REFERENCES

List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHO</td>
<td>American Association of State Highway Officials</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ADT</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>ADT</td>
<td>Average Daily Traffic</td>
</tr>
<tr>
<td>BR</td>
<td>Prefix Denoting a Federal Highway (as in Br-116)</td>
</tr>
<tr>
<td>BRIAM</td>
<td>Brazilian Roadway Investment Analysis Model</td>
</tr>
<tr>
<td>CAEEB</td>
<td>Companhia Auxiliar das Empresas Elétricas Brasileiras</td>
</tr>
<tr>
<td>CBR</td>
<td>California Bearing Ratio</td>
</tr>
<tr>
<td>DER</td>
<td>Departamento de Estradas de Rodagem</td>
</tr>
<tr>
<td>DF</td>
<td>Distrito Federal (Federal District)</td>
</tr>
<tr>
<td>DMI</td>
<td>Distance Measuring Instrument</td>
</tr>
<tr>
<td>DNER</td>
<td>Departamento Nacional de Estradas de Rodagem</td>
</tr>
<tr>
<td>EMBRAPA</td>
<td>Empresa Brasileira de Pesquisa Agropecuária</td>
</tr>
<tr>
<td>EPCT</td>
<td>Estrada Parque Contorno</td>
</tr>
<tr>
<td>EBRAPPA</td>
<td>Empresa Brasileira de Planejamento de Transportes</td>
</tr>
<tr>
<td>GO</td>
<td>Goiás (Brazilian State)</td>
</tr>
<tr>
<td>IBRD</td>
<td>International Bank for Reconstruction and Development</td>
</tr>
<tr>
<td>IPEA</td>
<td>Instituto de Planejamento Econômico e Social</td>
</tr>
<tr>
<td>IPR</td>
<td>Instituto de Pesquisas Rodoviárias</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MG</td>
<td>Minas Gerais (Brazilian State)</td>
</tr>
<tr>
<td>QI</td>
<td>Quarter-car Simulator Index (a measure of roughness generated by the Quarter-car Simulator in the GM Profilometer)</td>
</tr>
<tr>
<td>SAS</td>
<td>Statistical Analysis System</td>
</tr>
<tr>
<td>SN</td>
<td>Structural Number</td>
</tr>
<tr>
<td>SOFOT</td>
<td>Simulation of Flow of Traffic</td>
</tr>
<tr>
<td>SUBIN</td>
<td>Secretaria de Cooperação Econômica e Técnica Internacional</td>
</tr>
<tr>
<td>TAFI</td>
<td>Time and Fuel Algorithm</td>
</tr>
<tr>
<td>TRDF</td>
<td>Texas Research and Development Foundation</td>
</tr>
<tr>
<td>TRRL</td>
<td>Transport and Road Research Laboratory</td>
</tr>
<tr>
<td>UNDP</td>
<td>United Nations Development Program</td>
</tr>
<tr>
<td>WIM</td>
<td>Weigh-in-Motion</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

FIGURE 1 - LOCATION OF ROUTES INCLUDED IN THE ROAD USER COSTS SURVEYS .. 17

FIGURE 2 - LOCATION OF SECTIONS FOR THE PAVEMENT AND MAINTENANCE STUDIES 18

FIGURE 3 - LOCATION OF TEST SECTIONS FOR THE USER COST AND TRAFFIC EXPERIMENTS 19

FIGURE 4 - FUNCTIONAL ORGANIZATION CHART OF PROJECT 24

FIGURE 5 - DETAIL ORGANIZATION CHART OF PERSONNEL (REVISED JULY 1977) 25

FIGURE 6 - GARAGE AND WORK SHOPS FLOOR PLAN 29

FIGURE 7 - USER COSTS SURVEY ORGANIZATION CHART 40

FIGURE 8 - WORK PLAN AND SCHEDULE 63

FIGURE 9 - ROAD USER COSTS AND TRAFFIC EXPERIMENTS PERSONNEL CHART .. 70

FIGURE 10 - DATA PROCESSING FLOW CHART 72

FIGURE 11 - VEHICLE CLASSES .. 79

FIGURE 12 - LAYOUT OF EQUIPMENT FOR EXPERIMENT TB-1 AND TB-2 . 82

FIGURE 13 - FREE SPEED RELATED TO DISTANCE 100

FIGURE 14 - FREE SPEED RELATED TO DISTANCE 101

FIGURE 15 - FREE SPEED RELATED TO DISTANCE 102

FIGURE 16 - FUEL CONSUMPTION-VOLKSWAGEN 1300 - POSITIVE GRADE .. 111

FIGURE 17 - FUEL CONSUMPTION-KOMBI - POSITIVE GRADE 112

281
FIGURE 36 - FUEL CONSUMPTION-SCANIA - NEGATIVE GRADE 132

FIGURE 37 - WORK PLAN AND SCHEDULE 138

FIGURE 38 - ORGANIZATION OF THE PAVEMENT AND MAINTENANCE STUDY GROUP .. 145

FIGURE 39 - LOCATION OF PERMANENT TRAFFIC COUNTERS IN THE STATE OF GOIÁS ... 154

FIGURE 40 - AVERAGE DAILY TRAFFIC PER WEEK - BR-040 BRASÍLIA-LUZIÂNIA (COUNTER C-01, BOTH DIRECTIONS) 156

FIGURE 41 - AVERAGE DAILY TRAFFIC PER WEEK - BR-040 BRASÍLIA LUZIÂNIA (COUNTER CO-1, BOTH DIRECTIONS) 157

FIGURE 42 - AVERAGE DAILY DISTRIBUTION OF TRAFFIC (COUNTER CO-1, JAN./JUN.77) ... 158

FIGURE 43 - AVERAGE DAILY DISTRIBUTION OF TRAFFIC (COUNTER CO-2, SEP./NOV.77) ... 159

FIGURE 44 - AVERAGE DAILY DISTRIBUTION OF TRAFFIC (COUNTER CO-2, JAN./MAY 77) ... 160

FIGURE 45 - HOURLY DISTRIBUTION OF TRAFFIC AT COUNTER CO-1 (JANUARY/JUNE 1977) ... 161

FIGURE 46 - HOURLY DISTRIBUTION OF TRAFFIC AT COUNTER CO-2 JANUARY/MAY 1977) ... 162

FIGURE 47 - AXLE WEIGHING WITH PORTABLE SCALES 164

FIGURE 48 - HISTOGRAM OF FRONT AXLE LOADS - CLASS 4 VEHIC. - SECTION 007 ... 177

FIGURE 49 - HISTOGRAM OF REAR AXLE LOADS - CLASS 4 VEHIC. - SECTION 007 ... 178

FIGURE 50 - VEHICLE WEIGHING WITH WEIGH-IN-MOTION SYSTEM 184

283
FIGURE 51 - COMPARISON OF AXLE LOADS MEASURED WITH THE WIM AND PORTABLE SCALES ... 106

FIGURE 52 - NUMBER OF EQUIVALENT AXLES - CLASSES 2 AND 5 VEHIC. - DAY AND NIGHT - BR-040 192

FIGURE 53 - NUMBER OF EQUIVALENT AXLES FOR CLASS 4 VEHIC. FOR DAY AND NIGHT - BR-040 193

FIGURE 54 - NUMBER OF EQUIVALENT AXLES FOR CLASSES 5 AND 2 VEHIC. FOR DAY AND NIGHT - BR-060 199

FIGURE 55 - NUMBER OF EQUIVALENT AXLES FOR CLASS 4 VEHIC. FOR DAY AND NIGHT - BR-060 200

FIGURE 56 - WORK PLAN AND SCHEDULE ... 202

FIGURE 57 - RELATIONSHIP BETWEEN LEVELS OF APPLICABILITY AND SOPHISTICATION ... 207

FIGURE 58 - CONCEPTUAL FRAMEWORK OF BRIAM SHOWING MODULE INTERFACING .. 211

FIGURE 59 - WORK PLAN AND SCHEDULE ... 214

FIGURE 60 - PROJECT SCHEDULE ... 220
LIST OF TABLES AND EXHIBITS

TABLE B.1 - DISPOSITION OF EQUIPMENT AND INSTRUMENTATION ACQUIRED FOR PROJECT MEASUREMENTS 27

TABLE C.1 - USER COST SURVEYS DATA ITEMS 36

TABLE C.2 - QUALITATIVE FACTORIAL DESIGN FOR MAIN SURVEY 37

TABLE C.3 - QUANTITATIVE FACTORIAL DESIGN FOR MAIN SURVEY ... 39

TABLE C.4 - USER COSTS SURVEYS - PROGRESS TO AUGUST 1977 45

TABLE C.5 - SURVEY VEHICLES ACTIVITIES JANUARY-JUNE 1977 48

TABLE C.6 - OUTPUT FROM LINK GEOMETRY FILE: VERTICAL DATA ... 51

TABLE C.7 - OUTPUT FROM LINK GEOMETRY FILE: HORIZONTAL DATA . 52

TABLE C.8 - STATUS OF ROUTE FILES: AUGUST 1977 55

TABLE C.9 - MIDTERM ANALYSIS - VEHICLES IN FACTORIAL 58

TABLE C.10 - ROUTE FACTORIAL AND ROUGHNESS (QI) VALUES 60

TABLE D.1 - ROAD USER COSTS AND TRAFFIC EXPERIMENTS 76

TABLE D.2 - SAMPLING FRAME FOR EXPERIMENT TB-1 80

TABLE D.3 - SAMPLING FRAME FOR EXPERIMENT TB-4 85

TABLE D.4 - SAMPLING FRAME FOR EXPERIMENT TB-5 86

TABLE D.5 - TEST VEHICLE DESCRIPTION 90

TABLE D.6 - SAMPLING FRAME FOR FREE-SPEEDS-ON-NEGATIVE-GRADES PILOT STUDY ... 96

TABLE D.7 - ANALYSIS OF VARIANCE FOR THE UNWEIGHTED MEANSPOT SPEEDS ON NEGATIVE GRADES BEFORE SPEED-LIMIT ENFORCEMENT PROGRAM .. 98

285
TABLE D.8 - ANALYSIS-OF-VARIANCE LAYOUT TO TEST EFFECT OF SPEED-LIMIT ENFORCEMENT 103
TABLE D.9 - FACTORS AND LEVELS OF FUEL-CONSUMPTION ANALYSIS 106
TABLE D.10 - FUEL CONSUMPTION REGRESSION EQUATIONS FOR POSITIVE GRADES 109
TABLE D.11 - FUEL CONSUMPTION REGRESSION EQUATIONS FOR NEGATIVE GRADES 123
TABLE D.12 - FACTORS AND LEVELS OF THE EXPERIMENT 134
TABLE D.13 - EXAMPLE ANALYSIS-OF-VARIANCE TABLE USED TO ANALYZE FUEL CONSUMPTION FOR GAS AND DIESEL VEHICLES 136
TABLE E.1 - THE DESIGN MATRIX FOR THE SELECTION OF ROADS ON WHICH SPECIAL EXPERIMENTAL SECTIONS ARE CONSTRUCTED 147
TABLE E.2 - STATUS OF TESTING ON PAVED ROAD SECTIONS AT 1 AUGUST 1977 149
TABLE E.3 - STATUS OF TESTING ON UNPAVED ROAD SECTIONS AT 1 AUGUST 1977 150
TABLE E.4 - PERCENTAGES OF AXLES OVERLADEN MEASURED WITH THE PORTABLE SCALES ON THE PAVEMENT STUDY SECTIONS 166
TABLE E.5 - NUMBER OF EQUIVALENT AXLES PER VEHICLE FOR SECTIONS LOCATED IN DISTRITO FEDERAL 173
TABLE E.6 - EQUIVALENT AXLES PER VEHICLE FOR THE MAXIMUM LEGAL AXLE LOADS 180
TABLE E.7 - EQUIVALENT AXLE LOADS PER VEHICLE FOR CLASS 4 VEHICLES (SECTIONS LOCATED BETWEEN GRAVEL OR SAND PITS AND LOCATION OF USE) 181
TABLE E.8 - COMPARISON OF EQUIVALENCY FACTORS CALCULATED FROM DATA OBTAINED WITH THE PORTABLE SCALES AND THE WIM ... 187

TABLE E.9 - COMPARISON OF NUMBER OF EQUIVALENT AXLES CALCULATED FROM WIM AND PORTABLE SCALE DATA 189

TABLE E.10 - NUMBER OF EQUIVALENT AXLES PER VEHICLE FOR DIFFERENT DAYS OBTAINED WITH THE WIM 190

TABLE E.11 - COMPARISON OF NUMBER OF EQUIVALENT AXLES CALCULATED FROM WIM AND PORTABLE SCALE DATA 195

TABLE E.12 - PROPORTION OF AXLES LADEn ABOVE THE LEGAL LIMITS MEASURED WITH THE WIM ON BR-080 196

TABLE E.13 - NUMBER OF EQUIVALENT AXLES PER VEHICLE FOR DIFFERENT DAYS OBTAINED WITH THE WIM 198

EXHIBIT 1 - EXAMPLE OF THE ROUTE LINK FILE 49

EXHIBIT 2 - HORIZONTAL AND VERTICAL LINK STATISTICS GENERATED, IN BOTH DIRECTIONS, BY THE GEOMETRY ALGORITHM PROGRAM FOR PAVED AND UNPAVED USER ROUTES .. 53

EXHIBIT 3 - LINK ROUGHNESS, IN MAYSMEETER COUNTS PER .2 MILE, CONVERTED TO A MEASUREMENT SPEED OF 80 KPH AND GROUPED, WHERE ROUGHNESS IS NOT UNIFORM, INTO SECTIONS OF ROUGHNESS WITHIN EACH LINK 54

EXHIBIT 4 - PORTABLE SCALE FIELD RECORDING FORM 165
TABLE OF CONTENTS

- SUMMARY INDEX .. 3
- PREFACE ... 5
- ABSTRACT ... 7

CHAPTER A - INTRODUCTION .. 11

1 - OBJECTIVES .. 13
 a - Existing Model .. 14
 b - Scope .. 15

CHAPTER B - GENERAL PROJECT ACHIEVEMENTS 21

1 - ORGANIZATION ... 23
2 - MEASUREMENT EQUIPMENT ... 23
3 - WORKSHOPS .. 28
 a - Soils Laboratory ... 30
4 - COMPUTER FACILITIES .. 31

CHAPTER C - ROAD USER COSTS SURVEYS 33

1 - OBJECTIVES .. 35
2 - ORGANIZATION ... 38
3 - COSTS SURVEYS .. 41
 a - Methodology .. 41
 (1) - Companies' Own Records 42
 (2) - Self-administered Questionnaires 42
 b - Survey Scope and Size 43
 c - Data Collection ... 43

289
(7) - Radar Effect (TB-7) .. 87
(8) - Speed/Capacity (TB-8) 87
(9) - Operating-Speed Calibration (TB-9) 88
(10) - Wet/Dry (TBS-1) 88
(11) - Surface Types (TBS-2) 88
(12) - Deceleration (TBS-3) 89
(13) - Dust Effect (TBS-4) 89
b - Fuel Consumption Experiments 89
(1) - Steady-State Fuel Consumption (FC-1) 91
(2) - Momentum (FC-2) .. 92
(3) - Curvature Experiment (FC-3) 92
(4) - Fuel Consumption Calibration (FC-4) 93
(5) - Tuned VS. Untuned (FCS-1) 93
(6) - Curvature Study (FCS-2) 93
(7) - Sag Curves (FCS-3) 94
(8) - Acceleration (FCS-4) 94
(9) - Large Cars (FCS-5) 94

4 - PRELIMINARY ANALYSIS 94

a - Preliminary Analysis on TB-2 95
(1) - Background ... 95
(2) - Analysis .. 95
b - Effect of the Speed-Limit Enforcement Program 99
(1) - Analysis .. 99
(2) - Conclusions .. 104
c - Steady-State Fuel Consumption (FC-1) 104
(1) - Analysis Approach 105
(2) - Analysis-of-Variance Results 107
(3) - Summary of FC-1 Analysis 133
d - Fuel Consumption on Curves (FC-3) 133
(1) - Analysis-of-Variance Approach 133
(2) - Analysis of Results 135
(3) - Summary of FC-3 Analysis 137

5 - SUMMARY ... 137

CHAPTER E - PAVEMENT AND MAINTENANCE STUDIES 141

1 - OBJECTIVES .. 143
CHAPTER H - SUMMARY AND RECOMMENDATIONS .. 223

1 - STATUS OF THE STUDIES ... 225

a - Road User Costs Survey ... 225
b - Road User Costs and Traffic Experiments 226
c - Pavement and Maintenance Studies ... 226

2 - RECOMMENDATIONS .. 227

APPENDIX A - AXLE LOAD DISTRIBUTION BY TEST SECTION (40 TABLES) 229

APPENDIX B - AXLE WEIGHT DISTRIBUTION AT WIM SITES (3 TABLES) 271

REFERENCES .. 277

LIST OF ABBREVIATIONS ... 279

LIST OF FIGURES ... 281

LIST OF TABLES AND EXHIBITS ... 285

TABLE OF CONTENTS ... 289
Research on the Interrelationships Between Costs of Highway Construction, Maintenance and Utili...