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Summary: The enriched triply noncentral bivariate beta type V distribution
is introduced. This distribution is constructed from independent chi-squared
random variables by using the variables-in-common (or trivariate reduction)
technique. The marginal density, product moment and the distribution of
the product of the correlated components of this distribution are also derived.
The effect of the additional parameters on the shape of the density functions
and the correlation between the correlated variables is shown. Special cases
are highlighted to position this distribution in the bivariate beta distributions
context.

1. Introduction
In this paper we introduce the triply noncentral bivariate beta type V

distribution by letting S1 2 (n1; 1) , S2
2 (n2; 2) and B

AMS: 62H10, 62E15
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2 (m; 3) be independent noncentral chi-square random variables and

de ning

(W1,W2) =
1S1

1S1 + 2S2 + cB
,

2S2

1S1 + 2S2 + cB
. (1)

The transformation in (1) can also be expressed as

(W1,W2) =
S1

S1 + S2 +B
,

S2
S1 + S2 +B

where S1 , S2 and B are independent noncentral gamma variables, i.e. S1

Gam 2 1,
n1
2 ; 1 , S2 Gam 2 2,

n2
2 ; 2 and B Gam 2c, m2 ; 3 .

The variables (W1,W2) are said to have the triply noncentral bivariate beta

type V distribution and its density function is given by
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w2
1+

c 1
1
w1+

c 2
2
w2
, 3

2
1 w1 w2

1+
c 1

1
w1+

c 2
2
w2

, (2)

where 0 w1, w2 1, w1 + w2 1 and (3)
2 is the con uent

hypergeometric function in three variables (see Sánchez et al., 2006). Some

statistical properties as well as the distribution of the product of the correlated

components of this distribution are also derived in this paper.

The triply noncentral bivariate beta type V distribution with additional

parameters 1, 2, c and i (i = 1, 2, 3) , allows for great exibility

in modeling, thus it responds to the need for a parameter rich family of

distributions that have been expressed in literature (Bekker, 1990). The

importance of noncentral distributions have been emphasized by several
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authors (Gupta et al., 2009; Kotz et al., 2000; Sánchez et al., 2006). One

of the important applications of the noncentral distribution is to calculate the

power of the test of a speci c hypothesis.

Several known bivariate beta distributions are special cases of this newly

de ned distribution with density function given in (2). These bivariate beta

distributions mainly arise in the context of a trivariate reduction of three

quantities that must sum to 1, that are mutually exclusive and collectively

exhaustive (Balakrishnan and Lai, 2009). Examples include probabilities of

events, modeling of the proportion of substances in a mixture and brand shares

(Chat eld, 1975). Known bivariate beta distributions that are special cases of

(2) are divided into two main groups depending depending on whether S1,

S2 and B have central or noncentral chi-square distributions. Within each

of these two groups distributions can be distinguised based on the values of

the parameters 1, 2 and c in (1) . These parameters 1, 2 and c can be

considered as pathway parameters since it facilitates a transition to the other

well known bivariate beta distributions. The following gives a summary of the

known bivariate beta distributions that are special cases of (2) .

(a) Central distributions ( 1 = 2 = 3 = 0):

(i) general 1, 2, c: bivariate beta type V distribution (Craiu and
Craiu, 1969; Rogers and Young, 1973; Nadarajah and Kotz,
2005);

(ii) 1 = 2 = c = 1: bivariate beta type I distribution
(Balakrishnan and Lai, 2009);

(iii) 1 = 2 = 1: bivariate beta type III distribution (Cardeño et al.,
2005 considered c = 2).
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(b) Noncentral distributions:

(i) 1 = 2 = c = 1, 1 = 2 = 0: noncentral bivariate beta type I
distribution (Troskie, 1967);

(ii) 1 = 2 = c = 1: triply noncentral bivariate beta type I
distribution (Sánchez et al., 2006).

The bivariate beta type I distribution is extensively used as a prior in

Bayesian statistics (Apostolakis and Moieni, 1987). It serves as the natural

conjugate prior for the multinomial distribution where the variables are

negatively correlated. In some practical cases random variables may be

positively correlated, hence the bivariate beta type I distribution will not be a

reasonable choice to be a prior distribution. It will be shown in this paper that

the triply noncentral bivariate beta type V distribution accommodates positive

correlation for speci c choices of the additional parameters and can be used

as an alternative in Bayesian analysis. Bodvin et al. (2010) illustrated the use

of the bivariate beta type V distribution in the Bayes context. They proposed

the use of Shannon entropy when determining the parameters of prior bivariate

beta distributions as part of a Bayesian calibration methodology and illustrated

the appropriateness of this bivariate beta distribution on Moody’s default rate

data because of its ability to deal with positive correlation in the underlying

data.

Further, we also derive the distribution of Z = W1W2, the product of the

correlated variables of the triply noncentral bivariate beta type V distribution.

Nagar et al. (2009) studied the importance of these type of distributions where

the variables are correlated while Pham-Gia (2000) and Pham-Gia and Turkkan

(2002) give applications for the product of independent beta variables in the

eld of reliability.

In Section 2 the transformation in (1) is used to derive the density function

of the triply noncentral bivariate beta type V distribution. The effect of the
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additional and noncentrality parameters on the form of the density of the

triply noncentral bivariate beta type V distribution is illustrated. In Section

3 several properties of this distribution, including the marginal distribution and

product moments are studied and the effect of the parameters on the correlation

between the variables W1 and W2 also receives attention. Finally, the

distribution of the product of the components of the triply noncentral bivariate

beta type V variables is derived in Section 4 and graphs of this density function

for several values of the parameters are shown.

2. Triply noncentral bivariate beta type V
distribution

In this section the newly proposed triply noncentral bivariate beta type V

distribution will be derived from the transformation in (1) and its position

relative to the other bivariate beta distributions is given.

Theorem 1

Let S1
2 (n1; 1) , S2

2 (n2; 2) and B 2 (m; 3) be

independently distributed. De ne

(W1,W2) = 1S1
1S1+ 2S2+cB

, 2S2
1S1+ 2S2+cB

, (3)

i > 0, c > 0, 0 < wi < 1, i = 1, 2 and 0 < w1 + w2 < 1.
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The density function of (W1,W2) is given by
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The distribution in (4) is the triply noncentral bivariate beta type V distribution

and is denoted as (W1,W2) ncBBV n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 1, 2, 3 .

Proof:

The density function of (S1, S2, B) is given by

Ke
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2 2

1
2 (n1+n2+m) and 0F1 (a; z) =

j=0

(a)
(a+j)

zj

j! . Considering the transformation in (3) and letting Z =

1S1 + 2S2 + cB, the Jacobian is J ((s1, s2, b) (w1, w2, z)) =
z2

1 2c
.

Substituting in (5) , we obtain the joint density of W1, W2 and Z as

f (w1, w2, z)

= Ke
1
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2 c
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(6)
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The joint density of W1 and W2 can be obtained by integrating (6) with

respect to z. This gives the following integral that must be solved:

I =
0

z
1
2 (n1+n2+m) 1 exp 1

2cz 1 + c 1

1
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c 2

2
w2
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2 ;
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0F1
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2

4
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3

4
z(1 w1 w2)

c dz. (7)

Setting t = 1
2cz 1 + c 1

1
w1 +

c 2

2
w2 and using the following result

(Sánchez et al., 2006)
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(8)

Thus result (4) follows from (6) and (8) .
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Remarks

1. If 1 = 2 = 3 = 0 in (4) the density function of (W1,W2) simpli es
to

fBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c

= n1
2 ,

n2
2 ,

m
2

1 c
1

1
2n1 c

2

1
2n2

·w 1
2n1 1
1 w

1
2n2 1
2 (1 w1 w2)

1
2m 1

· 1 + c 1

1
w1 +

c 2

2
w2

1
2 (n1+n2+m)

(9)

and we refer to this as the bivariate beta type V distribution. It is denoted
as

(W1,W2) BBV n1
2 ,

n2
2 ,

m
2 , 1, 2, c .

2. Further, by using the series expansion of (3)
2 (see Sánchez et al.,

2006), the triply noncentral bivariate beta type V distribution in (4) can be
represented as an in nite mixture of the bivariate beta type V distribution
given in (9):

fncBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 1, 2, 3

=
j1,j2,j3=0

3

i=1

i

2

ji e
1
2 i

ji!

·fBBV w1, w2;
n1
2 + j1,

n2
2 + j2,

m
2 + j3, 1, 2, c . (10)
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3. If 1 = 2 = 0 in (4) , then (W1,W2) has the
noncentral bivariate beta type V distribution, denoted as
(W1,W2) ncBBV n1

2 ,
n2
2 ,

m
2 , 1, 2, c; 3 , therefore

fncBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 3

= fBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c e

1
2 3

·1F1 n1+n2+m
2 ; m2 ;

3

2
1 w1 w2

1+
c 1

1
w1+

c 2
2
w2

, (11)

where fBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c is given in (9) and 1F1 (·) is

the con uent hypergeometric function (see Mathai, 1993, De nition 2.2,
page 96).

4. Similarly, if 2 = 3 = 0 in (4) , the density function of (W1,W2) is
given by

fncBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 1

= fBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c e

1
2 1

·1F1 n1+n2+m
2 ; n12 ;

1c
2 1

w1
1+

c 1
1
w1+

c 2
2
w2

, (12)

where fBBV w1, w2;
n1
2 ,

n2
2 ,

m
2 , 1, 2, c is given in (9). In this

case we also refer to the distribution of (W1,W2) given in (12)
as the noncentral bivariate beta type V distribution and denote it as
(W1,W2) ncBBV n1

2 ,
n2
2 ,

m
2 , 1, 2, c; 1 .

In the following part the effect of the parameters 1, 2, c and i

(i = 1, 2, 3) , on the shape of the density of the triply noncentral bivariate beta

type V distribution is illustrated. In each case all the parameters except one is

held constant. Without loss of generality we consider the central and noncentral

bivariate beta type V distributions given in (9) , (11) and (12) respectively.

Figures 1a and 1b show graphs of the density of the central bivariate beta type

V distribution for different values of 2 and c respectively. As 2 increases

with all the other parameters constant, the density shifts towards smaller values

of W1 and larger values of W2. The opposite will be observed for increasing
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values of 1. Increasing the value of the parameter c in Figure 1b with all

other parameters constant causes f (w1, w2) to shift towards smaller values

of W1 and W2. The effect of the noncentrality parameters 1 and 3 on the

form of the density function of the triply noncentral bivariate beta type V is

illustrated in Figures 1c and 1d respectively. As 1 increases the density shifts

towards larger values ofW1 and smaller values ofW2.With an increase in 3

the density shifts towards smaller values of bothW1 andW2.

w1

w2
w1

w2
w1

w2

2 0. 5 2 1 2 2

Figure 1a. Effect of 2 on f (w1, w2), (W1,W2) BBV (5, 5, 5, 1, 2, 1)



TRIPLY NONCENTRAL BIVARIATE BETA V 231

w1

w2
w1

w2
w1

w2

c 1c 0. 5 c 3

Figure 1b. Effect of c on f (w1, w2), (W1,W2) BBV (5, 5, 5, 1, 1, c)

w1

w2
w1

w2
w1

w2

1 0 1 5 1 15

Figure 1c. Effect of 1 on f (w1, w2),(W1,W2) ncBBV (5, 5, 5, 1, 1, 1; 1)
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w1

w2
w1

w2
w1

w2

3 0 3 5 3 15

Figure 1d. Effect of 3 on f (w1, w2),(W1,W2) ncBBV (5, 5, 5, 1, 1, 1; 3)
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3. Properties
In this section we will study some properties of this triply noncentral bivariate

beta type V distribution.

Theorem 2

If (W1,W2) ncBBV n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 1, 2, 3 , then

the density function of W1 is given by
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(13)

where 2F1 (·) is the Gauss hypergeometric function (see Mathai, 1993,

De nition 2.2, page 96).

Proof:
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where fBBV (w1, w2) is given in (9) . By change of variable z =
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1 w1

the

integral in (14) can be written as
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Using Gradshteyn and Ryzhik (2000, equation 3.197(3), page 314 and equation

9.131(1), page 998) the above integral (15) simpli es to
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Therefore from (14) and (16) follows that the marginal density function of W1

is given by (13) .
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Theorem 3
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where F1 (·) is the Appell function of the rst kind (see Gradshteyn and

Ryzhik, 2000, equation 9.180 (1), page 1008).

Proof:
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th moment is given by
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1 W
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beta type V distribution, i.e.
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m
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From (9) follows that
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By using Gradshteyn and Ryzhik (2000, equation 9.184(1), page 1011) the

above expression is
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and the result (17) follows directly from (18) and (19) .

Using the result (17) in Theorem 3, the correlation between W1 and W2

where (W1,W2) has the triply noncentral bivariate beta type V distribution is

studied. Figure 2a shows how corr (W1,W2) changes for increasing values of

2 or c. The correlation shifts towards +1 if 2 decreases or if c increases. For

certain values of the parameters corr (W1,W2) > 0. Thus, these additional
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parameters allow for positive correlation between the variables. Figure 2b

illustrates the effect of the noncentrality parameters on the correlation between

the variablesW1 andW2. The cases are considered where S1 or B in (3) has a

noncentral chi-square distribution, that is S1 2 (n1; 1) orB 2 (m; 3) .

With a decrease in 1 or an increase in 3 values of corr (W1,W2) shifts

towards +1.

-1

-0.5

0

0.5

0 2 4 6 8 10
2 / c

-1

-0.5

0

0.5

0 2 4 6 8 10
2 / c

Figure 2a. Effect of 2 and c on corr (W1,W2)
- - - - - (i) (W1,W2) BBV (5, 5, 5, 1, 1, c)
______ (ii) (W1,W2) BBV (5, 5, 5, 1, 2, 1)
______ (iii) (W1,W2) BBV (5, 5, 5, 0.5, 2, 6)
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1/ 3
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1/ 3

Figure 2b. Effect of 1 and 3 on corr (W1,W2)
- - - - - (i) (W1,W2) ncBBV (5, 5, 5, 1, 1, 2; 1)
______ (ii) (W1,W2) ncBBV (5, 5, 5, 1, 1, 2; 3)

4. Distribution of product of dependent
componentsW1 andW2

The importance of the distribution of the product of correlated variables is

highlighted by several authors e.g. Nagar et al. (2009) and Gupta et al. (2009).

Thus, in this section the distribution of the product of the components of the

triply noncentral bivariate beta type V distribution is derived.
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Theorem 5

Let (W1,W2) ncBBV n1
2 ,

n2
2 ,

m
2 , 1, 2, c; 1, 2, 3 . Then the density

function of Z =W1W2 is given by

j1,j2,j3=0

3

i=1

i

2

ji e
1
2 i

ji!
c
1

1
2n1+j1 c

2

1
2n2+j2

·
k=0 l=0

1 c
1

k
2 c
2

l

k!l!

n1+n2+m
2 +j1+j2+j3+k+l

(n12 +j1) (
n2
2 +j2)

·H2,0
1,2 z|(a1, 1)

(b1, 1),(b2, 2)
.

(20)

where a1 = n1+n2+m
2 + j1 + j2 + j3 2 + k + l and 1 = 2;

b1 =
n1
2 + j1 + k 1, b2 =

n2
2 + j2 + l 1 and 1 = 2 = 1 and

where H (·) is the H-function (see Mathai, 1993, De nition 3.1, page 140).

Proof:

Using (17) the Mellin transform (see Mathai, 1993, De nition 1.8, page 23) of

f (z) is given by

Mf (h)

=
j1,j2,j3=0

3

i=1

i

2

ji e
1
2 i

ji!
c
1

1
2n1+j1 c

2

1
2n2+j2

· (
n1+n2+m

2 +j1+j2+j3)
(n12 +j1) (

n2
2 +j2)

(n12 +j1+h 1) (n22 +j2+h 1)
(n1+n2+m2 +j1+j2+j3+2h 2)

·F1 n1+n2+m
2 + j1 + j2 + j3,

n1
2 + j1 + h 1, n22 + j2 + h 1,

n1+n2+m
2 + j1 + j2 + j3 + 2h 2; 1 c

1
, 2 c

2
.

(21)
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From Gradshteyn and Ryzhik (2000, equation 9.180 (1), page 1008) and (21)

follows that

Mf (h)

=
j1,j2,j3=0

3

i=1

i

2

ji e
1
2 i

ji!
c
1

1
2n1+j1 c

2

1
2n2+j2

·
k=0 l=0

1 c
1

k
2 c
2

l

k!l!

n1+n2+m
2 +j1+j2+j3+k+l

(n12 +j1) (
n2
2 +j2)

2

j=1 (bj+ jh)
1

j=1 (aj+ jh)

(22)

where aj , j , bj and j are given in the Theorem above. The desired

result (20) follows from (22) , the inverse Mellin transform (see Mathai, 1993,

De nition 1.8, page 23) and the de nition of the H-function (see Mathai, 1993,

De nition 3.1, page 140).

The effect of the additional parameters on the shape of the density of the

triply noncentral bivariate beta type V distribution is illustrated in Figures 3a

and 3b. In each case the values of all the parameters except one is held constant.

Without loss of generality we consider the central and noncentral bivariate beta

type V distributions given in (9) , (11) and (12) respectively.

In Figure 3a the density of Z = W1W2 shifts towards smaller values as

c increases. The same but opposite effect is observed if 1 or 2 increases.

In Figure 3b, the spread of the density f (z) increases as 1 increases. As 3

increases the density shifts towards smaller values of Z.
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Figure 3a. Effect of c on f (z) , Z =W1,W2, (W1,W2) BBV (1, 1, 1, 1, c)
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Figure 3b. Effect of i on f (z) , Z =W 1,W 2, (W1,W 2) BBV (1, 1, 1, 1, 1, 1; i)

5. Conclusion
In this paper we proposed the triply noncentral bivariate beta type V

distribution. Some properties are studied which enhance the possibility of

application in different areas. The variety of shapes of the triply noncentral

bivariate beta type V density and the density of the product of its correlated

components also received attention. Furthermore the positive correlation

due to the enriched parameter structure is an added value that justi es the

development of this model.
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