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Abstract

We use mixed three term recurrence relations typically satisfied by classical orthogonal polynomials from se-
quences corresponding to different parameters to derive upper (lower) bounds for the smallest (largest) zeros of
Jacobi, Laguerre and Gegenbauer polynomials.
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1. Introduction

If {pn}∞n=0 is a sequence of orthogonal polynomials, the zeros of pn are real and simple and each open interval
with endpoints at successive zeros of pn contains exactly one zero of pn−1; a property called the interlacing
of zeros. Stieltjes (cf. [15], Theorem 3.3.3) extended this interlacing property by proving that if m < n − 1,
provided pm and pn have no common zeros, there exist m open intervals, with endpoints at successive zeros of
pn, each of which contains exactly one zero of pm. Beardon (cf. [3], Theorem 5) proved that one can say more,
namely, for each m < n− 1, if pm and pn are co-prime, there exists a real polynomial Sn−m of degree n−m− 1
whose real simple zeros, together with those of pm, interlace with the zeros of pn. The polynomials Sn−m are
the dual polynomials introduced by de Boor and Saff in [5] or, equivalently, the associated polynomials analysed
by Vinet and Zhedanov in [17]. We prove that constraints on the location of common zeros of two polynomials
that satisfy a three term recurrence relation of the type associated with orthogonal polynomials together with a
Stieltjes interlacing property lead to lower (upper) bounds for the largest (smallest) zero of Jacobi, Gegenbauer
and Laguerre polynomials.

2. Laguerre, Jacobi and Gegenbauer polynomials

A special case of the following theorem was proved in [10].

Theorem 2.1. Let {pn}∞n=0 be a sequence of polynomials orthogonal on the (finite or infinite) interval (c, d).
Fix k, n ∈ N with k < n− 1 and suppose gn−k is a polynomial of degree n− k − 1 that satisfies

f(x)gn−k(x) = Gk(x)pn−1(x) +H(x)pn(x) (1)

where f(x) 6= 0 for x ∈ (c, d) and H(x), Gk(x) are polynomials with deg(Gk) = k. Then

(i) the n− 1 real, simple zeros of Gkgn−k interlace with the zeros of pn if gn−k and pn are co-prime;

(ii) if gn−k and pn are not co-prime and have r common zeros counting multiplicity, then

a) r ≤ min {k, n− k − 1};
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b) these r common zeros are simple zeros of Gk;

c) no two successive zeros of pn , nor its largest or smallest zero, can also be zeros of gn−k;

d) the n− 2r − 1 zeros of Gkgn−k, none of which is also a zero of pn, together with the r common zeros
of gn−k and pn, interlace with the n− r remaining (non-common) zeros of pn.

Proof of Theorem 2.1. Let wn < · · · < w1 denote the zeros of pn.

(i) From (1), provided pn(x) 6= 0, we have

f(x)gn−k(x)

pn(x)
= H(x) +

Gk(x)pn−1(x)

pn(x)
. (2)

Further,

pn−1(x)

pn(x)
=

n∑
j=1

Aj
x− wj

where Aj > 0 for every j ∈ {1, . . . , n} (cf. [15, Theorem 3.3.5]). Therefore (2) can be written as

f(x)gn−k(x)

pn(x)
= H(x) +

n∑
j=1

Gk(x)Aj
x− wj

, x 6= wj . (3)

Since pn−1 and pn are always co-prime while pn and gn−k are co-prime by assumption, it follows from
(1) that Gk(wj) 6= 0 for every j ∈ {1, 2, . . . , n}. Suppose that Gk does not change sign in an interval
Ij = (wj+1, wj) where j ∈ {1, 2, . . . , n − 1}. Since Aj > 0 and the polynomial H is bounded on Ij while
the right hand side of (3) takes arbitrarily large positive and negative values on Ij , it follows that gn−k
must have an odd number of zeros in every interval in which Gk does not change sign. Since Gk is of
degree k, there are at least n− k− 1 intervals (wj+1, wj), j ∈ {1, . . . , n− 1} in which Gk does not change
sign and so each of these intervals must contain exactly one of the n−k−1 real, simple zeros of gn−k. We
deduce that the k zeros of Gk are real and simple and, together with the n− k− 1 zeros of gn−k, interlace
with the n zeros of pn.

(ii) If r is the total number of common zeros of pn and gn−k counting multiplicity then each of these r zeros is
a simple zero of pn and it follows from (1) that any common zero of gn−k and pn is also a zero of Gk since
pn and pn−1 are co-prime. Therefore, r ≤ min{k, n− k− 1} and there must be at least (n− 2r− 1) open
intervals of the form Ij = (wj+1, wj), j ∈ {1, 2, . . . , n− 1}, with endpoints at successive zeros of pn where
neither wj+1 nor wj is a zero of gn−k or Gk(x). If Gk does not change sign in an interval Ij = (wj+1, wj),
it follows from (3), since Aj > 0 for every j ∈ {1, 2, . . . , n}, and H is bounded while the right hand side
takes arbitrarily large positive and negative values for x ∈ Ij , that gn−k must have an odd number of
zeros in that interval. Therefore, in at least (n − 2r − 1) intervals Ij either gn−k or Gk, but not both,
must have an odd number of zeros counting multiplicity. On the other hand, gn−k and Gk have at most
(n− k− 1− r) and (k− r) real zeros respectively that are not zeros of pn. We deduce that there must be
at most (n−2r−1) intervals Ij = (wj+1, wj) with endpoints at successive zeros wj+1 and wj of pn neither
of which is a zero of gn−k. It is straightforward to check that if the number of intervals Ij = (wj+1, wj)
with endpoints at successive zeros of pn neither of which is a zero of gn−k is equal to n − 2r − 1, this is
only possible if no pair of consecutive zeros of pn, nor the largest or smallest zero of pn, are also zeros of
gn−k. This proves a) to c) while d) follows from c).

Corollary 2.2. Suppose (1) holds for k, n ∈ N fixed and k < n− 1. The largest (smallest) zero of Gk is a strict
lower (upper) bound for the largest (smallest) zero of pn.

Mixed three term recurrence relations involving polynomials with the largest possible parameter difference, or
alternatively, with no parameter difference but the largest possible degree difference, that satisfy interlacing
properties of their zeros, are useful in deriving good bounds for largest (smallest) zeros of pn. We denote the
zeros of the polynomial pn by wn < · · · < w1.
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2.1. Laguerre polynomials

For α > −1, the Laguerre polynomials Lαn satisfy the mixed three term recurrence relation

x5Lα+5
n−3(x) = (n+ α)

(
(α+ 1)4 − (α+ 2)2(3n+ 2α+ 2)x+ (n+ α+ 1)2x

2
)
Lαn−1(x) +H(x)Lαn(x) (4)

that follows from [9, eqn. (13)], [9, eqn. (4)] and the three term recurrence relation for Laguerre polynomials
(cf. [15]) where (α)k = α(α + 1) . . . (α + k − 1), k ∈ N, is Pochhammer’s symbol. The smallest zero of the
polynomial coefficient of Lαn−1 in (4) is

(α+ 2)2(3n+ 2α+ 2)−
√

(α+ 2)2(−4(α+ 1)2(α+ 2) + 4n(α+ 1)(α2 + 4α+ 6) + (5α2 + 25α+ 38)n2)

2(n+ α+ 1)2
(5)

which provides a strict upper bound for the smallest zero of Lαn. Numerical calculations indicate that (5)

compares favourably with the upper bound
(α+ 1)(α+ 2)(α+ 4)(2n+ α+ 1)

(α+ 1)2(α+ 2) + (5α+ 11)n(n+ α+ 1)
obtained by Gupta and

Muldoon in [11, eqn. (2.11)] although the Gupta-Muldoon bound is sharper for n large. Iterating the three
term recurrence relation for Laguerre polynomials (cf. [15]) we obtain

(α+ n− 2)2L
α
n−3(x)

= (x2 − 2(2n+ α− 2)x+ 3n2 + 3αn+ α2 − 6n− 3α− 1)Lαn−1(x)− n(2n+ α− 3− x) +H(x)Lαn(x) (6)

and the largest zero of the polynomial coefficient of Lαn−1 in (6) yields the lower bound

w1 > 2n+ α− 2 +
√
n2 + n(α− 2)− (α− 2) (7)

for the largest zero of Lαn which is sharper than the lower bound 2n+α−1 found by Szegő (cf. [15, eqn.(6.2.14)]).
The lower bound 3n − 4 for the largest zero obtained by Neumann in [14] compares favourably with (7) only
when α is close to −1 while the lower bound 4n+ α− 16

√
2n given by Bottema (cf. [4]) is better than (7) for

n large.

2.2. Jacobi polynomials

For Jacobi polynomials Pα,βn , α, β > −1, it was proved in [10, Thm 2.1(i)(c)] that (1) holds for k = 1 with

gn−1 = Pα+4,β
n−2 , G1(x) = x−An, An =

2(n− 1)(n+ α+ β + 2) + (α+ 3)(β − α)

2(n− 1)(n+ α+ β + 2) + (α+ 3)(α+ β + 2)
and pn = Pα,βn

for n > 1, n ∈ N. It follows from Corollary 2.2 that for all α, β > −1, n ∈ N,

w1 > 1− 2(α+ 1)(α+ 3)

2(n− 1)(n+ α+ β + 2) + (α+ 3)(α+ β + 2)
= 1−O(

1

n2
) (8)

which is sharper than the lower bound 1− 2(α+ 1)

2n+ α+ β
= 1−O(

1

n
) given by Szegö in [15, eqns. (6.2.11)].

Since Pα,βn (x) = (−1)nP β,αn (−x), we deduce from (8) that

wn < −1 +
2(β + 1)(β + 3)

2(n− 1)(n+ α+ β + 2) + (β + 3)(α+ β + 2)
.

2.3. Gegenbauer polynomials

For the Gegenbauer polynomials Cλn , λ > − 1
2 , Szegő gives a lower bound for the largest zero w1, namely,

w2
1 ≥ 1− 2λ+ 1

n+ 2λ
= 1−O(

1

n
)

(cf. [15, eqn. (6.2.13)]). From [8, Theorem 2 (ii)d] and Corollary 2.2, we obtain a sharper bound

w2
1 > 1− (2λ+ 1)(2λ+ 3)

(n− 1)(n+ 2λ+ 1) + (2λ+ 1)(2λ+ 3)
= 1−O(

1

n2
).
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Another lower bound for the largest zero, namely,

w1 > 1− (2λ+ 1)(2λ+ 5)

4(n− 1)(n+ 2λ+ 1) + (2λ+ 1)(2λ+ 5)
= 1−O(

1

n2
)

follows from (8) with α = β = λ− 1
2 .

Remarks:
1. Our results may be viewed as complementary to upper (lower) bounds for the largest (smallest) zeros of
classical orthogonal polynomials that have been established by several authors using a wide range of approaches.
For Laguerre polynomials, good upper (lower) bounds for the largest (smallest) zero can be found in Ismail and
Li [12]; Krasikov [13] and Dimitrov and Rafaeli [6] while a comprehensive summary of the Laguerre case is given
in [2]. Sharp limits for the zeros of Gegenbauer and Hermite polynomials are proved in [1] while van Doorn in
[16], Dimitrov in [2] and Dimitrov and Nikolov in [7] provide bounds for zeros of Jacobi polynomials.

2. Sharper upper (lower) bounds for the smallest (largest) zeros of Laguerre, Jacobi and Gegenbauer polynomials
can be obtained from (1) by putting k = 3, 4, ... The calculations become more complicated as the degree of the
coefficient polynomial Gk increases.
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