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Abstract 
In this paper an analytical model was developed to minimize the thermal resistance of an air cooled 

porous matrix made up of solid spheres with internal heat generation. This was done under the 

assumption of local thermal equilibrium. The analytical solution of the optimum sphere diameter was 

found to be independent of the heat generation rate of the solid spheres, but was dependent on the 

applied pressure drop and fluid properties. The analytical model compared very well to a numerical 

model found in a computational fluid dynamics code when air and liquid water properties were used 

for the fluid phase and wood and silica/sand properties were used for the solid phase.  
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Nomenclature 
A porous domain cross sectional area, m2 

Be Bejan number 

cp  fluid heat capacity at constant pressure, J/kg.K 

D diameter of the solid sphere, m 

K  porous medium permeability, m2 

Kf fluid thermal conductivity, W/m.K 

km  porous medium thermal conductivity, W/m.K 

ks sphere thermal conductivity, W/m.K 

L length of the porous medium, m 
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P pressure, Pa 

q heat transfer rate, W 

q‴ heat source density, W/m3 

qʺw heat flux, W/m2 

RT thermal resistance, K/W 

Tmax maximum temperature at the centre of the sphere, K 

Tmin minimum temperature at the porous medium inlet, K 

Toutlet temperature at the porous medium outlet, K 

Tinlet temperature at the porous medium inlet, K 

u  streamwise fluid velocity component, m/s 

�⃑�  Superficial fluid velocity vector, m/s 

x  streamwise position variable, m 

Greek letters 
α thermal diffusivity 

γ solid/fluid thermal conductivity ratio 

η dimensionless thermal resistance 

μ  fluid dynamic viscosity, Pa.s 

ϕ porosity 

ρ fluid density, kg/m3 

Ψ dimensionless sphere diameter 

θ dimensionless temperature 

Subscript 
coarser    coarser grid 

finer finer grid 

min minimum 
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max maximum 

opt optimum 

1. Introduction 
The storage of spent nuclear fuel is complicated by the need to manage the decay heat generated by 

the fuel. The spent nuclear fuel has to be cooled so that heat generated does not melt the containment 

system, which could lead to unintentionally release of radioactive material to the surrounding. 

Another instant where a similar scenario takes place, although innocuous, is whereby a pile of stones 

(heated a prior as an energy storage mechanism) are cooled by a fluid flowing through gaps between 

them. The heat transfer mechanisms involved in the cooling in both instances have historically been 

analysed by assuming that the fluid and solid phases are at local thermal equilibrium (LTE) in order to 

simplify the analysis. However in general models created with this assumption in mind do not give 

accurate results because the local temperature difference between the solid and fluid phases can be too 

big for the LTE assumption to be valid. In order to remedy this shortcoming local thermal non-

equilibrium (LTNE) has been taken as the general condition which is assumed to prevail between the 

solid and fluid phases. 

Using the LTNE condition between the two phases many researchers [1- 6] created models in an 

attempt to solve the heat transfer problem for porous media and they showed that these models 

asymptote into LTE models at special conditions.  Meanwhile [7-14] compared the LTNE and LTE 

models for cases from metallic and non-metallic packed beds to microchannel heat sinks and annulus 

partially filled with porous media. They come up with criteria under which the LTE assumption was 

valid. Reddy and Narasimhan [15] numerically investigate a similar case where there is interplay 

between internal heat generation and externally driven natural convection inside a vertical porous 

annulus under steady state conditions. 

Whitaker [16] discusses constraints that should be satisfied when LTE was assumed. He suggested 

that these constraints must be satisfied when the following conditions are imposed: the solid and fluid 

phases’ thermal diffusivities ratio must equal, the thermal conductivities ratio must be equal, and the 

non-slip condition must hold. [17] and [18] developed LTE models for metallic foams porous 

channels where they respectively discovered that the LTE assumption was valid even if the solid 

thermal conductivity was markedly higher than that of the fluid, and developed an algorithm that does 

away with the need to conduct numerical calculations. Alazmi and Vafai [1] investigated the proper 

boundary condition to be used for a porous channel bounded by walls having a constant heat flux. 

They found that the Darcy number, porosity, solid-fluid thermal conductivity ratio and Reynolds 

number all have a significant effect on the results for the different boundary conditions tested, and this 

was when thermal dispersion and porosity variation are not considered. For a porous matrix with a 
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stagnant fluid and a heat flux Lage [19] showed that if the fluid and solid phases are in thermal 

equilibrium at the boundaries, then they will be in thermal equilibrium throughout the entire domain. 

Kou and Huang [20] investigated the effect of thermal boundary conditions applied on a vertical 

annular duct embedded in a porous medium. Teng and Zhao [21] have developed a model that 

attempts to extend the applicability of the Darcy’s law beyond the laminar flow regime as defined by 

the microscopic Reynolds number of about 10. Optimization of the performance and configuration of 

porous structures and systems has be the subject of consented research [22- 27] whereby analytical 

models were developed to that end. 

Effective cooling of a porous medium made up of solid spheres with internal heat generation rate is 

dependent on the minimization of the thermal resistance between the porous matrix and the fluid.  

Conditions under which minimization of the thermal resistance can take place would include the 

surfaces of the solid spheres and the fluid cooling them being in LTE with one another. The porous 

matrix under consideration was made up of solid spheres and the determination of the optimum 

porous properties would essentially mean the determination of the optimum sphere diameter at which 

the thermal resistance was minimized, for a given porosity. So the aim of the present study was to 

determine the optimum diameter of same size solid spheres with internal heat generation forming a 

porous matrix that results in minimum thermal resistance of the porous medium as the spheres are 

being cooled by air flowing through the porous matrix. This was done for a forced convection laminar 

flow under steady state conditions. 

2. Analytical model 
The case under investigation in the current study is a cylindrical porous domain with adiabatic walls, 

saturated with a fluid as shown in Fig. 1. Thermal resistance between the point at a temperature maxT  

and the point at a temperature minT  as shown in Fig. 1 in a porous medium, as given by Eq. 1, shows 

that it is directly proportional to the temperature difference between the two points, if the rate of heat 

transfer is assumed to be constant. In this instance the heat transferred is due to the internal heat 

generation density, q ′′′ , inside the solid spheres. Here the inlet temperature is defines as the domain 

minimum temperature, i.e. minTTinlet = . 

( )
q

TTRT
minmax −=           (1) 

From this expression it can be seen that in order to minimize the thermal resistance, all that is required 

is to minimize the temperature difference. Because the porous medium is made up of air and solid 

spheres with internal heat generation, the rate of heat transfer is given by ( ) ALqq ′′′−= φ1 . A  and L
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are the cross-section area and length of the porous medium respectively, and φ is the porosity. 

However this rate of heat transfer must equal the rate of heat removal by the air flowing through the 

porous medium as given by Eq. 2 given the fact that this analysis is conducted under steady state 

conditions. 

( )minTTcmq outletp −= 
          (2)

 

pc is the heat capacity of the fluid and outletT  is the area averaged temperature at the porous medium 

outlet. The mass flow rate of the air flowing with an average velocity u through the porous medium is

Aum ρ= , where ρ is the fluid density. Given that laminar flow is assumed for the air flowing 

through the porous medium, Darcy’s law [28] was used to express the superficial velocity for a 

unidirectional driven flow as given by Eq. 3. 

L
PKu

µ
∆

=            (3) 

K , P∆ and µ are the permeability of the porous medium, the pressure difference between the inlet 

and outlet and dynamic viscosity of the fluid. Because the solid matrix of the porous medium is made 

up of solid spheres, the permeability is given by the Carman-Kozeny equation [28] as expressed by 

Eq. 4. 

( )2

32

1180 φ
φ
−

=
DK           (4) 

D is the diameter of the solid sphere. The temperature difference between the outlet and inlet of the 

porous medium can be expressed in terms of the diameter of the solid spheres by simply substituting 

Eqs. 3, 4, into Eq. 2, and rearranging the terms to give Eq. 5. 

2

23

min
1180

PDc
LqTT

p
outlet ∆

′′′







 −
=−

ρ
µ

φ
φ

        (5) 

 The temperature profile of the hottest solid sphere is, soutlet kDqTT 242
max ′′′=− , where sk is the 

solid phase thermal conductivity. When combining the temperature profile of the hottest solid sphere 

with Eq. 5 results in an expression for the temperature difference between two points in the porous 

medium having the maximum and minimum temperatures as given by Eq. 6.  

2

232

minmax
1180

24 PDc
Lq

k
DqTT

ps ∆
′′′








 −
+

′′′
=−

ρ
µ

φ
φ

       (6) 
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However, the aim of the analysis is the minimization the minmax TT − with respect to D . This results in 

the optimum sphere diameter as given by Eq. 7. 

4
1

4
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24
3

4 1107.814320
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 −
= BeL
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D
p

s
opt γ

φ
φ

ρ
µ

φ
φ

    (7) 

Where fs kk=γ is the solid/fluid thermal conductivity ratio and αµ2PLBe ∆= is the Bejan 

number [29, 30] representing the dimensionless pressure drop across the porous medium. 

pf ck ρα = is the thermal diffusivity of the fluid. 

The minimum temperature difference that corresponds to the optimum diameter is given by Eq. 8. 

( ) 2
1

2
122

3

minminmax
1477.5

−−′′′







 −
=− γ

φ
φ Be

k
LqTT
f

      (8) 

When Eq. 8 is substituted into Eq. 1 the result is the minimum thermal resistance as given by Eq. 9. 

( ) ( )
f

T Ak
LBeR

2
1

2
1

2
3

2
1

min
1477.5

−−
−

=
γ

φ

φ
       (9) 

Eqs. 8 and 9 express the minima temperature difference and thermal resistance in terms of porosity 

respectively; however it is also useful to express both minima in terms of the optimum diameter by 

substituting Eq. 7 into Eqs. 8 and 9. The expression for the minimum temperature difference as a 

function of optimum diameter is given by Eq. 10 and that for the minimum thermal resistance is given 

by Eq. 11. Note the disappearance of q ′′′ and Be in Eq. 11 when expressed in terms of Dopt. 

( )
s

opt

k
Dq

TT
12

2

minminmax

′′′
=−          (10) 

( ) ( )φ−=
112

2

min
s

opt
T ALk

D
R          (11) 

The optimum diameter, the minimum temperature difference and minimum thermal resistance were 

all normalized with respect to their respective values at a porosity of 1.0=φ . The normalized 

optimum diameter, optψ , the minimum temperature difference, minθ and minimum thermal resistance, 

minη are given by Eqs. 12, 13 and 14 respectively. 
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3. Numerical analysis 
The numerical porous medium model in ANSYS Fluent 13 [31] was used to conduct comparative 

simulations for this study. Unlike the analytical model (Eq. 6) where the porous medium and the heat 

conduction inside the solid spheres were modelled, the numerical model models only the porous 

medium. The flow was driven by a unidirectional pressure gradient across the porous medium. 

Steady state was assumed and a three-dimensional domain was also assumed. A further assumption 

made is that the flow was laminar. With all these assumptions in mind, the flow physics in the porous 

medium is given by Eqs. 15 to 17.  

The continuity Equation for the porous medium is given by: 

( ) 0. =∇ uρ            (15) 

The momentum Equation is given by the Darcy’s law: 

K
u

dx
dP µ

=−            (16) 

The energy Equation is given by: 

mmp qTkTvC ′′′+∇=∇ 2.ρ          (17) 
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Where 

( ) sfm kkk φφ −+= 1           (18) 

And 

( )qqm ′′′−=′′′ φ1            (19) 

The optimum diameter as given by Eq. 7 was used together with the Carman-Kozeny equation (Eq. 4) 

to compute the viscous resistance to be inserted into the numerical model. The diameter and length of 

the porous domain were both 2000 mm. The porous medium domain as represented by Fig. 2 was 

sandwiched between an up-stream and down-stream domains (which are not shown in Fig. 2 for 

clarity) used for implementing the inlet and outlet conditions because ANSYS Fluent 13 [31] does not 

allow direct application of inlet and outlet boundaries on porous domains. The up-stream domain was 

a fluid domain that was made up of an adiabatic circumferential wall boundary with a non-slip 

condition and a pressure inlet boundary. The third boundary was simple an interface between the 

domain and the porous domain connected to it. The static pressure on the inlet boundary was set equal 

to the operating pressure and the temperature was set to be 25 °C. This domain had 8535 hexahedral 

cells. 

The porous domain was made up of an adiabatic non-slip circumferential wall boundary and two 

interface boundaries connecting it to up-stream and down-stream domains. The domain had 17070 

hexahedral cells. The down-stream domain was a fluid domain. The domain had an interface 

boundary connecting it to the porous domain, a non-slip adiabatic circumferential wall boundary and a 

pressure outlet boundary. The change in pressure difference was modelled by varying the gauge 

pressure of the pressure outlet boundary. The domain had 17070 hexahedral cells. The grid 

independence of the numerical solution was conducted using the temperature difference, 

inletoutlet TTT −=∆  as the figure of merit.  This was conducted for 35 /10 mWq =′′′  ,

kPaPPP outletinlet 6=−=∆  and 1.0=φ . The relative change metric used to check the change 

temperature difference from a coarser grid to a finer grid is simply ( ) finercoarserfiner TTT ∆∆−∆ / . As 

can be seen from Table 1 the change from 2460 cells through to 17070 cells is constant. For this 

reason the 17070 cells were chosen for the numerical simulations since there was no computational 

time penalty. 
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Table 1. Grid independence study using air as the fluid at ΔP = 6 kPa and φ = 0.1. 

Number of cells ΔT (°C) Relative change 

1230 56.51124   

2460 57.72587 0.021 

4920 58.33546 0.0104 

17070 57.73561 0.0104 
 

The implicit pressure-based solver was selected, with the superficial velocity for the porous 

formulation. The PRESTO! [31] discretization scheme was used for the pressure, and the second 

order upwind schemes were selected for the density, energy and mass discretization. 

Two cases were run where the fluid phase was modelled by first using air and then liquid water. An 

assumption was made that the fluid (except for density of air) and thermal properties of the solid 

spheres and fluid are constant. The heat generation rate density that comes from the solid phase used 

in the numerical simulations was 35 /10 mWq =′′′ . For the LTE assumption to be valid for the 

porosity range of 9.01.0 ≤≤φ the thermal conductivities of the fluid and solid phases making up the 

porous medium have to of the same order of magnitude. For this reason wood properties (which is 

important in biomass energy systems) with KmWks ./173.0=  and silica/sand properties (which is 

important in coal bubbling bed boilers systems) with KmWks ./2.0=  were used to model the solid 

phase properties in the ANSYS Fluent 13 porous medium model.  The thermal conductivities of air 

and liquid water are 0.0242 W/m.K and 0.6 W/m.K respectively. 

4. Results and discussion 
From Eq. 7 it follows that the optimum diameter does not depend on the internal heat generation rate 

from the solid spheres. This suggests that this optimum diameter solution is robust when applied to a 

porous medium. This same quality of robustness is also observed with respect to the minimum 

thermal resistance as expressed by Eq. 11 because it too is independent of the internal heat generation 

rate from the solid spheres. The normalized optimum diameter was evaluated for a porosity range of

9.01.0 ≤≤φ , and this is plotted in Fig. 3. Fig. 3 shows that the optimum diameter decreases 

nonlinearly with increasing porosity.
 

The comparison between the results from Eq.13 and those from the normalized ANSYS Fluent 13 (for 

both air and liquid water) for the normalized minimum temperature difference with respect to the 

result at a porosity of 1.0=φ  is shown in Fig. 4 as functions of normalized optimum diameter. 

Results for the normalized minimum thermal resistance are also plotted on the same figure. 
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Fig. 4 shows that the analytical solution compares very well with numerical results for both air and 

liquid water. This shows that LTE assumption made in the derivation of the model is valid since the 

fluid to solid thermal conductivities ratio for both air and liquid water are close to unity or less. From 

Fig. 4 it can also be seen that the analytical solution much better with the liquid water numerical 

results than with those of air. This could be as a result of the densities of the liquid water and wood 

being of the same order of magnitude. This follows from another criterion that was proposed by 

Whitaker [16] that the thermal diffusivities ratio of the fluid and solid phases should be of the same 

order of magnitude. 

The normalized minimum temperature differences together with the normalized minimum thermal 

resistance were also plotted against the porosity so as to illustrate the direct relationship between the 

minima temperature difference and thermal resistance with porosity. As was for Fig. 4 this 

comparison between the analytical model and the numerical model was done for both air and liquid 

water, and is plotted in Fig. 5. Again the analytical solution compares very well with both numerical 

solutions, but compares much better with the liquid water numerical solution because of the thermal 

diffusivities of the fluid and solid phases being of the same order of magnitude. 

5. Conclusion 
The optimum sphere diameter expression was determined analytically and was found to be 

independent of the heat generation rate of the solid spheres. This same quality was found to be the 

same for the corresponding minimum thermal resistance. It can be concluded that the optimum solid 

sphere diameter and the minimum thermal resistance are both robust when applied to a porous 

medium where the LTE assumption is valid. The minimum temperature difference analytical solution 

compared very well to numerical solutions when air and liquid water properties are used for the fluid 

phase and wood properties are used for the solid phase. 
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Fig. 1. Sketch of the porous medium domain. 
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Fig. 2. Sketch of the numerical porous medium domain with boundary conditions. 
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Fig. 3. The variation of the normalized optimum diameter with porosity.
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Fig. 4. The variation of the normalized minima temperature difference and thermal resistance with normalized 

optimum sphere diameter. 
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Fig. 5. The variation of the normalized minima temperature difference and thermal resistance with porosity. 
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