F ))| ≤ ω(G) since G ∨ F = G[d] with d = |V (F )|, and ω(G[d]) = ω(G).
Since V (H) can be partitioned into χ(H) independent sets it follows that
|V (K)| ≤ ω(G)χ(H).
For the second inequality we take any complete subgraph K of G of order
ω(G). Then χ(K ∨H) = ω(G)χ(H) and K ∨H ⊆ G ∨H.

2. If K = {(g1, h1), . . . , (gk, hk)} is an independent subset of V (G ∨ H) then
KG = {g1, . . . , gk} and KH = {h1, . . . , hk} are independent subsets of V (G)
and V (H), respectively. Then |K| ≤ |KG ×KH | = |KG||KH | ≤ α(G)α(H).
Also, if K1 and K2 are independent subsets of G and H, respectively, then
K1 ×K2 is an independent subset of G ∨H, hence α(G ∨H) = α(G)α(H).

3. If → H = Ok then k ≤ ω(H) ≤ χ(H) ≤ k. If ω(H) = χ(H) = k then
H → Kk → H hence → H = Ok by Lemma 3.1.

Theorem 3.8. Let p1, . . . , pn be prime numbers and let k = p1 · · · pn. Then the
property Ok has the unique decomposition Op1 ⊕ · · · ⊕ Opn in La≤.

Proof. Let k be any positive integer. We show that if Ok = P ⊕Q, with P,Q ∈
La≤, then there exists an integer a such that P = Oa. Then, ifOk = P1⊕· · ·⊕Pm
with Pi indecomposable for every i, it follows that for every i, Pi = Oqi for some
qi. Since Pi is indecomposable qi must be prime by Corollary 3.3. The result
then follows from the unique factorisation of integers and Corollary 3.3.

Suppose therefore that Ok = P⊕Q, P,Q ∈ La≤. Since Ok =→ Kk we have,
by Theorem 3.5 and Theorem 3.2, that there exist H1 and H2 such that Ok =
→ (H1 ∨H2), → H1 ⊆ P, → H2 ⊆ Q and H1 ]H2 = Kk. First we show that
→ H1 = Oa for some a. By Lemma 3.7 we must show that ω(H1) = χ(H1): By
the same lemma we have that k = ω(H1∨H2) ≤ ω(H2)χ(H1) ≤ χ(H1∨H2) = k,
hence k = ω(H2)χ(H1). Also, since H1 ]H2 = Kk, we have that H1 = H2 so
that ω(H1) = α(H2) and ω(H2) = α(H1). Now, k = χ(H1∨H2) ≥ |V (H1∨H2)|

α(H1∨H2)
=

|V (H1)||V (H2)|
α(H1)α(H2)

= k2

ω(H2)ω(H1)
.

Hence ω(H1) ≥ k
ω(H2)

= χ(H1), from which it follows that ω(H1) = χ(H1).
Similarly, → H2 = Ob for some b. Since Ok = → H1 ⊕ → H2 it follows

that k = ab. Suppose now that Oa ⊂ P and let G ∈ P be such that χ(G) > a.
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Then the graph F = G ∨ Kb has chromatic number greater than ab = k but
F ∈ P ⊕Q, a contradiction. Therefore P = Oa.

4. Conclusion

It would be of interest to characterise those properties which are uniquely de-

composable in La (or La≤). In particular, it is easy to see that for every product

of properties Pk we have Pk = P ⊕ Ok, and hence P ⊕ Op1 ⊕ · · · ⊕ Opn if

k = p1 · · · pn, and the following question arises: For which indecomposable P is

this the unique decomposition of Pk into indecomposable properties?

We can construct a hom property → H which does not have a unique de-

composition into indecomposable properties, even if we restrict the properties

to hom properties. Our proof relies on the fact that the complementary graph

H is disconnected. We do not know if there is such a graph H with a connected

complement.
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