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Abstract

Fusarium oxysporum is an asexual fungal species that includes human and animal pathogens

and a diverse range of nonpathogens. Pathogenic and nonpathogenic strains of this species

can be distinguished from each other with pathogenicity tests, but not with morphological

analysis or sexual compatibility studies. Substantial genetic diversity among isolates has led

to the realization that F. oxysporum represents a complex of cryptic species. Fusarium

oxysporum f. sp cubense (Foc), causal agent of Fusarium wilt of banana, is one of the more

than 150 plant pathogenic forms of F. oxysporum. Multi-gene phylogenetic studies of Foc

revealed at least eight phylogenetic lineages, a finding that was supported by random

amplified polymorphic DNAs, restriction fragment length polymorphisms and amplified

fragment length polymorphisms. Most of these lineages consist of isolates in closely related
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vegetative compatibility groups, some of which possess opposite mating type alleles, MAT-1

and MAT-2; thus, the evolutionary history of this fungus may have included recent sexual

reproduction. The ability to cause disease on all or some of the current race differential

cultivars has evolved convergently in the taxon, as members of some races appear in different

phylogenetic lineages. Therefore, various factors including co-evolution the plant host and

horizontal gene transfer are thought to have shaped the evolutionary history of Foc. This

review discusses the evolution of Foc as a model formae specialis in F. oxysporum in relation

to recent research findings involving DNA-based studies.
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Introduction

Fusarium is regarded as one of the most adaptive and versatile genera in the Eumycota. One

of its economically more important members is F. oxysporum Schlechtendahl emend. Snyder

and Hansen, which consists of both pathogenic and nonpathogenic strains (Gordon and

Martyn, 1997). The plant pathogenic strains are divided into special forms or formae

speciales according to the plant species on which they cause disease, and into races according

to crop cultivar specificity. To date more than 150 formae speciales have been described

(Baayen et al., 2000; Hawksworth et al., 1995; O'Donnell et al., 2009; O’Donnell and

Cigelnik, 1999). Although nonpathogenic strains of F. oxysporum are widespread and

genetically more diverse than their pathogenic counterparts (Gordon and Okamoto, 1992),

they are not as well studied (Edel et al., 2001). However, after the discovery that

nonpathogenic strains play a role in Fusarium wilt suppressive soils (Alabouvette, 1990),

interest in these strains increased dramatically  (Elias et al., 1991; Katan et al., 1994).
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The great diversity in F. oxysporum raises questions about its evolutionary biology (Does the

species have one or several phylogenetic origins?), and whether the fungus represents a single

species or a species complex (How distinct are populations and groups of isolates in the

species?) (Kistler, 1997; O’Donnell and Cigelnik, 1997). Various techniques/attributes have

been utilized to gain insight into these issues. The aim of this review is to critically review the

contemporary information and ideas on the evolution and biology of F. oxysporum and its

formae speciales, with specific reference to strains that attack bananas.  For this purpose we

first consider the taxonomy of these taxa and the specific methods that have been used to

characterize them. We then discuss the evolution of F. oxysporum by referencing recent

DNA-based studies on the members of this species.

The vascular wilt pathogen, Fusarium oxysporum

Taxonomic classification

The genus Fusarium was erected by Link in 1809 for fungi with canoe- or banana-shaped

conidia (Leslie and Summerell, 2006). Approximately 1000 species had been described

before Wollenweber and Reinking (1935) thoroughly reclassified the genus into 16 sections

and  65 species. Since 1935, various attempts have been made to improve the Wollenweber

and Reinking classification system. Snyder and Hansen (1940) compressed the 16 sections

into nine species, and the species in section Elegans into a single species, F. oxysporum.

Snyder and Hansen’s classification system was eventually replaced by a system proposed by

Nelson et al. (1983), which attempted to bridge the previous systems. The only species that

remained unchanged from Snyder and Hansen’s (1940) treatment were F. oxysporum and

Fusarium solani (Martius) Appel & Wollenweber emend. Snyder & Hansen, although recent

work has proposed that both taxa represent species complexes (O'Donnell et al., 2009;

O’Donnell et al., 2008). Leslie and Summerell (2006) summarized information for 70 species
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of Fusarium, and this monographic publication was the first for the genus to integrate

morphological and phylogenetic information.

The morphological taxonomy of species in the genus Fusarium is based primarily on the

structure and abundance of asexual reproductive structures (chlamydospores, phialides,

microconidia and macroconidia) and on cultural characteristics (colony texture, colour and

cultural aroma) (Booth, 1971; Edel et al., 2000; Gordon and Martyn, 1997; Lorens et al.,

2006; Nelson, 1991; Nelson et al., 1983). Fusarium oxysporum is characterized mainly by

non-septate microconidia formed in false heads on short monophialides, 3-septate

macroconidia formed from monophialides on branched conidiophores in sporodochia, and

chlamydospores with a smooth or rough wall appearance formed singly or in pairs (Fig 1).

However, identification of this and other species of Fusarium can be challenging, because of

variation between isolates (Gaudet et al., 1989; Snyder and Hansen, 1940), which reflects

both genetic and environmental effects on the phenotypic expression of morphological

characters (Nelson, 1991). In addition to lacking stability, morphological characters may not

provide the resolution needed to properly circumscribe newly identified species.

To a large extent, limitations imposed by reliance on morphological criteria have been

superseded by the use of DNA sequences for phylogenetic analyses (Sites and Marshall,

2004; Taylor et al., 2000). This approach has shown that F. oxysporum is comprised of a

number of distinct lineages (Baayen et al., 2000; Fourie et al., 2009; Kistler, 1997; O’Donnell

and Cigelnik, 1997; O’Donnell et al., 1998). It is, therefore, not surprising that many

researchers regard F. oxysporum as a complex of several different species (Baayen et al.,

2000; Kistler, 1997; O’Donnell and Cigelnik, 1997).
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The biological species concept has been used to identify species in the Gibberella fujikuroi

(Sawada) Wollenw. and Haemanectria heamatococca (F. solani) species complexes (Leslie

and Summerell, 2006). However, this approach cannot be used for species that do not produce

a teleomorph, such as F. oxysporum. In ascomycetes, two mating type (MAT) idiomorph

alleles, namely MAT-1 and MAT-2, must be present for mating to occur (Kronstad and Staben,

1997; Menzenburg and Glass, 1990). Both MAT idiomorphs  have been reported for F.

oxysporum  and these idiomorphs were found to have high sequence similarity to those of

sexually reproducing Fusarium species, and according to reverse transcription PCR were

functionally expressed (Arie et al., 2000; Yun et al., 2000). The absence of sexual

reproduction could therefore be due to mutations in these genes (Arie et al., 2000; Yun et al.,

2000) or mutations within pheromones and receptors not encoded at the MAT locus. These

pheromones and receptors are presumably important for recognition among strains of

opposite mating types (Bölker and Kahmann, 1993), although their specific role in Fusarium

is not yet fully understood (Lee et al., 2006).

Formae speciales – strain classification using pathogenicity towards specific host species:

Pathogenic strains of F. oxysporum cause wilt diseases on a number of agronomically

important crops. Isolates that attack the same crop are included in the same forma specialis.

Most formae speciales are pathogenic to a single crop (e.g. Foc on banana, F. oxysporum f.

sp. dianthi on carnation, and F. oxysporum f. sp. vasinfectum on cotton). Some, however,

attack more than one crop. For instance, Cafri et al. (2005) reported that F. oxysporum f. sp.

cucumerinum affected both cucumber and melon.

The underlying genetic basis of host specificity in F. oxysporum is unknown (Baayen et al.,

2000). Thus, it cannot be assumed that individuals in a given forma specialis are closely
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related or evolved from a common ancestor (O’Donnell et al., 1998). In fact, the available

evidence indicates that monophyletic formae speciales are the exceptions, rather than the rule,

for F. oxysporum (Leslie and Summerell, 2006).  Koenig et al. (1997) showed that some Foc

isolates were more closely related to isolates of F. oxysporum f. sp. niveum, a pathogen of

watermelon, than to other isolates from banana. Baayen et al. (2000) also reported a similar,

close association between F. oxysporum f. sp. tulipae and F. oxysporum f. sp. asparagi, as

well as between F. oxysporum f. sp. gladioli and F. oxysporum f. sp. dianthi. Presently, F.

oxysporum f. sp. albedinis (Tantaoui et al., 1996), F. oxysporum f. sp. ciceris (Jimenez-Gasco

et al., 2002) and F. oxyposrum f. sp. canariensis (Plyler et al., 2000), are among the few

formae speciales that appear to be monophyletic. Therefore, the majority of the forma

specialis designations for this species are pathologically useful, but not phylogenetically

informative (Gordon and Martyn, 1997).

Most isolates of F. oxysporum are not pathogenic. Nonpathogenic strains of F. oxysporum are

cosmopolitan and can be found in native soils, water and plant residues. They have also been

found in the roots and rhizospheres of diverse plant species (Armstrong and Armstrong, 1948;

Wilson, 1995). Individuals that colonize living roots and other plant tissues but that do not

necessarily cause disease are known as endophytes. Gordon and Okamoto (1992) speculated

that pathogenic strains may arise from endophytic or nonpathogenic strains of F. oxysporum

and, in support of this hypothesis, Apple and Gordon (1994) reported a close phylogenetic

relationship between isolates of F. oxysporum f. sp. melonis and nonpathogenic, soil-

inhabiting F. oxysporum. In practice, however, the differentiation between pathogenic and

nonpathogenic isolates is not straightforward. They can only be differentiated from one

another with the use of pathogenicity trails, and due to the host specificity of F. oxysporum,
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large numbers of host species need to be tested in order to confirm that the isolate is truly

nonpathogenic (Alabouvette et al., 2009).

Race  –  strain classification using pathogenicity towards  specific host cultivars:

Most formae speciales of F. oxysporum are comprised of two or more races, whereas a small

proportion are monotypic (e.g. F. oxysporum f. sp. radicis-lycopersici) (Di Primo et al.,

2001). Races in F. oxysporum are defined by their impact on differential host cultivars,

although these classifications can be problematic. For example, complete sets of differentials

may no longer be available, as is the case with the F. oxysporum f. sp. dianthi:carnation

pathosystem (Migheli et al., 1995). Also, because pathogenicity tests can be influenced by

temperature, host age, method of inoculation and other variables, those conducted in different

laboratories may generate incongruent results (Correll, 1991; Davis et al., 1996).

Furthermore, field testing is time-consuming, expensive, and appropriate test sites may not be

available for a given race or for the needed length of time.

The genetic interactions between phytopathogenic races and resistant and susceptible host

cultivars vary greatly among pathosystems. For example, race-specific, monogenic resistance

exists in tomato at the I, I2 and I3 loci, which correspond, respectively, to resistance to races

1, 2 and 3 of F. oxysporum f. sp. lycopersici (Kawabe et al., 2005; Mes et al., 1999).

However, many formae speciales, such as Foc, are more complex and have poorly understood

host-pathogen genetic interactions.

Four races of Foc have been described (Moore et al., 1993; Su et al., 1986; Waite and Stover,

1960). Race 1 attacks Gros Michel, Silk, Pome and Latundan cultivars; race 2 attacks

Bluggoe and other plantain (ABB genome) bananas; and race 3 attacks Heliconia spp. (Ploetz
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and Correll, 1988; Su et al., 1977). Race 3 does not cause disease on banana and is, therefore,

no longer considered part of the Foc race structure (Ploetz, 2005b). Race 4 is pathogenic to

Cavendish bananas and all cultivars that are susceptible to races 1 and 2. Isolates in race 4 are

further subdivided into Foc ‘tropical’ and Foc ‘subtropical’, based on whether or not they

cause disease on Cavendish bananas under tropical environmental conditions (Ploetz, 2006;

Viljoen, 2002).  Races of Foc are not necessarily closely related to one another (Fourie et al.,

2009; Koenig et al., 1997; O’Donnell et al., 1998) and several studies have shown that some

Foc ‘subtropical’ race 4 isolates are more closely related to individuals associated with other

formae speciales of F. oxysporum than they are to race 1 or 2 isolates of Foc (Baayen et al.,

2000; Groenewald et al., 2006).

Characterization of formae speciales based on vegetative compatibility:

Vegetative compatibility has often been exploited in fungal diversity studies. It relies on

heterokaryon formation, and in practice may be determined with complementation assays

between auxotrophic nutritional mutants. Buxton (1962) was the first to study heterokaryon

formation in Fusarium, although the method he used to produce and utilize mutants was so

laborious that information on populations of these fungi could not be obtained (Katan, 1999).

Puhalla (1985) revolutionized these studies by developing a more efficient technique for

determining compatibility. He modified a procedure described by Cove (1976) that utilizes

nitrate-non utilizing auxotrophic (nit) mutants that are readily recovered and stable (Katan,

1999).

Vegetative compatibility is controlled in Fusarium spp. and other fungi by several vegetative

(vic) or heterokaryon (het) incompatibility loci (Leslie, 1993). Although the numbers of vic

loci in F. oxysporum cannot be determined using conventional genetic approaches, at least six
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are present in F. circinatum (Nirenburg & O’Donnell emend. Britz, Coutinho, Wingfield &

Marasas) (Gordon et al., 2006) and at least ten are found in F. verticillioides (Saccardo)

Nirenberg (syn. F. moniliforme) (Leslie, 1991). For two individuals to be vegetatively

compatible and form a stable heterokaryon, they need to share a common allele at each vic

locus (Correll, 1991). One would, therefore, expect that the rest of the genomes of individuals

in one vegetative compatibility group (VCG) of an asexual species would also be very similar

(Leslie, 1990; Leslie, 1993). Although individuals in VCGs of F. oxysporum are related by

clonal descent (Gordon and Martyn, 1997; Leslie, 1993), a mutation at a single vic locus

would place closely related individuals in different VCGs (Bentley and Dale, 1995; Bentley et

al., 1998).  Thus, VCGs represent good phenotypic characters for assessing diversity within

populations, but genetic relationships among VCGs must be assessed by other means.

In most cases, the relationship between VCG and race is complex, with a single race being

associated with multiple VCGs. For example, Katan et al. (1993) found that VCG 0138 of F.

oxysporum f. sp. melonis in Israel was associated with races 0, 1 and 1-2, whereas VCG 0135

included isolates of races 0 and 2. Similar findings have also been reported for F. oxysporum

f. sp. lycopersici (Cai et al., 2003; Elias and Schneider, 1991; Marlatt et al., 1996; Mes et al.,

1999), F. oxysporum f. sp. dianthi (Aloi and Baayen, 1993; Kalc Wright et al., 1996; Migheli

et al., 1998) and F. oxysporum f. sp. melonis (Elena and Pappas, 2006; Jacobson, 1991;

Jacobson and Gordon, 1990; Katan et al., 1993). A notable exception is F. oxysporum f. sp.

vasinfectum that has a one-on-one relationship between VCG and race (Assigbetse et al.,

1994; Katan and Katan, 1988).

Twenty-four VCGs have been described for Foc (Bentley and Dale, 1995; Katan, 1999; Katan

and Di Primo, 1999; Moore et al., 1993; Ploetz and Correll, 1988). A few of these, such as
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VCGs 0123 and 0126, are found in several different countries, whereas others have narrower

distributions and are limited to a single country [e.g. 0122 (Philippines), 01211 (Australia),

01212 (Tanzania), 01214 (Malawi), and 01217 (Malaysia)] or a region [01218 (Asia)].

Individuals in some VCGs are cross-compatible (bridge) with those in other VCGs (e.g. the

0120-01215, 0124-0125-0128-01220, and 01213-01216 complexes) (Ploetz, 1990). Isolates in

VCGs 0120, 0129, 01211, and 01215 that affect Cavendish cultivars in the subtropics

comprise Foc ‘subtropical’ race 4. Isolates from these VCGs normally do not attack

Cavendish in the tropics (Bentley et al., 1998; Brake et al., 1990; Moore et al., 1993; Ploetz

and Correll, 1988). In contrast, isolates in the VCG 01213-01216 complex affect Cavendish in

the tropics without predisposing factors, and are referred to Foc ‘tropical’ race 4 (Bentley et

al., 1998).

The evolution of Fusarium oxysporum

Fungi, like all living organisms, have the ability to adapt in response to changing or new

environments. Environmental changes exert selection pressure on an organism (McDonald,

1997), and only individuals that adjust to change are able to succeed. The capacity of

populations of pathogens to adapt is determined, in part, by their diversity (McDonald and

McDermott, 1993). As the gene pool that a population can sample increases, so too does its

adaptability to a changing environment or a new host genotype.

It is generally assumed that the dynamics of the evolution of fungi are determined by five

evolutionary forces: mutation, natural selection, genetic drift, gene flow and mating system

(McDonald and Linde, 2002). Mutations are changes that take place in DNA base sequences,

which are thought to be rare and change the genetic constitution of a population slowly.

Natural selection typically favours genotypes with a reproductive advantage, while genetic
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drift refers to changes in gene frequency within a population that take place due to chance

alone. Gene flow represents the movement of gametes, individuals or populations, from one

area to another, potentially expanding the range of novel pathotypes. The final evolutionary

force that brings about change in F. oxysporum and its populations is reproductive strategy.

Since no teleomorph is known for this fungus, meiotic recombination is not believed to be

involved in generating new genetic combinations. Rather, asexual organisms like F.

oxysporum are thought to evolve by means of mutations only, and potentially through the

processes of parasexual recombination (i.e. a non-sexual mechanism for creating new genetic

combinations) (Buxton, 1962; Kuhn et al., 1995). Parasexual recombination, however, would

be limited to fungi that are vegetatively compatible (Menzenburg and Glass, 1990). Thus,

parasexual opportunities to generate novel combinations in F. oxysporum would be limited by

the degree of genetic similarity between the recombining strains (e.g. Fourie et al., 2009).

Various phenotypic traits have been used to assess diversity in phytopathogenic F. oxysporum

(Ploetz, 1999). These include vegetative compatibility (Buxton, 1962; Puhalla, 1985),

pathogenicity on different crops (Brake et al., 1990; Pegg et al., 1993; Pegg et al., 1994;

Ploetz, 1994; Su et al., 1986; Waite and Stover, 1960), isozyme profiling (Ploetz, 1990),

volatile compound production (Moore et al., 1991), and chromosome number and genome

size (Boehm et al., 1994).  A major disadvantage of these characters is their limited variation

and that some, such as pathogenicity, are under strong selection pressure. This will lead to an

underestimation of diversity and biased results (McDonald and McDermott, 1993). In general,

these problems can be avoided with techniques that assess genetic variation more directly.

Genetic markers that measure variation in both coding and non-coding regions of DNA can be

quite variable (McDonald and McDermott, 1993). Those that have been used to study F.

oxysporum and Foc include DNA sequences (Fourie et al., 2009; O’Donnell et al., 1998),
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restriction fragment length polymorphisms (RFLPs) (Koenig et al., 1997), random amplified

polymorphic DNAs (RAPDs) (Alves-Santos et al., 1999; Bentley et al., 1994; Bentley et al.,

1998), amplified fragment length polymorphisms (AFLPs) (Groenewald et al., 2006), and

microsatellites or simple sequence repeats (SSRs) (Bogale et al., 2006; Brave et al., 2001).

DNA sequence analysis:

Assessing relationships between individuals at the nucleotide level has become common place

because DNA sequence information is now relatively easy and inexpensive to generate.

Depending on the genomic region that is targeted, such data can be used for studies at all

taxonomic levels. Sequence data can be explored for indels (insertions or deletions) or single

nucleotide polymorphisms (SNPs) for use in species- or group-specific diagnostics.

Alternatively, sequence information can be used directly for similarity-based DNA

comparisons and/or phylogenetic analyses. For a given genomic region, closely related

individuals are expected to have more similar sequences, albeit that sequence similarity may

not always be a true reflection of phylogeny (Goldstein et al., 1995; Goldstein et al., 1999).

Phylogenies based on DNA sequences are usually well-resolved when data for a number of

genes or regions are congruent and combined (Lutzoni et al., 2004; Soltis et al., 1999); they

generally provide better resolution than any of the other techniques that are discussed below.

For example, Baayen et al. (2000) utilized AFLPs and DNA sequences to examine

phylogenies for eight formae speciales of F. oxysporum, and found higher levels of

homoplasy in their AFLP data.

Multi-gene phylogenetic approaches have resolved many species of Fusarium (Nirenberg and

O’Donnell, 1997; Nirenberg and O’Donnell, 1998; O’Donnell et al., 2004b; Zeller et al.,

2003), as well as groups within the F. oxysporum species complex (O'Donnell et al., 2009).
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By making use of a multi-gene approach, O’Donnell et al. (1998) first showed conclusively

that strains within a given formae speciales are not necessarily monophyletic. Based on the

combined analysis of four gene regions, Fourie et al. (2009) recently showed that Foc

represents at least eight distinct lineages. Bogale et al. (2006) sequenced the TEF and mtSSU

region of 32 F. oxysporum isolates from Ethiopia and separated these isolates into three

groups that corresponded with the three major clades of F. oxysporum that were defined by

O’Donnell et al. (1998). Skovgaard et al. (2002) divided a global population of F. oxysporum

f. sp. vasinfectum into four lineages with TEF, mtSSU, nitrate reductase and phosphate

permase gene sequences, and determined that this forma specialis had at least two

independent evolutionary origins, with isolates in races 3 and 5 evolving independently from

the other races of this pathogen. Kawabe et al. (2005) confirmed the polyphyletic nature of F.

oxysporum f. sp. lycopersici with IGS, MAT and endopolygalacturonase sequences. Their

worldwide collection of isolates formed three evolutionary lineages, each of which contained

single or closely related VCGs.

RAPDs:

RAPD analyses rely on amplification of various regions of a genome via PCR with short

oligonucleotide sequences that are used as primers. The resulting fragments are then separated

using electrophoresis to obtain fingerprints that can be compared among individuals (Welsh

and McClelland, 1990; Williams et al., 1990). Advantages of this technique are that no prior

knowledge of sequence data is needed, amplification sites are distributed throughout the

genome, and low quantities of DNA template are sufficient for amplification. Disadvantages

include poor reproducibility between laboratories, and the amplification of non-target DNA

(McDonald, 1997). It is, therefore, of great importance that precautions are taken to avoid
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contamination of template DNA. In addition, RAPDs are dominant markers and co-migrating

bands cannot be assumed to be homologous (McDonald, 1997).

RAPDs have been used extensively to study populations of various formae speciales of F.

oxysporum. Bentley et al. (1994), for instance, found identical or near identical haplotypes for

VCGs of Foc in Australia. In 1998, Bentley et al. (1998) also used DNA amplified

fingerprinting (DAF) (Caetano-Anolles et al., 1991) analysis, a technique closely related to

RAPDs, to identify 33 genotypes among 241 Foc isolates, and separated these into nine clonal

lineages. VCGs of F. oxysporum f. sp. gladioli were separated into three groups using RAPDs

(Mes et al., 1999), while Manualis et al. (1994) used RAPDs to distinguish F. oxysporum f.

sp. dianthi from nonpathogenic F. oxysporum isolates. Assigbetse et al. (1994) also grouped a

global collection of F. oxysporum f. sp. vasinfectum isolates according to race and geographic

origin using RAPDs.

RFLPs:

RFLPs utilize restriction enzymes to cut DNA at specific nucleotide recognition sites. The

resulting DNA fragments can be separated by electrophoresis and the bands compared

directly when a specific region is targeted with, for example, PCR (PCR-RFLP), or the

resulting DNA fragments may be transferred to nylon membranes and subsequently

hybridized with DNA probes to identify polymorphisms. For both types of RFLP no prior

knowledge of sequence data is usually needed as restriction sites are thought to be distributed

throughout the genome. For PCR-RFLPs low quantities of DNA template are required.

However, the generation of hybridization-based RFLPs is technically demanding, and

requires high quality DNA and in some cases prior sequence information to develop DNA

probes.
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RFLPs or PCR-RFLPs have been used for diverse applications. For example, Bogale et al.

(2007) distinguished isolates in the three clades of the F. oxysporum complex with PCR-

RFLPs of TEF sequences, and Attitalla et al. (2004) differentiated isolates in two formae

speciales that affect tomato, F. oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-

lycopersici, with mtDNA RFLP haplotypes. Zambounis et al. (2007) identified specific

members of F. oxysporum f. sp. vasinfectum from Australia with PCR-RFLPs of IGS

sequences. Koenig et al. (1997) used RFLPs and cDNA probes to characterize a worldwide

collection of Foc and suggested that some formae speciales of F. oxysporum were not

monophyletic. Most recently, Fourie et al. (2009) utilized the IGS region to develop a PCR-

RFLP diagnostic method for assigning isolates of Foc to its various evolutionary lineages.

AFLPs:

For AFLP analysis, two restriction enzymes, usually a frequent and a rare cutter (EcoRI and

MseI), are used to digest genomic DNA. Target-specific adapters are then ligated to the

digested genomic DNA, followed by two individual rounds of PCR. For the pre-selective

amplification, standard EcoRI and MseI adapter primers are used for the amplification

reaction, however, for the final or selective amplification, standard EcoRI and MseI adapter

primers with additional nucleotides are used to reduce the number of fragments amplified.

These amplified products are then subjected to polyacrylamide gel electrophoresis and the

absence and presence of bands are scored (Vos et al., 1995). This method can be used for

population diversity studies by comparing the fingerprints of individual isolates, is amenable

to automation, and no sequence data for primer construction is required. Since more loci are

screened and longer primers are used, AFLPs are more reproducible than RAPDs (McDonald,
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1997). However, purified, high molecular weight DNA is required and, as is the case with

RAPDSs, co-migrating bands may not be homologous.

Baayen et al. (2000) studied the evolutionary histories of eight formae speciales of F.

oxysporum with AFLPs and DNA sequences. Both sets of data indicated that F. oxysporum f.

spp. lilli and tulipae were monophyletic, but that F. oxysporum f. spp. asparagi, dianthi,

gladioli and lini were not. The congruence between DNA sequence and AFLP-based data was

also reported by Bogale et al. (2006) in their study of Ethiopian F. oxysporum. To analyze

clinically important F. oxysporum isolates, O’Donnell et al. (2004a) used AFLP and DNA

sequence data and concluded that a single clonal lineage of the fungus was recently dispersed

among hospitals in the US and Europe. With the use of AFLP and DNA sequence data

Stewart et al. (2006) were able to separate nonpathogenic strains of F. oxysporum from those

of the recently described species Fusarium commune (Skovgaard  et al; 2003), which are not

distinguishable from F. oxysporum based on morphology (Skovgaard  et al; 2003; Stewart et

al., 2006). Groenewald et al. (2006) identified seven genotypic groups from a global

collection of Foc with AFLPs and confirmed the pathogen’s polyphyletic nature.

Microsatellite/Single Sequence Repeat (SSR) markers:

Single Sequence Repeats (SSRs) are used to study the evolution and diversification of

pathogen populations that are closely related. Highly polymorphic di-, tri-, tetra-, penta- or

hexa-nucleotide repeats that are scattered throughout the genome are compared (Queller et al.,

1993; Santana et al., 2009). The up- and downstream regions of these repeated sequences are

usually highly conserved, thus allowing their amplification with specific PCR primers.

Amplified products are subsequently separated and analysed using a DNA sequencer. SSRs

are present in varying frequencies in most organisms (Chambers and MacAvoy, 2000), and
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are evenly spaced throughout the genome, highly polymorphic (Jarne and Lagoda, 1996) and

reproducible. However, SSR markers/primer pairs usually cannot be used across distantly

related species (Barbara et al., 2007). Although they are generally expensive and time

consuming to develop, significant time and cost reductions can be achieved with next

generation sequencing technologies (Santana et al., 2009).

Brave et al. (2001) used a modified SSR technique to study F. oxysporum f. sp. ciceris

isolates from India and were able to differentiate four races of the pathogen. The modified

method involved restriction digestion of total genomic DNA with hexa-, tetra- and penta-

nucleotide cutting enzymes, followed by transfer of digested products to nylon membranes

and hybridisation with various labeled di-, tri- and tetra-nucleotide probes. They showed that

races 1 and 4 were closely related, whereas races 2 and 3 were distantly related to the other

races. Bogale et al. (2006) used SSRs in conjunction with DNA sequences and AFLPs to

show that genetic diversity was low among isolates of F. oxysporum from various different

sources and locations in Ethiopia, which the authors attributed to a reliance on local crops and

seed sources in Ethiopia and, thus, minimal introductions of new fungal genotypes.

Evolution and diversity of Foc

Foc is believed to have co-evolved with its Musa hosts in Southeast Asia (Ploetz, 1990;

Ploetz and Pegg, 1997; Stover, 1962; Vakili, 1965) and from there it was introduced into new

banana-producing countries by the movement of infected planting material (Pegg et al.,

1996). In a study of a global collection of Foc, Boehm et al. (1994) discerned two major

groups based on electrophoretic karyotype; one group generally associated with banana

cultivars with partial B genomes (i.e. at least one chromosome derived from M. balbisiana;

e.g. Lady finger AAB and Bluggoe ABB), and the other associated with banana cultivars with
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pure A genomes (i.e. all chromosomes derived from M. acuminata; e.g. Cavendish AAA and

Gros Michel AAA). These groups were confirmed with RFLP data (Koenig et al., 1997),

RAPD and DAF analysis (Bentley and Bassam, 1996; Bentley and Dale, 1995; Bentley et al.,

1998), sequence analysis of the TEF and mtSSU genes (Fourie et al., 2009; O’Donnell et al.,

1998) and AFLP analysis (Groenewald et al., 2006).

Ploetz and Pegg (1997) suggested that the two Boehm et al. (1994) groups are evidence for

independent evolutionary origins of Foc in Southeast Asia, and reported that Wallace’s line

appeared to be the eastern boundary for the natural distribution of these groups. One VCG of

Foc (VCG 01214), however, appears to have a different evolutionary history and may have

originated outside the Indo-Malayan region (Ploetz, 2005a; 2005b; Ploetz and Pegg, 1997).

Isolates of this VCG affect ABB cooking bananas (Bluggoe and Silver Bluggoe) and are

genetically distinct from other Foc lineages/VCGs (Koenig et al., 1997; O’Donnell et al.,

1998).  Isolates in VCG 01214 have only been found in a small area in northern Malawi

(Ploetz et al., 1992) and, thus, may have evolved on a host other than banana (no Musa spp.

are native to Africa). One possibility is enset, Ensete ventricossum (Welh.) E.E. Cheesman,

which is in the Musaceae, endemic to Malawi, and susceptible when inoculated with isolates

of VCG 01214 (Ploetz, unpublished data). A recent study by Fourie et al. (2009) confirmed

that this VCG is more closely related to non-pathogenic F. oxysporum isolates and other

formae speciales of F. oxysporum than to Foc, but that it forms part of a bigger clade of F.

oxysporum that includes Foc isolates associated with banana cultivars with partial B genomes.

Foc isolates are divided into distinct lineages with clusters of closely related VCGs, even

when they are distributed over a broad geographic area. These relationships have been

documented with RAPDs, RFLPs, AFLPs, electropheric karyotypes and multi-gene
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phylogenies (Bentley et al., 1994; Boehm et al., 1994; Fourie et al., 2009; Groenewald et al.,

2006; Koenig et al., 1997; O’Donnell et al., 1998; Pegg et al., 1995), and suggest a clonal

reproductive strategy for this pathogen. The diversity of Foc, therefore, may be due to

mutation (Ploetz, 1993) and/or parasexual recombination (Buxton, 1962; Kuhn et al., 1995).

On the other hand, based on a reanalysis of data for unique haplotypes reported by Koenig et

al. (1997), Taylor et al. (1999) suggested that recombination may have occurred between

lineages I (VCG 0124 complex) and VIII (VCG 01212). Also, Fourie et al. (2009) reported

the occurrence of both mating type idiomorphs in closely related groups of Foc isolates.

Whether recombination between these lineages is contemporary or historical, and the

mechanism(s) by which it occurred, are not yet known.

Apart from co-evolution and possible sexual recombination, horizontal gene transfer may

have also played an important role in the evolutionary history of Foc. Multi-gene phylogenies

not only revealed the polyphyletic nature of Foc but also that pathogenicity towards a specific

cultivar evolved convergently (Baayen et al., 2000; Fourie et al., 2009; O'Donnell et al., 2009;

O’Donnell et al., 1998). This is, however, not unexpected since this informal taxonomic

ranking is based on pathogenicity towards a specific host plant (Kistler, 2000), and thus

generally subject to strong selection pressure and possibly horizontal gene transfer events

(Nimchuk et al., 2003; Temporini and VanEtten, 2004; Van der Does and Rep, 2007; Yoon et

al., 2007). Recently, comparative genomics of F. graminearum, F. verticillioides and F.

oxysporum f.sp. lycopersici revealed a lineage-specific or mobile pathogenicity chromosome

that could be experimentally transferred between genetically isolated F. oxysporum isolates

(Ma et al., 2010). Sequence analysis indicated that this lineage-specific chromosome have an

evolutionary origin different from the rest of the genome. The authors, therefore, concluded

that horizontal gene transfer (i.e. the transfer of the entire host specific chromosome) could
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explain the polyphyletic origins of host specialization and the emergence of new lineages in

incompatible genetic backgrounds.

Four evolutionary models have been proposed for the diverse relationships that have been

observed between VCGs and formae speciales in F. oxysporum (Kistler, 2000; Kistler and

Momol, 1990). Two of these models posit that host ranges expanded before populations

became vegetatively incompatible, while the other two state that vegetative incompatibility

arose before host range expansion (Kistler, 2000; Kistler and Momol, 1990). According to the

first model, host specialization is followed by infrequent genetic isolation by way of

vegetative incompatibility. In other words, the pathogen and host co-evolve (Burdon, 1992).

Based on the second model, host specialization coincides with more frequent genetic

isolation, suggesting that the DNA sequence variation within formae speciales is

predominantly within VCGs. In the third model, infrequent genetic isolation is followed by

specialization that could describe the loss of a sexual stage, and would be supported if isolates

of different formae speciales and VCGs were equidistant genetically, regardless of host

relationships. The last model entails frequent genetic isolation followed by speciation. In this

model genetic distance between VCG and forma specialis would be variable, therefore not

equidistant to host relationships. The evolution of Foc fits into the first described model, if we

presume that the pathogen and host co-evolved. However, if we consider the close

relationship between some Foc lineages and other formae speciales of F. oxysporum, the last

two models could also describe the evolution of some Foc lineages. Therefore, based on our

current understanding of this pathosystem, the evolution of Foc has been complex, and

various factors such as co-evolution, horizontal gene transfer and possible sexual

recombination have shaped its evolutionary history.
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Conclusions

Studies on the phylogenetics and population biology of F. oxysporum over the past decade

have facilitated a better understanding of the evolutionary history, genetic structure and

diversity of Fusarium wilt pathogens. Although many of these studies have been biased by

their focus on pathogens of a single agricultural crop, with a corresponding overestimation of

clonality, they provided information that has helped to manage important diseases that these

pathogens cause (McDonald, 1997). Understanding the composition of a pathogen population

not only contributes to the selection of resistant cultivars, but can also help predict the

durability of resistance in a new host genotype (McDonald & Linde 2002).  In addition, such

information can be used to detect new pathogens or pathogen lineages in an area, to study the

epidemiology of diseases that they cause, and to evaluate the effectiveness of a given

management strategy.

Koenig et al. (1997), Bentley et al. (1998), O’Donnell et al. (1998), Groenewald et al. (2006)

and Fourie et al. (2009) confirmed the polyphyletic origins of Foc, divided the taxon into

lineages that represent two of the four major clades in F. oxysporum, and demonstrated that

certain isolates and populations of Foc are more closely related to isolates in other formae

speciales of F. oxysporum than to isolates in Foc. These studies suggest that both co-

evolution and horizontal gene transfer shaped the evolutionary history of this pathogen.

Taylor et al. (1999) also showed that recombination might have contributed to the evolution

of Foc. Although it is not known whether sexual (meiotic) or asexual (parasexual)

recombination was involved, the presence of both MAT idiomorphs in a lineage would

suggest that sex was possible during its evolution (Abo et al., 2005). The origins and nature of

genetic variation in Foc are important subjects for future study.
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Future research should further focus on in-depth comparisons between closely related formae

speciales and nonpathogens of F. oxysporum, rather than focusing strictly on pathogens of

agricultural crops. Molecular markers should be developed that enable the quick and accurate

identification of the pathogen and significant variants, such as the recently developed Foc

‘tropical’ race 4 marker (Dita et al., 2010). Additional genome sequencing projects to build on

current knowledge regarding pathogenicity genes might eventually contribute to the

development of plant varieties with resistance to Fusarium wilt.
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Figure 1. Morphological characteristics of Fusarium oxysporum. (A) Oval to kidney-shaped

microconidia; (B) sickle-shaped, thin-walled and delicate macroconidia; (C) microconidia

produced in false heads on short monophialides; and (D) a single, terminal chlamydospore.
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Figure 2. Disease symptoms of Fusarium wilt of banana caused by ‘subtropical’ race 4 of

Fusrium oxysporum f. sp. cubense (Foc) in South Africa (A) and ‘tropical’ race 4 in Malaysia

(B). Affected plants wilt rapidly, older and then younger leaves become yellow and brown,

and plants eventually die. In some cases, the base of pseudostems split (C). Internally, a deep

golden discoloration of the inner rhizome develops (D), while the vascular bundles in the

pseudostem will turn yellow to reddish-brown (E).
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	Characterization of formae speciales based on vegetative compatibility:
	Vegetative compatibility has often been exploited in fungal diversity studies. It relies on heterokaryon formation, and in practice may be determined with complementation assays between auxotrophic nutritional mutants. Buxton (1962) was the first to study heterokaryon formation in Fusarium, although the method he used to produce and utilize mutants was so laborious that information on populations of these fungi could not be obtained (Katan, 1999). Puhalla (1985) revolutionized these studies by developing a more efficient technique for determining compatibility. He modified a procedure described by Cove (1976) that utilizes nitrate-non utilizing auxotrophic (nit) mutants that are readily recovered and stable (Katan, 1999).
	Vegetative compatibility is controlled in Fusarium spp. and other fungi by several vegetative (vic) or heterokaryon (het) incompatibility loci (Leslie, 1993). Although the numbers of vic loci in F. oxysporum cannot be determined using conventional genetic approaches, at least six are present in F. circinatum (Nirenburg & O’Donnell emend. Britz, Coutinho, Wingfield & Marasas) (Gordon et al., 2006) and at least ten are found in F. verticillioides (Saccardo) Nirenberg (syn. F. moniliforme) (Leslie, 1991). For two individuals to be vegetatively compatible and form a stable heterokaryon, they need to share a common allele at each vic locus (Correll, 1991). One would, therefore, expect that the rest of the genomes of individuals in one vegetative compatibility group (VCG) of an asexual species would also be very similar (Leslie, 1990; Leslie, 1993). Although individuals in VCGs of F. oxysporum are related by clonal descent (Gordon and Martyn, 1997; Leslie, 1993), a mutation at a single vic locus would place closely related individuals in different VCGs (Bentley and Dale, 1995; Bentley et al., 1998).  Thus, VCGs represent good phenotypic characters for assessing diversity within populations, but genetic relationships among VCGs must be assessed by other means.


