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Abstract 

This paper presents a geometric optimisation of conjugate cooling channels in forced 

convection with internal heat generation.  Two configurations were studied; circular channels 

and square channels. The configurations were optimised in such a way that the peak 

temperatures were minimised subject to the constraint of fixed total global volume.  The fluid 

was forced through the cooling channels by the pressure difference across the channels. The 

structure has one degree of freedom as design variable: channel hydraulic diameter  and once 

the optimal channel hydraulic diameter is found, optimal elemental volume and channel-to-

channel spacing result. A gradient-based optimisation algorithm is applied in order to search 

for the best and optimal geometric configurations that improve thermal performance by 

minimising thermal resistance for a wide range of dimensionless pressure difference. This 

optimiser adequately handles the numerical objective function obtained from CFD 

simulations. The results obtained show the behaviour of the applied pressure difference on the 

optimised geometry. There are unique optimal design variables for a given pressure 

difference. The numerical results obtained are in agreement with the theoretical formulation 

using scale analysis and method of intersection of asymptotes.  
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Nomenclature 

Ac Cross sectional area of the channel, m2 

As Cross sectional area of the structure, m2 

Be Bejan number 

CP
 Specific heat at constant pressure, J/kg K 

Cyl Cylindrical configuration 

dh
 Hydraulic diameter, m 

H Structure height, m 

h Elemental height , m 

i Mesh iteration index 

k Thermal conductivity, W/mK 

L Axial length, m 

N Number of channels 

n Normal 

P Pressure, kPa 

Pc Perimeter of the channel 

Po Poiseuille number 

Pr Prandtl number 

q′′  heat flux, W/m2 

sq ′′′  Internal heat generation density, W/m3 

q  Heat transfer rate, W 

R Thermal resistance 
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Re Reynolds number 

s Channel spacing, m 

Sqr Square configuration 

T Temperature, 0C 

maxT  Dimensionless maximum temperature, 
max 2/3 /

in

f

T TT
q v k

 −
=  ′′′ 

  

u
 Velocity vector, m/s 

V Global structure volume, m3 

vc Channel volume, m3 

vel
 Elemental volume, m3 

W Structure width, m 

w Elemental width, m 

x, y, z Cartesian coordinates, m 

 
Greek symbols 
α  Thermal diffusivity, 2m /s  

µ  Viscosity, kg/m.s 

ν  Kinematics viscosity, 2m /s  

ρ  Density,  kg/m3 

∂  Differential 

∞  Far extreme end, free stream 

φ  Porosity 

∆  Difference 

∇  Differential operator 

τ  Shear stress, Pa 
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γ  Convergence criterion 

 
Subscripts 
  Dimensionless 

c Channel 

f Fluid 

in Inlet 

l Large 

max Maximum, peak 

min Minimum 

opt Optimum 

s Solid 

sm Small 

w Wall 

 

1. Introduction 

A procedure that sufficiently allocates and optimises a fixed global space constraint 

using a physical law for heat-generating devices has been adopted recently as an optimisation 

technique [1]. The method seeks to optimise the flow architecture, which predicts the flow 

and thermal fluid behaviour in a structure that is subject to a global volume constraint. This 

body of knowledge is called constuctal theory and design. Bejan [1] stated this law as: For a 

finite-size system to persist in time (to live), it must evolve in such a way that it provides 

easier access to the imposed (global) currents that flow through it.  The application of this 

theory started with Bejan and Sciubba [2], who obtained a dimensionless pressure difference 

number for optimal spacing of an array of parallel plates and a maximum heat transfer 
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density, which can be fitted into a fixed volume in an electronic cooling application using the 

method of intersection of asymptotes. 

The applications of this theory have been reviewed most recently by the work of Bejan 

and Lorente [3] in which it was concluded that, under certain constraints, the best architecture 

of a flow system can be achieved by the one that gives less flow resistances, or allows high 

flow access. In other words, the shapes of the channels and elemental structure that are 

subject to global constraint are allowed to morph. The optimisation of heat exchanger and 

multiscale devices by constructal theory has also recently been reviewed and summarised by 

Reis [4] and Fan and Luo [5]. 

Yilmaz et al. [6] studied the optimum shape and dimensions for convective heat 

transfer of laminar flow at constant wall temperatures for ducts with parallel plate, circular, 

square and equilateral triangle geometries. Approximate equations were derived in the form 

of maximum dimensionless heat flux and optimum dimensionless hydraulic diameter in terms 

of the duct shape factors and the Prandlt number (Pr).  

Muzychka [7] used this theory and Bejan’s intersection of asymptotes method to 

present an analytical optimisation of circular and non-circular cooling channel geometries. 

Also, he has recently studied and analysed the optimisation of microtube heat sinks and heat 

exchangers for maximum thermal heat transfer by using a multiscale design approach [8]. In 

his analysis, he was able to show that through the use of interstitial microtubes, the maximum 

heat transfer rate density for an array of circular tubes increased.  He obtained an approximate 

solution using Bejan’s intersection of asymptotes method. The multiscale design approach 

gives a greater thermal performance of heat exchanger and heat sink compared with the 

conventional design methods. 

Da Silva et al. [9] optimised the space allocation on a wall occupied by discrete heat 

sources with a given heat generation rate by forced convection using the constructal design in 
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order to minimise the temperature of the hot spot on the wall. Bejan and Fautrelle [10], 

maximised the heat transfer density in a multiscale structure filled by multiple length scale 

plates that generate heat. They inserted additional parallel plates and optimised the spacing in 

the flow structure.                        

Bello-Ochende and Bejan [11] studied and extended the work of Bejan and Fautrelle 

[10] numerically based on the concept of constructal theory. Also, Bello-Ochende et al. 

[12,13] studied a three-dimensional optimsation of heat sink and cooling channels  with heat 

flux using scale analysis and the intersection of asymptotes method based on constructal 

theory to investigate and predict the design and optimisation of the geometric configurations 

of the cooling channels. 

Matos et al. [14] conducted three-dimensional numerical and experimental analyses of 

laminar rows of tubes. Ordonez [15] conducted a two-dimensional heat transfer analysis in a 

heat-generated volume with cylindrical cooling channels and air as the working fluid. Reis et 

al. [16] optimised the internal configurations of parallel plate and cylindrical channels using 

contructal theory to understand the morphology of particle agglomeration and the design of 

air-cleaning devices.  

Also, the constructal theory for optimisation of several components and systems and 

components in engineering applications has been extensively discussed and documented in 

the literature [17 - 19]. 

This paper focuses on the study of three-dimensional laminar forced convection 

cooling of solid structures. It examines the optimisation of a fixed and finite global volume of 

solid materials for two cooling channel configurations (circular and square channels) with a 

uniform internal heat generation rate. This was achieved by varying and arranging the 

elemental volume of structure with cooling channels of fixed porosity to reduce the peak 

temperature at any point inside the global volume. The design variables were dealt with 
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simultaneously since the effect of one of the design variables cannot be neglected, especially 

at a microscopic scale. Bau [20] suggested that the “integrity of fin thickness (channel 

spacing) during fabrication and operation should be asserted and maintained”. Therefore, the 

need exists to consider the three design variables simultaneously. It is expected that there 

must be an optimal configuration that gives the minimum peak temperature. Any values 

below or above those of the optima design variables will cause the working fluid to not be 

properly used, which will cause the peak temperature to increase and will lead to thermal 

stress that affects the performance of cooling channels. 

 

2. Models 

The physical configuration is shown schematically in Fig. 1. The system consists of 

parallel cooling channels of length, L  of fixed global volume, V for the two configurations. 

The internal heat generation in the solid material is sq ′′′ . An elemental volume, elv  , 

consisting of a cooling channel and the surrounding solid was used for analysis because of the 

assumption of the symmetrical heat distribution inside the structure. However, the elemental 

volume elv  is not fixed and is allowed to morph by varying cooling channel shape cv  for 

fixed porosity and fixed channel length.  The heat transfer in the elemental volume is a 

conjugate problem, which combines heat conduction in the solid and the convection in the 

working fluid. These two modes of heat transfer are coupled together through the continuity 

of heat flux at the solid-fluid interface. 
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2.1. Design variables 

In Fig. 2, an elemental volume, elv , constraint is considered to be composed of an 

elemental cooling channel of hydraulic diameter, hd , and the surrounding solid of thickness 

s  (spacing between channels) and these variables are defined as: 

w h=     (1) 

2v w Lel =  (2) 

hw d s= +  (3) 

 
For a fixed length of the channel, we have 
 

  sA HW=  (4) 

 

Therefore, the total number of channels in the structure arrangement can be defined as: 

( )2  
h

HWN
d s

=
+

 (5) 

However, the void fraction or porosity of the unit structure can be defined [15] as: 

2

    c

el

dv h
v w

φ
 

= ≈   
 

      (6) 

 

The fundamental problem under consideration is the numerical optimisation of the 

hydraulic diameter, hd , and spacing between channels, s , which corresponds to the minimum 

resistance of a fixed volume for a given pressure drop. The optimisation is evaluated from the 

analysis of the extreme limits of ( )0 elv≤ ≤ ∞ , ( )0 hd≤ ≤ ∞  and the extreme limits of 

( )0 s≤ ≤ ∞ . The optimal values of the design variables within the prescribed interval of the 

extreme limits exhibit the minimum thermal resistance. 
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The temperature distribution in the model was determined by solving the equation for 

the conservation of mass, momentum and energy numerically. The discretised three-

dimensional computational domains of the circular and square configurations are shown in 

Fig. 3. The cooling fluid was water; it is assumed to be in single-phase, steady, and a 

Newtonian fluid with constant thermophysical properties, and was forced through the cooling 

channels by a specified pressure difference, P∆ , across the axial length of the structure. Water 

is more promising than air, because air-cooling techniques are not likely to meet the challenge 

of high heat dissipation in electronic packages [21, 22]. The governing differential equations 

used for the fluid flow and heat transfer analysis inside the unit volume of the structure are:  

0u∇ ⋅ =


  (7)  

( ) 2u u P uρ µ⋅∇ = −∇ + ∇
    (8)     

( ) 2C u T k Tf Pf fρ ⋅∇ = ∇
  (9)     

 

while the energy equation for a solid with internal heat generation is given as: 

2   0k T qs s′′′∇ + =   (10) 

The continuity of the heat flux at the interface between the solid and the liquid is given as: 

       T Tk ks fn n
∂ ∂

=
∂ ∂

 
   

(11) 

A no-slip boundary condition is specified at the wall of the channel,   

0u =
  (12) 
and at the inlet ( 0=x )  

0u ux y= =  
(13) 
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T Tin=  
(14) 

2 out
BeP P

L
αµ

= +  (15) 

where, Be is the dimensionless pressure difference called the Bejan number [23, 24].  

At the channel outlet ( )x L= , a zero normal stress is prescribed, and   

1 outP atm=   (16) 
 
At the solid boundaries, all the outside walls and plane of symmetry of the solid structure 

were modelled as adiabatic as shown in Fig. 2. That is: 

 0T∇ =  (17) 
 and  an internal heat generation, qs′′′ , is assumed in the solid material.  

The measure of performance is the minimum global thermal resistance, which could 

be expressed in a dimensionless form as:  

( )max min
min 2

f ink T T
R

q Ls

−
=

′′′
 (18) 

and it is a function of the optimised design variables and the peak temperature, 

( )minmin max,   ,   ,    ,   
opt opth opt el optR f d s v N T=     (19) 

where minR  is the minimised dimensionless thermal resistance for the optimised design 

variables. The inverse of minR  is the maximised overall global thermal conductance. 

 

3. Numerical  procedure and grid analysis 

The simulation  procedure began by fixing the length of the channel, applied pressure 

difference, porosity, internal heat generation and material properties and we  kept varying the 

values of elemental volume and hydraulic diameter  of the channel in order to identify the 

best (optimal)  internal and external geometries that minimised the peak temperature. 
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The numerical solution of the continuity, momentum and energy Eqs. (7) - (10) along 

with the boundary conditions (11) - (17) was obtained by using a three-dimensional 

commercial package FLUENT™ [25], which employs a finite volume method. The details of 

the method were explained by Patankar [26]. The computational fluid dynamics package was 

coupled with the geometry and mesh generation package GAMBIT [27] using MATLAB [28] 

to allow the automation and running of the simulation process. After the simulation 

converged, an output file was obtained containing all the necessary simulation data and 

results for the post-processing and analysis. The computational domain was discretised using 

hexahedral/wedge elements.  A second-order upwind scheme was used to discretise the 

combined convection and diffusion terms in the momentum and energy equations. The 

SIMPLE algorithm was then employed to solve the coupled pressure-velocity fields of the 

transport equations. A flow chart representing the numerical procedure is shown in Fig. 4. The 

solution is assumed to be converged when the normalised residuals of the mass and 

momentum equations fall below 10-6 and while the residual convergence of energy equation 

was set to less than 10-10. The number of grid cells used for the simulations varied for 

different elemental volume and porosities. However, grid independence tests for several mesh 

refinements were carried out to ensure the accuracy of the numerical results. The convergence 

criterion for the overall thermal resistance as the quantity monitored is:  

( ) ( )
( )

1max max

max

0.01ii

i

T T

T
γ −

−
= ≤  (20) 

Where i  is the mesh iteration index. The mesh is more refined as i  increases. The 1−i  mesh is 

selected as a converged mesh when the criterion Eq. (20) is satisfied.  

 

4. Numerical results using a traditional method 
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In this section, the numerical results are presented using a traditional method by post-

processing the simulation data and results manually. The elemental volume of the structure 

was in the range of 3 30.025 mm   to  5 mm  and the porosities ranged between 0.1   0.2φ≤ ≤   

and a fixed length of L = 10 mm at a fixed pressure drop of 50 P kPa∆ = . The global 

structure is assume  to have a total global cross-sectional area of 2.5 mm  by 2.5 mm. The 

thermal conductivity of the solid structure (silicon) was 148W m.K ; and the internal heat 

generation within the solid was taken to be fixed at 3100kW cm . The thermophysical 

properties of water [29]  used in this study were based on water at 300K and the inlet water 

temperature was fixed at this temperature.  

Figure 5 shows the grid independence test for a cylindrical configuration for 

3 = 0.4 mmelv  and  = 0.2φ  for 50 P kPa∆ = . Also, computational cells of 7 500, 68 388 and 

108 750 were used for the grid independence test. It is observed that an almost identical 

results were predicted when 68 388 and 108 750 cells were used. Therefore, a further increase 

in the cell density beyond 68 388 has a negligible effect on the numerical result.     

The validation of the numerical simulation was also carried out by comparing the 

present simulation for a circular configuration with the dimensionless temperature simulation 

of Ordonez [15] as shown in Fig. 6. The curves were found to be similar in trend and the 

optimised hydraulic diameters were also found to be in good agreement.  

   Figures 7 - 10 show the existence of an optimum hydraulic diameter and spacing of 

the cooling channel and elemental volume structure, respectively, where the peak temperature 

is minimised at any point in the channel for the two configurations studied. These Figures are 

for the case where the pressure difference was fixed at 50 kPaP∆ = for 

3 30.025 mm 5 mmelv≤ ≤  and 0.1    0.2φ≤ ≤ .  
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Figure 7 shows the graph of peak temperature as a function of the channel hydraulic 

diameter. It shows that there exists an optimal channel hydraulic diameter, which lies in the 

range of 50 μm 220 μmdh≤ ≤ , minimising the peak temperature.  The channel spacing also 

has a strong effect on the peak temperature, as shown in Fig. 8. The minimum peak 

temperature is achieved when the optimal channel spacing exists in the range of 

50 μm 350 μms≤ ≤ . These indicate that the peak temperature decreases as global design 

variables  increase and that  maxima (optimal) values of the design variables are reached 

beyond which the peak temperature begins to increase. Therefore, the global peak temperature 

decreases as the design variables increase or the global peak temperature decreases as the 

design variables decrease until it gets to the optimal design values. Any increase or decrease 

in the design variable beyond the optimal values indicates that the working fluid is not 

properly engaged in the cooling process, which is detrimental to the global performance of the 

system.  

Also, in Fig. 9, there exists an optimal elemental volume of the structure that 

minimised the peak temperature and this lies in the range of 3 30.2 mm 2 mmelv≤ ≤ . The 

results show that the optimal arrangement of the elemental volume for the entire structure at 

this fixed pressure difference should be very small in order to achieve better cooling.   

Figure 10 shows existence of an optimal total number of channels required in the 

structure that minimised the peak temperature and this also, lies in the range of 10 120N≤ ≤ .  

It can also be shown from Figs. 7 to 10 that porosity has a significant effect on the 

peak temperature and the overall thermal resistance. There is no optimum porosity. The best 

performance occurs at the highest porosity, which means as the porosity increases, the peak 

temperature decreases. 
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5. Mathematical optimisation (Dynamic-Q) 

The results shown in the preceding session were done using a traditional method by 

post-processing the simulation data and results manually. In this section, the entire solution 

and results are obtained by using a mathematical optimiser since the design variables are 

mutually interdependent. The approach is to assume that there must be optima design 

variables at which the system will perform best. A numerical algorithm, Dynamic-Q [30], is 

employed and incorporated into the finite volume solver and grid (geometry and mesh) 

generation package, as shown in Fig. 4, to search and identify the optimal design variables at 

which the system will perform optimally for more efficient and better accuracy. The algorithm 

is also specifically designed to handle constraint problems where the objective and constraint 

functions are expensive to evaluate.  

The mathematical optimisation algorithm is a multidimensional and robust gradient-

based optimisation algorithm which does not require an explicit line search. The technique 

involves the application of a dynamic trajectory LFOPC (Leapfrog Optimisation Program for 

Constrained Problems) which is adapted to handle constrained problems through approximate 

penalty function formulations [31]. This dynamic approach is applied to successive 

approximate quadratic sub-problems of the original problem. The successive sub-problems 

are constructed from sampling, at relative high computational expense, the behaviour of the 

objective function at successive approximate solution points in the design space. The sub-

problems, which are analytically simple, are solved quickly and economically using the 

adapted dynamic trajectory method. The details of the Dynamic-Q and application can be 

found in open literature [32-34].  

 

6. Optimal configurations using the mathematical optimisation 
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The optimisation technique described above was been applied to the models described 

in section 2. This technique can also be used it as future tool in solving problems involving 

the constructal theory and optimisation.  

6.1. Optimisation problem and design variable constraints 

The constraint ranges for the optimisation are:  

0.1    0.2φ≤ ≤  (21) 

3 30.025mm     5mmelv≤ ≤  (22) 

0    hd w≤ ≤  

and 
(23) 

0    s w≤ ≤    (24) 

The design and optimisation technique involve the search for and identification of the channel 

layout that minimises the peak temperature, maxT , such that the minimum thermal resistance 

between the fixed volume and the cooling fluid is obtained with the desired objectives 

function. The hydraulic diameter and the channel spacing and elemental volume were 

considered as design variables for the two configurations in the study. A number of numerical 

optimisations and calculations were carried out within the design constraint ranges given in 

Eqs. (21) – (24) and the results are presented in the succeeding section in order to show the 

optimal behaviour of the entire system. The elemental volume of the structure was in the 

range of 0.025 mm3 to 5 mm3. The optimisation process was repeated for pressure differences 

across the axial length ranging from 5 kPa to 50 kPa.  

Figure 11 shows the optimisation search history of the objective function with respect 

to iteration for cylindrical configuration in the optimisation searching process by the 

mathematical optimiser.  
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 Figures 12 and 13 compare the performance of the cooling channel between the 

traditional method and mathematical optimiser. Figure 12 shows minimised peak temperature 

curves as a function of pressure drop between the traditional method and the optimiser. The 

optimised result has a slighty better performance than that of the traditional method. This is 

due to the fact that the optimiser uses a very small step size of the design variables to 

accomplish the task. Figure 13 shows the optimised hydraulic diameter curves. The optimised 

hydraulic diameter decreases as the pressure difference increases, and the optimised hydraulic 

diameter is smaller in the optimisation process than in the traditional method. In the case of 

the traditional method, it shows that when the pressure difference is beyond 30 kPa, the 

pressure difference has no effect on the optimised hydraulic diameter. Whereas, the 

optimisation tool shows that pressure difference slightly influences the optimised shape.  

6.2. Effect of applied pressure difference on optimised geometry and peak temperature 

Figure 14 shows the minimised peak temperature at different porosities for the two 

configurations. The minimised peak temperature decreases as the pressure difference across 

the axial length increases for different porosity arrangements. As the pressure difference and 

porosity keep increasing, the peak temperature becomes less sensitive. The trend is in 

agreement with previous works [35].  

The optimal behaviours of the circular and square configurations with respect to 

applied pressure difference are reported in Figs. 15 to 17. Figure 15 shows that there is an 

optimal unit volume for each of the two configurations. It also shows that the optimised 

global elemental volume decreases as the pressure difference increases and this lies in the 

region of 3 30.5 mm 2.4 mmelv≤ ≤ . This again, shows that the optimal arrangement of the 

elemental volume for the entire structure should be very small to achieve better cooling. In 

Fig. 16, the global opthd  and opts  decrease as the pressure difference increases. opthd  and opts  
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lie in the vicinity of 100 μm 270 μmdh≤ ≤ . It is also observed that the opts   deceases as the 

opthd   decreases, this is due to the fact that the elemental volume is not fixed for a fixed 

porosity and there is no optimum porosity.  Figure 17, shows total number of channels 

arrangement is a function of pressure difference and porosity increases. The global optN  

increases as the pressure difference and porosity increase. optN  lies in the region of 

10 100optN≤ ≤ . It is also, observed that that is a unique optimal number of channels for every 

diving force (ΔP) required for each configuration to achieve effective cooling. 

 

7. Method of intersection of asymptotes for conjugate channels with internal heat 

generation 

This section deals with a theoretical analysis which is presented for the circular and 

square configurations using the intersection of asymptotes method to provide the existence of 

an optimal geometry, which minimises the global thermal resistance. The following 

assumptions are made throughout the analysis: the inlet temperature and the pressure 

difference, ΔP, are fixed with a uniform flow distribution in all the channels, laminar flow, 

constant cross-sectional area of the channels, negligible inlet and exit plenum losses, and 

negligible axial conduction. An elemental volume is considered because of the symmetry of 

the heat distribution.  

The heat generated in the elemental volume [12, 15] is: 

( )s cq q A A L′′′= −   (25) 

The heat is conducted and is deposited as the heat flux, q ′′ , through the solid wall to the 

fluid, therefore,  

( )s c cq A A L q P L′′′ ′′− =  (26) 
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The porosity is assumed to be fixed ,c sA Aφ =  

therefore Eq. (26) becomes     

1
4 hq q d β′′ ′′′=   (27) 

Where β is the numerical value determined from the porosity of the channel and is defined 

as: 

1 φβ
φ

 −
=  

 
 (28) 

And hd  is the channel hydraulic diameter defined as: 

4 c
h

c

Ad
P

=  (29) 

The global thermal resistance or global thermal conductance will be determined in two 

extreme limits. 

7.1. Extreme limit 1: small channel 

When the channel’s characteristic dimension is very small and very slender, that is 

0hd → and hd L , the flow is fully developed along the length, L. From the first law of 

thermodynamics, the rate of heat transfer in a unit volume to the working fluid is equal to 

enthalpy gained by the working fluid, and then for constant, pC  

( )s c p out inq A uC T Tρ= −  (30) 

In this extreme limit, the fluid in the channel quickly becomes fully developed flow and the 

working fluid is overworked in such a way that the outlet temperature outT  approaches the 

peak temperature, maxT , at the solid structure.  

Therefore, Eq. (30) becomes,                                                                                                                                                             
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( )maxsm c p inq A uC T Tρ= −  (31) 

This is equal to the heat deposited as heat flux, q ′′ , through the wall to the fluid, therefore. 

( )maxuc p in cA C T T q P Lρ ′′− =   (32) 

The average velocity, u , when the flow is fully developed is given by Hagen-Poiseuille as: 

2

4 o

Pu
P L

ς

ς
µ
∆

=  (33) 

Where, ς  is the characteristic dimension used to define the Poiseuille number, oP  , and in 

this case the hydraulic diameter, hd . 

Combine Eqs. (32) and (33) and substitute ς  as hd , then rearrange to get  

( )
2

max 3

16 odh
in

h p

P L
T T q

d C P

µ

ρ

 
 ′′− =
 ∆ 
 

 (34) 

Substituting Eq. (27) into Eq. (34) and rearrange to get,  

( )max
2 2

4 odin h

p

PT T
q L d C Ph

µ
β

ρ

 −  =
′′′  ∆

 
  (35) 

But,            

Prf
p

k
C

ρν
=   (36) 

Substituting Eq. (36) into Eq. (35) and rearranged as:                            

( )
2 2

4

Pr

odf w in h

h

Pk T T
q L d P

µν
β

 −  =
′′′  ∆

 
 (37) 

The dimensionless global thermal resistance is defined in terms of dimensionless pressure 

difference as:                                         
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( )max 2
142

in
h

odh

k T T dfR P Be
Lq L

β
 − −  − = ≅     ′′′ 

  (38) 

where,  

2PLBe
µα

∆
=       (39) 

From Eq. (38) for a smaller channel hd L , the thermal resistance is inversely proportional 

to 2
hd . Keeping β  (which is a function of porosity), it shows that the global thermal 

resistance increases as the hydraulic diameter decreases. 

7.2. Extreme limit 2: large channel 

In this extreme limit, the channel’s characteristic dimension is sufficiently large. That is 

∞→hd , the boundary layer of surface becomes distinct and the channel diameter is larger 

than the boundary layer thickness. The working fluid is not properly utilised and working 

fluid outside the boundary layers becomes useless and the body is not properly cooled in the 

downstream. 

The rate of heat transfer across the thermal boundary layer is 

( )maxl s inq hA T T= −  (40) 

   and the heat flux is                                                                                                       

( )maxl inq h T T′′ = −  (41) 

The heat transfer rate can be related to Nusselt number and heat transfer coefficient over the 

unit system. The heat transfer coefficient is defined [36] for a laminar boundary layer as:  

1/3 1/ 20.453 Pr Re ,              for,   0.5 < Pr < 10f
f

hL k
k

=  (42) 

Substitute equation (42) into (41) to get 
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( )max

1/ 3 1/ 20.453 Pr Ref
l in

k
q T T

L
′′ = −  (43) 

 where 

ReL
u L
ν
∞=  (44) 

u∞  is the free-stream velocity that sweeps the boundary layers, 

but the longitudinal pressure force balance on the control volume inscribed inside a unit 

volume channel is  

c c wPA P Lτ∆ =   (45) 

where, wτ   is the average wall shear stress over the length and can be obtained from the 

laminar boundary layer flow solution [36]  as: 

2 1/ 20.664 ReLuwτ ρ −
∞=   (46) 

 Combine Eqs. (29), (44) to Eq. (46) to obtain                                                                                                                                            

2 /3

2Re
2.656

h
L

Pd L
ρν

 ∆
=  

 
 (47) 

Substitute Eq. (47) into Eq. (43) to obtain                                                        

( )
1/31/3

max2

0.3271 Prf h
l in

k Pd Lq T T
L ρν

 ∆′′= − 
 

   (48) 

substitute Eq. (27) into Eq. (48) and rearrange to define the dimensionless global thermal 

resistance as:                                                        

( )max 2 / 3
1/ 30.76432

in
h

k T T dfR Be
Lq L

β
 −   − = ≅     ′′′ 

  (49) 
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From Eq. (49), for a larger channel, the global thermal resistance is directly proportional to 

3/2
hd . Keeping β  (which is a function of porosity) constant, confirms that as the hydraulic 

diameter becomes lager, the global thermal resistance increases. 

          The geometric optimisation in terms of channel could be achieved by combining Eqs. 

(38) and (49) using the intersection of asymptotes method as shown in Fig. 18. The optimal 

dimension can be generally approximated for the two configurations as hydraulic diameter 

where the two extreme curves intersect. The intersection result is: 

3/8 1/ 41.8602h
odhopt

d P Be
L

−  ≈ 
 

 (50) 

 

where 
opthd  is the optimal hydraulic diameter and for circular channel 8odh

P = , hence Eq. (50) 

reduces to 

1/ 44.057h

opt

d Be
L

−  ≈ 
 

  (51) 

For a square channel with hydraulic diameter hd , 7odh
P = , and hence Eq. (50) reduces to: 

1/ 43.859h

opt

d Be
L

−  ≈ 
 

  (52) 

The optimal spacing  opts   follows from Eqs. (3), (6) and (50):  

( )1/ 2 3/8 1/ 41.8602 1 1 odhopt

s P Be
L

β −   ≈ + −    
 (53) 

Equations (50) and (53) show that in the two extremes, the hydraulic diameter and channel 

spacing decreases as the pressure difference increases for fixed porosity. 

The minimum dimensionless global thermal resistance can be obtained for an 

elemental volume for the two configurations that correspond to the optimal geometries by 

substituting Eq. (50) into Eq. (38) as:   
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min
1/ 4 1/ 21.156 odh

R P Beβ −=   (54) 

Equation (54) shows that the thermal resistance decreases monotonically as Be  increases for a 

fixed porosity. 

The minimised dimensionless global thermal resistance of a circular channel with 

8odh
P =  is: 

min
1/ 21.9442R Beβ −=  (55) 

and the minimised dimensionless global thermal resistance of a square channel with 7odh
P =  

is: 

min
1/ 21.8803R Beβ −=  (56) 

 

8. Comparison of the theoretical method and numerical optimisation 

8.1. The effect of dimensionless pressure difference on the minimised dimensionless global   

            thermal resistance 

Figure 19 shows the minimised dimensionless global thermal resistance as a function 

of dimensionless pressure difference at optimised design variables for the two 

configurations. The analytical results of Eqs. (55) and (56) validate the numerical solutions. 

The two optimised solutions have similar trends. Also, the analytical results and the 

numerical results show that in the two optimised configurations, the minimised global 

thermal resistance decreases as the dimensionless pressure difference increases. Although 

the analytical results are lower than numerical results, the theoretical and numerical values 

agree within a factor of 1.8 for the worst case. These results are also in agreement with past 

research work [12, 15, 35]. 
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Equations (57) and (58) are the correlations for minimised dimensionless thermal 

resistance and the dimensionless pressure difference for cylindrical and square channels, 

which are obtained when the cooling geometry is optimised in order to achieve cooling 

for   0.2φ = ,  

0.49
min, 9.64CylR Be−=

 

And
       (57) 

0.49
min, Sqr 7.68R Be−=

 
     (58) 

8.2. Effect of applied dimensionless pressure difference on optimised design variables  

Figures 20 and 21 show the effect of the dimensionless pressure difference on the 

optimised design variable for circular and square configurations.  The curves show that design 

variables decrease as applied dimensionless pressure difference and porosity increase. Also 

the optimised spacing is directly proportional to the optimised hydraulic diameter. This is also 

due to the fact that the elemental volume is not fixed, but it is allowed to morph for a fixed 

porosity. This shows that unique optimal design geometries exist for each applied 

dimensionless pressure number for each configuration. 

Figures 22a and 22b show the temperature contours of the elemental structure for 

circular and square configurations, respectively.  Figures 20c and 20d show the temperature 

contours of the inner wall of the cooling channel with cooling fluid for circular and square 

configurations, respectively. The blue region indicates the region of low temperature and the 

red region indicates that of high temperature.           

9. Conclusion 

This paper studied the numerical and analytical optimisation of geometric structures 

of cooling volumes with internal heat generation for cylindrical and square channel cross-

sections. The results showed that there is an optimal geometry for the two channel 
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configurations considered, which minimises the peak temperature and hence thermal 

resistance. The numerical analysis also showed that the global optimal hydraulic diameter and 

channel spacing decrease as the pressure difference increases for fixed global volume 

constraint due to the fact that the elemental volume is not fixed, but allowed to morph for a 

fixed porosity. This shows the existence of unique optimal design variables (geometries) for a 

given applied dimensionless pressure number for each configuration. The results also show 

that the minimised peak temperature decreases as the porosity increases. It is also observed 

that the optimal total number of channels is a function of pressure difference. From the result, 

it is also observed that the square channel has better performance than the cylindrical channel.  

The numerical results obtained are in good agreement with results obtained in the 

approximate solutions based on scale analysis at optimal geometry dimensions. The 

approximate dimensionless global thermal resistance predicts the trend obtained in the 

numerical results. The use of the optimisation algorithm coupled to the CFD package made 

the numerical results to be more robust with respect to the selection of optima structures’ 

geometries, internal configurations of the flow channels, total number of the channels and 

dimensionless pressure difference. Future work may consider the optimisation of additional 

microchannels placed in the interstitial regions of a circular or square tube array for multi-

scale design.  
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