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Abstract

A Bayesian variable selection procedure is used to control for uncertainty in the
specification of a recreational demand model. Specifically, we propose a model that
draws on the Bayesian paradigm to integrate the variable selection process into model
estimation and to reflect the accompanying uncertainty about which is the best spec-
ification in subsequent counterfactual predictions. The advantage of this procedure
over previous non-Bayesian approaches is that it overcomes the problem of pre-testing
in specification searches. In our application, evaluating demand for recreational lake
usage in Iowa, we find clear evidence that site attributes, such as lakes size, handicap
facilities and wake restrictions, do impact lake usage. There is also evidence that water
quality matters in household recreation choices. Indeed, contrary to Abidoye, Herriges
and Tobias (2012), in which only a single functional form is considered, we find clear
evidence that water quality matters, with posterior probability of less that 10% as-
sociated with a model without any water quality variables. This suggests that the
flexibility that the Bayesian variable selection model affords in capturing the linkage
between recreation demand and site characteristics can be important.
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1 Introduction

Analysts and policymakers are often interested in understanding the impact that changing

environmental conditions can have on the demand for recreational activities and quantifying

the welfare implications of these changes. This information can be used to more efficiently

direct scarce resources aimed at maintaining and restoring environmental quality. The mod-

eling of recreation demand typically involves the specification of a functional relationship be-

tween individual demand and observable individual and site characteristics. Unfortunately,

economic theory provides relatively little guidance regarding the form that this relationship

should take and which variables ought to be included in the analysis. In many applications,

limitations in the available data (e.g., describing the water quality conditions at a lake site)

narrow the range of possibilities, but choices must still be made between, for example, level

and logarithmic specifications for an environmental characteristic. The choices made by the

researcher can have significant impact on the policy implications drawn from their analysis

of recreational usage patterns.

While model selection criteria can be used to narrow the set of specifications, there is the risk

that the analyst (even inadvertently) may engage in a “fishing” process among the available

models, biasing the final outcome of the analysis. In a recent paper, Egan et al. (2009)

attempt to ameliorate this problem by employing a split sample approach, using separate

portions of the available data for model specification, estimation, and evaluation. They

isolated one third of their sample in order to consider alternative models and functional

forms, using a likelihood dominance criteria to pick their final model, which is in turn

estimated using a separate sample. The final third of their sample was used for out-of-sample

predictions. Though this approach can arguably reduce the impact of the specification

search process on the final parameter estimates, it does not eliminate the problem. More

importantly, the procedure inevitably requires the selection of a single model and does not

account for the uncertainty in this process. Indeed, their selection of the final model is not

based on a test among competing models (as the alternatives are non-nested), but on a

log-likelihood based ranking.2

In this paper, we consider an alternative approach that draws on the Bayesian paradigm to

integrate the variable selection process into the model estimation and to reflect the accompa-

2As noted by a reviewer, Egan et al. (2009) compare models with the same number of parameters on the
basis of log-likelihood values, which is equivalent to employing the Bayesian Information Criterion (BIC).
Layton and Lee (2006) argue that BIC results in consistent model selection in a wide range of situations.
Nonetheless, in finite samples, the difference in the BIC metric across models can be slim, as was the case
in Egan et al. (2009), and information can be lost by conditioning upon a single specification.
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nying uncertainty about which is the “correct” specification into subsequent counterfactual

predictions. Specifically, we describe a Bayesian posterior simulator that combines the lit-

erature on hierarchical modeling, Bayesian variable selection and data augmentation. Our

underlying modeling framework is the class of repeated random utility models (See, e.g.,

Herriges and Phaneuf, 2002). The Gibbs sampler we use builds upon the simulator proposed

by Abidoye, Herriges and Tobias (2012). In particular, we incorporate the stochastic search

variable selection (SSVS) method described in George and McCulloch (1993) to determine

the posterior probability that individual site characteristics influence the site selection deci-

sion. The model can be used to identify a preferred model specification. Alternatively, and

we would argue preferably, the model can be used as a form of Bayesian model averaging,

integrating competing models into a single structure that can be used for welfare analysis

and counterfactual predictions. The model is applied using data from the 2002 survey of

Iowa Lakes Project, the same data underlying both the Egan et al. (2009) and the Abidoye,

Herriges and Tobias (2012) analyses. We use our model to contrast our findings with those

obtained from these earlier papers, highlighting the benefits of integrating model uncertainty

into a unified framework.

The outline of the chapter is as follows. Section 2 touches on the issue of model uncertainty

in econometric analysis and frames our approach in the context of other methods in the

literature. Section 3 presents the model and how the parameters of interest are estimated.

Section 4 describes a generated data experiment as a check for the performance of the

sampler. Section 5 describes the data and application and section 6 provides posterior

simulation and welfare analysis. The chapter concludes with a summary in section 7.

2 Related Literature

2.1 Model uncertainty

Researchers are often faced with the dilemma of which subset of explanatory variables and

model specification will best fit their data. This problem is more pronounced in situations

where economic theory does not dictate a priori the specific functional form or distributional

assumption to be used. The inability to lay claim to a “best” model makes inference based

upon the chosen model less certain and potentially inaccurate. This has led to widespread

criticism of estimates presented for a “best” model (e.g., Leamer, 1983). For example,

changing from linear to nonlinear specification or changing the functional form of some
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variables can lead to substantially different estimates. A number of studies, including Regal

and Hook (1991) and Draper (1995), have shown the impact of ignoring uncertainty of the

model on inference.

Various techniques have been proposed in the literature to account for this problem. The

paper by Raftery (1995), among others, argues that the use of p-values, R2 and other sta-

tistical tests based on them to search for the “best” model can lead to misleading inference

and prediction. Poirier (1995) also discusses the problems with using hypothesis testing to

select a specific model especially given that the procedure of pretesting introduces a level of

uncertainty into the pretest estimator. Aside from the problem of choosing the significance

level and balancing it with the power of the alternative hypothesis, most studies involve com-

paring more than two models. The sampling properties of the popular stepwise regression

are usually unknown, making inference based on a model selected in this way potentially

misleading.

A solution to the model specification problem that has gained popularity among researchers

in recent years is the use of Bayesian model selection and/or averaging. Bayesian model

selection methods are used to select a model(s) with maximum posterior probabilities condi-

tional on the data. Bayesian Model averaging (BMA), on the other hand, employs the rules

of conditional probability to estimate a posterior probability for each considered model, with

these probabilities used as weights in averaging results over all the models. The enormous

number of possible explanatory variables and nonlinearity makes the use of model selection

important for reducing the size of possible models before averaging among the most prob-

able models. Variable selection methods can also be used to select a specific model (e.g.,

Raftery, 1995). There are a number of papers in the literature that have applied BMA in

economics.3 In the environmental and resource literature, some of the papers include Clyde

(2000), Clyde, Guttorp and Sullivan (2000), Koop and Tole (2004), Layton and Lee (2006),

Fernandez, Ley and Steel (2002), and Leon and Leon (2003). The message of all these papers

is that model uncertainty can have a substantial impact on parameter estimates and should

be accounted for explicitly.

For problems regarding which predictors to include in a model, the stochastic search variable

selection (SSVS) method proposed by George and McCulloch (1993) provides an insightful

and easily implemented approach. The model works by capturing the entire range of possi-

ble model setups in a hierarchical Bayes mixture model. A series of latent binary variables

(λk, k = 0, . . . , K) are used to indicate whether the data support inclusion of a given ex-

3There are number of websites that are devoted to posting developments and research in this area. See
http://www.research.att.com/˜volinsky/bma.html for some of the papers and software.
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planatory variable in the model. These latent variables are used to nest all of the possible

models. The number of visits to a model including variable k through the course of an iter-

ative sampling (Gibbs) process (i.e., the number of times λk = 1 versus λk = 0) determines

how promising that variable is. SSVS makes use of both practical and statistical relevance

of the model to select the “best” possible models. A major practical advantage of the SSVS

approach is that the researcher does not have to calculate the marginal likelihoods for each

of the possible models.4

2.2 Model uncertainty in recreation demand

A primary reason for estimating recreation demand models is to quantify how site attributes

(especially environmental attributes) influence the numbers of visits to the alternative sites.

This is essential for policy analysis. Model estimates are used to justify important environ-

mental policies such as pollution abatement programs. However, economic theory provides

little or no guidance as to which characteristics should be in the model and subsequent wel-

fare analysis. There have been relatively few studies to date addressing the issue of model

uncertainty. Layton and Lee (2006) apply the procedure suggested by Buckland, Burnham

and Augustin (1997) to control for model uncertainty in analyzing responses to a stated pref-

erence (SP) survey of saltwater angling in Alaska. They estimate weights wm(m = 1, . . . ,M)

for M competing model specifications (based on a BIC metric) and use the weights to calcu-

late an expected willingness to pay (EWTP =
∑M

m=1wmEWTPm) where EWTPm denotes

the expected willingness to pay derived from model m). Confidence intervals for EWTP

are constructed using a variant of the simulation procedures in Krinsky and Robb (1986).

Specifically, given an overall number of draws (R) to be used in simulating the confidence

interval, a fixed proportion (wm) are obtained from model m. As Layton and Lee them-

selves note, however, this procedure does not control for covariances among the models and

suggest that “. . . this is an important issue for future research” (2006, p. 64). Moreover,

in contrast to the procedure outlined in this paper, the approach employed by Layton and

Lee incorporates the model uncertainty ex post, rather than as an integrated aspect of the

estimation process.

As noted above, Egan et al. (2009) provide a split sample investigation into recreation

demand model specification. Using data from the Iowa Lakes Project, including seven water

quality measures, they consider thirty-two competing formulations of a repeated mixed logit

model of Iowa lake usage. All of the models include the seven water quality measures,

4The marginal likelihood defined as P (Y |m = j) =
∫

P(Y |θj)P(θj)dθj are often difficult to estimate.
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but differ in terms of whether these variables appeared in level or logarithmic form.5 The

“preferred” model was chosen based on the resulting log-likelihood values obtained using

the first third of the sample and then re-estimated using the second third of the sample.

While this does reduce the “fishing” problem, the final model estimates do not reflect the

uncertainty in the model selection process.

3 Model

The model employed in this paper is in the class of Random Utility Maximization (RUM)

models, but one that reflects potential uncertainty as to which site attributes impact recre-

ation demand. Specifically, we employ the SSVS algorithm to identify the probability that

a given model is supported by the data. For the purpose of our model, we index individuals

by i = 1, 2, . . . , N , choice occasions by t = 1, 2, . . . , T and sites by j = 1, 2, . . . , J .

3.1 Basic Structure

The model is similar to the repeated nested logit model (Morey, Rowe and Watson, 1993)

and repeated mixed logit model (Herriges and Phaneuf, 2002). These models integrate

individuals’ choice among alternatives and the problem of allocating time between multiple

recreation sites. The model of Morey, Rowe and Watson (1993) assumes that individuals face

the decision to participate in recreation activities over fixed discrete occasions and at most

one trip is taken on such an occasion. Furthermore, each decision is assumed conditionally

independent across individuals and choice occasions. A summary of this framework and

implications of the assumptions is presented in Herriges, Kling and Phaneuf (1999).

Formally, we assume that an individual i at choice occasion t has to choose among J sites

and also inactivity, or “staying at home.” We represent the utility that an individual derives

from making a particular choice on a given choice occasion as:

5To reduce the number of possible models, Total Nitrogen and Total Phosphorous are grouped together
(i.e., always appearing in the same form), as are Inorganic and Organic Suspended Solids. The authors also
investigate which single or pair of variables, when added to the model, yields the greatest increase in the
log-likelihood function.
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Uijt =

{
Ziγ + εijt if j = 0 , i.e., stay at home
αj + Pijβ + ϕi + εijt for j = 1, . . . , J.

(1)

where αj is the overall site-specific effect; β is the marginal utility of income; and Pij denotes

the price (i.e., travel cost) incurred by individual i in visiting site j. The error component

term ϕi in the stay-at-home option captures unobserved individual specific effects impacting

their propensity to recreate. We assume that ϕi
iid∼ N(0, σ2

ϕ). As noted by Herriges and

Phaneuf (2002), the inclusion of such a factor is analogous to employing a nested logit

structure, grouping together sites j = 1, . . . , J into a single nest as distinct from the stay-at-

home option. εijt represents an idiosyncratic error that is assumed to be independent across

the J+1 alternatives with variance normalized such that εijt ∼ N(0, 1). We also assume that

the demographic characteristics of an agent (Zi) have an effect on the likelihood of choosing

the “stay at home” option, but not on the choice among recreation sites. Note that site

attributes (e.g., water quality, facilities, etc.) do not appear directly in (1), but rather are

subsumed in the αj’s (i.e., the alternative specific constants). As has been noted elsewhere

(e.g., Murdock (2006) and Abidoye, Herriges and Tobias (2012)), including a full set of

alternative specific constants controls for both observable and unobservable site attributes

and insulates the travel cost parameter from potential omitted variables bias stemming

from unobserved site attributes.6 In Murdock (2006), the site attributes are linked to the

alternative specific constants using a secondary regression. Similar to Abidoye, Herriges and

Tobias (2012), we use a hierarchical structure, described in Section 3.2 below, to capture the

impact of site attributes on the αj’s.

Given that it is the difference in utility that matters, we use the “stay at home” option as

the base case and take the difference in utilities. Thus,

Ũijt = αj + Pijβ −Ziγ + ϕi + ε̃ijt (2)

6It is important to note that this result hinges on the alternative specific constants being treated in
a fashion analogous to fixed effects in the standard linear panel data model. The specific Gibbs sampler
proposed by Abidoye, Herriges, and Tobias (2012) does precisely this. The key is that the alternative
specific constants α = (α1, . . . , αJ)′ are drawn together (or blocked) with draws for the parameters (β′,γ).
Indeed, the posterior conditional distribution used to obtain posterior draws for (α′,β′,γ)′ has a mean that
reduces, in the case of a diffuse prior, to the standard fixed effects estimator for a linear panel data model.
Abidoye, Herriges, and Tobias (2012) provide details regarding this argument, along with data generated
experiments to illustrate how their Gibbs sampler works when there are omitted variables that are correlated
with either the travel cost or with observable site attributes. They also show how an alternative (and indeed
more standard) blocking strategy, corresponding to the random effects model, does not control for omitted
variables bias.
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where Ũijt = Uijt − Ui0t; ε̃ijt = εijt − εi0t; for j = 1, ...., J. So that

ε̃i.t =


εi1t − εi0t
εi2t − εi0t

...
εiJt − εi0t

 ∼ N (0,Σ∗)

where

Σ∗ =


2 1 · · · 1
1 2 · · · 1

1 1
. . .

...
1 1 · · · 2

 .

The observed choice yit is linked to the latent variable vector Ũi·t as follows:

yit(Ũi·t) =

{
0 if max{Ũijt}Jj=1 ≤ 0

k if max{Ũijt}Jj=1 = Ũikt > 0.
(3)

Stacking over the alternatives, we have:

Ũi.t = α+ Pi.β − (1J ⊗Zi)γ + 1Jϕi + ε̃i.t. (4)

where 1J is a J × 1 vector of ones,

α =


α1

α2
...
αJ

 ; Ũi.t


Ũi1t
Ũi2t

...

ŨiJt

 and Pi. =


Pi1
Pi2
...
PiJ

 .

We can then re-write the above equation concisely as

Ũi.t = Mi.tθ + 1Jϕi + ε̃i.t (5)

where

Mi.t =
[
IJ Pi. 1J ⊗Zi

]
;θ =

[
α′ β′ γ ′

]′
.

Another way to write equation (5) is in terms of the error component. That is:

Ũi.t = Mi.tθ + vi.t

where

vi.t = 1Jϕi + ε̃i.t

E(vi.tvi.t
′) ≡ Ω = σ2

ϕ1J1′J + Σ∗.
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3.2 Hierarchical Priors

As described earlier, the αj’s captures the overall site-specific effect. Given that these depend

on the characteristics of the site, we specify an hierarchical prior on αj with the assumption

that its mean is the aggregate effect of the observed attributes, with the unobserved site

characteristics determining deviations from the mean. Formally, the priors for the site-

specific parameters is specified as:

αj ∼ N(Qjα0, σ
2
α). j = 1, 2, ....J (6)

where Qj is a 1 × (K + 1) vector including a constant term and the K observed site char-

acteristics that potentially influence demand for site j.

In investigating model uncertainty, we focus our attention on the parameters associated

with the observed site attributes (i.e., the α0,k’s). We seek to calculate the probability that

a given variable (or combination of variables) belong in the model using the SSVS approach.

If a variable k is not supported by the data, we will expect that the true value of the

parameter (α0,k) be zero. To capture this we introduce an additional level to the hierarchical

structure described in (6). Following George and McCulloch (1993), we specify a prior for

each regression coefficients (α0,k) as a mixture of two normal distributions with different

variances and zero mean. That is conditional on a binary latent variable λk = 0 or 1, each

k element of α0 can be defined as:

α0,k|λk ∼ (1− λk)N(0, τ 2
k ) + λkN(0, c2kτ

2
k ) (7)

and

P (λk = 1) = 1− P (λk = 0) = pk; 0 ≤ pk ≤ 1. (8)

λk is a latent binary variable that indicates if the observed site characteristics is supported

by the data or not. With the above representation, when λk = 0, α0,k ∼ N(0, τ 2
k ), whereas

α0,k ∼ N(0, c2kτ
2
k ) when λk = 1. The variance term for the first normal distribution (τ 2

k )

is assumed to be very small such that the distribution of the α0,k is massed around zero,

providing little evidence for its inclusion in the model. The second variance (c2kτ
2
k ), on the

other hand, is large and signals evidence that the variable should be included in the model.

9



pk can be thought of as the prior probability that variable k should be included in the model.

Thus, the prior on α0 is represented as multivariate normal:

α0|λ ∼ Nk(0,DλVαDλ) (9)

where λ = (λ0, ...., λK), Vα is the prior correlation matrix and Dλ ≡ diag[L0τ0, ...., LKτK ],

with Lk = 1 if λk = 0 and Lk = ck if λk = 1. Dλ is like a tuning parameter that ensures

that the prior on α0,k holds.

Finally, we set priors for the other parameters as

p(λ) =
K∏
k=1

pλkk (1− pk)1−λk (10)

σ2
α ∼ IG(aα, bα) (11)

σ2
ϕ ∼ IG(aϕ, bϕ) (12)

γ ∼ N(µγ ,Vγ). (13)

The hyperparameters of the priors above are supplied by the researcher and are in general

chosen to be relatively vague to allow dominance of the information from the data. The

prior means (µβ, µγ) in our empirical work and generated data experiments are set to zero

vectors of appropriate dimensions with the respective prior variance for the parameters (Vα,

Vβ, and Vγ) set to identity matrices of the appropriate dimensions. The hyperparameters of

the variances are also chosen to have a reasonably non-informative prior for the variances.

3.3 Posterior Simulator

The posterior simulator uses the Gibbs sampler to generate draws from the posterior distri-

bution for the parameters of our model.7 In this subsection, we derive the necessary posterior

conditionals and describe how to generate draws from these distributions. While the joint

posterior distribution is complex, the conditional posterior distributions used in the Gibbs

sampler take recognizable forms and are easy to draw from.

Let

Ξ =
[
θ α0 λ σ2

α ϕ. σ2
ϕ

]
7The simulator itself was programmed in MATLAB and the associated code is available from the authors

upon request.
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denote all the parameters of the model with ϕ. denoting ϕi stacked over individuals. The

joint posterior distribution of Ξ and the latent utility data Ũ gives us the posterior density for

the parameters in our model. We use blocking steps (e.g., Chib and Carlin, 1999) similar to

Abidoye, Herriges, and Tobias (2012) to obtain draws from the joint posterior distribution.8

The key to their approach is that, conditional on draws of the latent utilities, the model is

effectively linear, and thus the problem of characterizing the posterior distribution of the

parameters in (2) (i.e., the ASC’s αj, the travel cost parameter β and the demographic

parameters γ) proceeds in a manner that is analogous to the classic fixed effects models.

Using Bayes theorem, we can write the posterior density as:

p(Ξ, Ũ |y) ∝
T∏
t=1

N∏
i=1

φ(Ũi.t,Mi.tθ,Ω) (14)

×
〈
I(yi.t = j)I(Ũijt > max[Ũi,−j,t, 0]) + I(yi.t 6= j)I(Ũijt < max[Ũi,−j,t, 0])

〉
×

[
J∏
j=1

p(αj|α0,λ, σ
2
α)

][
N∏
i=1

p(ϕi|σ2
ϕ)

]
p(α0|λ)p(β)p(γ)p(α0)p(σ

2
α)p(σ2

ϕ)p(λ),

where φ(y;µ,Σ) denotes the probability density function of a J-dimensional vector that is

normally distributed with mean µ and Σ. We outline each posterior conditional distribution

below.

Step 1: Draw θ = (α′,β′,γ)′ conditional on the latent utilities and the remaining parame-

ters of the model (i.e., Ξ−θ) using the results of Lindley and Smith (1972).9 The posterior

conditional for θ is given as:

θ|Ξ−θ, Ũ ,y ∼ N(Dθdθ,Dθ). (15)

where

Dθ ≡

[
T

N∑
i=1

M′
itΩ
−1Mit + Σ−1

θ

]−1

dθ ≡
∑
t

∑
i

M′
itΩ
−1Ũi.t + Σ−1

θ µθ

8The term blocking refers to the particular grouping of parameters in the Gibbs sampler. In the simulator
described below there are seven steps corresponding to the seven groups or blocks of parameters being
simulated.

9The notation Ξ−a is used to denote the vector Ξ excluding the parameters in a.
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and

Σθ =

σ2
αIJ 0 0
0 Vβ 0
0 0 Vγ

 , µθ =

Qα0

µβ
µγ

 .
Step 2: α0|Ξ−α0 , Ũ ,y

Once we condition on the α, the posterior conditional for α0 is similar to that of a linear

regression parameter. However, the introduction of the latent variable λ into the model

specification helps account for model uncertainty such that less weight is put on specifications

not supported by the data.

α0|Ξ−α0 , Ũ ,y ∼ N(Dα0dα0 ,Dα0) (16)

where

Dα0 = (Q′Q/σ2
α + (DλVαDλ)−1)−1 and dα0 = Q′α/σ2

α + (DλVαDλ)−1µα.

Step 3: σ2
α|Ξ−σ2

α
, Ũ ,y

σ2
α|Ξ−σ2

α
, Ũ ,y ∼ IG

J
2

+ aα,

(
b−1
α + .5

J∑
j=1

(αj −Qjα0)2

)−1
 . (17)

Step 4: Draw the λk

As described earlier, the marginal posterior distribution p(λ|α) carries information on the

relevance of each model and variable specification. However, since the only link between λ

and the alternative specific constants (α) is through the mean parameters α0, the distribution

of λk simplifies to a Bernoulli distribution with probability

P (λk|α0,λ−k) =
p(α0|λ−k, λk = 1)pk

p(α0|λ−k, λk = 0)(1− pk)
(18)

where λ−k represents all λ except λk.

Step 5: ϕ.|Ξ−ϕi , Ũ ,y
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ϕ.|Ξ−ϕi , Ũ ,y ∼ N(Dϕdϕ, Dϕ) (19)

where

D−1
ϕ = JT +

1

σϕ
; and dϕ =

T∑
t=1

(Uϕ
i.t −Mϕ

i.tθ
ϕ)

and Uϕ
i.t,M

ϕ
i.t, and θϕ are stacked over the sites j (j = 1...J) and choice occasion for each

individual without the stay at home equation. That is

Mϕ
i.t =

[
IJ Pi

]
;θϕ =

[
α·
′ β

]′
.

Step 6: σ2
ϕ|Ξ−σ2

ϕ
, Ũi.t

σ2
ϕ|Ξ−σ2

ϕ
, Ũi.t ∼ IG

N
2

+ αϕ,

(
b−1
ϕ + .5

N∑
i=1

ϕ2
i

)−1
 . (20)

Step 7: Draw the Ũi·t|Ξ,y

Given the structure of our model and to ease computation, we draw the latent utilities that

individual i derives from visiting site j using utility levels instead of differences. That is, we

sample the Uijt and then take the differences to get the Ũijt. At the structural level of the

Uijt in equation (1), there is no correlation among the alternatives conditional on αj, β, γ,

and ϕ..

Each of the Uijt’s are conditionally normal with mean µ and variance of 1 with truncation

point that depends on the choice of the individual. That is, if an alternative is chosen, it

must be the alternative that gives the maximum utility - this gives the upper truncation

point for all the other alternatives.

We therefore follow the following steps to draw the Ũijt’s at a given draw r :

Assuming that individual i chooses alternative k at choice occasion t,

1: Draw U r
ijt for all j 6= k from a truncated normal distribution with mean and variance

from equation (1) and upper truncation point Uikt = U r−1
ikt .
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2: Draw U r
ikt from a truncated normal distribution with its mean and variance with lower

truncation point at the max(U r
ijt) for all j 6= k.

3: Calculate Ũijt by taking the difference between utilities from all sites and the stay at home

option: Ũ r
ijt = U r

ijt − U r
ibt.

4 Generated Data experiment

In this section we illustrate the performance of the algorithm described above in accounting

for model uncertainty in a RUM model of recreation demand.10 Specifically, we generated

a pseudo-data set consisting of N = 3000 individuals who are assumed to choose among

J = 10 sites and the “stay at home” option on each of T = 52 choice occasions. The

vector of individual characteristics in equation (1) (i.e., Zi) consisted of a uniform random

variable that signifies the age of the individual and a gender dummy variable generated from

a Bernoulli distribution with equal probability of success and failure. The alternative specific

constant for site j (αj) was drawn from a normal distribution with mean Qjα0 and variance

σ2
α = 0.25 where Qj included an intercept term and a uniformly generated random variable

Qj,1, which can be thought of as water pollution. Travel costs for each individual/site

combination were generated as a linear combination of a standard normal variable and the

alternative specific constants (i.e., the αj’s), thus inducing correlation between travel costs

and unobserved site characteristics. Finally, we set the value of c = 10 and τ = 0.1 to allow

for a relatively flat prior for the inclusion of any of the site attributes.11 The remaining

parameters of the model in equation (1) were fixed (with their values reported in Table 1).

These were then used to generate the latent utility values Uijt for j = 0, .., J which were in

turn mapped into the observed choice of the individuals.

Two experiments were conducted using the pseudo-data set. In the first experiment, we con-

sidered the inclusion of an (erroneous) additional predictor (Qj,2) when modeling recreation

demand, where Qj,2 is generated from a standard normal distribution that is independent of

Qj,1. In a second experiment, the added predictor is generated such that it is equal to Qj,1

plus a randomly generated uniformly distributed variable. That is Qj,2 = Qj,1 + U(0, 1).

This is to test the performance of our model when high correlation exists between the two

10We also use the generated data as a guide to know how many draws will be needed for our application
to achieve the same level of precision under independent and identical distribution (iid) sampling.

11Other values for c and τ were also used as a robustness test and our results and conclusions were not
qualitatively different.
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observed site characteristics, as can be the case in practice with some water quality measures

and other site attributes.

The Gibbs sampler described in section 3.3 was implemented using 50000 iterations, with

5,000 iterations discarded as burn-in. The results are presented in Table 1. The table reports

both the posterior mean for each parameter and its posterior probability of being positive

[denoted P (· > 0|y)]. Starting with experiment #1, in which an additional site attributeQj,2

(uncorrelated with Qj,1) is erroneously included in the analysis, we see that posterior means

of the parameters are all close to their true values. Moreover, all of the posterior means lie

well within two standard deviations of their true values. The posterior distribution for the

parameter associated with the site characteristic Qj,1 (i.e., α0,1) is largely bounded away

from zero, with approximately ninety percent of the posterior distribution being negative.

In contrast, the the posterior distribution for the parameter associated with the erroneously

included site characteristic Qj,2 (i.e., α0,2) is more evenly distributed between positive and

negative values. Figure 1 and 2 provides graphical depictions of the posterior distributions

for these two parameters. The distribution for α0,1, as expected, looks like a mixture of two

normal distribution with majority of the mass in the distribution being negative. However,

the distribution for α0,2 is largely massed around zero.12 The draws for the latent binary

variables (i.e., the λk’s) confirm these basic findings. For the intercept term, λ0 = 1 appeared

in almost all iterations (49,976 out of the 50,000 times), while λ1 = 1 appeared 36,038 times

for the correctly included Qj,1. In contrast, for the erroneously added predictor Qj,2, we

find λ2 = 1 only 9400 times, signaling that the variable is not a promising part of the model.

Turning to the second experiment, in which the added variable Qj,2 can act as a proxy for

Q.,1 given the high level of correlation (0.92) between the two variables, the posterior means

are again generally close to their true values, with the important exception of the α0,k’s. Not

surprisingly, the posterior distribution has a difficult time clearly isolating the contribution

of Q.,1 to the appeal of a given site. Indeed, while we find that one of the two variables

is almost always visited, λ1 = 1 in only 47% of the iterations, while λ2 = 1 65% of the

time. The simulated posterior distributions for α0,1 and α0,2 are presented in Figures 3 and

4, respectively.

The benefit of controlling for model uncertainty can be seen if we naively estimate the model

assuming that both site attributes Qj,1 and Qj,2 should be included in the analysis. The

result, reported in the last two columns of Table 1, suggest that even the posterior mean for

α0,2 is massed away from zero (Figure 5). However, policies directed to improve Qj,2 would

be a waste of resources.

12Since the variable was included in the model 9,400 times, the distribution is not fully centered on zero.
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5 Application

The methods described above is applied to data from the Iowa lakes Valuation project

at Iowa State University. This is the same data described in Egan et al. (2009). The

Iowa Lakes Project is a four year panel data study, sponsored by the Iowa Department of

Natural Resources and the US EPA, eliciting the visitation patterns of Iowan residents to

the primary recreational lakes in the state. The data set is appropriate for our study for

a number of reasons. The Iowa Lakes Project not only covers all the major lakes in the

state but also provides information on a wide variety of site characteristics. The observed

site characteristics (Q) include both site attributes, such as lake acreage and indicators

for paved boat ramps and handicap accessibility, and an unusually large number of water

quality attributes, such as Secchi Transparency (a measure of the depth of water clarity),

Nitrogen, and Chlorophyll.13 In addition, the exact same data was used by Egan et al.

(2009) to investigate model specification and by Abidoye, Herriges and Tobias (2012) to

investigate the importance of controlling for unobserved site attributes in models of recreation

demand. Whereas Egan et al. (2009) found water quality to significantly impact recreation

demand, Abidoye, Herriges and Tobias (2012) concluded that this result is no longer clear

once the analysis include a full set of alternative specific constants in the model to control

for unobserved site attributes.

Although data for the project was collected over a four year period (2002-2005), we focus

on the 2002 survey. The initial survey was sent by mail to 8,000 randomly selected Iowa

residents. The response rate among deliverable surveys was 62%, yielding a total of 4,423

returned surveys. We exclude from our analysis those individuals who (a) were not Iowa

residents (42), (b) failed to complete the section of the survey asking for lake visitation

patterns (360), or (c) reported taking more than fifty-two day trips per-year (223). The

latter sample exclusion follows the procedure used in Egan et al. (2009), wherein the authors

note that individuals taking such frequent trips are usually local residents who are counting

casual visits to or the passing by of their local lake. Instead, our analysis, like theirs, is

concerned with day-trips taken to lake sites solely for the purpose of recreation.14 The

cut-off of fifty-two trips per year allows for a day-trip each week.

Table 2 provides summary statistics for our sample, both in terms of household demographics

13The water quality attributes were measured by Iowa State University’s Limnology Laboratory three
times a year at each lake. The values used in our analysis are simple averages of these measures, following
the approach used in Egan et al. (2009).

14Egan et al. (2009) also found that their qualitative results were not sensitive to the specific cut-off of
fifty-two trips per year.
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and individual site characteristics. As the table indicates, the survey respondents in our

data set are, on average, older males with some college or trade/vocational school. The

average household size is 2.61. Travel cost (Pij) is calculated using 25 cents per mile for

the round-trip travel distance [computed using PCMiler (Streets Version 17)] plus one-third

the respondent’s wage rate multiplied by the travel time.15 Overall, round-trip travel costs

average just under $140, ranging from less than $1 to $1366.

One of the appealing features of the Iowa Lakes Project is that, not only is there a wealth

of information available regarding the site attributes and lake water quality, but there is

also considerable variation across the lakes in terms of these characteristics. The lakes in the

Iowa Lakes Project are, on average, 667 acres in size, ranging from 10 acres to approximately

19,000 acres. The other site attributes are represented with dummy variables that indicate

the availability of amenities of interest. The majority of the lakes in our sample have a paved

boat ramp (85%) and wake restrictions (i.e., Wake = 1) (65%), while less than forty percent

of the lakes have handicap facilities or are part of a local state park. There is also a wide

range of water quality in Iowa lakes. For example, Secchi Transparency (which measures

the depth into the lake that one can see) averages just over one meter, but varies from less

than 0.1 meters (approximately 3.5 inches) to 5.67 meters (well over 18 feet). Similar ranges

are found for the other water quality measures, including Total Nitrogen, Total Phosphorus,

and Cyanobacteria. Moreover, these water quality measures are not highly correlated, as

the source and nature of the water quality problems in individual lakes varies considerably

across the state.

For the purpose of this application, the observed site characteristics (Q) include the levels and

natural log form of both site and water quality attributes. In contrast to Egan et al. (2009),

who estimated a series of alternative specifications in a split sample analysis (ultimately

choosing a single specification), we estimate a single model allowing the data to dictate

the model with high posterior density that incorporates model uncertainty. In contrast to

Abidoye, Herriges and Tobias (2012), in which the authors rely on a single specification (the

“preferred” model identified in Egan et al., 2009), we consider a wider range of possible

functional forms for the set of site attributes impacting site selection.

15The “average wage rate” is calculated for all respondents as their household’s income divided by 2,000.
This allows for a 40 hour work week with two weeks of vacation.
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5.1 Empirical Results

Using the model and posterior simulator detailed in the previous sections, we fit the site

choice model using the Iowa Lakes data. Specifically, the Gibbs algorithm was first run

for just over 20,000 iterations. The last iteration from this process was then used to initi-

ate four different chains, run simultaneously on four different machines with different seeds.

Discarding the first 20,000 iterations as burn-in, the four runs produced a total of 300,100

post-convergence draws to calculate posterior means, standard deviations and to make pos-

terior inference.

5.2 Estimation Results

We are primarily interested in applying the algorithm described above to data from Iowa

Lakes Project to illustrate its use in controlling for uncertainty in model specification. We

addressed this question by considering a general model that includes all of the water quality

and site characteristics in both their linear and logarithmic forms. We report parameter

posterior means and posterior probabilities of being positive [denoted P (. > 0|y)] for key

parameters of the model in Tables 3 through 5.

In general, many of the basic results are similar to those obtained in Egan et al. (2009)

and Abidoye, Herriges and Tobias (2012). Starting with Table 3, we find that the marginal

utility of income (i.e., negative of the coefficient on travel cost, −β) has a posterior mean of

0.0134 and a posterior distribution that is clearly massed away from zero. Turning to socio-

demographic characteristics, older individuals, females, and the less educated are found to

be more likely to stay at home, whereas households with more adults and more children are

more likely to take trips. In Table 5, the alternative specific constants for each site (i.e.,

the αj’s) are all negative with over 99.9% of the posterior mass for each parameter lying

below zero. This is consistent with the fact that households typically took relatively few

trips during the course of a season.

The distinguishing feature of our model, relative to the earlier studies, lies in the hierarchical

parameters reported in Table 4. For these parameters, we report not only the posterior means

and P (· > 0|y), but also the frequency with which the Gibbs sampler yields λk = 1. The

latter proportions indicate the extent to which the data suggests that an individual variable

should be included as determining factor in recreation demand. As such, we use it to rank

the various site and water quality characteristics in Table 4.
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Several results emerge from examining the hierarchical parameter results. First, as both

Egan et al. (2009) and Abidoye, Herriges and Tobias (2012) suggest, site characteristics

are important determinants of where households choose for recreation. Lake size (in loga-

rithmic form), the presence of wake restrictions, the inclusion of a lake in a state park and

the availability of handicap facilities all have the expected positive signs, have a posterior

distribution massed away from zero, and (excluding the intercept) account for four of the

top six variables in terms of the proportion of draws with λk = 1. Notice too that the linear

form for lake size (i.e., Acres) is clearly dominated by the logarithmic form, as was found in

Egan et al. (2009).

Turning to the water quality attributes, we find that the coefficient on Total Phosphorous

(in its logarithmic form) has a negative posterior mean of −0.16 and a posterior distribution

that is clearly massed away from zero (with P (· > 0|y) = 0.059), suggesting that high

phosphorous levels negatively influence the appeal of a site. Moreover, ln(Total Phosphorous)

is the highest ranking variable in terms of the proportion of draws (over thirty-seven percent)

with λk = 1. The importance of Phosphorous in influencing recreation demand is not

surprising as it is often a determining factor in algae growth, a clearly visible indicator of

water quality. The linear form for Total Phosphorous, in contrast, appears in just over

nine percent of the models and has a posterior distribution that is massed fairly evenly on

either side of zero. Inorganic suspended solids (ISS) is the second most highly ranked water

quality variable. In its logarithmic form, the associated coefficient has a positive posterior

mean and is clearly massed away from zero (with P (· > 0|y) = 0.998). At the same time,

the coefficient associated with the linear form for ISS has a posterior distribution that is

largely negative (with P (· > 0|y) = 0.043). The marginal impact of a change in ISS will

be a combination of these two coefficients, with logarithmic term diminishing in relative

importance as ISS increases. Overall, when ISS is low (e.g., at the minimum of ISS in the

sample), the marginal impact of ISS on site utility is positive (with a posterior probability

greater than 0.90). However, when ISS is large (e.g., at the maximum of ISS in the sample),

the marginal impact of ISS on site utility is negative (with a posterior probability greater than

0.90). This suggests that the impact of ISS is not captured effectively by either functional

representation alone (i.e., linear or logarithmic), but is captured more effectively by the

combination. The only other water quality variable that has a clear impact on site utility

is Chlorophyll. In its logarithmic form, the associated coefficient is generally positive (with

P (· > 0|y) = 0.918), suggesting that an increase in Chlorophyll improves the appeal of a

site. This result is consistent with earlier findings (e.g., Egan et al. (2009)). Interestingly,

Secchi Transparency (which indicates the depth to which one can clearly see into a body

of water) is not a significant factor, with a posterior distribution for both the linear and

logarithmic terms massed evenly on either side of zero and with around twelve percent of
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the draws having λk = 1 for either variable. This result is in sharp contrast to Egan et al.

(2009), who suggest that Secchi is the best single water quality measure.

While individual functional form specifications for a water quality variable (e.g., Secchi ver-

sus ln(Secchi)) may not individually appear in a large percentage of the draws, perhaps in

combination they appear in a large number of models. Column 2 of Table 7 provides a

summary of the percentage of posterior draws in which either the level or logarithmic repre-

sentation of a variable (or both) appear. Again, Total Phosphorous appears most often (in

43% of the draws) followed by ISS (which appears in just under 31% of the draws). Column 3

of Table 7 provides the implied posterior marginal effect of each variable on the correspond-

ing alternative specific constant, computed for each site and averaged across sites.16 Total

Phosphorous is found to have the expected negative effect, with over ninety percent of the

posterior distribution being negative, suggesting that a higher level of Total Phosphorous

reduces the overall appeal of a site. VSS also has a negative impact at the margin, with

just under ninety percent of the posterior distribution being negative. Both Chlorophyll

and ISS have marginal effects that are positive on average, with posterior distributions that

are largely massed above zero. The remaining variables are less clear, with Secchi having a

largely positive marginal effect and Cyanobacteria having a largely negative marginal effect.

The results from the variable selection portion of our hierarchical model can be used in several

ways. If the goal is to pick a single “best” model or to narrow the range of specifications

for a more extensive Bayesian Model Averaging exercise, one can use the rankings to select

a subset of the variables by choosing a cutoff for the frequency of λk = 1. For example,

choosing variables that are visited (i.e., have λk = 1) at least 15% of the time leaves us with:

ln(TP ), ln(Acres), wake restrictions, ln(ISS), state park classification, the availability of

handicap facilities, ln(TN) and ln(Chlorophyll).17 George and McCulloch (1997) employ

a different strategy, considering further only those models whose relative probability was

within 0.00674 (= -5 on a log posterior scale) of the best model. Ignoring the uncertainty

regarding the site attributes, there are a total of 65,536 models, varying in terms of the

inclusion or exclusion of each of the 16 water quality variables in Table 4. Using the criteria

of George and McCulloch, this would reduce the number of models down to 228, with the

top 40 models listed in Table 6. Notice that all of these specifications are relatively simple,

typically including only a couple of the water quality variables. Also, the proportion of times

any one model is visited is relatively small, though the top 40 models combine account for

nearly half (47%) of the posterior draws.

16Note that the marginal effects are not weighted by the impact of the alternative specific constants on
the probability of choosing each site. However, this probability is expected to be positive for each site.

17One might also include ISS given its strongly negative posterior distribution.
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Finally, and we would argue preferably, one can use the model as is, providing a basis for

integrating the impact of all of the variables (in both their linear and logarithmic forms) into

a policy evaluation, averaging over the range of possible model specifications (i.e., the various

combinations of λk’s). While any one model (or specific variable) may have a low posterior

probability, the joint effect of the group of models or variables may still be significant. One

indication of this in our application is that, while few of the water quality variables have

a clear impact on site selection, the posterior probability of including at least one water

quality variable is 90%. Note that this is in contrast to the conclusions reached in Abidoye,

Herriges and Tobias(2012). Employing a single model specification (i.e., with Secchi entering

the model linearly and all other water quality variables entering in logarithmic form), the

authors use Bayes factors to conclude that water quality attributes are not an important

determinant of recreation demand. However, this may reflect the selected model.18 In

discrete choice models with a full set of alternative specific constants, the impact of site

attributes (including water quality) on site selection is reflected entirely in the alternative

specific constants. In such settings, it seems prudent to allow flexibility in terms of model

specification, rather than relying upon a single functional form.

6 Posterior Calculation and Welfare

Recreational demand models are frequently used to predict how exogenous changes in site

attributes impact household welfare. In the case of a repeated RUM model with a full set of

alternative specific constants, these site changes work entirely through their effects on the

ASC’s. The compensating variation associated with a shift in site attributes from Q0
j to Q1

j

(j = 1, . . . , J) takes the form:

CVi =
1

−β

T∑
t=1

[(
max
j
U1
ijt

)
−
(

max
j
U0
ijt

)]
(21)

where T denotes the number of choice occasions, −β denotes the marginal utility of income,

and

U s
ijt =

{
Ziγ

r + εijt if j = 0 , i.e., stay at home
αsj + Pijβ + ϕi + εijt for j = 1, . . . , J.

(22)

for scenarios s = 0, 1, with αsj ∼ N(Qs
jα0, σ

2
α). The posterior distribution for CVi is induced

by the joint posterior distribution of model parameters (Ξ), a simulated version of which was

18Indeed, the specific model used by Abidoye, Herriges and Tobias is never visited in our posterior simu-
lator. It was chosen, however, to be consistent with the earlier analysis of Egan et al. (2009).
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generated and described in the previous section. A draw (indexed by r) from the posterior

distribution CV
(r)
i can be constructed using

CV
(r)
i =

1

−βr
T∑
t=1

[(
max
j
U

1(r)
ijt

)
−
(

max
j
U

0(r)
ijt

)]
. (23)

where

U
s(r)
ijt =

{
Ziγ

r + εrijt if j = 0

α
s(r)
j + Pijβ

r + ϕri + εrijt for j = 1, . . . , J.
(24)

With the exception of the alternative specific constants, posterior draws for γr, βr, and ϕri
in (24) are provided directly by the simulator detailed in section 5 and εrijt ∼ N(0, 1). In

order to simulate α
s(r)
j , we have to take into account not only the posterior distribution of

the parameters associated with site attributes (i.e., α0), but also the posterior probability

that the variable is included in the model. This is accomplished by drawing α
s(r)
j from

a normal distribution with mean Qs
jα̃

r
0 and variance (σrα)2, where α̃r0 is a K × 1 vector

whose kth element is given by α̃r0,k ≡ αr0,kλ
r
k.

19 What this does is that at each iteration, only

variables visited are used to simulate the alternative specific constant, which is in turn used

to construct a draw from the posterior distribution (CV r
i ). This way the frequency that a

variable is included in the model is used to weight the variable and follows the procedure

proposed by Chipman, George and McCulloch (2001).

Given posterior draws for CV r
i for each individual in the sample, the corresponding average

compensating variation for the change in site attributes can be constructed using

ĈV
(r)

=
1

N

N∑
i=1

CV r
i (25)

with a posterior mean of

CV =
1

R

R∑
r=1

ĈV
(r)
. (26)

The approach we propose is in the spirit of implementing a Bayesian Model Averaging for

posterior inference purposes. This approach of averaging over all the variables of the model

rather than selecting a subset of the model for welfare analysis takes into consideration the

uncertainty related to each of the variables.

19Draws for σrα, αr0,k, and λrk are the corresponding draws provided by the posterior simulator from section
5.
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The above algorithm is applied to the Iowa Lakes data. The scenario considered is one in

which the water quality attributes of nine key zonal lakes (spread throughout the state) are

upgraded to the quality of West Lake Okoboji (the cleanest lake in the state). 20 This same

scenario was evaluated by both Egan et al. (2009) and similar to the scenario consider by

Abidoye, Herriges and Tobias (2012). The result using the model estimates from section

5 is a posterior mean compensated variation of $30.08, with P (ĈV > 0) of approximately

92%. This result is comparable to Egan et al. (2009), who obtained CV estimates for

the same water quality improvement scenario ranging from $8 and $40, depending on the

model used, with their “best” model yielding a CV estimate of about $28.92. The key

difference here is that Egan et al. (2009) obtain very tight confidence bands around their

welfare estimates, whereas our model suggests that there remains considerable uncertainty

regarding the exact welfare gains from the water quality improvement. This stems largely

from the fact that our model, like that of Abidoye, Herriges and Tobias (2012), incorporates a

full set of alternative specific constants to control for unobservable site attributes. However,

in contrast to Abidoye, Herriges and Tobias, in which the posterior mean compensated

variation is actually negative (CV = −1.61, with P (ĈV > 0) = 0.374), our analysis provides

for greater flexibility in terms of how water quality impacts recreation demand and yields

a greater probability that the water quality changes represent a welfare improving policy.

Similar results are obtained if the water quality improvements are considered on a lake-by-

lake basis. The mean compensating variation ranges from $0.53 (with P (ĈV > 0) = 0.62)

for Briggs Wood lake to $6.42 (with P (ĈV > 0) = 0.93) for Lake McBride.

7 Summary

In modeling the demand for recreation, analysts typically have relatively little a priori basis

for specifying which site attributes should be included in their analysis and the functional

form representation to use. This paper presents a Bayesian variable selection model that

can be used to either narrow the range of models to be considered further or as means of

integrating a wide range of possible model specifications in what is akin to Bayesian model

averaging. The Gibbs sampler, combined with data augmentation, makes characterizing the

posterior distribution of the models parameters straightforward.

In our application, evaluating demand for recreational lake usage in Iowa, we find clear

evidence that site attributes, such as lakes size, handicap facilities and wake restrictions, do

impact lake usage. There is also evidence that water quality matters in household recreation

20Water quality attributes that are already better than those of West Lake Okobiji are left unchanged.
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choices. Total Phosphorus, inorganic suspended solids and chlorophyll levels all matter,

but the influence of most other water quality measures, including Secchi Transparency, are

only imprecisely measured. Yet, contrary to Abidoye, Herriges and Tobias (2012), in which

only a single functional form is considered, we find clear evidence that water quality matters,

with posterior probability of less that 10% associated with a model without any water quality

variables. This suggests that the flexibility that the Bayesian variable selection model affords

in capturing the linkage between recreation demand and site characteristics can be important.

This is particularly true in RUM models of recreation demand with a full set of alternative

specific constants, since the effective degrees of freedom available in measuring the impact

of site characteristics has been reduced to the number of sites.
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8 Tables and Figures

Table 1: Posterior Results for Generated Data Experiment
Model with SSVS Ignoring Model

Exper. #1: No correlation Exper. #2: High corr. Uncertainty
Parameter True Mean P (· > 0|y)

√
Ineff. Factor Mean P (· > 0|y) Mean P (· > 0|y)

α0,0 -1.91 -1.80 0.00 2.05 -1.58 0.00 -1.60 0.00
α0,1 -0.53 -0.57 0.10 2.26 -0.15 0.40 -0.90 0.02
α0,2 0 -0.07 0.22 1.26 -0.45 0.13 -0.16 0.10
β -3.71 -3.72 0.00 20.40 -3.73 0.00 -3.73 0.00
γ01 0.40 0.40 1.00 7.93 0.46 1.00 0.44 1.00
γ02 0.50 0.56 1.00 6.52 0.56 1.00 0.57 1.00
σ2
ϕ 0.50 0.49 1.00 20.81 0.50 1.00 0.48 1.00
σ2
α 0.1 0.19 1.00 1.19 0.20 1.00 0.19 1.00

Alternative specific constants
α1 -2.49 -2.48 0.00 15.32 -2.48 0.00 -2.46 0.00
α2 -2.42 -2.40 0.00 12.97 -2.41 0.00 -2.39 0.00
α3 -2.22 -2.20 0.00 13.63 -2.21 0.00 -2.19 0.00
α4 -1.94 -1.91 0.00 13.50 -1.91 0.00 -1.89 0.00
α5 -1.99 -1.99 0.00 15.26 -1.98 0.00 -1.97 0.00
α6 -1.60 -1.59 0.00 11.49 -1.59 0.00 -1.57 0.00
α7 -2.26 -2.24 0.00 14.33 -2.25 0.00 -2.23 0.00
α8 -2.76 -2.73 0.00 17.94 -2.74 0.00 -2.72 0.00
α9 -2.54 -2.50 0.00 14.81 -2.51 0.00 -2.49 0.00
α10 -1.31 -1.29 0.00 11.53 -1.29 0.00 -1.27 0.00
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Table 2: Summary Statistics
Variable Model Variable Mean Std. Dev. Min Max
Total Day Trips (2002)21 Ti 6.33 9.97 0 50
Travel Cost ($100’s) Pij 1.37 .83 0.0044 13.66
Age Di(1) 54.38 15.93 15 82
Male Di(2) 0.69 0.46 0 1
School Di(3) 0.67 0.47 0 1
Household Size Di(4) 2.61 1.30 0 12
Lake Attributes
Acres Qj(1) 667.20 2112.83 10 19000
Ramps Qj(2) 0.85 0.36 0 1
Wake Qj(3) 0.65 0.48 0 1
Handicap Qj(4) 0.38 0.49 0 1
State Park Qj(5) 0.39 0.49 0 1
Water Quality
Secchi Transparency (m) Qj(6) 1.17 0.92 0.09 5.67
Total Nitrogen (mg/l) Qj(7) 2.19 2.53 0.55 13.37
Total Phosphorus (µg/l) Qj(8) 105.45 80.33 17.10 452.55
Volatile SS (mg/l) Qj(9) 9.30 7.98 0.25 49.87
Inorganic SS (mg/l) Qj(10) 10.12 17.79 0.57 177.60
Cyanobacteria (mg/l) Qj(11) 298.08 831.51 0.02 7178.13
Chlorophyll (µg/l) Qj(12) 40.64 38.01 2.45 182.92
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Table 3: Posterior Means of Travel Cost, Demog. Variables and Variance Parameters
Parameter Mean P (· > 0|y)
Travel cost -0.0138 0.0000
Demographic Variables
Age 0.0164 1.0000
Male -0.2425 0.0000
School -0.1859 0.0010
Household Size -0.0430 0.0049
Variance parameters
σ2
ϕ 2.04 1.0000
σ2
α 0.06 1.0000
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Table 4: Posterior Means of hierarchical Parameters (Site Characteristics)
Site Characteristics Posterior Mean P (· > 0|y) Proportion [P (λk = 1|Y )]
α0 -3.990 0 1
ln(Total Phosphorus) -0.1623 0.0593 0.3715
ln(Acres) 0.1736 1.0000 0.3181
Wake 0.1523 0.9986 0.2871
ln(ISS) 0.1361 0.9979 0.2389
State Park 0.1148 0.9888 0.1962
Handicap 0.1091 0.9872 0.1828
ln(Total Nitrogen) 0.0252 0.5849 0.1763
ln(Chlorophyll) 0.0827 0.9179 0.1564
ln(VSS) -0.0263 0.3669 0.1322
Ramp 0.0513 0.7906 0.1303
ln(Secchi) 0.0020 0.5109 0.1267
Total Nitrogen -0.0237 0.3634 0.1203
N03 0.0307 0.6931 0.1165
Secchi 0.0342 0.7271 0.1146
ln(N03) -0.0164 0.3551 0.1015
ln(Cyanobacteria) -0.0125 0.2433 0.0925
VSS -0.0071 0.1556 0.0916
Chlorophyll 0.0008 0.7020 0.0910
Cyanobacteria -1.26E-06 0.3669 0.0910
Total Phosphorus 0.0005 0.6384 0.0908
ISS -0.0038 0.0483 0.0904
Acres -2.17E-06 0.4435 0.0901
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Table 6: Posterior Model Frequencies
Included Water Quality Variables

Percent TP TN NO3 Cyan. Chlor. Secchi VSS ISS
9.20%
5.02% Log
2.67% Log
1.90% Log
1.70% Log Log
1.50% Log
1.42% Log
1.32% Log
1.20% Linear
1.17% Linear
1.15% Linear
1.08% Log Log
1.07% Log Log
1.01% Log
0.93% Linear
0.92% Linear
0.92% Linear
0.91% Log
0.90% Linear
0.90% Linear
0.73% Log Log
0.73% Log Log
0.66% Log Linear
0.65% Log Linear
0.59% Log Linear
0.56% Log Log
0.54% Log Log
0.51% Log Log
0.50% Log Linear
0.49% Log Linear
0.49% Log,Linear
0.49% Log Linear
0.49% Log Linear
0.43% Log Log
0.43% Log Log
0.38% Log Log
0.37% Log Log Log
0.36% Linear Log
0.36% Linear Log
0.36% Log Log Log
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Table 7: Joint Variable Marginal Effects and Model Frequencies
Variable Percent Posterior Mean Marg. Eff. P (ME > 0|y) P (ME < 0|y)

(dasc
dQ

)

Total Phosphorous 42.87% -0.0021 0.0873 0.9127
Total Nitrogen 27.27% -0.0044 0.4627 0.0.5373

NO3 20.58% -0.0419 0.4704 0.5296
Cyanobacteria 17.47% -0.0066 0.2087 0.7913

Chlorophyll 23.33% 0.0059 0.9691 0.0309
Secchi 22.56% 0.0373 0.6958 0.3042
VSS 21.17% -0.0122 0.1241 0.8759
ISS 30.77% 0.0266 0.9519 0.0481
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