ABSTRACT: Interspecific competition is an important structuring element in marine ecosystems, especially in the Southern Ocean which offers few prey choices to comparatively large predator populations. We present the first simultaneous observations of at-sea behaviour and attendance patterns of 3 synchronously breeding, central place, krill foragers at Bouvetøya — a small, isolated, sub-Antarctic island in the South Atlantic. Time depth recorders and satellite transmitters were deployed during the austral summer of 2007/2008 on 47 lactating Antarctic fur seals *Arctocephalus gazella* (AFS) rearing pups and on 20 macaroni *Eudyptes chrysolophus* (MAC) and 30 chinstrap *Pygoscelis antarctica* penguins (CHIN) rearing chicks. All 3 species showed a strong preference for the west side of the island, and their foraging ranges overlapped markedly. Solar elevation influenced the timing of departures from, and arrivals to, the island with markedly different patterns between the seals and the penguins. Diving patterns also showed significant differences among the 3 species, with the frequency of diving being higher at night for the AFS, while both penguin species dove more frequently during the day. But a common, vertical diel pattern occurred in all 3 species, with shallow diving occurring at night and deep diving during the day, consistent with the vertical migration of krill. MACs targeted 2 depth layers for feeding, including a deep prey layer at ~70 m, which was not exploited by AFSs and CHINs. The results suggest that there is potential for competitive overlap among these 3 krill predators at Bouvetøya, but that it is reduced via both spatial (horizontal and vertical) and temporal partitioning of foraging areas.

KEY WORDS: Competition · Diving behaviour · Foraging ecology · Niche separation · Southern Ocean

INTRODUCTION

If 2 or more species are resource limited, share similar prey types and have substantial spatiotemporal overlap in their distribution (Hutchinson 1957, Schoener 1974, Alley 1982), there is potential for competition. Competition theory predicts that complete overlap of realised niches leads to an unsustainable situation causing the demise of 1 or more of the competing species (Hutchinson 1957, Hardin 1960). Therefore, in order to co-exist species must differ in their realised niches (Trivelpiece et al. 1987, Fried-laender et al. 2009, Miller et al. 2010) and are expected to show partitioning in at least 1 resource.
axis (prey, spatial, or temporal) when overlapping in range (Barlow et al. 2002). Potential competitors can reduce the impact of competition by partitioning resources through habitat, dietary, or temporal segregation (Schoener 1974, Alanärä et al. 2001).

Lactating otariids and breeding seabirds share similar foraging constraints, utilise similar marine resources and often breed sympatrically and synchronously (Costa 1991, Boyd 1998). This is especially true in the Southern Ocean where there are few islands that can serve as haulout sites for large populations of land-breeding predators, including sea birds, penguins and seals. These animals are central place foragers (Orions & Pearson 1979) during the breeding season; they must return to the colony to deliver food to their land-based offspring (Beauplet et al. 2004, Ichii et al. 2007). Thus, they are constrained in the distance that they can travel by the time between feeding sessions. There is therefore potential for resource competition between such species during the breeding season if they share a common food resource (Boyd et al. 2002, Ballard et al. 2012).

Three krill-predators, Antarctic fur seals Arctocephalus gazella (AFSs), macaroni penguins Eudyptes chrysolophus (MACs) and chinstrap penguins Pygoscelis antarctica (CHINs) breed synchronously and sympatrically during the austral summer on Bouvetøya in the South Atlantic. The breeding period spans from mid-November to late March–April for the seals and from late December to late February–early March in the case of the penguins (Krafft et al. 2002). Female fur seals come ashore to give birth to their single pups and then alternate between periods of 1 to 10 d foraging at sea and periods of 1 to 3 d ashore attending their young (Lunn & Boyd 1993, Boyd 1999, Staniland et al. 2004, Biuw et al. 2009) until the pup is weaned after ~16 wk of nursing (Costa 1991, Kovacs & Lavigne 1992). MACs and CHINs typically lay 2 eggs a few days apart (Croxall & Davis 1999, Green et al. 2002). The second egg is always produced to brood reduction in MACs which receive only 1 offspring per season (Waluda et al. 2010). CHINs raise both chicks when there is sufficient food available (Croxall et al. 1988, Meyer et al. 1997). Young penguin chicks are brooded (and guarded) by one parent, while the other forages for periods of 12 to 24 h, until the chicks are old enough to thermoregulate on their own, at which time they are left in a crèche with other young while both parents often forage, and a few adults guard. Penguin chicks are fed with whole food items, directly via regurgitation of parental stomach contents, which puts special temp-oral constraints on the adult birds’ foraging (see Costa 1991, Croxall & Davis 1999). In MAC pairs the female does most of the chick provisioning, being assisted by the male only during the crèche period (Green et al. 2002). In CHINs both parents tend the chick(s) and both undertake foraging trips (Croxall et al. 1988, 1993, Jansen et al. 1998). Fledging occurs between mid-February and early March for both species, ~60 and 54 d after hatching for MACs and CHINs, respectively (Croxall et al. 1988).

Krill Euphausia superba is a key component in the diets of the AFSs, MACs and CHINs throughout much of the sub-Antarctic region (Jansen et al. 1998, Hofmeyr et al. 2010, Waluda et al. 2010), with the exception of the southern Indian Ocean sector (see Lea et al. 2002, de Bruyn et al. 2009), though all 3 species do also feed on fish and squid (Reid et al. 2006, Hofmeyr et al. 2010, Waluda et al. 2010). All 3 species appear to select mature female krill preferentially in most areas, and their reproductive performances are similar in periods of krill fluctuation (Reid et al. 1999, Barlow et al. 2002, Croll et al. 2006, Waluda et al. 2010).

Although many studies on krill predators have been conducted in the past 30 yr, they have been focused to a large extent on areas around South Georgia and the Antarctic Peninsula (e.g. Croxall et al. 1985, Boyd et al. 1991, Jansen et al. 1998, Trivel-piece et al. 2007, Goldsworthy et al. 2010, Waluda et al. 2010). Little information is available from the ocean sector surrounding Bouvetøya, although some data are available regarding fur seal foraging from this area (Biuw et al. 2009, Hofmeyr et al. 2010). In recent years, a significant decline in MAC and CHIN numbers has taken place at the Nyrosa breeding colonies on Bouvetøya (Huyser 2001, Krafft et al. 2002). It is therefore important to acquire a better understanding of the underlying ecological processes driving the interactions among the 3 krill predators, particularly in light of the fact that increased krill harvesting is taking place in the Southern Ocean (Tou et al. 2007, Krafft et al. 2010, Nicol et al. 2012). This paper explores the at-sea-dis-tribution and diving behaviour of the 3 krill-depen-dant predators (AFSs, MACs, CHINs) at Bouvetøya during their common breeding season in 2007–2008.

MATERIALS AND METHODS

This study took place at Nyrosa (54.41° S, 03.29° E) on the west coast of Bouvetøya, between 12 December 2007 and 12 February 2008. We captured...
47 mother–pup AFS pairs (Table 1). The mothers were manually restrained with a large cone-shaped hoop net (1.5 m long × 1 m Ø) attached to an aluminium frame and handle (see David et al. 1990). Body mass was measured to the nearest 0.1 kg using a 100 kg Salter scale prior to instrument attachment and upon recovery (Table 1). Three instruments were simultaneously deployed on each adult female to obtain data on her movement patterns and diving behaviour: a 0.5 W Sirtrack Kiwisat 101 platform terminal transmitter (PTT, Sirtrack), a Wildlife Computers Mk9 time-depth recorder (TDR, Wildlife Computers) and a Sirtrack VHF radio transmitter (to facilitate recapture). The instruments were glued to the fur of the mid-dorsal region with 2-component industrial grade epoxy (Huntsman AW2101/HW2951, Inter -tronics or 5-Cure, Industrial Formulator Inc.). The PTTs had a repetition rate of 40 s (with no duty cycling). The TDRs were programmed to record depth, at a resolution of 0.5 m, and light level every second, both when wet and dry in order to record attendance patterns precisely. The VHF radio transmitter had an individual frequency ranging from 151.200 to 151.540 MHz (in steps of 10 KHz, 60 pulses min⁻¹, no duty cycling). In air, the PTT weighed 100 g (120 × 56 × 17 mm). It had a cross-sectional area of 9.5 cm². The TDR and the VHF transmitter weighed 30 g (67 × 17 × 17 mm) and 35 g (60 × 25 × 15 mm) with cross-sectional surface areas of 2.9 and 3.7 cm², respectively. The combined weight of the instruments represented 0.4% of the animal’s average body weight in the air, and the instruments’ cross-sectional areas represented 1.9, 0.6 and 0.7% of the animals’ frontal cross-sectional area for the PTT, TDR and VHF, respectively (assuming an average front cross-sectional area surface for a female AFS of 490 cm², see Biuw et al. 2009). Instruments were left attached for 1 to 5 foraging trips. We captured a total of 20 female MACs and 31 CHINs of unknown sex on their nests during the brood-guard period and weighed using a 10 mm (thickness) rope noose passed under the wings, suspended from a 10 kg Salter scale (accurate to within 50 g) (Table 1). Two types of instruments were simultaneously attached to each penguin, a 0.5 W Sirtrack Kiwisat 202 PTT (Sirtrack Inc.) and a Wildlife Computers Mk9 TDR identical to the one used on the AFSs. Both instruments were glued to the dorsal feathers using Loctite 323 rapid-setting glue. The penguin PTTs weighed 100 g in air (90 × 34 × 25 mm) and had a cross-sectional surface area of 8.5 cm², which represented 5.6% of the penguins’ frontal cross-sectional area (assuming ~150 cm² for both species Croll et al. 1991), while the TDRs represented 1.9% of the penguins’ cross-sectional area surface. The combined weight of the instruments represented 2.9 and 3.1% of the body weight for the MACs and the CHINs, respectively. Instruments were left attached for 1 to 15 trips. Upon recapture the penguins were re -weighed. Seven animals of each species were purposely left with the PTT at tached to monitor at sea movements after the breeding season (to be published elsewhere, see also Biuw et al. 2010a); data are presented herein up until 15 February, when the

<table>
<thead>
<tr>
<th>Variable</th>
<th>AFS</th>
<th>MAC</th>
<th>CHIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals instrumented (n)</td>
<td>47</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>Body mass at deployment (kg)</td>
<td>38.9 ± 10 (29.0–51.0)</td>
<td>4.4 ± 0.4 (3.6–5.3)</td>
<td>4.1 ± 0.4 (3.4–3.5)</td>
</tr>
<tr>
<td>Body mass at recovery (kg)</td>
<td>37.7 ± 4 (25.0–49.0)</td>
<td>4.2 ± 0.4 (3.6–5.2)</td>
<td>4.2 ± 0.4 (3.4–5)</td>
</tr>
<tr>
<td>PTTs (n)</td>
<td>45</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>TDRs (n)</td>
<td>43</td>
<td>16</td>
<td>26</td>
</tr>
<tr>
<td>PTT + TDR (n)</td>
<td>41</td>
<td>16</td>
<td>21</td>
</tr>
<tr>
<td>Tagging period (PTT + TDR)</td>
<td>19 Dec–7 Feb</td>
<td>14 Jan–11 Feb</td>
<td>3 Jan–8 Feb</td>
</tr>
<tr>
<td>Track duration (d)</td>
<td>9 ± 4 (3–20)</td>
<td>9 ± 6 (4–24)</td>
<td>7 ± 4 (2–18)</td>
</tr>
<tr>
<td>No. of trips per individual</td>
<td>1.9 ± 1.1 (1–5)</td>
<td>4.2 ± 2.6 (2–11)</td>
<td>6.6 ± 4.2 (1–15)</td>
</tr>
<tr>
<td>Total number of trips</td>
<td>65 ± 34 (5–160)</td>
<td>28 ± 30 (1–204)</td>
<td>9 ± 7 (1–49)</td>
</tr>
<tr>
<td>Haul-out duration (h)</td>
<td>36 ± 20 (4–79)</td>
<td>14 ± 4 (8–33)</td>
<td>17 ± 6 (2–44)</td>
</tr>
<tr>
<td>Mean max. distance (km)</td>
<td>54 ± 34 (2–134)</td>
<td>48 ± 46 (2–284)</td>
<td>10 ± 12 (1–57)</td>
</tr>
<tr>
<td>Total number of dives (>4 m)</td>
<td>48212</td>
<td>33346</td>
<td>43382</td>
</tr>
<tr>
<td>Dive duration (s)</td>
<td>59 ± 34 (7–290)</td>
<td>85 ± 36 (9–246)</td>
<td>62 ± 25 (8–238)</td>
</tr>
<tr>
<td>Max. depth (m)</td>
<td>20 ± 17 (4–133)</td>
<td>32 ± 26 (4–133)</td>
<td>20 ± 14 (4–99)</td>
</tr>
<tr>
<td>Percent time at sea spent diving</td>
<td>16 ± 6</td>
<td>47 ± 9</td>
<td>52 ± 9</td>
</tr>
</tbody>
</table>
field crew departed; all tagged animals were known to still be caring for young at this time.

A state-space model, based on a Kalman filtering algorithm (Patterson et al. 2008, 2010), was applied to the tracks to obtain the best possible representation of the real path followed by the animals. The TDR records were correlated with the PTT records, based on time, in order to calculate a geographic position for each dive. Start and end times of trips were defined based on conductivity switch records from the TDRs, or distance from the island for animals with only PTT records available. Diel periods were defined according to the sun angle as follows: night was defined as a solar elevation below -12° (McCafferty et al. 1998; nautical twilight, US Naval Oceanography Portal 2011); day was defined as a solar elevation >0°; and dusk and dawn were defined as the periods with a solar elevation between -12° and 0°. Dawn and dusk were analysed as 1 period in analyses using solar elevation. These time periods were only usable in analyses for records where both PTT and TDR data were available, because solar elevations were calculated from positions and local time. When data was explored based on time of day (GMT), all of the TDR records were included. A depth of 4 m was set as a minimum for classification of a dive to avoid including surface travelling or resting as diving (Waluda et al. 2010, Staniland et al. 2011). Sea-surface temperature (SST) was taken as the temperature recorded by the TDR at the beginning of each dive. Each position was linked to the closest bathymetry value in the GEBCO gridded data (1 min resolution dataset—

All statistical analyses were conducted using R, Version 2.12.1 (R Development Core Team 2009) unless otherwise specified. Analyses of the animals’ behaviour were performed either at the dive, location, foraging trip, or individual level. Filtered positions were interpolated every kilometre to avoid biases due to the number of locations depending on satellite coverage. The circular mean bearings were calculated for each trip based on interpolated positions. Circular statistics were used on the mean bearings to see if the travel direction was random (Kuiper’s test). cANOVA was performed to examine the consistency of the mean bearing of each individual trip between the 3 species. These analyses were done using the Circstats and circular packages (Jam-malamadaka & SenGupta 2001). Trip duration, haul-out duration, maximum distance from the island per trip (log transformed to correct for non-normal distribution), proportion of time spent diving per trip and mean maximum depth per diel period (night, dusk or dawn, day) were compared between the 3 species using linear mixed effect models (nlme package; Pinheiro et al. 2012). These models were fitted with species as a fixed effect and animal identification (ID) as a random effect, to take into account individual variability and multiple trips performed by some individuals. All models were fitted using maximum likelihood so that they were comparable. Model fitting was based on the examination of the residuals, and Kolmogorov-Smirnov tests were used to assess whether or not they were normally distributed. Models were compared using small-sample-corrected Akaike’s information criterion (AICc; Akaike 1974) and the relative weight of each candidate model (Burnham & Anderson 2002). When no significant differences between 2 models were found, the simplest was chosen following the principle of parsimony. Post hoc multiple comparison tests were performed using Tukey’s pairwise comparisons (multcomp package; Bretz et al. 2010) to assess the significance of the differences between factors and the interactions among factors. All distances from the colony refer to great circle distances (Meeus 1991), and the maximum corresponds to the most distant point reached within a trip.

Distribution of the timing of departures and arrivals from or to the island in relation to the time of day were compared within and between species with a 2-sample Kolmogorov-Smirnov test. Frequency and maximum dive depths were also examined in relation to the time of day and solar elevation. Kernel densities were fitted to the distributions using local polynomial kernel smoothers available in the KernSmooth library (Wand & Ripley 2005). The number of dives per hour was calculated for each trip for each individual. Generalised additive mixed effects models (GAMM) were fitted for each species to account for the non-linear relationship between the response and the explanatory variables. Animal ID was used as a random effect, with an Order 1 auto regressive term (correlation = corAR1(form = ~1|ID)) to account for the lack of independence between observations from the same individual. A quasi- Poisson error structure was used because the data were over dispersed. The smoothed terms were fitted using thin-plate-penalised regression (Woods 2006). The explanatory variables tested in these models were distance to the colony (DIST), solar elevation, water depth (as a factor, shelf = 0 to 1000 m, oceanic > 1000 m) and SST. Analyses were performed using the mgcv (Woods 2006) and MuMIn packages (Barton 2012).
selection was based on information criteria (Burnham & Anderson 2002) using QAIC because the data were over-dispersed.

Positions of dives were grouped into 0.1×0.06 degree spatial cells to calculate the percentage of overlap between the 3 species’ foraging areas. So, for each species the number of cells containing at least 1 foraging dive was obtained. The percentage of cells containing dives from >1 species was then calculated.

RESULTS

Tracking data for AFSs commenced in mid-December and extended into early February. Because of the later start of the breeding season of the MAC and CHIN penguins the avian records commenced in early January and extended until early February. The average duration of the tracking periods per individual were similar among the 3 species (ANOVA $p = 0.35$) (Table 1). The failure of some instruments resulted in the length of PTT and TDR records differing for some individuals and the number of PTT and TDR records not being equal (Table 1).

At-sea movements

All trips made by individuals of the 3 species during our defined study period are shown in Fig. 1. A preference for the western sector was evident for all species but most notably for the penguins. The AFSs’ tracks were more dispersed than those of the penguins, with a few trips directed to -

wards the south-southeast of the island. The western orientation was even more evident when considering the interpolated location bearings plotted as a circular diagram (Fig. 2). The preference for a particular direction was statistically significant; the circular mean bearings per trip were not uniformly distributed for the 3 species (Kuiper test $D_{AFS} = 50.9$, $D_{MAC} = 73.7$, $D_{CHIN} = 28.3$; $p < 0.01$), and the individual variation in mean bearing was smaller than the difference.

![Fig. 1. Arctocephalus gazella, Eudyptes chrysolophus, Pygoscelis antarctica. Tracks of all Antarctic fur seals (red, n = 45), macaroni penguins (green, n = 20) and chinstrap penguins (blue, n = 24) between 19 December 2007 and 15 February 2008, instrumented at Bouvetøya. The tracks have been filtered through a state-space model. White lines represent depth contours of 100, 500, 1000, 2000, 3000, 4000 and 5000 m](image)

![Fig. 2. Arctocephalus gazella, Eudyptes chrysolophus, Pygoscelis antarctica. Circular diagram of interpolated location bearings for (a) Antarctic fur seals, (b) macaroni penguins and (c) chinstrap penguins tracked from Bouvetøya](image)
observed between species (cANOVA: $F_{2,89} = 12.34, p < 0.001$). AFSs showed a degree of preference for the northwestern sector despite individual variability. MACs’ tracks were clustered in the west-southwest direction, while most CHINs’ tracks were due west.

Attendance patterns and trip durations

Mean foraging trip duration differed among species (lme trip duration ~ species: $F_{2,75} = 136.3, p < 0.001$), and all pairwise comparisons between species were also significantly different ($z_{AFS-MAC} = 6.49, p < 0.001$, $z_{AFS-CHIN} = -16.55, p < 0.001$, $z_{MAC-CHIN} = -7.37, p < 0.001$). Trip duration was longer for the AFSs than for the MACs which in turn were longer than for the CHINs. Trip duration was correlated with the maximum distance reached during the trip ($R^2_{AFS} = 0.78$, $R^2_{MAC} = 0.93$, $R^2_{CHIN} = 0.81; p < 0.001$; also see Fig. 3). A pattern of short (MAC < 20 h; CHIN < 10 h) and long trips (MAC > 20 h; CHIN > 10 h) was observed for both penguin species, which corresponded to day trips and over night trips; though it must be noted that day trips were most common for both species (Fig. 3). The bimodal patterns for MACs and CHINs were not the result of individual strategies, as almost all individuals performed at least 1 over-night trip at some point in their data record. By contrast, no particular patterns in trip duration or maximum distance from the island were observed for the AFSs.

Maximum distance from the island per trip was significantly different between the 3 species (lme max. distance ~ species: $F_{2,75} = 81.20, p < 0.001$). Pairwise comparisons showed that the difference between AFSs and MACs was not significant ($z_{AFS-MAC} = 0.630, p = 0.8$), whereas the differences between AFSs and CHINs and between MACs and CHINs were significant ($z_{AFS-CHIN} = -10.59, p < 0.001$, $z_{MAC-CHIN} = -8.43, p < 0.001$). CHINs stayed significantly closer to the island than either MACs or AFSs (Table 1). Mean time spent ashore (haul-out duration) also differed on a species-specific basis (lme haulout ~ species: $F_{1,56} = 19.30, p < 0.001$), though MACs and CHINs did not differ from each other ($z_{MAC-CHIN} = -1.78, p = 0.24$). The mean haul-out duration for the AFSs was longer than that for the MACs ($z_{AFS-MAC} = -6.47, p < 0.001$) or CHINs ($z_{AFS-CHIN} = -5.67, p < 0.001$).

Arrivals to and departures from the island did not occur randomly throughout the day for any of the 3 species (Fig. 4) (Kolmogorov-Smirnov tests, arrivals-departures: $D_{AFS} = 0.29$, $D_{MAC} = 0.78$, $D_{CHIN} = 0.39; p < 0.001$), and there were significant differences among the species (Kolmogorov-Smirnov tests, departures: $D_{AFS-MAC} = 0.69$, $D_{AFS-CHIN} = 0.37$, $D_{MAC-CHIN} = 0.42; p < 0.001$; arrivals: $D_{AFS-MAC} = 0.45, p < 0.001$, $D_{AFS-CHIN} = 0.28, p < 0.001$, $D_{MAC-CHIN} = 0.21, p < 0.05$). AFSs left the island mostly around mid-day and in the evening, with a peak right after sunset (Fig. 4).
Fig. 4. *Arctocephalus gazella*, *Eudyptes chrysoclophon*, *Pygoscelis antarctica*. Density (upper panels) and frequency (lower panels) of departures from and arrivals to Bouvetoya for (a) Antarctic fur seals, (b) macaroni penguins and (c) chinstrap penguins, as a function of the time of day (upper panels) or of the solar elevation (lower panels). Fitted dashed red line = local polynomial kernel smoothers with a bandwidth of 1 h. Vertical dotted red line = solar elevations of 0°, sunrise and sunset in the dawn and dusk histograms, respectively. The histogram bars are shaded according to the period of the day (black = before sunrise or after sunset; white = day). Histograms for dawn periods: solar elevations increasing from left to right (−20 to 60°); histograms for dusk periods: solar elevations decreasing from left to right (60 to −20°).
Fig. 5. *Arctocephalus gazella, Eudyptes chrysolophus, Pygoscelis antarctica*. Scatterplots of maximum dive depths and histograms of dive frequencies (top) as a function of solar elevation combined with histograms of maximum dive depth (right side) for (a) Antarctic fur seals, (b) macaroni penguins and (c) chinstrap penguins tracked from Bouvetoya. Solid line red: nautical twilight (−12°); broken red line: sunrise or sunset (0°). The period on the left of the solid line is night, between the 2 red lines is dusk or dawn, and on the right of the broken red line (indicating sunset or sunrise) is day.
Their returns were diffusely spread, with only a slight preference for mid-morning. MACs showed a very distinct peak during the dawn and early morning for departures (with very few birds leaving during the day). This peak was even more evident when departures were expressed as a function of solar elevation, with the majority of departures occurring just before sunrise (Fig. 4). Arrivals were also clustered, peaking just before sunset. CHINs showed 2 departure peaks, one just before sunrise and the other around mid-day. CHINs arrived back to the island throughout the day, with only a slight preference for the late afternoon. Arrivals after sunset were not common for any of the 3 species.

Diving behaviour

Dive summary statistics are presented in Table 1. The proportion of time spent diving during a foraging trip differed significantly between the 3 species (lme $F_{2,231} = 364.8$, $p < 0.001$), with the penguins spending ~50% of their time diving, while AFSs spent only 16% of their time diving. The frequency of diving varied as a function of solar elevation (Fig. 5) for all 3 species. Most AFS diving occurred at night (42%) or at dusk or dawn (31%), with a peak around twilight. Both penguin species did most of their diving during the day (MAC: 79%, CHIN: 87%), with a peak around mid-day. Both penguin species dove very little during the dusk or dawn periods (9%) or during the night (MACs: 12%, CHINs: 4%). The temporal distribution of diving was significantly different between all pair-wise combinations among the 3 species (Kol mo gorov-Smirnov test: $D_{AFS-MAC} = 0.29$, $D_{AFS-CHIN} = 0.32$, $D_{MAC-CHIN} = 0.07; p < 0.001$).

Maximum dive depth varied as a function of solar elevation (Fig. 5) in a similar manner for the 3 species. Shallower dives typically occurred at night, while deeper dives occurred during the day, and diving to intermediate depths took place during the dusk or dawn period (lme $F_{2,532} = 148$, $p < 0.0001$). The interaction between species and diel period was significant (lme $F_{4,532} = 30$, $p < 0.0001$), but there were no clear interspecific differences (lme $F_{2,73} = 0.5$, $p = 0.6$). During the day MACs dove deeper (~35 m) than AFSs and CHINs (~20 m) ($z_{AFS-MAC} = 4.06$, $p < 0.001$, $z_{AFS-CHIN} = -0.56$, $p = 0.99$, $z_{MAC-CHIN} = 4.63$, $p < 0.001$), during the dusk or dawn period AFSs remained at the same depth as during the day, but the MACs and CHINs did not dive as deeply (~15 m) ($z_{AFS-MAC} = -4.43$, $p < 0.001$, $z_{AFS-CHIN} = -7.35$, $p < 0.001$, $z_{MAC-CHIN} = 1.95$, $p = 0.55$). During the night, the MACs dove less deeply (~8 m) than the AFSs and CHINs (~15 m) ($z_{AFS-MAC} = -4.73$, $p < 0.001$, $z_{AFS-CHIN} = 0.2$, $p = 1$, $z_{MAC-CHIN} = -4.07$, $p < 0.001$). The distribution of the maximum dive depths for the MACs was bimodal, especially during the day, with a peak at ~10 m and another at ~70 m (Fig. 5), whereas it was unimodal for both the AFSs and the CHINs.

Areas of high diving intensity

The most important covariates describing where the animals tended to dive differed according to species. Solar elevation and temperature were present in the top-ranked models for the AFS, temperature and water depth for the MACs and distance from the island and solar elevation for the CHINs (Table 2). Considering all dives throughout a 24 h period, the density of diving was highest in the vicinity of the island (Fig. 6) (20 to 80 km for AFS, 30 to 40 km for MAC, ~10 km for CHIN) for each of the 3 species.

Table 2. Arctocephalus gazella, Eudyptes chrysoccephalus, Pygoscelis antarctica.

<table>
<thead>
<tr>
<th>Model</th>
<th>Intercept</th>
<th>DIST</th>
<th>Sun angle</th>
<th>SST</th>
<th>Water depth</th>
<th>df</th>
<th>QAIC</th>
<th>ΔQAIC</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antarctic fur seals (AFS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>0.6651</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>8</td>
<td>4087.70</td>
<td>0.00</td>
<td>0.64</td>
</tr>
<tr>
<td>1.2</td>
<td>0.6624</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>9</td>
<td>4088.90</td>
<td>1.24</td>
<td>0.34</td>
</tr>
<tr>
<td>1.3</td>
<td>0.6421</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>11</td>
<td>4095.50</td>
<td>7.76</td>
<td>0.01</td>
</tr>
<tr>
<td>Macaroni penguins (MAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>1.005</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>6</td>
<td>644.90</td>
<td>0.00</td>
<td>0.67</td>
</tr>
<tr>
<td>2.2</td>
<td>1.018</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>7</td>
<td>647.20</td>
<td>2.32</td>
<td>0.21</td>
</tr>
<tr>
<td>2.3</td>
<td>1.018</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>9</td>
<td>651.40</td>
<td>6.53</td>
<td>0.03</td>
</tr>
<tr>
<td>2.4</td>
<td>1.017</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>5</td>
<td>652.10</td>
<td>7.20</td>
<td>0.02</td>
</tr>
<tr>
<td>Chinstrap penguins (CHIN)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>1.138</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>8</td>
<td>24.10</td>
<td>0.00</td>
<td>0.62</td>
</tr>
<tr>
<td>3.2</td>
<td>1.125</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>9</td>
<td>25.90</td>
<td>1.75</td>
<td>0.26</td>
</tr>
<tr>
<td>3.3</td>
<td>1.138</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>10</td>
<td>28.00</td>
<td>3.84</td>
<td>0.09</td>
</tr>
<tr>
<td>3.4</td>
<td>1.125</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>11</td>
<td>29.70</td>
<td>5.61</td>
<td>0.04</td>
</tr>
</tbody>
</table>
AFSs and MACs concentrated their diving over gentle slopes, where depth of the water ranged broadly from 100 to 1000 m. AFSs showed high densities of dives in more distant areas, above deep oceanic waters. CHINs dove mainly over depths of <500 m. All 3 species showed a peak of diving intensity in water masses that were at temperatures between 0.5 and 1.5°C, with a decrease in diving frequency as the temperature increased (Fig. 7).

There was substantial spatial overlap between the 3 species’ core diving areas, with 43, 63 and 99% of the AFS, MAC and CHIN dives, respectively, overlapping with at least 1 other species (Table 3). AFSs covered a larger area than the penguins and had distinct foraging areas at greater distances from the island. CHINs were almost completely encompassed within the AFSs’ core areas and also overlapped considerably with MACs. MACs were intermediate in overlapping with the other 2 species. However, when considering the 3 diel periods, the percentage of overlap between the 3 species decreased dramatically (Table 3), particularly at night. Interestingly, diving intensity in core areas differed according to diel period for both penguin species, but this was not the case for the AFSs (Fig. 8). The penguins’ night dives were more focussed within oceanic and slope waters at greater distances from the island, compared to daytime diving, particularly for the MACs. During the day, the penguins dove mainly in areas close to the island.

DISCUSSION

All 3 predator species focussed much of their foraging effort on krill; both AFS scats and MAC and CHIN gastric lavage analyses from Bouvetøya have shown that krill is a key component in the diet at this location, with *Euphausia superba* occurring in >80% of the samples for all 3 species. The diet of AFSs and MACs at Bouvetøya appears to be somewhat more diverse than that of CHINs in this region, with a greater proportion of the samples from the AFSs and MACs containing fish (mainly myctophids) and cephalopods (Krafft et al. 2002, Hofmeyr et al. 2010, Norwegian Polar Institute unpubl. data). These results are similar to what has been found in other sub-Antarctic areas such as the Antarctic Peninsula and South Georgia where AFSs (Croxall et al. 1985, Daneri et al. 2008), MACs (Barlow et al. 2002, Hart et al. 2010) and CHINs (Ichii et al. 2007, Miller & Trivelpiece 2008) feed primarily on Antarctic krill (of similar size, ~50 mm), but also prey on the krill-associated fish community (e.g. Van de Putte et al. 2010). It has recently been shown that krill concentrate around isolated islands in the South Atlantic (Atkinson et al. 2008) and, specifically, that high concentrations of krill are found in waters around Bouvetøya compared to nearby, deep oceanic waters (Krafft et al. 2010). Krill recruitment mechanisms in the Bouvetøya area are not well understood, but likely involve a mixture of local recruitment and horizontal advection. Ocean circulation simulation studies suggest that the eastward flow of the Antarc-
tic Circumpolar Current (ACC) and the Weddell Gyre could be driving krill advection from the Antarctic Peninsula to the Bouvetøya region (Thorpe et al. 2007, Atkinson et al. 2008, Krafft et al. 2010). This would be consistent with the marked preference of the 3 predator species for waters to the west of the island, with the AFSs and the penguins targeting krill as it first enters the zone accessible to them. Some additional oceanographic connections could also play a role in this regional high prey availability to the west, but the paucity of fine-scale oceanographic data from around Bouvet limits the value of further speculation. The tendency to forage on the west side of Bouvetøya has previously been documented for AFSs (Biuw et al. 2009), but is novel in information regarding the behaviour of MACs and CHINs, which show extreme clustering in mean bearing of their foraging trips’ in this direction.

Antarctic krill is mainly found in cold water and experiences maximum growth rates between 0.5 and 1°C (Atkinson et al. 2006), which is very consistent with the temperature favoured for diving by the predators in our study (~1°C). The normal northern limit of Euphausia superba is the Antarctic Polar Front (APF) (Atkinson et al. 2008, Krafft et al. 2010). In the Bouvetøya region this occurs at ~52° S, which was also the northern limit of the species tracked in this study (also see Biuw et al. 2009). The slight difference in the temperatures experienced by the AFSs and the penguins is likely due to the fact that some of the AFSs travelled to the south and southeast of Bouvetøya, where colder Antarctic water masses occur (see Biuw et al. 2010b). It is important to note that the temperature data in our study are based on the re-cords of the TDRs’ temperature sensor. The response time of this sensor is long, which could mean that the temperature taken at the beginning of a dive is in fact air temperature. However, the air temperature at sea level and SST is not likely to differ greatly. Lea & Dubroca (2003) have shown that there is a significant positive correlation between weekly averaged temperatures measured from satellite data and the logged SST from TDRs carried by AFSs at small spatial scales.

Antarctic krill undertake vertical diel migrations triggered by light cycles (Tomo 1983, Godlew ska & Klusek 1987, O’Brien 1987, Zhou & Dorland 2004). They tend to form dense schools at greater depths, often just above the thermocline, during the day and occur in more dispersed swarms in shallow waters at night, when their own feeding behaviour makes them more vulnerable to predators because they do not display coordinated swimming behaviour (God-

Fig. 7. Arctocephalus gazella, Eudyptes chrysolophus, Pygosselis antarctica. Density of dives as a function of the sea-surface temperature for Antarctic fur seals (red), macaroni penguins (green) and chinstrap penguins (blue), instrumented on Bouvetøya. The density function is the result of a local polynomial kernel smoother with a bandwidth of 0.2°C.

Table 3. Arctocephalus gazella, Eudyptes chrysolophus, Pygosselis antarctica. Percent overlap of the foraging areas of the 3 predator species (AFS: Antarctic fur seal, MAC: macaroni penguin, CHIN: chinstrap penguin), instrumented at Bouvetøya, according to diel period

<table>
<thead>
<tr>
<th></th>
<th>AFS</th>
<th>MAC</th>
<th>CHIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole 24 h period</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>–</td>
<td>62</td>
<td>90</td>
</tr>
<tr>
<td>MAC</td>
<td>40</td>
<td>–</td>
<td>81</td>
</tr>
<tr>
<td>CHIN</td>
<td>15</td>
<td>21</td>
<td>–</td>
</tr>
<tr>
<td>2 other spp.</td>
<td>43</td>
<td>63</td>
<td>99</td>
</tr>
<tr>
<td>Day</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>–</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>MAC</td>
<td>15</td>
<td>–</td>
<td>27</td>
</tr>
<tr>
<td>CHIN</td>
<td>6</td>
<td>9</td>
<td>–</td>
</tr>
<tr>
<td>2 other sp.</td>
<td>30</td>
<td>26</td>
<td>57</td>
</tr>
<tr>
<td>Night</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>–</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>MAC</td>
<td>3</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>CHIN</td>
<td>4</td>
<td>1</td>
<td>–</td>
</tr>
<tr>
<td>2 other sp.</td>
<td>7</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>Dusk or dawn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFS</td>
<td>–</td>
<td>5</td>
<td>27</td>
</tr>
<tr>
<td>MAC</td>
<td>2</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>CHIN</td>
<td>7</td>
<td>3</td>
<td>–</td>
</tr>
<tr>
<td>2 other sp.</td>
<td>10</td>
<td>13</td>
<td>31</td>
</tr>
</tbody>
</table>
Thus, it was not surprising that the AFSs and penguins in this study displayed diel diving patterns. The 3 species all performed dives that were concentrated in the upper 20 m during the night, while dives were more scattered in the water column and generally deeper during the day. AFSs performed most of their daytime dives above 60 m. MACs seemed to target 2 different layers, as shown by the bimodal distribution of their maximum dive depths, with a shallow peak at ~10 m and an other deep one at ~70 m, both occurring throughout the day. This suggests that the MACs were perhaps alternating between energy-costly but profitable deep dives and less profitable but less energy-demanding shallower dives. Similar to the AFS, CHINs dove to depths of ~60 m during their daytime diving.

Diving frequency varied according to diel period among the 3 predator species. Female AFSs dive mainly during the night in order to target krill when it is the closest to the surface, maximising their energy intake compared to the energy spent diving.

Fig. 8. Arctocephalus gazella, Eudyptes chrysolophus, Pygoscelis antarctica. Density plots highlighting the regions of high diving intensity based on the total number of dives performed by (a) Antarctic fur seals, (b) macaroni penguins and c) chinstrap penguins, instrumented on Bouvetøya, according to the different periods of the day. Warm colours: high density, cold colours: low density. The densities are calculated relative to the number of dives occurring during each diel period; therefore, the plots are not directly comparable within a species
(e.g. Costa 1991, Ichii et al. 2007, Staniland & Robinson 2008, Biuw et al. 2009). Like most pinnipeds, AFSs use their tactile senses (especially their whiskers) extensively and are hence not strictly limited by ambient light, which allows them to forage during the night or below the photic zone (Schuster-man et al. 2000, Dehnhardt et al. 2001). In addition, energy-rich, deep-dwelling myctophid fish are associated with krill shoals at the surface during the night (Tomo 1983, Ichii et al. 2007), enhancing the advantages of night-time predation. However, although night dives were definitively more numerous, the AFSs also performed occasional longer, deeper dives during the day to depths of 80 to 100 m (Zhou & Dorland 2004, Ichii et al. 2007). The diel pattern observed for the AFSs was in marked contrast to that observed for both species of penguins, which performed most of their diving during the day with a few dusk/dawn or night-time dives. This is consistent with previous studies of MACs and CHINs conducted elsewhere (Jansen et al. 1998, Hart et al. 2010, Ainley & Ballard 2012). Penguins typically forage during the day and stay on shore at night, although some species, including MACs and CHINs, have bimodal foraging strategies, alternating day and overnight trips (Croxall et al. 1988, Jansen et al. 1998, Ichii et al. 2007), as was observed in this study. It has been suggested that penguins tend to use vision as their primary sense while foraging, partly explaining the preference for daytime diving (Bengston et al. 1993, Jansen et al. 1998, 2002). Previous studies have shown that king penguins Aptenodytes patagonicus have a lower prey ingestion rate when foraging during the night than during the day (Kooyman et al. 1992). In Adelie penguins Pygoscelis adeliae dive depth has been shown to be directly correlated to ambient light levels, suggesting that light was a limiting factor for these birds (Wilson et al. 1993, Ainley & Ballard 2012). Light also seems to be a key factor governing the MACs and CHINs diving behaviour at Bouvetøya given that solar elevation had a significant influence on the number of dives per hour. However, the preference for daytime diving might also be linked to non-foraging issues, such as predator avoidance (Ainley & Ballard 2012). Penguins are thought to be less visible to predators during the day because their counter-shaded plumage render them difficult to see from beneath when light is above them (Tickell 2003). In contrast, their white bellies might stand out against the darker surface during the night. Penguin predators in the sub-Antarctic region include leopard seals Hydrurga lepto nyx, killer whales Orcinus orca and also AFSs (Hofmeyr & Bester 1993, Casaux et al. 2004, Daneri et al. 2008, Charbonnier et al. 2010). However, no leopard seal observations have ever been reported from Bouvetøya, and killer whales are not regular visitors to the island’s coastal areas (Guinet 2000, Lauriano et al. 2007, Andrews et al. 2008, Pitman & Durban 2010, Reisinger et al. 2011). Predation on penguins by AFSs, particularly non-breeding males, has been documented on several occasions on the Antarctic Peninsula, and penguin remains have been identified in a large proportion of scats at some sub-Antarctic islands — contributing in some cases up to 75% of the dietary biomass of the AFSs (Casaux et al. 2004, Daneri et al. 2008, Charbonnier et al. 2010). Daneri et al. (2008) suggest fur seals turn to preying on penguins in periods of low krill abundance, when the energetic cost of foraging for krill becomes too high. Bitten penguins are observed on Bouvetøya with some regularity; the bite marks match the gape of large fur seals (Norwegian Polar Institute unpubl. data). Penguins might avoid foraging and transiting around the island at the same time as the AFSs to the degree that is possible. However, both MACs and CHINs do some night diving (although daytime diving was much more prevalent). This is likely facilitated by krill and myctophid fish being somewhat bio-luminescent (Tomo 1983, O’Brien 1987) and at least intermittently visible to these predators at night or at depth (i.e. in low light conditions).

The timing of movements to or from the island was linked to light levels and the day or night foraging strategies of each species. AFSs departed from the breeding beach in the late afternoon to reach foraging areas at night, when krill availability at the surface is at its maximum. The more dispersed distribution of arrival times reflects the variability in their trip durations and distances travelled from the island. The penguins foraged mostly during daytime, and their departures were mainly clustered in the early morning and arrivals in the evening. This was in accordance with trips lasting either ~18 h (day trips) or ~35 h (overnight trips) for the MACs. In CHINs, the switching between short and long trips was reflected in the bimodal distribution of departures, allowing mates to each perform a short day trip or one partner to do an overnight trip while the other did only a day trip (see Ichii et al. 2007). Whether the penguins were at sea or on land, low light levels seemed to result in avoidance of transiting from or to the island. This avoidance might be related to higher predation risks (see above) or the lack of prominent navigation cues used by penguins at night. Birds generally use a combination of magnetic and visual...
Defining foraging areas using only position data can be quite challenging, because behavioural states have to be inferred from animals’ 2-dimensional movements (Hart et al. 2010). However, position data in combination with TDR data allow us to look at positions and behavioural state simultaneously. Dive intensity can then be used as a proxy for foraging intensity, assuming that when an animal dives below a certain threshold, it is foraging (regardless of the actual foraging success). Locations of areas where diving intensity was high showed that AFSs and MACs dove mostly over slopes and in the top layers of oceanic waters (up to 1000 m deep) at somewhat greater distances from the island than the CHINs. The latter species mainly foraged close to the island in shallower waters (<500 m). However, the specific locations of foraging areas were influenced by the diel period in which the diving occurred, particularly for the penguins. Differences between diel periods were not striking for AFSs, but MAC and CHIN night dives were mainly located over deeper oceanic waters as opposed to day dives, which were concentrated in shallower waters closer to the island. This reflects a trade-off faced by the penguins and illustrates the differences in life history between mammalian and avian predators. In contrast to mammals, which produce milk, most penguins cannot concentrate the material fed to their young so they need to provision their offspring at short intervals with regurgitated food (Costa 1991). This time-minimising strategy has been shown to be the case for CHINs as opposed to the energy-maximising strategy used by AFSs (Ichii et al. 2007). These 2 strategies are also illustrated by the low proportion of time spent diving by the AFSs looking for the most profitable areas and the higher proportion of time spent diving by the penguins that must target areas closer to home. In this study both penguin species alternated multiple short, day foraging trips near the colony with less frequent but longer overnight trips to areas at greater distances. CHIN overnight foraging in other areas has been shown to target energy-rich myctophids associated with krill swarms that would cover the additional energy expenses of a longer trip (Jansen et al. 1998). These longer overnight foraging trips might serve as self-provisioning of the adult birds, as has been shown in procellariiform seabirds and little auks Alle alle, while the short day trips likely provision only the chicks (Waugh et al. 2000, Steen et al. 2007).

Instrument attachments can alter the behaviour of animals (see Wilson & McMahon 2006 for a review) by creating discomfort or causing additional energy expenditure. However, results of studies designed to explore the potential effects of instruments are conflicting (Boyd et al. 1991, Croll et al. 1991, Walker & Boveng 1995, Francis & Boness 1998), and there is no clear evidence as to which behavioural parameter is the most affected. Nevertheless, we respected the rule proposed by Hawkins (2004), suggesting that animals should not carry devices that exceed 5% of their mass to avoid unsustainable additional energetic costs (range: 0.4 to 3.1% in our study) and careful attention was paid to the frontal area and hydrodynamic shape of the instruments used, which is likely more important than the actual mass carried (see Ballard et al. 2012 for a review). Body mass records for the study animals over the deployment periods suggest that the energetic cost of carrying the instruments was either negligible or compensated for behaviourally.

Our study indicates overlapping resource use by krill predators at Bouvetøya. They appear to exploit the same krill population and their areas of high diving intensity overlap significantly. However, there was also evidence of partial resource partitioning via temporal segregation between the species. The observed vertical segregation in dive depth per diel period is also consistent with some resource partitioning (Friedlaender et al. 2009, 2011), particularly between MACs and CHINs which foraged at the same time. The distribution of dive depths for MACs was clearly bimodal with peaks at ~10 and ~70 m, showing that they targeted 2 distinct layers in the water column during the day. The upper one (~60 m) was exploited by all 3 predator species, while the deeper one (>60 m) was only intensely targeted by MACs. Therefore, competitive pressure is likely reduced by both temporal and vertical segregation.

It is also possible that the competitive pressure is further reduced by subtle dietary differences between species. Diet analyses from Bouvetøya have
shown that AFSs and MACs have a more diverse diet than CHINs, although they all rely heavily on krill. Krill was present in >80% of the samples in MACs and in 99% of the AFS and CHIN samples. Fish was an important dietary component by mass only in the MACs diet, which also consume a greater variety of fish species (Krafft et al. 2002, Hofmeyr et al. 2010, Norwegian Polar Institute unpubl. data). This suggests that some dietary segregation occurs among the 3 species and that at least MACs would be able to niche shift in periods of low krill abundance, as has been demonstrated at South Georgia (Barlow et al. 2002, Waluda et al. 2010).

Despite the potential for competition among the 3 krill predators at Bouvetøya, the available evidence suggests that the recently observed declines in penguin numbers at Bouvetøya are due to a shortage of breeding space created by landslides and the presence of the large AFS colony, rather than food limitation. This is in contrast to the conclusions of Trathan et al. (2012), who suggested that MAC declines at South Georgia are linked to food competition created by the expanding AFS colonies in the region. But, these authors noted that the implied resource competition and the observed population changes may be exacerbated by recent reductions in Antarctic krill abundance, which have in turn been linked to reductions in seasonal sea ice following rapid regional warming. AFS numbers are currently quite stable at Bouvetøya (Hofmeyr et al. 2005, Norwegian Polar Institute unpubl. data for 2007–2008), and maternal attendance patterns do not show the signs of variability that accompanies food shortages in this species (see Boyd 1993, Krafft et al. 2002, Biuw et al. 2009). But, perhaps even more importantly, two-thirds of the CHINs tagged at Bouvetøya during the 2007/2008 season raised 2 chicks; the lack of brood reduction strongly suggests that they had abundant food. It has also been shown that this portion of the Southern Ocean is quite productive, and currently the region of Bouvetøya experiences relatively little human fishing pressure compared to other regions (Atkinson et al. 2008, Krafft et al. 2010, Nicol et al. 2012). Additionally, the extreme regional warming in the western parts of the South Atlantic has not been documented for the Bouvetøya area, or areas to the east (Turner et al. 2009, Huang et al. 2011).

If krill stock reduction takes place around Bouvetøya, the available evidence suggests that the recently observed declines in penguin numbers at Bouvetøya are due to a shortage of breeding space created by landslides and the presence of the large AFS colony, rather than food limitation. This is in contrast to the conclusions of Trathan et al. (2012), who suggested that MAC declines at South Georgia are linked to food competition created by the expanding AFS colonies in the region. But, these authors noted that the implied resource competition and the observed population changes may be exacerbated by recent reductions in Antarctic krill abundance, which have in turn been linked to reductions in seasonal sea ice following rapid regional warming. AFS numbers are currently quite stable at Bouvetøya (Hofmeyr et al. 2005, Norwegian Polar Institute unpubl. data for 2007–2008), and maternal attendance patterns do not show the signs of variability that accompanies food shortages in this species (see Boyd 1993, Krafft et al. 2002, Biuw et al. 2009). But, perhaps even more importantly, two-thirds of the CHINs tagged at Bouvetøya during the 2007/2008 season raised 2 chicks; the lack of brood reduction strongly suggests that they had abundant food. It has also been shown that this portion of the Southern Ocean is quite productive, and currently the region of Bouvetøya experiences relatively little human fishing pressure compared to other regions (Atkinson et al. 2008, Krafft et al. 2010, Nicol et al. 2012). Additionally, the extreme regional warming in the western parts of the South Atlantic has not been documented for the Bouvetøya area, or areas to the east (Turner et al. 2009, Huang et al. 2011).

If krill stock reduction takes place around Bouvetøya, the available evidence suggests that the recently observed declines in penguin numbers at Bouvetøya are due to a shortage of breeding space created by landslides and the presence of the large AFS colony, rather than food limitation. This is in contrast to the conclusions of Trathan et al. (2012), who suggested that MAC declines at South Georgia are linked to food competition created by the expanding AFS colonies in the region. But, these authors noted that the implied resource competition and the observed population changes may be exacerbated by recent reductions in Antarctic krill abundance, which have in turn been linked to reductions in seasonal sea ice following rapid regional warming. AFS numbers are currently quite stable at Bouvetøya (Hofmeyr et al. 2005, Norwegian Polar Institute unpubl. data for 2007–2008), and maternal attendance patterns do not show the signs of variability that accompanies food shortages in this species (see Boyd 1993, Krafft et al. 2002, Biuw et al. 2009). But, perhaps even more importantly, two-thirds of the CHINs tagged at Bouvetøya during the 2007/2008 season raised 2 chicks; the lack of brood reduction strongly suggests that they had abundant food. It has also been shown that this portion of the Southern Ocean is quite productive, and currently the region of Bouvetøya experiences relatively little human fishing pressure compared to other regions (Atkinson et al. 2008, Krafft et al. 2010, Nicol et al. 2012). Additionally, the extreme regional warming in the western parts of the South Atlantic has not been documented for the Bouvetøya area, or areas to the east (Turner et al. 2009, Huang et al. 2011).

Our major findings are consistent with patterns recorded at other locations in the Scotia Sea and off the Antarctic Peninsula. At Bouvetøya, AFSs, MACs and CHINs rely mainly on krill of similar size (and associated fish communities), thus sharing a common resource. Currently, it appears that modest (or little) competitive pressure drives a limited degree of niche partitioning, which is achieved via geographic, temporal and vertical segregation of foraging effort. The overall abundance of prey in the area appears to be adequate to meet the current predator populations’ needs. However, if regional warming reduces krill recruitment, or human fishing pressure increases markedly, penguin populations, particularly CHINs, might experience direct competitive pressure from (and perhaps also increased predation by) AFSs.

Acknowledgements. This work was funded by the Norwegian Antarctic Research Expedition (NARE) programme, awarded by the Norwegian Research Council (to K.M.K. and C.L.). The authors thank Aline Arriola and Petrus Kritzinger for help during the very demanding field work. Logistics support was provided by the Norwegian Polar Institute OLA Department and the South Africa National Antarctic Program (SANAP). We thank the captain and crew of the SA ‘Agulhas’ for transport to and from the island, and Titan Helicopters Ltd for cargo and personnel transfer between the ship and the island. Dr. David Ainley and 2 anonymous reviewers provided comments that helped us to improve the manuscript.
LITERATURE CITED

Behav Ecol 10: 198-208

Reid K, Watkins JL, Croxall JP, Murphy EJ (1999) Krill pop-
Trivelpiece WZ, Trivelpiece S, Volkman NJ (1987) Ecological segregation of Adelie, gentoo and chinstrap peng-