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ABSTRACT

Nonparametric control charts can provide a robust alternative in practice to the data analyst when there is
a lack of knowledge about the underlying distribution. A nonparametric exponentially weighted moving average
(NPEWMA) control chart combines the advantages of a nonparametric control chart with the better shift detection
properties of a traditional EWMA chart. A NPEWMA chart for the median of a symmetric continuous distribution
was introduced by Amin and Searcy (1991) using the Wilcoxon signed-rank statistic (see Gibbons and
Chakraborti, 2003). This is called the nonparametric exponentially weighted moving average Signed-Rank
(NPEWMA-SR) chart. However, important questions remained unanswered regarding the practical
implementation as well as the performance of this chart. In this paper we address these issues with a more in-
depth study of the two-sided NPEWMA-SR chart. A Markov chain approach is used to compute the run-length
distribution and the associated performance characteristics. Detailed guidelines and recommendations for
selecting the chart’s design parameters for practical implementation are provided along with illustrative examples.
An extensive simulation study is done on the performance of the chart including a detailed comparison with a
number of existing control charts, including the traditional EWMA chart for subgroup averages and some
nonparametric charts i.e. runs-rules enhanced Shewhart-type SR charts and the NPEWMA chart based on signs.
Results show that the NPEWMA-SR chart performs just as well as and in some cases better than the competitors.
A summary and some concluding remarks are given.

Keywords: Contaminated normal, Distribution-free, Markov chain, Median, Outlier, Quality control, Robust,
Run-length, Search Algorithm, Simulation.

1. Introduction

 The cumulative sum (CUSUM) and the exponentially weighted moving average

(EWMA) control charts enjoy widespread popularity in practice. They are particularly

effective in detecting small sustained shifts quickly (see e.g. Montgomery, 2005 pages 386 and

411). The superiority of these charts over the Shewhart chart stems from the fact that they use

information in the data from start-up and not the most recent time point only.  The performance

of CUSUM and EWMA charts are similar (see e.g. Montgomery, 2005 page 405), but from a

practical standpoint the EWMA chart is often preferred because of its relative ease of use.

Traditional EWMA charts for the mean were introduced by Roberts (1959) and they contain

Shewhart-type charts as a special case. The literature on EWMA charts is enormous and

continues to grow at a substantial pace (see e.g. the overview by Ruggeri et al. (2007) and the

references therein). In typical applications of the EWMA chart it is usually assumed that the

underlying process distribution is normal (or, at least, approximately so); see e.g. Huwang et
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al. (2010). Such an assumption(s) should ideally be verified which would typically involve

some preliminary work such as exploratory (e.g. graphical) and confirmatory (e.g. testing

hypotheses) data analysis. If normality is in doubt or can not be justified for lack of

information or data, a nonparametric (NP) chart is more desirable. These charts are attractive

because their run-length distribution is the same for all continuous distributions so that they

can be applied without any knowledge of the form of the underlying distribution. For

comprehensive overviews of the literature on nonparametric control charts see Chakraborti et

al. (2001), (2007) and (2010). A control chart that combines the shift detection properties of

the EWMA with the robustness of a NP chart is thus clearly desirable.

Amin and Searcy (1991) considered such a chart based on the Wilcoxon signed-rank

(SR) statistic for monitoring the known or the specified or the target value of the median of a

process;  we  label  this  the  NPEWMA-SR  chart.  However,  much  work  remained  to  be  done.

Chakraborti and Graham (2007), noted that “…more work is necessary on the practical

implementation of the (NPEWMA-SR) charts…”. Given the potential practical benefits of this

control chart, in this article we perform an in-depth study to gain insight into its design,

implementation and performance.  More precisely:

i. We use a Markov-chain approach to calculate the in-control (IC) run-length

distribution and the associated performance characteristics;

ii. We examine the average run-length (ARL)  as  a  performance  measure  and,  for  a

more thorough assessment of the chart’s performance, we also calculate and study

the standard deviation (SDRL), the median (MDRL), the 1st and 3rd quartiles as well

as  the  5th and  95th percentiles  for  an  overall  assessment  of  the  run-length

distribution;

iii. We provide easy to use tables for the chart’s design parameters to aid practical

implementation; and

iv. We do an extensive simulation-based performance study comparison with

competing traditional and nonparametric charts.

The rest of the article is organized as follows: In Section 2 some statistical background

information  is  given  and  the  NPEWMA-SR chart  is  defined.  In  Section  3  the  computational

aspects of the run-length distribution plus the design and implementation of the chart are

discussed. Section 4 provides two illustrative examples. In Section 5, the IC and out-of-control

(OOC) chart performance are compared to those of the traditional EWMA chart for the mean

(denoted EWMA-ܺ hereafter), the runs-rules enhanced Shewhart-type SR charts, i.e. the basic

(or original) 1-of-1 chart, the 2-of-2 DR and  the 2-of-2 KL Shewhart-type  SR charts  and  the
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NPEWMA chart based on signs (denoted NPEWMA-SN). We conclude with a summary and

some recommendations in Section 6.

2. Background and definition of the NPEWMA-SR chart

2.1 Statistical Background

The Wilcoxon signed-rank (SR) test is a popular nonparametric alternative to the one-

sample t-test for testing hypotheses (or setting-up confidence intervals) about the location

parameter (mean/median) of a symmetric continuous distribution. Note that for a t-test to be

valid the assumption of normality is needed, but that is not necessary for the SR test. The SR

test is quite efficient, the asymptotic relative efficiency (ARE) of the SR test relative to the t-

test is 0.955, 1, 1.097 and 1.5 for the Normal, Uniform, Logistic and Laplace distribution,

respectively (see e.g. Gibbons and Chakraborti, 2003 page 508). This indicates that the SR test

is more powerful for some heavier tailed distributions. In fact, it can be shown that the ARE of

the SR test to the t-test  is  at  least  0.864  for  any  symmetric  continuous  distribution.  So,  very

little seems to be lost and much to be gained in terms of efficiency when the SR test is used

instead of the t-test. Graham et al. (2009) proposed a NPEWMA chart based on the sign (SN)

statistic, the so-called NPEWMA-SN chart. Although both the sign and the signed-rank charts

are nonparametric, the SR chart is expected to be more efficient since the SR test is more

efficient than the SN test for a number of light to moderately heavy-tailed normal-like

distributions  (see  e.g.  Gibbons  and  Chakraborti  (2003)).  Thus  the  NPEWMA-SR  chart  is  an

exceptionally viable alternative to the traditional EWMA and the NPEWMA-SN charts. In this

paper the EWMA chart based on the SR statistic, the NPEWMA-SR chart, is considered,

which  can  be  used  to  monitor  the  median  of  a  symmetric  continuous  distribution  (for  a

discussion of some tests of symmetry see the review article by Konijin (2006)). Also, as a

referee pointed out, because many practitioners in the quality field may have a better intuitive

understanding of a median (half of the output from a process is below a certain level) than a

mean, the application of the SR charts facilitates a simple switch over from the well entrenched

traditional methods used in the quality field.

Suppose that ௜ܺ௝ , ݅ = 1,2,3, … and ݆ = 1,2, … , ݊ denote the jth observation in the ith

rational subgroup of size n > 1. Let ܴ௜௝ା  denote the rank of the absolute values of the differences

ห ௜ܺ௝ − ,଴หߠ ݆ = 1,2, … , ݊	, within the ith subgroup. Define

ܴܵ௜ = ∑ ൫݊݃݅ݏ ௜ܺ௝ − ଴൯ܴ௜௝ା௡ߠ
௝ୀଵ ݅ = 1,2,3, … (1)
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where (ܣ)݊݃݅ݏ = −1, 0, 1 if and 0 < ,0 = ,0 > ܣ ଴ is the known or the specified or the targetߠ

value of the median, that is monitored. Thus ,ߠ ܴܵ௜ is  the difference between the sum of the

ranks of the absolute differences corresponding to the positive and the negative differences,

respectively. Note that the statistic SR is linearly related to the better-known signed-rank

statistic ௡ܶ
ା through the relationship ܴܵ = 2 ௡ܶ

ା − ݊(݊ + 1)/2 (the reader is referred to

Gibbons and Chakraborti (2003) page 197 for more details on the ௡ܶ
ା statistic).

Bakir  (2004)  proposed  a  nonparametric  Shewhart-type  control  chart  based  on  the  SR

statistic. Chakraborti and Eryilmaz (2007) extended this idea and proposed various

nonparametric  charts  based  on  runs-rules  of  the  SR statistic  and  showed that  their  charts  are

more sensitive in detecting small shifts. Other nonparametric charts based on runs-type

signalling rules have also been proposed in the literature (see e.g. Chakraborti et al. (2009)).

2.2 The NPEWMA-SR chart

The NPEWMA-SR chart is constructed by accumulating the statistics ܴܵଵ, ܴܵଶ, ܴܵଷ,	…

sequentially from each subgroup.  The plotting statistic is

ܼ௜ = ௜ܴܵ	ߣ + (1 − ௜ିଵ    forܼ(ߣ ݅ = 1,2,3, … (2)

where the starting value is taken as ܼ଴ = 0 and 0 < ߣ ≤ 1 is the smoothing constant.  Note that

λ = 1 yields the Shewhart-type SR chart of Bakir (2004).

To calculate the control limits of the NPEWMA-SR chart the IC mean and variance of

the plotting statistic ܼ௜ are necessary; these can conveniently be obtained applying a recursive

substitution and using the relationship between ܴܵ and ௡ܶ
ା. The IC mean and standard

deviation of Zi are given by 	E(Z୧) = 0 and ௓೔ߪ = ටቀ௡(௡ାଵ)(ଶ௡ାଵ)
଺

ቁቀ ఒ
ଶିఒ

ቁ (1 − (1 − ,(ଶ௜(ߣ

respectively, and follows directly from the expressions of the null expectation and variance of

the well-known signed-rank statistic (see e.g. Gibbons and Chakraborti, 2003 page 198)

coupled with the properties of the plotting statistic of the EWMA chart (see e.g. Montgomery,

2005 page 406). Hence, the exact time varying upper control limit (UCL), lower control limit

(LCL) and centerline (CL) of the NPEWMA-SR chart for the median are given by

ܮܥܮ/ܮܥܷ = ටቀ௡(௡ାଵ)(ଶ௡ାଵ)ܮ±
଺

ቁ ቀ ఒ
ଶିఒ

ቁ (1 − (1 − .ଶ௜)  and  CL = 0(ߣ (3)

The “steady-state” control limits and the CL are given by

ܮܥܮ/ܮܥܷ = 	 ටቀ௡(௡ାଵ)(ଶ௡ାଵ)ܮ±
଺

ቁ ቀ ఒ
ଶିఒ

ቁ	 and CL = 0. (4)

These are typically used when the NPEWMA-SR chart has been running for several time

periods and are obtained from (3) as ݅ → ∞ so that ൫1 − (1 − ଶ௜൯(ߣ → 1. If any Zi plots on or
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outside  either  of  the  control  limits,  the  process  is  declared  OOC and a  search  for  assignable

causes is started. Otherwise, the process is considered IC and the charting procedure continues.

It should be noted that because ௡ܶ
ା is known to be distribution-free for all symmetric

continuous distributions (see e.g. Gibbons and Chakraborti, 2003) so is the statistic ܴܵ and

hence the NPEWMA-SR chart.

In the developments that follow:

i. We study two-sided charts with symmetrically placed control limits i.e. equidistant

from the CL.  This  is  the  typical  application  of  the  traditional  EWMA-ܺ chart. The

methodology can be easily modified where a one-sided chart is more meaningful.

ii. We use the steady-state control limits which significantly simplifies the calculation of

the IC run-length distribution via the Markov chain approach.

iii. We  investigate  the  entire  run-length  distribution  in  terms  of  the  mean  (ARL), the

standard deviation (SDRL), the median run-length (MDRL), the 1st and the 3rd quartiles

as well as the 5th and the 95th percentiles (Amin and Searcy (1991) only evaluated the

ARL). It’s a well-known fact that important information about the performance of a

control chart may be missed by focusing only on the ARL, because the run-length

distribution is highly right-skewed (see e.g. Radson and Boyd (2005) and Chakraborti

(2007)).

Note that λ and L are the two design parameters of the chart  which directly influence

the chart’s performance; this implies that suitable combinations need to be used. The choice of

λ and L is discussed in more detail in Section 3.2. Next we discuss the computational aspects of

the run-length distribution.

3.  The Run-length distribution and Implementation of the chart

3.1 Computation of the Run-Length distribution

For the calculation of the run-length distribution and associated characteristics

computer simulation experiments and the Markov chain approach have proven to be useful.

While each of these methods has their own advantages and/or disadvantages, the most

important benefit with using the Markov chain approach is that one can find explicit

expressions (formulas) for the characteristics of interest. For a detailed discussion on how to

implement  the  Markov  chain  approach  for  a  NPEWMA  control  chart,  see  Graham  et  al.

(2009); here we summarize the key results only. Given the Markov chain representation of the

IC run-length distribution, the probability mass function (pmf), the expected value (ARL), the
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standard deviation (SDRL) and the cumulative distribution function (cdf1) of the run-length

variable N can all be calculated as

ܲ(ܰ = ,l;ݐ ,ܮ (	q,ݎ = ܫ)௧ିଵܳߦ − ܳ)1									for							ݐ	 = 	1,2,3, … (5)

,l)ܮܴܣ ,ܮ ,ݎ q) = I)ߦ − ܳ)ିଵ1, (6)

,l)ܮܴܦܵ ,ܮ ,ݎ q) = ටܫ)ߦ + ܫ)(ܳ − ܳ)ିଶ1 − ଶ,  and(ܮܴܣ) (7)

ܲ(ܰ ≤ ;ݐ l, ,ܮ (q,ݎ = 1 − 	ݐ							for								௧1ܳߦ = 	1,2,3, … (8)

respectively (see Fu and Lou (2003); Theorems 5.2 and 7.4 pages 68 and 143) where r +  1

denotes the total number of states (i.e. there are r non-absorbing states and one absorbing state

which is entered when the chart signals), ܫ = ௥×௥ܫ is the identity matrix, ܳ = ܳ௥×௥ is called the

essential transition probability sub-matrix which contains all the probabilities of going from

one non-absorbing state to another, 1 = 1௥×ଵ is a column vector with all elements equal to one

and ߦ = ଵ×௥ isߦ  a  row  vector  called  the  initial  probability  vector  which  contains  the

probabilities  that  the  Markov chain  starts  in  a  given  state.  The  vector ߦ = ௠ିߦ) , … , ௠) withߦ

݉ = ݎ) − 1) 2⁄ , is typically chosen such that ∑ ௜ߦ = 1௠
௜ୀି௠ . We set ξ଴ =1 and let ξ୧ =0 for all

݅ ≠ 0; this implies that ܼ଴ = 0 with probability one as mentioned earlier in Section 2.2. Note

that the key component in using the Markov chain approach is to obtain the essential transition

probability sub-matrix ܳ௥×௥. The elements of the latter are called the one-step transition

probabilities; ܳ௥×௥ = ௜௝൧ for݌ൣ ݅, ݆ = −݉,−݉ + 1, … ,݉ − 1,݉. The transition probability,

௜௝݌ , is the conditional probability that the plotting statistic at time ݇, ܼ௞, lies within state j,

given that the plotting statistic at time ݇ − 1, ܼ௞ିଵ, lies within state i (an approximation to the

latter probability is obtained by setting ܼ௞ିଵ equal to ௜ܵ which denotes the midpoint of state i)

and we obtain

௜௝݌ = ܲ(ܼ௞	lies	within	state	݆|ܼ௞ିଵ	lies	within	state	݅)
= ܲ൫ ௝ܵ − ߛ < ܼ௞ ≤ ௝ܵ + ௞ିଵܼ|ߛ = ௜ܵ൯

. (9)

It should be noted that the midpoints can be calculated using the expression ௝ܵ =

ܮܥܮ + (2(݉ + ݆) + for  ߛ(1 ݆ = −݉,−݉ + 1, … ,݉ − 1,݉  and ܵ଴ = 0 because  of  the

symmetrically positioned control limits i.e. – LCL = UCL.

By substituting the definition of the plotting statistic (see equation (2)) into (9) and

using the relationship between the statistic SR and usual signed-rank statistic ௡ܶ
ା	 we get that

௜௝݌  equals

1 Using the cdf in (8) we can calculate any IC percentile of the run-length distribution.
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ܲ൫ ௝ܵ − ߛ < ௞+(1ܴܵߣ − ௞ିଵܼ(ߣ ≤ ௝ܵ + ௞ିଵܼ|ߛ = ௜ܵ൯

= ܲ൫ ௝ܵ − ߛ < ௞+(1ܴܵߣ − (ߣ ௜ܵ ≤ ௝ܵ + ൯ߛ

= ܲ ቀ൫ௌೕିఊ൯ି(ଵିఒ)ௌ೔
ఒ

< ܴܵ௞ ≤
൫ௌೕାఊ൯ି(ଵିఒ)ௌ೔

ఒ
ቁ

= ܲ ቀቀ൫ௌೕିఊ൯ି(ଵିఒ)ௌ೔
ఒ

+ ௡(௡ାଵ)
ଶ

ቁ 2ൗ < ௡ܶ
ା 	≤ ቀ൫ௌೕାఊ൯ି(ଵିఒ)ௌ೔

ఒ
+ ௡(௡ାଵ)

ଶ
ቁ 2ൗ ቁ.

Note that the accuracy of the Markov chain approach increases as r (the number of non-

absorbing states) increases (see also e.g. Knoth (2006)). Verification of the Markov chain

approach using 100,000 Monte Carlo simulations suggests that the discrepancies are within 1%

of the simulated values when r = 1001. Taking larger values of r would result in more accurate

answers, but in doing so, some run-length characteristics could not be computed within a

practical time. In addition, it is recommended that r be chosen to be an odd positive integer (r

= 2m + 1) so that there is a unique middle entry which simplifies the calculations.

3.2 Choice of Design Parameters

The choice of the design parameters (λ, L) generally entails two steps: First, one has to

(use a search algorithm to) find the (ߣ, L) combinations that yield the desired in-control ARL

(denoted ARL0). Second, one has to choose, among these (ߣ, L) combinations, the one that

provides the best performance i.e. the smallest out-of-control ARL (ARLδ) for the shift (ߜ) that

is to be detected. Note that, the smoothing parameter 0 < ߣ ≤ 1 is typically selected first

(which depends on the magnitude of the shift to be detected) and then the constant L > 0 is

selected  (which  determines  the  width  of  the  control  limits  i.e.  the  larger  the  value  of L, the

wider the control limits and vice versa).

The above-mentioned procedure was used in the design of the NPEWMA-SR chart and

the run-length distribution was calculated for various values of λ and L for subgroup sizes n = 5

and 10 (for a detailed discussion on the choice of n see  Bakir  and  Reynolds  (1979)  wherein

they concluded that the best subgroup size is somewhere between 5 and 10 depending on the

desired ARL0 and the size of the shift (ߜ) to be detected). Using a search algorithm with five

values of λ (i.e. 0.01, 0.025, 0.05, 0.1 and 0.2) along with values of L ranging from 2 to 3 in

increments of 0.1, the (ߣ, L) combinations were identified which lead to an ARL0 close to the

industry standard of 370 and 500; these results are shown in Tables 1 and 2. Note that, the first

row  of  each  of  the  cells  in  Tables  1  and  2  shows  the ARL0 and SDRL0 values  whereas  the

second row shows the IC 5th, 25th, 50th, 75th and 95th percentiles (in this order).

From  Tables  1  and  2  we  observe  that  for  a  specified  or  fixed  value  of λ,  all  the

characteristics of the IC run-length distribution increase as L increases. Also, we observe that
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the IC run-length distribution is positively skewed (as is expected) because the ARL0 > MDRL0

in all cases. Tables 1 and 2 were used to find those combinations of and ߣ L values that give

the desired IC performance. These are useful for a practical implementation of the control

chart. For example, from Table 1 for n = 5, we observe that for (0.025 = ߣ, L = 2.2) the ARL0 =

347.83 and for (0.025 = ߣ, L = 2.3) the ARL0 = 431.13, which implies that the value of L that

leads to an ARL0 of 370 is between 2.2 and 2.3. Refining the search algorithm leads to (ߣ =

0.025, L = 2.230) with an ARL0 of 370.35 (see Table 3); more details are given below.

< Insert Table 1 >

< Insert Table 2 >

3.3 Implementation of the NPEWMA-SR chart

To implement the chart, a practitioner needs values of the design parameters (λ, L). The

first step is to choose λ. If small shifts (roughly 0.5 standard deviations or less) are of primary

concern the typical recommendation is to choose a small λ say equal to 0.01, 0.025 or 0.05; if

moderate shifts (roughly between 0.5 and 1.5 standard deviations) are of greater concern

choose λ = 0.10, whereas if larger shifts (roughly 1.5 standard deviations or more) are of

concern choose λ = 0.20 (see e.g. Montgomery (2005), page 411). Next we choose L, in

conjunction with the chosen λ, so that a desired nominal ARL0 is attained.

Table 3 lists some (λ, L)-combinations for the popular ARL0 values of 370 and 500 and

for subgroups of size n =  5  and n = 10, respectively. In each case, the ARL0 values were

calculated using the Markov chain approach and are called the attained ARL0 values. Note that

because of the discreteness of the SR statistic, the desired nominal ARL values are not attained

exactly.
Table 3.  (λ, L)-combinations for the NPEWMA-SR chart for nominal ARL0 = 370 and 500.1

Nominal ARL0 = 370 Nominal ARL0 = 500
Shift to be detected (λ, L) Attained ARL0 (λ, L) Attained ARL0

n = 5

Small
(0.01, 1.822) 370.14 (0.01, 1.975) 499.45
(0.025, 2.230) 370.35 (0.025, 2.368) 499.04
(0.05, 2.481) 370.29 (0.05, 2.602) 499.83

Moderate (0.10, 2.668) 370.13 (0.10, 2.775) 500.11
Large (0.20, 2.764) 369.91 (0.20, 2.852) 499.27

n = 10

Small
(0.01, 1.821) 370.05 (0.01, 1.975) 500.51
(0.025, 2.230) 370.85 (0.025, 2.367) 500.06
(0.05, 2.486) 370.49 (0.05, 2.610) 500.67

Moderate (0.10, 2.684) 370.09 (0.10, 2.794) 500.13
Large (0.20, 2.810) 370.19 (0.20, 2.905) 498.92

1Table 3 is more extensive and unlike in Amin and Searcy (1991) who give some (λ, UCL)-values.
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So, for example, suppose n =  5  and  one  is  interested  in  detecting  a  small  shift  in  the

location with a NPEWMA-SR with an ARL0 of 370. Then one can use the (λ, L)-combination:

(0.05, 2.481) which yields an attained ARL0 of 370.29. Table 3 should be very useful for

implementing the NPEWMA-SR chart in practice.

4. Examples

To  illustrate  the  effectiveness  and  the  application  of  the  NPEWMA-SR  control  chart

we provide two illustrative examples where the proposed chart is compared to the (i) EWMA-

ܺ chart, (ii) 1-of-1, 2-of-2 DR and 2-of-2 KL  Shewhart-type  SR  charts  (see  Chakraborti  and

Eryilmaz (2007) for a detailed description of 2-of-2 DR and KL charts, respectively) and the

(iii) NPEWMA-SN chart, suitably adapted for n > 1.  For the three EWMA charts we choose

the design parameters (λ, L) so that ଴ܮܴܣ ≈ 370 and 500 for Examples 1 and 2, respectively. It

should be noted that the industry standard ARL0 values of 370 and 500 are far from being

attainable when using the 1-of-1 Shewhart-type SR chart, because the highest ARL0 that it can

attain for subgroups of size 5 is 16 (see Bakir (2004), page 616). In addition, the 2-of-2 SR

charts under the DR and KL schemes also can’t attain the industry standard ARL0 values; see

Chakraborti and Eryilmaz (2007) Table 11, where it is shown that the highest ARL0 value that

the 2-of-2 DR scheme can attain for n = 5 is 271.15 when UCL = 15, whereas the 2-of-2 KL

scheme can attain ARL0 values of 136.00 and 526.34 for UCL = 13 and 15, respectively, for n

= 5. Although the ARL0 values of the Shewhart-type SR charts for UCL = 15 when n = 5 are

far from the desired nominal ARL values, we include these charts for illustrative purposes.

Example 1

We  first  illustrate  the  NPEWMA-SR  chart  using  a  well-known  dataset  from

Montgomery (2001; Table 5.2) on the inside diameters of piston rings manufactured by a

forging process. Table 5.2 contains fifteen prospective samples each of five observations (n =

5). We assume that the underlying process distribution is symmetric with a known median of

74mm. The values of the SR statistics and the NPEWMA-SR plotting statistics were calculated

using (1) and (2), respectively, and are presented in Table 4. The control charts are shown in

panels (a) – (d) of Figure 1 along with the values of the control limits.
Table 4. The SRi statistics and the NPEWMA-SR plotting statistics, Zi

Subgroup number SRi Zi
1 8 0.400
2 4 0.580
3 -14 -0.149
4 7 0.208
5 -3 0.048
6 9 0.496
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7 10 0.971
8 -6 0.622
9 12 1.191

10 14 1.832
11 4 1.940
12 15 2.593
13 15 3.213
14 15 3.803
15 14 4.313

From panels (a), (c) and (d) in Figure 1 we see that the EWMA-ܺ control chart is the

first to signal at subgroup number 12, whereas the NPEWMA-SN and the NPEWMA-SR

charts both signal later at subgroup number 13. This is not surprising, as normal theory

counterparts typically outperform nonparametric methods when the assumptions are met and a

goodness-of-fit  test  does  not  reject  normality  for  these  data.  The 1-of-1 SR  chart  signals  on

subgroup number 12, whereas the 2-of-2 SR charts using the DR and KL signalling rules only

signals  later  on  sample  number  13.  In  this  example  the  EWMA-ܺ slightly outperformed the

nonparametric charts, but it should be noted that the assumptions necessary for the parametric

chart seemed to be met. Typically in practice, however, normality can be in doubt or may  not

be justified for lack of information or data and a nonparametric method may be more desirable.

The next example illustrates this.

(a) EWMA-ࢄ
         (λ, L) = (0.05, 2.488)

(b) 1-of-1, 2-of-2 DR and 2-of-2 KL Shewhart-type
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(c)  NPEWMA-SN
      (λ, L) = (0.05, 2.484)

(d)  NPEWMA-SR
      (λ, L) = (0.05, 2.481)

Figure 1. EWMA-ࢄ, 1-of-1, 2-of-2 DR and 2-of-2 KL Shewhart-type signed-rank, NPEWMA-

SN and NPEWMA-SR control charts for Example 1.

Example 2

The second example is to illustrate the effectiveness and the application of the

nonparametric chart when normality is in doubt use some simulated data from a  Logistic

distribution with location parameter 0 and scale parameter :ߨ/3√ LG(0,	√3/ߨ), so that the

observations  come  from  a  symmetric  distribution  with  a  median  of  zero  and  a  standard

deviation of 1. Suppose that the median increases or has sustained an upward step shift of 0.5.

Accordingly, subgroups each of size 5 (n =  5)  were  generated  from the  Logistic  distribution

with  the  same  scale  parameter  but  with  the  location  parameter  equal  to  0.5,  resulting  in

observations that have a median of 0.5 and a standard deviation of 1.

The  control  charts  are  shown in  panels  (a)  –  (d)  of  Figure  2  and  we observe  that  the

nonparametric EWMA control charts are the first to signal at subgroup number 7, whereas the

EWMA-ܺ chart signals later at subgroup number 9. The 1-of-1 SR chart signals on subgroup

number 7, whereas the 2-of-2 SR charts  using  the  DR and KL signalling  rules  didn’t  signal.

Although this is an example using simulated data, it shows that there are situations in practice

where the NPEWMA-SR chart offers an effective alternative over available parametric and

nonparametric control charts.
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(a) EWMA-ࢄ
   (λ, L) = (0.10, 2.701)

(b) 1-of-1, 2-of-2 DR and 2-of-2 KL Shewhart-type

(c)  NPEWMA-SN
(λ, L) = (0.10, 2.682)

(d)  NPEWMA-SR
 (λ, L) = (0.10, 2.668)

Figure 2. EWMA-ࢄ, 1-of-1, 2-of-2 DR and 2-of-2 KL Shewhart-type signed-rank, NPEWMA-SN and
NPEWMA-SR control charts for Example 2.

5. Performance Comparison

 The  IC  performance  of  a  chart  shows  how  robust  a  chart  is  whereas  the  OOC

performance needs to be examined to assess the chart’s efficacy, that is its effectiveness in

detecting  a  shift.  From  a  practical  standpoint,  it  is  also  of  interest  to  compare  the  OOC

performance  of  the  NPEWMA-SR chart  with  existing  charts.  We first  compare  the  EWMA-

type charts, i.e. the NPEWMA-SR chart to the traditional EWMA-ܺ and  the  NPEWMA-SN

charts. Following this, we compare the NPEWMA-SR chart to the 1-of-1, the 2-of-2 DR and

the 2-of-2 KL Shewhart-type SR charts.

Our study includes a wide collection of symmetric distributions including the normal

and normal-like non-normal distributions: (a) the standard normal distribution, N(0,1); (b) the

scaled Student’s t-distribution, t(v)/ට ఔ
ఔିଶ

, with degrees of freedom v = 4 and 8, respectively; (c)

the Laplace (or double exponential) distribution, DE(0,1/√2); (d) the logistic distribution,
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LG(0,√3/ߨ); (e) the contaminated normal (CN) distribution: a mixture of N(0, ଵଶ) andߪ

N(0, ଶଶ), represented byߪ (1 − ,0)ܰ(ߙ (ଵଶߪ + ,0)ܰߙ .(ଶଶߪ

The CN distribution is often used to study the effects of outliers. Note that all distributions

in the study have mean/median 0 and are scaled such that they have a standard deviation of 1

so that the results are easily comparable across distributions. Thus, for example, the scale

parameters of the Laplace and the Logistic distributions were set equal to 1/√2 and ,ߨ/3√

respectively.  For the CN distribution the ௜’s are chosen so that the standard deviation of theߪ

mixture distribution equals 1, that is, (1 − ଵଶߪ(ߙ + ଶଶߪߙ = 1. We take ଵߪ ⁄ଶߪ = 2 and the level

of contamination ߙ = 0.05.

5.1 In-control Robustness

Because  the  NPEWMA-SR  and  the  NPEWMA-SN  charts  are  nonparametric,  the  IC

run-length distribution and the associated characteristics should remain the same for all

symmetric continuous distributions. A Markov chain approach was used in the calculations for

the two NPEWMA charts whereas for the traditional EWMA-ܺ chart, the values of the IC run-

length characteristics were estimated using 100,000 simulations as the exact closed-form

expressions for the run-length distribution is not available for all the distributions considered in

the study; the main stumbling block being the exact distribution of the mean (i.e ܺ) for small

subgroup sizes. The results are shown in Table 5 for λ = 0.01, 0.025, 0.05, 0.10 and 0.20,

respectively. Note that, the values of L were chosen such that in each case ଴ܮܴܣ ≈ 500 and, in

case of the EWMA-ܺ chart,  the  values  of L were  chosen  such  that  the ଴ܮܴܣ ≈ 500  for  the

N(0,1) distribution.

The first row of each cell in Table 5 shows the ARL0 and SDRL0 values, respectively,

whereas the second row shows the values of the 5th, 25th, 50th, 75th and 95th percentiles (in this

order).

< Insert Table 5 >

For a better understanding of the IC run-length distributions, the values of Table 5 were

used to construct boxplot-like graphs (see Radson and Boyd (2005)) for λ = 0.05, 0.10 and

0.20; these graphs are shown in panels (a), (b) and (c), of Figure 3, respectively. Each boxplot

shows the mean of the run-length distribution as a square and the median as a circle inside the

box and the “whiskers” are extended to the 5th and the 95th percentiles  instead  of  the  usual

minimum and maximum. Note that only one boxplot is shown for each of the two NPEWMA

charts  (the  first  two  boxplots  on  the  left),  because  their  IC  run-length  characteristics  are  the
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same for all symmetric continuous distributions and that a reference line was inserted on the

vertical axis at 500, which is the desired nominal ARL0 value in this case.

Several interesting observations can be made from an examination of Table 5 and

Figure 3:

i. As  expected,  both  NPEWMA  charts  are  IC  robust  for  all λ and for all distributions

under consideration, including the CN distribution, indicating that the nonparametric

charts are more resistant to outliers. Also, the IC run-length distributions of the

NPEWMA-SN and the NPEWMA-SR charts look almost identical. As an aside,

comparing the two NPEWMA charts to the 1-of-1, the 2-of-2 DR and the 2-of-2 KL

Shewhart-type SR charts, we find that the two NPEWMA charts are better options,

because it offers a more attractive (larger) set of attainable ARL0 values for use in

routine practice; see Tables 1, 2 and 3 of this paper for the NPEWMA-SR chart and

Tables 1, 2 and 3 of Graham et al. (2009) for the NPEWMA-SN chart for individuals

data (the latter chart was suitably adapted for n > 1 and similar tables were constructed,

but these are omitted here to conserve space). In Section 4 we pointed out that the

highest ARL0 value  of  the 1-of-1 and  the 2-of-2 DR charts are 16 and 271.15,

respectively, while the two highest ARL0 values of the 2-of-2 KL chart are 136.00 and

526.34, respectively. However, from Table 3 we can see that the NPEWMA-SR chart

can attain the industry standard ARL0 values of 370 and 500 almost exactly; this is also

true for the NPEWMA-SN chart (see Graham et al. (2009) Tables 2 and 3).

ii. The EWMA-ܺ chart is not IC robust and its run-length distribution has a higher

variance as seen from the interquartile ranges. Its IC characteristics vary (sometimes

dramatically) as the underlying distribution changes. For example, focussing on the

ARL0 as a measure of location, for λ = 0.20 (see Figure 3 (c) and Table 5) the ARL0 of

the EWMA-ܺ chart varies from 497.31 (when the underlying distribution is N(0,1)) to

367.65 (when the underlying distribution is t(4)). In addition, for λ = 0.2, the ARL0

values of the EWMA-ܺ chart are much smaller than 500 (farther below the reference

line) for all distributions other than the normal. This is problematic as there will be

many more false alarms than what is nominally expected.

iii. The EWMA−ܺ chart appears to be less IC robust for larger values of λ, especially for

the CN distribution. Thus, this chart may be problematic when outliers are likely to be

present.

<Insert Figure 3>
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5.2 Out-of-control chart Performance Comparison

For the OOC chart performance comparison it is customary to ensure that the ARL0

values of the competing charts are fixed at (or very close to) an acceptably high value, such as

500 in this case, and then compare their out-of-control ARL’s i.e. their ARLδ values, for

specific values of the shift δ; the chart with the smaller ARLδ value is generally preferred.

Table 6 shows the OOC performance characteristics of the run-length distribution for

various distributions and shifts of size δ = 0.5(0.5)2.5 in the mean/median, expressed in terms

of the population standard deviation (which, in our case, equals one), for λ = 0.05 and n = 10. It

may be noted that in order for the NPEWMA-SR chart to be able to signal after one subgroup

(i.e. to obtain an ARLδ of 1), the maximum allowable value for the UCL is ݊)݊ߣ + 1)/2 and, in

general,  in  order  for  the  chart  to  be  able  to  signal  after  the ith subgroup, the maximum

allowable UCL is (1 − (1 − ݊)݊(௜(ߣ + 1)/2. This result can be established by substituting the

maximum value of ܴܵ௜ (equal  to ݊(݊ + 1)/2) into equation (2) and rewriting the plotting

statistic as ܼ௜ = ∑ߣ (1 − ௝ܴܵ௜ି௝௜ିଵ(ߣ
௝ୀ଴ + (1 − ௜ܼ଴ by recursive substitution. Thus, the first(ߣ

time the chart can signal is on the subgroup number

݅ ≥ ௟௡	(ଵିଶ௎஼௅/(௡(௡ାଵ))
௟௡	(ଵିఒ)

 . (10)

For example, for n = 10, and 0.05 = ߣ L = 2.610 (this (ߣ, L)-combination can be used

for ARL0 is 500 (see Table 5)) we get UCL = 8.200 from (4) and then the right-hand side of

(10) equals 3.148. Thus the NPEWMA-SR chart can only signal for the first time on or beyond

subgroup number 4, which is confirmed from Table 6. Similar conditions apply to the

performance of the NPEWMA-SN chart.

The results of Table 6 can again be displayed as boxplot-like graphs as in Figure 3 for

easier understanding but these are omitted here to conserve space. It should be noted that the

Markov-chain approach could not be used to obtain the run-length characteristics of the

NPEWMA-SR chart for the OOC performance comparisons, because the distribution of the SR

statistic is not available for most non-normal distributions and/or when a shift occurred in the

process. Consequently, extensive computer simulation was used to estimate these quantities.

The simulation algorithm is described below.

Simulation algorithm

Step 1: After specifying the subgroup size and the size of the shift to be detected, we generate

random subgroups from a standard normal, Student’s t, Laplace, Logistic or contaminated

normal distribution, respectively.



16

Step 2: Select the two design parameters, λ and L (see Section 3.2) for a given ARL0 and shift

size.

Step 3: Calculate the SRi and the plotting statistic Zi statistics (see equations (1) and (2),

respectively) for each subgroup.

Step 4: Calculate the steady-state control limits using equation (4) and compare Zi to the

control limits.

Step 5: The number of subgroups needed until Zi plots on or outside the control limits is

recorded as an observation from the run-length distribution.

Step 6: Repeat steps 1 to 5 a total of 100,000 times.

Step 7: Once we have obtained a “dataset” with 100,000 observations from the run-length

distribution, proc univariate of SAS®v 9.1.3 was used to obtain the run-length characteristics.

< Insert Table 6 >

A  summary  of  our  observations  from  the  OOC  performance  characteristics  shown  in

Table 6 is as follows:

i. The  NPEWMA-SR  chart  outperforms  the  NPEWMA-SN  chart  for  all  distributions

under consideration except for the Laplace distribution, for which the performances of

the charts are very similar (which is not surprising in view of the ARE values

mentioned in Section 1). Both nonparametric charts perform significantly better than

the EWMA-ܺ chart for all distributions except the normal with (1.5 > ߜ) and even then

the performances of the charts are very comparable.  Similar conclusions can be drawn

for λ = 0.01, 0.025, 0.10 and 0.20 where the run-length characteristics of the

NPEWMA-SR chart tends to 6, 4, 3 and 2, respectively, as the shift increases.

ii. For larger shifts in location (ߜ ≥	1.5), all the values of the run-length characteristics of

the  NPEWMA-SR  chart  become  smaller  and  ultimately  converge  to  4  as  the  shift

increases (due to the restriction given in (10)) and those of the NPEWMA-SN chart

also become smaller and ultimately converge to 3 as this shift increases (due to a

similar type of restriction) and those of the EWMA-ܺ can (and do) get smaller.

Next  we  compare  the  OOC  performance  of  the  NPEWMA-SR  chart  to  that  of  the

Shewhart-type SR charts. Table 14 of Chakraborti and Eryilmaz (2007) give the ARL values

for n = 10 for the 1-of-1, the 2-of-2 DR and the 2-of-2 KL Shewhart-type SR charts,

respectively. Note that the control limits were chosen such that the ଴ܮܴܣ ≈ 480 for each chart.
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Table 7. ARL values under the N(0,1) distribution when n = 10.

Shift
1-of-1

UCL/LCL = ± 55
2-of-2 DR

UCL/LCL = ± 39
2-of-2 KL

UCL/LCL = ± 37
NPEWMA-SR

,0.05 = ࣅ) L = 2.595)
UCL/LCL = ± 8.153

0.0 ± 480.00 ± 480.00 ± 480.00 ± 480.00
0.2 208.76 147.19 113.17 22.25
0.4 66.93 30.37 22.52 9.56
0.6 25.22 9.60 7.51 6.43
0.8 10.72 4.49 3.89 5.11
1.0 5.64 2.90 2.66 4.44
1.2 3.37 2.31 2.22 4.11

From Table 7 we find that:

i. The NPEWMA-SR chart far outperforms all charts for shifts in location of 0.6 standard

deviations or less.

ii. For shifts in the location of 0.8 standard deviations and larger, the performances of the

charts are similar, particularly that of the runs-rule enhanced charts and the NPEWMA-

SR charts.

iii. The ARL of the NPEWMA-SR charts tends to 4 as the shift increases. This is due to the

restriction (10) as explained before.

The first row of each cell in Table 8 shows the ARL0 and SDRL0 values, respectively,

whereas the second row shows the values of the 5th, 25th, 50th, 75th and 95th percentiles (in this

order) for the traditional and the nonparametric EWMA charts, for the normal distribution

when the standard deviation increases from 1 to 10. We see that while the NPEWMA-SR chart

is insensitive to misspecification or changes in the variance, the traditional EWMA-ܺ is clearly

not. In fact, a two fold increase of the standard deviation can have a very significant effect on

the ARL0 of the EWMA-ܺ chart. Thus while for the traditional EWMA-ܺ chart a shift in the

variance can easily lead to a signal on the location chart that is not the case with the

NPEWMA-SR chart.

Table 8. Performance characteristics of the IC run-length distribution for the NPEWMA-SR and the EWMA-ܺ
chart with n = 10 for N(0, .ଶ) dataߪ

࣌ NPEWMA-SR
(λ = 0.05, L = 2.595)

EWMA-ࢄ
(λ = 0.05, L = 2.602)

1

482.28 (467.86)
38, 149, 339, 663, 1416

481.82 (465.87)
38, 150, 340, 662, 1413

2 32.69 (28.48)
5, 13, 24, 44, 89

3 13.44 (11.22)
3, 6, 10, 18, 36

4 7.99 (6.50)
2, 3, 6, 11, 21

10 2.33 (1.69)
1, 1, 2, 3, 6
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6. Concluding Remarks

EWMA charts take advantage of the sequentially (time ordered) accumulating nature of

the data arising in a typical SPC environment and are known to be more efficient in detecting

smaller shifts. The traditional parametric EWMA-ܺ chart can lack in-control robustness and as

such the corresponding false alarm rates can be a practical concern. Nonparametric EWMA

charts offer an attractive alternative in such situations as they combine the inherent advantages

of  nonparametric  charts  (IC  robustness)  with  the  better  small  shift  detection  capability  of

EWMA-type  charts.  We study  the  nonparametric  EWMA control  chart  based  on  the  signed-

rank statistic and its properties via the in-control and out-of-control run-length distribution

using a Markov chain approach and simulation, respectively. A performance comparison of the

NPEWMA-SR chart  is  done  with  its  competitors:  the  EWMA-ܺ chart, the 1-of-1, the 2-of-2

DR and the 2-of-2 KL  Shewhart-type  signed-rank  charts  and  the  NPEWMA  chart  based  on

signs, and it is seen that the NPEWMA-SR chart performs as well as and, in many cases, better

than its competitors. Thus, on the basis of minimal required assumptions, robustness of the in-

control run-length distribution and out-of-control performance, the NPEWMA-SR chart is a

strong contender in practical SPC applications. Note that, the focus in this article has been the

situation where the process median is known or specified in advance. Adaptations to the case

where the median is unknown or unspecified are currently being investigated and will be

reported in a separate paper.
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Figure 32. Boxplot-like graphs of the IC run-length distributions of the NPEWMA-SR chart (first boxplot on the
left), the NPEWMA-SN chart (second boxplot to the left) and the EWMA- X  chart (remaining 6 boxplots on the
right)

2Panel (a): NPEWMA-SR (λ=0.05, L=2.610); NPEWMA-SN (λ=0.05, L=2.612); EWMA- X  (λ=0.05, L=2.613)
Panel (b): NPEWMA-SR (λ=0.10, L=2.794); NPEWMA-SN (λ=0.10, L=2.797); EWMA- X  (λ=0.10, L=2.815)
Panel (c): NPEWMA-SR (λ=0.20, L=2.905); NPEWMA-SN (λ=0.20, L=2.933); EWMA- X  (λ=0.20, L=2.962)
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Table 1. Performance characteristics of the IC run-length distribution for the NPEWMA-SR chart with n = 5.

L
λ

Small shifts Moderate shifts Large shifts
0.01 0.025 0.05 0.10 0.20

2.0
525.37 (483.82) 229.47 (211.92) 127.18 (117.83) 73.72 (68.60) 46.05 (43.21)

64, 182, 378, 713, 1490 28, 79, 165, 311, 652 15, 43, 91, 173, 362 9, 25, 53, 100, 211 5, 15, 33, 63, 132

2.1
642.12 (596.56) 281.79 (262.60) 156.62 (146.42) 91.51 (85.95) 58.07 (54.94)

74, 218, 460, 873, 1832 32, 95, 201, 383, 806 17, 52, 112, 213, 449 10, 30, 65, 125, 263 6, 19, 41, 79, 168

2.2 788.31 (738.60) 347.83 (326.92) 194.21 (183.14) 114.41 (108.39) 73.92 (70.50)
86, 263, 562, 1074, 2262 37, 115, 248, 474, 1000 20, 64, 138, 265, 560 12, 37, 81, 156, 331 7, 24, 52, 101, 215

2.3 974.71 (920.71) 431.13 (408.49) 242.64 (230.66) 144.31 (137.82) 95.16 (91.52)
100, 320, 693, 1331, 2812 43, 140, 306, 589, 1246 24, 78, 172, 332, 703 14, 46, 102, 198, 419 8, 30, 67, 131, 278

2.4 1214.47 (1156.06) 539.08 (514.64) 305.68 (292.78) 183.97 (177.00) 123.83 (119.93)
117, 392, 860, 1661, 3521 51, 173, 321, 738, 1566 28, 97, 216, 419, 890 16, 58, 130, 252, 537 10, 38, 87, 170, 363

2.5 1517.63 (1454.79) 677.62 (651.38) 386.96 (373.15) 236.12 (228.68) 163.43 (159.27)
137, 482, 1072, 2080, 4421 60, 214, 478, 929, 1977 33, 121, 273, 531, 1132 19, 73, 166, 324, 692 12, 50, 115, 225, 481

2.6
1918.28 (1850.91) 860.65 (832.58) 496.96 (481.21) 307.15 (299.22) 220.15 (215.72)

162, 600, 1351, 2633, 5612 71, 268, 605, 1182, 2522 39, 153, 348, 682, 1456 23, 94, 215, 423, 904 16, 66, 154, 303, 651

2.7 2436.64 (2364.77) 1102.44 (1072.54) 640.44 (624.75) 404.57 (396.15) 300.03 (295.35)
193, 753, 1711, 3350, 7156 85, 339, 773, 1517, 3243 48, 195, 449, 882, 1887 29, 122, 283, 558, 1195 20, 90, 209, 414, 889

2.8
3128.26 (3051.86) 1417.73 (1386.01) 838.61 (821.99) 541.06 (532.15) 417.77 (412.83)

233, 955, 2192, 4307, 9219 103, 431, 993, 1953, 4184 59, 253, 586, 1156, 2479 36, 162, 378, 747, 1603 26, 124, 291, 577, 1242

2.9 4053.52 (3972.60) 1860.88 (1827.32) 1108.26 (1090.69) 730.87 (721.46) 590.31 (585.08)
285, 1224, 2835, 5588, 11982 127, 559, 1300, 2567, 5508 74, 331, 774, 1530, 3285 46, 217, 510, 1010, 2171 35, 174, 411, 816, 1758

3.0 5309.20 (5223,82) 2456.38 (2421.01) 1471.46 (1452.99) 997.49 (987.60) 856.39 (850.86)
354, 1588, 3706, 7327, 15734 160, 732, 1714, 3392, 7288 93, 437, 1026, 2033, 4371 61, 294, 694, 1379, 2968 49, 250, 595, 1185, 2554
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Table 2. Performance characteristics of the IC run-length distribution for the NPEWMA-SR chart with n = 10.

L
λ

Small shifts Moderate shifts Large shifts
0.01 0.025 0.05 0.10 0.20

2.0
526.24 (484.78) 230.19 (212.76) 127.34 (118.12) 73.50 (68.52) 45.18 (42.44)

64, 182, 378, 714, 1493 28, 79, 165, 312, 655 15, 43, 91, 173, 363 8, 25, 53, 100, 210 5, 15, 32, 62, 130

2.1
643.37 (597.91) 282.21 (263.15) 156.79 (146.74) 90.91 (85.52) 56.44 (53.49)

74, 218, 461, 875, 1836 32, 95, 202, 384, 807 17, 52, 112, 214, 450 10, 30, 65, 124, 262 6, 18, 40, 77, 163

2.2 790.58 (740.97) 347.75 (327.01) 193.83 (182.93) 113.21 (107.38) 71.25 (68.09)
86, 264, 564, 1077, 2269 37, 115, 248, 474, 1000 20, 64, 138, 265, 559 11, 37, 80, 155, 327 7, 23, 50, 98, 207

2.3
976.99 (923.11) 431.42 (408.95) 241.48 (229.70) 142.18 (135.91) 90.73 (87.34)

100, 320, 694, 1334, 2819 43, 140, 306, 590, 1247 23, 78, 171, 330, 700 13, 45, 101, 195, 413 8, 29, 64, 124, 265

2.4
1211.01 (1152.78) 538.45 (514.21) 302.73 (290.07) 179.97 (173.24) 116.62 (113.01)

117, 391, 858, 1657, 3511 50, 172, 381, 737, 1565 27, 96, 214, 415, 882 16, 57, 127, 247, 526 9, 36, 82, 160, 342

2.5 1520.23 (1457.55) 676.74 (650.72) 383.02 (369.46) 229.79 (222.61) 151.71 (147.86)
137, 483, 1073, 2083, 4429 59, 213, 477, 928, 1975 33, 120, 270, 526, 1120 19, 71, 162, 316, 674 11, 46, 106, 209, 447

2.6
1916.65 (1849.51) 857.99 (830.16) 488.46 (473.99) 296.15 (288.51) 199.65 (195.58)

162, 600, 1350, 2631, 5607 70, 267, 603, 1179, 2515 39, 151, 343, 672, 1434 22, 91, 208, 408, 872 14, 60, 140, 275, 590

2.7
2438.25 (2366.61) 1096.87 (1067.23) 630.57 (615.18) 386.19 (378.10) 265.79 (261.48)

193, 753, 1712, 3353, 7161 84, 337, 770, 1509, 3227 47, 192, 442, 868, 1858 28, 117, 270, 532, 1141 18, 80, 186, 367, 788

2.8
3131.18 (3055.01) 1415.89 (1384.45) 817.76 (801.47) 508.59 (500.05) 358.54 (354.00)

233, 955, 2194, 4311, 9228 103, 430, 991, 1951, 4179 57, 247, 572, 1127, 2417 34, 152, 355, 702, 1507 23, 106, 250, 495, 1065

2.9
4056.22 (3975.58) 1853.14 (1819.89) 1076.12 (1058.94) 678.68 (669.69) 490.96 (486.19)

285, 1225, 2837, 5592, 11990 127, 557, 1295, 2556, 5485 72, 322, 751, 1485, 3189 43, 202, 473, 937, 2015 30, 145, 342, 679, 1461

3.0
5298.98 (5213.92) 2430.95 (2395.95) 1427.59 (1409.53) 913.59 (904.16) 678.75 (673.76)

353, 1585, 3699, 7313, 15704 158, 724, 1696, 3357, 7213 90, 424, 995, 1972, 4241 56, 270, 636, 1263, 2718 40, 199, 472, 939, 2023
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Table 5. Performance characteristics of the IC run-length distribution for the NPEWMA-SR chart, the NPEWMA-SN chart and the EWMA-ࢄ chart
for selected (λ, L)-combinations and n = 10.

NPEWMA-SR chart
(λ, L) (0.01, 1.975) (0.025, 2.367) (0.05, 2.610) (0.10, 2.794) (0.20, 2.905)

For all
symmetric
continuous

distributions

500.51 (460.04)
62, 174, 360, 679, 1418

500.06 (476.41)
48, 161, 354, 684, 1451 500.67 (486.10)

40, 154, 352, 688, 1471
500.13 (491.61)

34, 150, 349, 690, 1481
498.92 (494.15)

30, 147, 347, 690, 1485

NPEWMA-SN chart
(λ, L) (0.01, 1.973) (0.025, 2.369) (0.05, 2.612) (0.10, 2.797) (0.20, 2.933)

For all
continuous

distributions

498.08 (457.78)
62, 173, 358, 675, 1411

499.21 (475.65)
48, 161, 353, 683, 1448 501.04 (486.58)

39, 155, 352, 689, 1472
500.25 (491.88)

34, 150, 349, 690, 1482
499.64 (495.00)

30, 147, 348, 691, 1488

EWMA-ࢄ chart
Dist (λ, L) (0.01, 1.975) (0.025, 2.368) (0.05, 2.613) (0.10, 2.815) (0.20, 2.962)

N(0,1) 500.73 (460.49) 499.25 (476.72) 496.37 (482.62) 498.96 (490.01) 497.31 (492.20)
61, 173, 360, 678, 1424 47, 161, 353, 682, 1447 39, 152, 350, 681, 1462 34, 149, 349, 689, 1475 30, 147, 346, 688, 1479

t(4) 524.98 (485.57) 497.84 (479.58) 480.84 (470.36) 441.57 (436.35) 367.65 (365.04)
61, 180, 376, 712, 1500 44, 158, 352, 678, 1447 38, 148, 337, 661, 1421 29, 131, 308, 608, 1309 22, 108, 255, 509, 1094

t(8) 508.37 (469.60) 497.66 (474.17) 494.13 (478.31) 490.80 (479.81) 471.10 (466.43)
61, 175, 366, 688, 1437 46, 160, 353, 682, 1437 39, 153, 349, 682, 1445 33, 147, 344, 678, 1445 28, 137, 329, 653, 1407

Laplace 512.94 (471.37) 493.12 (470.21) 491.87 (479.56) 477.52 (473.51) 438.70 (434.15)
62, 176, 369, 698, 1457 45, 158, 350, 677, 1431 39, 150, 345, 675, 1450 32, 142, 331, 657, 1423 26, 129, 305, 607, 1300

Logistic 506.92 (467.73) 498.93 (475.23) 491.81 (479.10) 491.58 (485.19) 473.63 (471.09)
62, 175, 364, 687, 1443 47, 159, 353, 684, 1446 39, 152, 345, 677, 1452 33, 147, 342, 676, 1462 28, 138, 328, 654, 1416

CN 332.72 (436.21) 431.71 (475.43) 494.67 (479.24) 487.51 (477.50) 476.14 (473.16)
2, 22, 163, 481, 1221 4, 89, 281, 611, 1379 39, 152, 349, 683, 1448 33, 148, 343, 671, 1438 29 ,140, 331, 662, 1411
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Table 63. The OOC performance characteristics of the run-length distribution for the EWMA-ࢄ, the NPEWMA-SN and the NPEWMA-SR charts for λ = 0.05, n = 10 and
number of simulations = 100,000.

EWMA-ࢄ chart with λ = 0.05 and L such that ARL0 ≈ 500 NPEWMA-SR chart with λ = 0.05 and L such that ARL0 ≈ 500

L
Shift (number of standard deviations) Shift (number of standard deviations)

0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5

N(0,1) L=2.613 6.71 (1.89) 3.33 (0.64) 2.26 (0.44) 1.98 (0.15) 1.68 (0.47) L=2.610 7.65 (1.97) 4.46 (0.58) 4.00 (0.07) 4.00 (0.00) 4.00 (0.00)
4, 5, 6, 8, 10 2, 3, 3, 4, 4 2, 2, 2, 3, 3 2, 2, 2, 2, 2 1, 1, 2, 2, 2 5, 6, 7, 9, 11 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

t(4) L=2.682
30.94 (17.73) 11.76 (4.21) 7.29 (2.01) 5.34 (1.25) 4.26 (0.89)

L=2.610
6.51 (1.47) 4.27 (0.47) 4.01 (0.11) 4.00 (0.02) 4.00 (0.01)

11, 18, 27, 39, 65 6, 9, 11, 14, 20 5, 6, 7, 8, 11 4, 5, 5, 6, 8 3, 4, 4, 5, 6 5, 5, 6, 7, 9 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

t(8) L=2.640 29.53 (16.99) 11.50 (4.22) 7.18 (2.05) 5.27 (1.27) 4.20 (0.90) L=2.610 7.21 (1.77) 4.39 (0.55) 4.01 (0.09) 4.00 (0.01) 4.00 (0.00)
10, 18, 25, 37, 62 6, 9, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 3, 4, 4, 5, 6 5, 6, 7, 8, 10 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

Laplace L=2.666 30.48 (17.58) 11.68 (4.27) 7.24 (2.05) 5.32 (1.27) 4.23 (0.89) L=2.610 6.54 (1.51) 4.34 (0.52) 4.02 (0.13) 4.00 (0.02) 4.00 (0.00)
11, 18, 26, 38, 65 6, 9, 11, 14, 20 4, 6, 7, 8, 11 4, 4, 5, 6, 8 3, 4, 4, 5, 6 5, 5, 6, 7, 9 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

Logistic L=2.635
29.46 (17.00) 11.47 (4.22) 7.17 (2.05) 5.26 (1.27) 4.20 (0.90)

L=2.610
7.20 (1.77) 4.39 (0.55) 4.01 (0.10) 4.00 (0.01) 4.00 (0.00)

10, 17, 25, 37, 62 6, 8, 11, 14, 19 4, 6, 7, 8, 11 4, 4, 5, 6, 8 3, 4, 4, 5, 6 5, 6, 7, 8, 10 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

CN L=2.656 24.49 (18.26) 7.42 (4.73) 3.82 (2.20) 2.45 (1.28) 1.78 (0.85) L=2.610 7.42 (1.87) 4.41 (0.56) 4.01 (0.08) 4.00 (0.01) 4.00 (0.00)
3, 11, 20, 33, 59 2, 4, 6, 10, 16 1, 2, 3, 5, 8 1, 2, 2, 3, 5 1, 1, 2, 2, 3 5, 6, 7, 8, 11 4, 4, 4, 5, 5 4, 4, 4, 4, 4 4, 4, 4, 4, 4 4, 4, 4, 4, 4

NPEWMA-SN chart with λ = 0.05 and L such that ARL0 ≈ 500

N(0,1) L=2.612 9.01 (2.76) 4.78 (0.85) 3.65 (0.57) 3.15 (0.35) 3.01 (0.12)
5, 7, 9, 11, 14 4, 4, 5, 5, 6 3, 3, 4, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 3

t(4) L=2.612 6.94 (1.76) 4.21 (0.69) 3.47 (0.53) 3.16 (0.37) 3.05 (0.22)
5, 6, 7, 8, 10 3, 4, 4, 5, 5 3, 3, 3, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 4

t(8) L=2.612 8.08 (2.31) 4.53 (0.77) 3.58 (0.56) 3.17 (0.38) 3.04 (0.19)
5, 6, 8, 9, 12 3, 4, 4, 5, 6 3, 3, 4, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 3

Laplace L=2.612 6.56 (1.59) 4.29 (0.71) 3.57 (0.55) 3.22 (0.42) 3.07 (0.25)
5, 5, 6, 7, 9 3, 4, 4, 5, 5 3, 3, 4, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 4

Logistic L=2.612 8.00 (2.26) 4.53 (0.77) 3.59 (0.56) 3.18 (0.39) 3.04 (0.20)
5, 6, 8, 9, 12 3, 4, 4, 5, 6 3, 3, 4, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 3

CN L=2.612 8.61 (2.57) 4.65 (0.81) 3.59 (0.56) 3.14 (0.35) 3.02 (0.15)
5, 7, 8, 10, 13 4, 4, 5, 5, 6 3, 3, 4, 4, 4 3, 3, 3, 3, 4 3, 3, 3, 3, 3

3 The values of the run-length characteristics of the NPEWMA-SR chart become smaller and ultimately converge to 4 as the shift increases (due to the restriction given in
(10)), those of the NPEWMA-SN chart also become smaller and ultimately converge to 3 as this shift increases (due to a similar type of restriction) and those of the EWMA-
ܺ can (and do) get smaller.


